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ABSTRACT

Decentralized bilevel optimization (DBO) provides a powerful framework for
multi-agent systems to solve local bilevel tasks in a decentralized fashion without
the need for a central server. However, most existing DBO methods rely on
lower-level strong convexity (LLSC) to guarantee unique solutions and a well-
defined hypergradient for stationarity measure, hindering their applicability in many
practical scenarios not satisfying LLSC. To overcome this limitation, we introduce
a new single-loop DBO algorithm called diminishing quadratically-regularized
bilevel decentralized optimization (DUET), which eliminates the need for LLSC by
introducing a diminishing quadratic regularization to the lower-level (LL) objective.
We show that DUET achieves an iteration complexity of O(1/T"~%"~37) for
approximate KKT-stationary point convergence under relaxed assumptions, where
p and 7 are control parameters for LL learning rate and averaging, respectively.
In addition, our DUET algorithm incorporates gradient tracking to address data
heterogeneity, a key challenge in DBO settings. To the best of our knowledge, this
is the first work to tackle DBO without LLSC under decentralized settings with
data heterogeneity. Numerical experiments validate the theoretical findings and
demonstrate the practical effectiveness of our proposed algorithms.

1 INTRODUCTION

In recent years, Decentralized Bilevel Optimization (DBO) over networks has gained significant
attention. Consider a DBO problem, where the agents form a peer-to-peer network represented
by an undirected connected graph G = (N, £). Here N and L are the sets of agents (nodes) and
edges, respectively, with |[A'| = m. Each agent ¢ can share information with neighboring agents
N; £ {i’ € N: (i,i") € L} and has access to a local dataset of size n. The goal is for all agents to
collaboratively solve the following decentralized bilevel optimization problem:
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s.t. S(x;) := arg mﬁn 9i(Xi,y:), Vi; x; =%y, if (i,4') € L, )
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where x; € RP' and y; € RP? are parameters to be trained for the UL and LL subproblems at agent
1, respectively. In this paper, we assume that the UL ob]ectlve 3" | fi (xi,y:) is non-convex and
the LL objectives g;(X;,y:), Vi, are convex but not strongly convex (i.e., not LLSC), respectively.
In the absence of LLSC, the LL solution could be a set-valued map & (xl) (i.e., non-unique optimal
solutions to the LL problem). The consensus constraints x; = x;+ in (2) ensure that the local copies
at neighboring agents 7 and 7’ are equal to each other, hence a “consensus” among the agents. The LL
variable y; is influenced by the UL variable x; chosen from the feasible set X (i.e., x; € X).

DBO provides an effective framework for solving multi-agent, nested optimization problems, where
each agent solves a local bilevel task while coordinating with others in a network without relying
on a central server. This approach proves particularly beneficial in scenarios such as multi-agent
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pretraining-finetuning (Rajeswaran et al., 2019; Poon & Peyré, 2021; Liu & Liu, 2021; Hashemi et al.,
2024) for Large Language Models (LLMs), which faces significant challenges in private finetuning
data environments, thereby making collaboration critical for successful fine-tuning. This framework is
also useful in multi-agent meta learning (Rajeswaran et al., 2019; Liu & Liu, 2021), and reinforcement
learning (Zhang et al., 2020; Lu et al., 2022), where decentralization reduces communication costs
and enhances privacy. DBO problems share the same structure as their centralized counterpart and
involve an upper-level (UL) objective function dependent on the optimal parameter values of a
lower-level (LL) objective. Even in the centralized case, bilevel optimization is inherently challenging
without lower-level strong convexity (LLSC). Several algorithmic approaches have been proposed for
centralized bilevel optimization without LLSC. These include using the sequential averaging method
(SAM) (Sabach & Shtern, 2017; Liu et al., 2023a; Li et al., 2020), penalty methods (Lu & Mei, 2023),
and employing the value function approach (Yao et al., 2024).

Despite the progress in LLSC-less centralized bilevel optimization, designing efficient algorithms for
LLSC-less DBO turns out to be far from a simple extension of the centralized counterpart. Instead,
LLSC-less DBO is a new area with a collection of new challenging and important problems, which
warrant drastically different algorithmic designs. To date, LLSC-less DBO remains under-explored
and this gap in the literature is largely due to the fact that most of the algorithmic ideas for centralized
bilevel optimization cannot be directly applied to DBO. The first key reason is that, instead of solving
a single LL problem, DBO involves multiple LL tasks across different agents, making centralized
techniques inapplicable. Another major challenge is the data heterogeneity across agents, where
each agent works with its own distinct dataset. This further complicates coordination among agents,
making it difficult for centralized bilevel optimization approaches to be effective in DBO.

To solve DBO problems without LLSC, a natural starting point is to leverage the decentralized
network-consensus approach (Nedic & Ozdaglar, 2009), where agents collaboratively solve a global
learning task to reach a consensus. However, two fundamental challenges arise when applying
network-consensus methods to DBO: (1) Most existing DBO methods (see, e.g., (Chen et al., 2022;
2023; Lu et al., 2022; Niu et al., 2023; Liu et al., 2022b; Qiu et al., 2023; Liu et al., 2023b),) heavily
rely on the assumption of LLSC to guarantee a well-defined Hessian inverse in the upper-level (UL)
hypergradient evaluation and the uniqueness of the LL solution, both of which may break down in
the absence of LLSC. Excerbating the situation is the fact that the norm of the UL hypergradient
is the most widely used stationarity measure for bilevel optimization. Without a well-defined UL
hypergradient in the absence of LLSC, it is not even clear what should be used as a stationarity
measure in DBO; (2) Without LLSC, the lack of uniqueness in LL solutions complicates coordination
in decentralized network-consensus approaches, where agents must exchange their updates without a
central server. Aggregating information from agents becomes more difficult, as the LL solution may
shift randomly, resulting in oscillations and poor convergence in DBO.

These challenges motivate us to design new efficient network-consensus-based algorithms for DBO
without LLSC. Toward this end, we propose a novel approach called diminishing quadratically-
regularized bilevel decentralized optimization (DUET). To our knowledge, none of the existing
works has considered solving LLSC-less DBO problems, particularly in decentralized environments
with data heterogeneity. Our major contributions are summarized as follows:

* New Single-Loop Algorithm for LLSC-less DBO: We propose DUET, a single-loop algorithm
that integrates gradient tracking and consensus updates to avoid the computational complexity
of conventional double-loop structure in bilevel optimization, while ensuring convergence in
decentralized settings with data heterogeneity. To our knowledge, this is the first algorithm with
provable convergence for DBO without LLSC.

» New Stationarity Measure for LLSC-less DBO Convergence: We propose to use the approxi-
mate KKT stationarity as the convergence measure of DBO solution quality in our algorithm and
provide a detailed convergence rate analysis based on this new measure. We establish state-of-the-
art finite-time convergence rates of O(1/T*~37~%7) and O(1/T*~%"~"37) corresponding to
the dual variables being bounded and unbounded, respectively. Here, 7 and p control the LL learn-
ing rate and averaging, respectively. Moreover, we note that this new approximate KKT-based
stationarity measure is general for all DBO problems, which could be of independent theoretical
interests. Most notably, the convergence of our DUET algorithms is proved by establishing a new
descent lemma for the Lyapunov function (cf. Lemma 1), which resolves the difficulty resulting
from the inapplicability of using the standard descent lemma in the absence of LLSC.
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* New Augmented LL Objective: We propose a new augmented LL objective function that
allows us to relax several restrictive assumptions made in existing works on LLSC-less bilevel
optimization. Notably, our approach does not require strong convexity for the UL objective at
each agent, Lipschitz continuity of second-order derivatives, or a bounded dataset.

* Handling Decentralization with Data Heterogeneity: Without gradient heterogeneity assump-
tions, our algorithm overcomes the challenges of consensus errors in DBO with data heterogeneity,
ensuring agents can synchronize their updates effectively without relying on LLSC.

2 RELATED WORK

In this section, we provide an overview of two closely related lines of works: 1) DBO and 2)
centralized bilevel optimization without LLSC, thus putting our work into comparative perspectives.

1) Decentralized Bilevel Optimization (DBO): Numerous studies have focused on solving decen-
tralized bilevel optimization problems on graphs with LLSC.

One line of work focuses on achieving consensus only for the UL variables, where algorithms are
often designed with the hypergradient norm as a stationarity measure. Liu et al. (2022b) introduced a
local full-gradient-based algorithm with variance reduction and gradient tracking to achieve O(n/¢)
sample complexity and O(1/€) communication complexity, where n is the size of the dataset at each
agent. Furthermore, momentum information is leveraged (Gao et al., 2023; Qiu et al., 2023) to enable
single-loop algorithmic architecture by slightly trading off convergence rate performance. To address
data heterogeneity, Niu et al. (2023) introduced a single-loop algorithm for nonconvex-strongly-
convex bilevel optimization that handles heterogeneity without requiring bounded hypergradients.
In collaborative learning, Zhang et al. (2023) proposed COBO, an SGD-based algorithm that scales
with clients and outperforms federated learning baselines in heterogeneous settings. Another line of
works enforce consensus on the LL variables refer to Appendix B.

Despite these advancements, all aforementioned DBO methods assume LLSC. In contrast, our work
departs from this assumption, addressing decentralized bilevel optimization without LLSC under
non-i.i.d. data, thus filling a critical gap in the literature.

2) Centralized Bilevel Optimization without LLSC: In recent years, centralized bilevel optimization
without LLSC has also received increasing attention. For example, Chen et al. (2024a) employed an e-
stationary point for the hyper-objective as a convergence metric to quantify algorithmic and proposed
a first-order bilevel algorithm with a convergence rate of O(¢x3/€?), where / is a Lipschitz constant
and k is the condition number, though it required PL conditions for LL objectives. Liu et al. (2022a)
presents a first-order algorithm for non-convex bilevel optimization that avoids Hessian computations,
ensures practical efficiency with non-asymptotic convergence guarantees, and introduces a modified
KKT condition with a stationarity measure to address bilevel problem challenges. Lu & Mei (2023)
reformulated the LL convex bilevel problem as a constrained min-max problem and used the classic
penalty method, achieving a convergence rate of O(1/e*) to find e-KKT points. Jiang et al. (2023)
tackled a “simple bilevel” problem and proposed a double-loop algorithm utilizing the condition
gradient method to approximate nonlinear LL convex functions with linear inequality constraints,
achieving a convergence rate of O(1/e?). The stochastic variant in Cao et al. (2023) extends this
method to both stochastic and finite-sum settings, with rates matching the standard conditional
gradient method. More recently, Yao et al. (2024) introduced a value-function-based proximal
Lagrangian approach for constrained LL convex bilevel problems, achieving a convergence rate
of O(1/T(1=2P)/2), where p controls the penalty parameter decay. Additional related works are
discussed in Appendix B.

The most related work on centralized LLSC-less bilevel optimization is in Liu et al. (2023a), which
reformulated the LL convex bilevel problem as a constrained problem using first-order stationarity
condition. By employing the KKT condition as the stationarity measure, they proposed a single-loop
method that averages the UL and LL objectives, achieving a convergence rate of O (1 JT1=3p ’37) ,
where p and 7 control the decreasing LL learning rate and the averaging parameter. While both our
work and Liu et al. (2023a) reformulate the bilevel problem as constrained optimization and use
aggregation function for solving LL problem, our work differs from Liu et al. (2023a) in the following
key aspects: 1) Liu et al. (2023a) required strong convexity of the UL objectives, which limits their
approach’s applicability in real-world scenarios where UL objectives are often nonconvex. In contrast,



Published as a conference paper at ICLR 2025

[ Algorithm i Setting | LowerLevel [ UpperLevel | Het. Data |

FOPM (Lu & Mei, 2023) Centralized Convex Nonconvex NA
CG-BiO (Jiang et al., 2023) Centralized Convex Nonconvex NA
F?BA (Chen et al., 2024a) Centralized Nonconvex, PL Nonconvex NA
SBCGEF (Cao et al., 2023) Centralized Convex Nonconvex NA
LV-HBA (Yao et al., 2024) Centralized Convex Nonconvex NA
sl-BAMM (Liu et al., 2023a) Centralized Convex Strongly Convex NA
INTERACT (Liu et al., 2022b) Decentralized Strongly Convex Nonconvex iid
DIAMOND (Qiu et al., 2023) Decentralized Strongly Convex Nonconvex iid
Prometheus(Liu et al., 2023b) Decentralized Strongly Convex Nonconvex rid

SLDBO (Dong et al., 2024) Decentralized Strongly Convex Nonconvex non-i.i.d

LoPA (Niu et al., 2023) Decentralized Strongly Convex Nonconvex non-i.i.d

DUET (Ours) Decentralized Convex Nonconvex non-i.i.d

Table 1: Summary of bilevel optimization algorithms.

our method can be applied to non-convex UL objective by employing a different aggregation function
that sequentially averages the LL objective with a diminishing quadratic regularizer. 2) Although
both approaches employ the KKT condition as the stationarity measure, our measure applies to the
decentralized setting by accounting for consensus errors and aggregating the stationarity measure
across subproblems from agents with non-i.i.d. data distributions. In contrast, the KKT-based
stationarity measure in Liu et al. (2023a) cannot handle data hetergeneity.

In summary, while the aforementioned existing works addressed centralized bilevel optimization
without LLSC, they cannot be generalized to address the decentralized setting with heterogeneous
data challenges in a straightforward fashion. In contrast, our work tackles LLSC-less DBO and
relaxes several assumptions typically made in the bilevel optimization literature. For easy reference,
we summarize the most relevant bilevel optimization algorithms in Table 1.

3 THE DIMINISHING QUADRATICALLY-REGULARIZED BILEVEL
OPTIMIZATION ALGORITHM (DUET)

1) Problem Reformulation for a New Stationarity Convergence Metric: In the LLSC-less DBO
literature, the uniqueness of the LL solution y7 (x;) ensures that the hypergradient norm of each
agent’s UL objective ®*(x;) = fi(x;, y}(x;)) is well-defined. Consequently, the hypergradient norm
of the overall UL objective ® (x;) = L Y™ @ (x;) is also well-defined. This norm has been
widely used as a measure for stationarity in previous works (e.g., Ghadimi & Wang (2018); Liu
et al. (2022b; 2023b); Dong et al. (2024); Lu & Mei (2023)). However, in the absence of LLSC, the
Hessian matrix of the LL problem is not full-rank and thus not invertible. In decentralized settings,
this problem is further exacerbated by the inconsistent updates across agents, which leads to the
conventional hypergradient-norm-based stationarity measure being ill-defined. This motivates us to
develop a new stationarity measure that handles both the absence of LLSC and the consensus errors
among agents at the same time.

Toward this end, inspired by Wolfe-duality, we first reformulate the LLSC-less DBO problem into an
equivalent constrained optimization problem. Instead of directly solving for y;(x;), we replace the
LL problem by introducing the LL-stationary condition (i.e., Vyg(x,y) = 0) as constraints:
1 m
. . o e e

xq,eRg?,lﬁeRPZ m ; fz (sz Y1) s.t. Vygz(xzy yz) = O,VZ, x; = Xy, if (7/) 1 ) eL. 3)
The reformulation in Problem (3) is equivalent to the original Problem (1) because the LL-stationarity
is both necessary and sufficient for the LL-optimality when the LL problem g;(x;, y;) is convex in
y; for any fixed x;, which is satisfied in our problem setting. Our key rationale behind converting the
original bilevel optimization problem in (1) into an equivalent conventional constrained optimization
problem in (3) is to facilitate the use of the KKT conditions, for which the KKT stationary condition
can naturally serve as a new stationarity measure, hence resolving the conundrum of lacking a
well-defined hypergradient norm as the stationarity measure in the absence of LLSC.

We now state the KKT conditions for Problem (3), for which the Lagrangian function can be written
as L(x,y,v) := 25" filxi,yi) — >oiey Vi Vygi(Xi,yi), where v;, Vi, are dual variables

T m
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associated with the constraints. Then, a KKT solution (x},y7, v}), if exists, satisfies the following:

%foi (x¥,y5) — Viygi (x¥,yf)vi=0,Vi, (Stationarity of Problem (3))
LV fi (X5, ¥7) — Va,9i (X}, y;) vi =0,Vi, (Stationarity of Problem (3))
—Vyg: (x5, yF) =0,Vi, (Primal Feasibility of Problem (3))
x; — x5, =0,Y(i,7) € L. (Primal Feasibility of Problem (3))

Note that the dual feasibility and complementary slackness conditions in this KKT system are implied
by the primal feasibility condition and hence can be omitted. For convenience, we define the KKT
stationarity residual for a primal-dual pair (x;,y;, v;) as KKT(x;,y:,vi) := ||[VL(xi,yi,vi)||%
which will be used as a part of our stationarity convergence metric defined later. Note that when
LLSC holds, it is not difficult to show that the V®(x) = 0 if and only if KKT(x;,y;,v;) = 0 for
some y,v € RP2. This fact will serve as a “bridge” to connect the above KKT staionarity and the
hypgradients induced by the diminishing p;-quadratic regularization described next.

2) The Diminishing ;;,-Quadratic Regularization: To address the challenge of lacking LLSC
in our algorithm design, our basic idea is to augment the LL objective function by introducing
a quadratic regularizer that is controlled by a sequence of diminishing regularization parameters,
thereby reviving the LLSC in each iteration. These regularization parameters are carefully selected to
ensure that the augmented problems converge to the original problem, thereby leading to a solution
to Problem (3). Specifically, at iteration ¢ we define the augmented LL objective function as follows:

U (Xie, Vi) = phi(Xi e yie) + (1= 1) gi (X0, ¥it), 4)

where h;(x;¢,yit) = 3 lxi.0]” + i lyi.c||>. Here, the norm || - || represents the £ norm. X;,
and y; ; are the variables corresponding to agent 7 at iteration ¢. Here {yu;}72,, where y; > 0, Vt,
is the diminishing sequence of regularization parameters, which ensures that w@t (x,+) is strongly
convex for any x. This augmentation also leverages the connection between the KKT condition
and the norm of the 1;-induced hypergradient, allowing us to replace the LL objective g;(X; ¢, ¥i.¢)
by w;t (Xi,t,¥4.t), facilitating the solution to Problem (3). Thanks to the strong convexity of the
quadratic regularizor, wit (xi,t,-) has a unique minimizer for any given x-variable, which is denoted

asy; . (xi).

Next, we define the approximate UL objective as ®,,, (x;) = = > @, (x;), where &, (x;;) £
fi(xi e, Vi (xi,)). Similar to conventional bilevel optimizaiton with LLSC, for differentiable

@), (x;), the hypergradient V@Lt (xi,) can be derived by the chain rule, the implicit func-

tion theorem, and the augmented LL function as: V@Lt (xit) = Vxfi (x,;7t,y:-"ut (x,t)) -
Vi bl (i, Vi (xi,t)) Vi (Xie), where vi (%) € RP? is the solution of the linear system:
Vi, (Xie) = (Vo tr, (Xit, ¥5 0, X)) Vy [i(Xit, ¥, (Xit))-

After introducing the regularization in (4), we can now adopt the approximate KKT condi-
tion by replacing the LL objective with 1, (X;+,yi ), and thus consider KKT(x¢,y¢, vi) =

[VL(x¢,ye, ve)||> < e at time ¢. Here x; := [x{ ;,...,x,),]T, and similarly for y; and v;.

3) Consensus Mechanism: To address the consensus constraint x; = X;/, (i,4’) € £ in Problem (3),
we adopt the network consensus approach (Nedic & Ozdaglar, 2009), where a consensus weight
matrix M € R™*™ is used to mix and aggregate information at each iteration. The element [M];;
represents the weight assigned for the information from the j-th agent at the i-th agent. Each agent
uses the weights in its corresponding row in the M € R™*™ to aggregate the information from
its neighbors. For consensus to be reached asymptotically, the matrix IM should satisfy certain
properties: (1) Doubly Stochastic: 37" | [M];; = >0 [Ml;; = 15 (2) Symmetric: [M];; = [M]y;
forall i, j € N; and (3) Sparsity Pattern Adhering to the Network Topology: [M];; > 0if (i, j) € N
and [M];; = 0 otherwise for all ¢, j € L. These properties ensure that the eigenvalues of M are real
and fall within the interval (—1, 1], thus being sortable. Then, we order the eigenvalues of M as:
—1 < Ap(M) < - < A(M) < A (M) = 1. The second-largest eigenvalue in magnitude of M,
denoted as A = max{|\z(M)|, |\, (M)]|}, will play an important role in our step size selection and
thus convergence rate in our proposed DUET algorithm.
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4) The Proposed Algorithm:

With the preliminaries in 1)-3). Algorithm 1 The DUET Algorithm at Each Agent .

we are now ready to present Set parameter pair (X;,0,¥i,0, Vi,0) = (X0, Y0, Vo)-

our diminishing quadratically-  fort=1,---,7 do

regularized bilevel decentralized Update local models (X;,¢11,¥i,t+1, Vi,t+1) as in Egs. (5);
optimization (DUET) method. Compute the (d*, d*, d%;") local estimator as in Eq. (6);
This method is specifically de- Track global gradients (h%’, h' h%") as in Eq. (7);
signed to address the challenges end for

of bilevel optimization without
LLSC in decentralized environments with data heterogeneity. Our DUET method draws inspiration
from the centralized SOBA approach (Dagréou et al., 2022), which features a single-loop structure
that is easier to implement and reduces the computational complexity compared to traditional double-
loop methods. However, fundamentally different from SOBA, DUET builds on the augmented LL
objective function in (4), enabling us to address DBO problems without LLSC. The procedure of our
algorithm DUET can be organized into three key steps:

 Step 1 (Update Local Models): In each iteration ¢, each agent ¢ updates its local variables as:

Xit41 = Z [MJirxir s — b yi01 = P, [Yi,tfﬂth;’t]; Vi1 = Pt [vii+n:hit, (5)

t
Yy

i’ eN;
where oy, B; and 1, are step-sizes for updating x;, y; and v; variables, respectively, and P[]
denotes a projection operator defined as P,.[q] := arg min|, <, [|¢’ — ¢|| = min{g, Tm}, where

r > 0 is the radius. r{ and ré are projection parameters of y; and v; variables, respectively (to
be defined in the next subsection). First, the UL variable x; ;41 is updated by aggregating the
UL information from its neighbors and adjusting based on the local gradient h%;*, which induces
consensus among the agents in the network. The LL variable y; ;1 is updated through a projected
local gradient descent step, reflecting the agent’s progress in solving its local optimization problem.
Finally, the dual variable v; ;11 is updated using a projected gradient ascent step to ensure that the
necessary optimality conditions of the LL problem are maintained. We also employ the projection
steps of y; ; and v; ; is to ensure that the sequences {y; ;} and {v; ;} are bounded with radii r}
and rf/ respectively. Later we will show that, based on increasing rf and ré with respect to ¢, the
boundedness of y; ;- and v; ;-variables results in the boundedness of x; ;-variables, hence ensuring
convergence.

e Step 2 (Local Gradient Estimate): In the local gradient estimator step, each agent ¢ computes its
local gradients to update its variables:

dg}t = Vylb,i“ (Xit, ¥Yit) s
diit =Vyfi (Xits ¥it) — Viy Zt (Xi s Yit) Vit (6)
diét = Vxfi (Xi,t7 Yi,t) - Viyi/},it (Xi,ta Yi,t)vi,t-

We update y; ; using the gradient of the augmented LL objective z/;Lt (Xit,¥i,t), while the gradients

for v; 4 and x; ; are derived using the KKT conditions. This ensures that the LL solution meets
optimality constraints and that the UL problem is solved efficiently.

* Step 3 (Gradient Tracking in Upper-Level Parameters): In this step, each agent 7 updates its tracked
gradient h%; by averaging the gradients from neighboring agents and correcting the local estimates:

' = Y0 Mkt +dy —dy T byt =dyt by =yt @)

i'EN;
The purpose of gradient tracking for the UL variables is to further reduce consensus error and
accelerate convergence even under non-i.i.d data distributions. On the other hand, since the LL

variables y; ; and v; ; are updated locally without consensus requirements, gradient tracking is not
needed for the LL variables.

To conclude the discussion of the DUET’s algorithmic design, we summarize the per-agent algorithm
of DUET in Algorithm 1.

4 THEORETICAL CONVERGENCE RATE ANALYSIS

In this section, we will establish the theoretical convergence rate for the proposed DUET algorithm.
Before we state our main convergence result, we first present several needed assumptions as follows.
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Assumption 1 (Boundedness and Smoothness of the UL Objectives). The UL objectives f; satisfies:
(a) For any i € [m), the UL objective f;(x;,-) has a uniform lower bound denoted by f;,; and (b)
For any i € [m], the UL objective f; is twice differentiable and Lipschitz continuous with a Lipschitz
constant of Ly, . The first-order derivatives Vy fi(-,y:), Vxfi(Xi,-), Vy fi(+,¥i), Vy fi(xi,-) are
Lipschitz continuous with respective Lipschitz constants Ly, Ly, ,, L Figr L Fiyar

Assumption 2 (Convexity and Smoothness of the LL Objectives). The LL objective g; satisfies: (a) for
any i € [m] and any x;, the LL objective g;(x, -) is convex; and (b) for any i € [m), the LL objective
g: is twice differentiable and the derivatives Vyg; and Viy gi,ng gi are Lipschitz continuous in
(xi,y:) with respective Lipschitz constants Lg, ,Lg, , and Ly, L L

1’ 7 Gixy2’ giyyl’Lgiyyz'

The smoothness and boundedness assumptions in Assumptions 1 and 2 are standard in the literature
of bilevel optimization (Ghadimi & Wang, 2018; Ji et al., 2021; ji & Liang, 2023; Dagréou et al.,
2022; Ji et al., 2024; Kong et al., 2024; He et al., 2024). Unlike many works, however, we do not
assume LLSC, which significantly complicates the theoretical analysis. Under the above assumptions,
the augmented LL objective wf“ (xi,-) is oy, - strongly convex with oy, = ptop, = jit, Where
on; = 1 by the definition of function %;. Hence, wftt (xi,-) has a unique minimizer, denoted by
Vi (x;). To this end, we introduce the following convergence metric to help us approach the KKT
condition as the y;-regularized problem converges to the original problem as p; shrinks to zero.
Specifically, for each {x;,y:, v+ } at time ¢, we define

(x¢,y¢,ve) =E[|V®,, (%) + Ellx; — 1 @ %[> + Elly; —ye[* + Ellv; —v¢|*,  (8)

Stationarity Consensus Error Lower—Level Dual Multiplier
Error Error Error
- A 1¢m a T T T % A «T «T 1T A
where x; = m Zi:l Xity Yt = [Y1,t7 s ’ym,t] » Yo = [YL;LH s 7ym,ut] > Vi =
[v{ v T and v £ [vi] vil ]T. ® is the Kronecker product. Note that the
L Ym,tl o e T Lpersoo Ymypel - p .

first term in (8) quantifies the convergence of X, to a stationary point of the global objective. The
second term measures the consensus error among local copies of the UL variables. The third and
fourth terms quantify the optimality gap in the LL problem’s primal variable y; and dual variable v,
respectively, across all agents. Thus, II(x;, y;, v¢) < € for a small e-value implies that the algorithm
achieves three goals simultaneously: i) approximate KKT stationarity convergence of Problem (3), ii)
consensus of UL x;-variables, and iii) optimal solutions to the LL y;-variables and dual v;-variables.

With Assumptions 1 and 2, we also define the following parameters that will be used in our algorithm:

Ly, . L 1-2A2
=, Bri= Ly, + (Ly, 1), Ao=15+ o5 4 25

Oy

— ™ Ly,
= BB+ 2 S ol = 2 [V, 0.0, ©)

Ty Ty

where x; o, ¢ € [m)], are the initial points, constants L fios Lwiy i and parameter Oy, are as defined

in Assumptions 1 and 2, and A is the second largest eigenvalue in magnitude of the network graph.
and [; are the initial LL learning rate and averaging control parameter, respectively. Both 3 and [z are
constants. With the above notations, we are now ready to state the main convergence rate result of
DUET as follows:

Theorem 1 (Convergence Analysis for DUET). Under Assumptions 1 and 2, choose i = a(t+1)"2.
Choose the step-sizes as By € [B(t +1)"7/4, 1/Ly, ., + Lg,,| with0 <p <1/6,0 <7 <2/33 and
ne = (t+ 1)’7/2@;&, and oy = (t + 1)737/2@%5. It then holds that

ming<;<7 I(x¢, yi, vi) = O (1/T1’51’*%T> .
Further, if v, ; is bounded, it holds that ming<;<1 KKT (x¢,y¢, Vi) = O(1)T—5r=%7 4 1/7T2P).

The following result immediately follows from Theorem 1:
Corollary 2. Letp = % and 7 — 0. Then, DUET converges to a KKT point of Problem (3) at rate of

o(1/ T# ), which implies that the number of communication rounds required to reach e-accuracy for
our DUET method is O(1/€%).

Moreover, if the problem instance satisfies the stronger condition that || v}, (x; )| is bounded, we
can further improve the convergence result of DUET in Theorem 1 as follows:



Published as a conference paper at ICLR 2025

Theorem 3 (Convergence Analysis for DUET with Boundedness Assumption). Under Assumptions I
and 2, choose ji; = fi(t + 1)7P. Choose step-sizes as B; € [B(t + 1)77/4, 1/Ly, , + Lg,,] with
0<p<1/4,0<7<1/1landn, = (t+1)"7/2B;, and oy = (t +1)737/2 B 1. If||v, (x|
is bounded, it then holds that:

ming<;<7 I(x, y¢, vi) = O (1/T1_3p_%7) .
Further, if v, is bounded, it holds that ming<; <7 KKT(x¢, y¢, v¢) = O(1/T'~ =T 4 1/7?%0).

Similar to Theorem 1, the following result immediately follows from Theorem 3:

Corollary 4. Letp = % and 7 — 0. Then, DUET converges to a KKT point at a rate ofO(l/Tg ),
which implies that the number of communication rounds required to reach e-accuracy for our
DUET method is O(1/€?).

Due to space limitation, we relegate the proofs of Theorems 1 and 3 to the Appendix. In here, several
important remarks for the proofs of Theorems 1 and 3 are in order:

* It is worth noting that, compared to existing works on decentralized bilevel optimization, the
major challenge in proving the convergence results in Theorems 1 and 3 stems from the absence
of LLSC, which breaks the standard descent lemma for the LL variable y; in convergence analysis.
To address this challenge, leveraging our augmented LL objective, we establish a new descent
lemma for the implied UL objective function at time ¢, expressed in terms of X;, as follows:

Lemma 1 (A New Descent Lemma of the Implied UL Objective). Under Assumptions 1 and 2
and letting py41 < py < %for all t, the sequence {X; ¢, ¥, Vi generated by DUET satisfy:

Py Xer1) — Py, (Xt)

2

Qi —\2 Qi a;Ls + - atL¢I> +

<= IV, &7 = | 5 — o ) I + == E 1% — %0
2 2 20¢

233

2 m
+ 2N (L [V (i) + L) i — i <xi,t>||2
=1
L m m ) B 2
atT wyl ZHV” v* th)|‘2+204t7" %Zd;t_h;
=1

1 2 Hvyfz (Xt+17ym+1 (Xe41) )H ‘
E

Vi Ki41) H (Mt Mt+1)]

Oh; Ut

i

Em: 2Lf1y2||y#t+1(xt+1)” <Mt — ,Ut+1>2
pt p ’

1
m h t

where Cg1 and Cgo are problem-dependent constants provided in Lemma 12 in the Appendix.

Lemma 1 characterizes the expected per-iterate descent of the implied UL objective value, which
depends on i) the consensus error of the UL parameters [|X; — x; ¢||?, ii) the approximation
error of the LL optimal parameter |ly; ; — y;, (i) %, iii) the approximation error of the dual
parameter ||v;; — v}, (Xi,t) ||?, and iv) the diminishing speed of the augmented LL objective
regularization parameter fi;.

 The second challenge comes from the fact that DUET employs a decentralized consensus update
mechanism for the UL model parameters as shown in (5), which inherently leads to consensus
errors. Thanks to our algorithmic design in DUET, the graph topology of the underlying network
does not theoretically affect the convergence rate order of DUET (i.e., the T-dependence in
the Big-O convergence rate result in Theorem 1). Also, we achieve the i;-convergence rate,
which depends on the decay rate 7 of the step-size for LL y;-variables and the decay rate p of
regularization parameter ;. This is a new result compared to those obtained from LLSC.

* We note that the augmented LL objective (4) for each agent also allows us to relax many restrictive
assumptions made in traditional bilevel optimization methods (e.g., Liu et al. (2023a), etc.): i) we
do not require strong convexity for the UL objective at every agent; ii) we relax the requirement of
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the derivatives Viy fis V?,y fi being Lipschitz continuous with respect to x; and y;, respectively;
and (iii) we also relax the requirement of a bounded dataset of (x;,y;). These relaxations make
our approach more flexible and practical in decentralized settings with data heterogeneity.

Discussions: As mentioned earlier, in this paper, we have tried to avoid imposing any extra restrictive
assumptions in the absence of LLSC. However, it is interesting and insightful to compare the
performance of our DUET algorithm with those who do make extra assumptions. For example,
it turns out that the sl-BAMM method (Liu et al., 2023a), which assumes a UL strongly convex
(ULSC) objective, can be generalized to the decentralized setting as a baseline for comparisons
in our experiments. We name this extension as decentralized s-BAMM with gradient tracking
(DSGT). DSGT adopts the same single-loop framework as DUET but utilizes a different augmented
LL objective function, which follows Liu et al. (2023a) to aggregate the UL and LL objectives for
every agent as follows: 9, (X; 1, Vi) := pefi(Xit, i) + (1 = pe)gi(Xi, ¥i,e). For DSGT, we
make the following extra ULSC assumption for every agent:

Assumption 3 (ULSC Assumption for DSGT). (a) For any i € |[m| and fixed x;, UL objective
fi(xi,-) is oy, -strongly convex. (b) For any i € [m], the derivatives V3 f;, V2. fi are Lipschitz
continuous in (X;,y;) with respective Lipschitz constants L Firgrr Lfingzr LigyirLfiyyo-

With Assumption 3, we can show the following convergence result for sSI-BAMM (the proof of
Theorem 5 is similar to the proofs of Theorem 1 and 3 and hence omitted for brevity.)

Theorem 5 (Convergence Analysis for DSGT). Under Assumptions 1 and 3, choose j; =
fi(t + 1)"P. Choose the step-sizes as ; € [B(t + 1)/, 1/Ly, , + Lg,,] with p € (0,1/6),
T € (0,2/33) and n, = (t + 1) "By, and oy = (t + 1)737/2B,°. It then holds
that ming<i<p (x4, y:, Vi) = O(l/T1_5p_%T). Further, if v, is bounded, it holds that
ming<;<7 KKT (¢, ¢, vi) = O(1)T 5957 4 1/T%),

We also notice a recent work called LV-HBA (Yao et al., 2024), which considers a more generic
case where the lower-level problem includes equality or inequality constraints g(x,y), and pro-
poses a value function-based proximal Lagrangian method to enforce the constraints with a
provable rate of O(1/K(~2P)/2). However, this convergence rate and our convergence rate
are not comparable due to different stationary measure. Our stationary measure is define in
Eq (8). In contrast, the stationary measure R, of LV-HBA is defined as following: Rj :=
dist (0, (VF(x,y),0) + ¢ (Vf(x,¥),0) — Vv, »(x,¥,2)) + Noxz(X,y,2)) , where F(x,y) is
the UL objective, f(x,y) is the LL objective and v, ,(x,y, ) is truncated proximal Lagrangian
value function. ¢y, is penalty parameter. N (s) denotes the normal cone to €2 at s.

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to verify our theoretical results for DUET. Due to
the lack of existing algorithms for solving decentralized bilevel optimization problems without LLSC
assumption, we compare the convergence performance of DUET and DSGT.

1) A Pedagogical Example: We first verify the convergence results under the ULSC and non-
LLSC cases using five-agent communication networks, with the network edge connection probability
pe = 0.5. The decentralized bilevel optimization problem is defined as the following: minycgn % |Ix—
val2+ Lyt —el? st y* = (yi,y3) € argmingy, y,)cren bllyall? + x"ya, where e denotes
the all-one vector with dimensionality being clear from the context. As shown in Figs. 1(a) and 1(b),
the gradients of x, y, reach zero when using our DUET algorithm, suggesting they can converge to
the global optimal solution without the LLSC assumption. Note that we use “GT=1"" and “GT=0" to
denote the adoption of gradient tracking in the algorithm or otherwise, respectively. As shown in
Figs. 1(a) and 1(b), the gradients of x, y converge more rapidly when gradient tracking is adopted.
However, as observed in Fig. 1(d), DSGT tends to select an LL solution y € S(x) that also yields a
good value for the UL objective function (i.e., f;(x, -)), which is due to the ULSC assumption. In
contrast, as shown in Fig. 1(c), DUET tends to choose an LL solution y € S(x) that has a good LL
objective value, which is more relevant in DBO problems.

*

2) Decentralized Meta-learning Problems with Real-World Data: Next, we evaluate our
DUET algorithm on decentralized meta-learning problems with heterogeneous datasets. Following
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Figure 1: The gradients of the variables x and y, and the objective values of the UL and LL problems.
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Figure 2: Test accuracy on the meta-learning Figure 3: Test accuracy on random graphs and
problem with a 5-agent network on MNIST. the meta-learning problem on MNIST.

the experimental settings in Qiu et al. (2023), we use the MNIST dataset to train m personalized
classifiers. In this setup, x represents the common parameters shared across all agents, while 6
corresponds to task-specific parameters for each agent. The cross-entropy loss is employed as the
main objective function for f;. To prevent overfitting on local samples, we incorporate a quadratic
regularization term in the UL objective function f;, affecting the parameters . We set m = 5 and allo-
cate 12,000 samples to each node in a communication network generated by the random Erdés—Rényi
graphs. In the scenario with i.i.d. data, all agents have access to the same global dataset. We compare
our proposed algorithms with the baseline DSGD. In Fig. 2(a), the DUET algorithm demonstrates
superior performance by achieving the highest testing accuracy, along with fast convergence. Notably,
its testing accuracy is 6% higher than that of the standard baseline based on decentralized stochastic
gradient descent. This performance highlights the advantages of DUET in collaborative training
across multiple learners and in tailored adaptation at each node.

In contrast, in the non-i.i.d. data scenario, we adopt a data partitioning strategy, where each agent
accesses data consisting of 95% from two specific labels and 5% randomly selected from other
labels. This strategy ensures significantly diverse label distributions and high data heterogeneity
across nodes. In the non-i.i.d. data scenario, we compare DUET and DSGT by focusing on their
configurations with gradient tracking (GT=1) and without gradient tracking (GT=0). This ablation
study examines the benefits of incorporating gradient tracking. As shown in Fig. 2(b), both testing
accuracy is higher for all algorithms that include gradient tracking. Specifically, the DUET and
DSGT algorithms with gradient tracking significantly outperform their counterparts without gradient
tracking, illustrating the effectiveness of gradient tracking in enhancing model performance in
environments with heterogeneous data. We further evaluate the impact of edge connection probability
p. on the performance of DUET and DSGT in both i.i.d. and non-i.i.d. settings with a five-agent
network. Using p. € {0.3,0.5,0.7} and the same learning rates as before (Fig. 3), we observe only a
slight improvement in convergence with higher p. , indicating that our DUET algorithm is robust to
different edge connection probabilities and adaptable to various network configurations. To further
validate our algorithm, additional experiments on decentralized hyperparameter optimization and
decentralized meta learning are presented in Appendix E.3 and E.2.

6 CONCLUSION

In this paper, we explored decentralized bilevel optimization (DBO) problems that do not require
lower-level strong convexity (LLSC). To address this challenge, we proposed a single-loop DBO
algorithm called quadratically regularized bilevel optimization (DUET) and established its theoretical
convergence rate performance. Additionally, we adopted a single-loop structure in DUET to more
effectively manage the challenges posed by nested structures, and we incorporated gradient tracking
to tackle data heterogeneity. We also conducted numerical experiments to validate the effectiveness
and efficiency of our proposed DUET algorithm.

10
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A NOTATION

We summarize our notation in the following table.

Notation Definition

N Set of nodes.

L Set of edges.

m Number of agents.

1 1-th agent.

T Total iteration numbers.
t

(07

B

n

p

T

m

t-th iteration.

Step size for updating x.

Step size for updating y.

Step size for updating v.

Averaging control parameter.

Learning rate control parameter for updating y.

Regularization parameter for the LL objective.
Ly, Lipschitz constant of the UL objective f;, see Assumption 1.

Ly Ly, | Lipschitz constants for V, fi(-,y:) and Vi fi(xi, -), see Assumption 1.

Ly, Ly, | Lipschitz constants for Vy f;(-,y;) and Vy fi(x;, -), see Assumption 1.
fio Uniform lower bound of the UL objective f;, see Assumption 1.

Lipschitz constants for Vy g;, see Assumption 2.

Lipschitz constants for Vf(y gi, see Assumption 2.

Lipschitz constants for Vf,y gi, see Assumption 2.

L
L

9z'y1’L911y2

Jixy1’ “Yixy2

Jiyy1’ “iyy2

Ty, Strongly convex constant of the augmented LL objective ¢}, (%, *)-
Gi LL objective, convex and smooth, see Assumption 2.
fi UL objective, bounded and smooth, see Assumption 1.

M Consensus weight matrix M € RYXY for the decentralized network.
A Second largest eigenvalue of the consensus matrix M.

Xt UL variable for agent ¢ at iteration ¢.

Vit LL variable for agent ¢ at iteration t.

Vit Dual variable for agent ¢ at iteration t.

VL Gradient of the Lagrangian function.

Vo Gradient of the total UL objective.

Table 2: Notation Table

Also, we formally define the communication complexity of a decentralized algorithm as follows:

Definition 1. (Communication Complexity) : The communication complexity is defined as the total
number of communication rounds needed to converge to an e-stationary point. In each round, every
node can send and receive vector-valued information to and from its neighboring nodes.

B EXPANDED RELATED WORK

1) Decentralized Bilevel Optimization (DBO): One line of works enforce consensus on the LL
variables. For example, Chen et al. (2022) employed hypergradient estimation with gradient track-
ing for both deterministic and stochastic algorithms, achieving convergence rates of O(1/K) and
o(1/ VK ) for nonconvex UL and strongly-convex LL problems. However, enforcing LL consensus
adds a costly inner subroutine for decentralized Hessian inverse operation, significantly increasing
the communication costs. Lu et al. (2022) explored stochastic bilevel optimization algorithms with
primal-dual updates and demonstrated linear convergence speedup with respect to the number of
nodes in homogeneous data settings. However, this method does not extend to non-i.i.d. environments,
which are common in decentralized systems. For non-i.i.d. data, Yang et al. (2022) introduced a
gossip protocol-based decentralized bilevel algorithm that achieves linear speedup while accounting
for the communication graph’s spectral gap. Additionally, Dong et al. (2024) proposed a single-loop
algorithm that does not require gradient heterogeneity assumptions. Similarly, Zhang et al. (2023)
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introduced decentralized stochastic bilevel gradient descent algorithms for heterogeneous settings,
illustrating how communication for hypergradient estimation affects convergence.

2) Centralized Bilevel Optimization without LLSC: Merchav & Sabach (2023) addressed convex
bilevel optimization problems with nonsmooth outer objectives, introducing a generalized sub-
gradient method to the bilevel setting and achieves sub-linear convergence rates for outer and inner
objectives under mild assumptions. They additionally improves to a linear rate for strongly convex
outer objectives while allowing for nonsmoothness. In contrast, our work specifically deals with
smooth UL objectives. Chen et al. (2024b) proposed a penalty-based algorithm that leverages
Hélderian error bounds to achieve convergence rates of O(1/e?), assuming a convex UL objective.
Cao et al. (2024) introduced an accelerated gradient method specifically designed for bilevel problems
with a convex lower-level problem, achieving convergence rates of O(1/4/€) for smooth convex
objectives. Samadi et al. (2023) achieved optimal complexity guarantees for a class of convex bilevel
problems using advanced regularization techniques and strong convexity assumptions. While their
works (Merchav & Sabach, 2023; Chen et al., 2024b; Cao et al., 2024; Samadi et al., 2023) assume
UL convexity, our work focuses on non-convex UL objectives, broadening the applicability to more
general problem settings.

C PROOF OF MAIN RESULTS

Before diving into our theoretical analysis, we first introduce the following notations.

Let {as, bt, ct, d: } 22, be a sequence of decreasing positive constants. The general form of potential
function is given by

Vi i=ay [f(Xe, 5, (%)) = fo] +dilxe — 1 @ %[|* + dyy |0} — 1 @ bl |2
+bellye — v, (x)1? + cellve — v, (xe) |1

We also introduce the following notations:

RS
X = —ZXM, X = [xIt,...,x;’t]T,
m i=1
V=l Ymd s ve= Vvl

The proofs of the theorem involve four major steps, which include: (1) upper-bounding the descent
of the total UL objective; (2) controlling both LL solution and multiplier errors in the descent of the
total UL objective; (3) controlling both the consensus steps and the gradient tracking steps; and (4)
combining all results from the previous steps and choosing suitable coefficients {az, bz, ¢, di }524 for
the Lyapunov function to prove the convergence guarantee.

Step 1: Upper-bounding the descent of the total UL objective. We begin by analyzing the descent
of the total upper-level objective ®,,, (X;), which is the average of the individual UL objectives
@Lt (X¢). Our goal is to establish an upper bound on the change in this objective between iterations
tand ¢ + 1. The descent of the approximate overall UL objective is @, (X;) = = >, (%),
where @ftt (%¢) = fi ()Zt, Y, (it)).

Lemma 2. Suppose Assumptions holds. Let p;11 < pp < % for all k. Then the sequence of
Xi.t, Yit: Vit generated by our algorithm satisfy

Py Xig1) — @4, (X4)

Qi - \2 Qi Q?L@Lt s, @laop, 1 e 2
S*;HV‘I’M )" - 9 g2 sl +752th*xi,tll
Yy Yy =1

2 m
+ 2N (L [V i)+ L) i = v (i)
=1
oL m
# TS i i, e
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m

Zdzt ht

2 Hvyfi (Xtﬂ’y;t“ (Xtﬂ)) H Hyf‘t“ (xtH)H (Mt - Mt+1)

+ 2047

+
3=
'MS

=1 O-h'i Kt
L 1 i 2L g Y5 R DI [ e — e ?
m 0,2” H ’

i=1

where both Cp1 and Cgo are constants given by

T2 2
Co1 = L1/Jy1 L"/’ny + Lwyl (Lwyyl + L"/’xsﬂ) Oy + Lwalgw;L

T2 2
Coz =Ly, Lf,, + Ly, (Lfm + Lfix2> T+ Lfin 0y,

Proof. We decompose the difference @/, . (X:41) — @}, (X;) into two terms:
By Re1) = 2}, (%)
=fi (iwlyyztﬂ ()_(t+1)) — fi (iuyzt (?_Ct))

=fi ()’(Hl,y;m (it+1)) — fi (Rea1, 55, Reg1)) + fi (Rer1, ¥, Keq1)) — fi (Rey v, (Xe)) -
By the smoothness of f;(x, -) and Cauchy-Schwarz inequality, we have

%i {fi (itﬂ’y;tH (’_‘t+1)) — fi (it+17y;t ()_(t-&-l))}

i=1

1 - Ve * e * = * —
o Z Kvyfi (Xt+1’yﬂt+1 (Xt+1)) Vi Kew1) =¥, (Xt+1)>}
i=1
1 Ly L
+ E Z = Hyltt+1 (Xt"‘l) Y (Xt+1)||2
=1
1 n ) . o
25 5t i ) -5, ]

1 Lfb * — % /—
+ o > 22y, (Resn) = ¥, (R

2 Hvyfl (Xt+17y;it+1 (Xt-i-l)) H Hy;ktt,-u (it-i-l)H <’th — #t+1)

IA
3=
M-

=1 o—hi Mt
m * Z 2 2
n i Z 2Lfiy2 ||y#t2+1 (Xe41) |l <,Ut - Mt+1> ’ (10)
i Thi e
: : . . 2|y ol |M M| -
where the last inequality follows from ||y’ (x) — Y (%) | < e with y/ = py and

= Hit1.
Next, let Lo, := Cp1 Hvl*“ (5(,:)“ + Cas, we have

Py, (Xe41) — %Z (Xe41) — — Z P!, (%)

= Z fz Xt4+1,Y 0, (Xt+1)) — fi (it,yzt (it))]
i=1
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1 & 1 <X Loy, 2
<— V@z — — Fe - . 11
m ; ) Xtt1 Xt> + m ; 202M [1Xe1 — X4 (11)

We apply the gradient descent update step

}_(t+1 — )_(t = —atﬁf{. (12)

Incorporating (12) into (11), we get
Py, (Xeg1) — P, (X¢)

« Lq;.
_ q) t Mt ht
< at< Zv >+20 |
e _ o o; Loy, \ ¢ @ B _
=~ S IVeu, (x)]” - <; - 2‘&03&“> IBLI* + SV, (%) — B

We could further get
Dy, (Xig1) — Py, (X¢)

o} a?Lg,,
<—*IIV‘1>M( )2—<2t— 3 “)I A

Kt

2
Qi
+5 Vo, (x —vaq% X; 1) Zv% x;+) — h!
2 o aiLgy,
<—fIIV%( xt) || —(2— - “)I 7
w
2 Lo 2
+— Vo, (% —vaqﬂ xit)|| +ar E;v%(xi,t)—ﬁg
2 o aiLgy, at[@’t N 2
< %8, () —(2— B ) i + 2L
I3 Yy mi:l
2
+ ayr ZV@ x” 7;

Now, we consider the last term of this equation,

m m 2
Zv<1> (xit) %ZV@L (Xit) Zd” Zdjf—ﬁ;
i=1 i:l

2

2 2
¢ it im it ot
ZV@ (Xi.t) m;dx 42 m;dx h',
Eiuw a2 L S|
m p e \ et X miZI x

The desired result follows from the inequality (3>7_, a;)® < 7 >>7_, a2. By the definition of ! (xi),

we get VCIJth (xit) = Vxfi (xi,t,y;t (Xi,t)) - Viywm (Xi,t, Y., (xi,t)) A\ (xi,t) , which implies
that

V@], (xi) —d3||®
= ||V‘I’,L, (Xi,t) = Vi (Xiye, Yiye) + Viydmt (Xit, ¥it) Vi |
< ||foi (Xi,tay;t (Xi,t)) — Vxfi (Xi,tvyi,t)H
+ || [V,z(yiﬁm (X465 Yit) — Viy%“ (Xi,t,y;t (xi,t))] vy, (th)H
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Vi (%t ¥ie) [Vie = v, ()|
< (L + Ly (Vi Gic) ) [y = 35 Geist)| + Ly [[vie = Vi, i)

We now combine all terms and upper-bound the total descent of the UL objective:

(I)/Lt+1 (Xt-i-l) - q)llt (Xt)

« _ « o?Lg, « L<p
<= Ve, ()P — | o — L ) L + = — E [[%¢ — x4
2 2 202
7*Z}Nt wl‘t =1

m

S Ly Vi i) + L) lyie = v i)
=1

cm"L2 m

2
_ o Yy1 *
E :Hm Vi (x|

n 20471

1 & ’
+ 2047 || — > dit -l
i1
. 1 i 2 Hvyfi (it+17yzt+1 (it+1)) H Hy:lm (it+1)H (Mt _ Mt+1)
m i—1 a-hf, .u‘t

1 Z 2L ¥, (o) (m - ut+1>2
O'h I

t

Step 2: Controlling both LL solution and multiplier errors.

In this step, we analyze the errors arising from the LL variables y,,, (x; +) and the multiplier v,,, (x; ;).
These errors contribute to the overall descent of the upper-level (UL) objective function, as discussed
in Lemma 2. The boundedness of y}, (x; ) and v;; (x; ) will be key to understanding the impact of
these errors.

Lemma 3. Fory;, (xi,t) and A\ (X4,¢), we have (recall that ., and r, are defined in (9)):

L.
(@ v, el <74 = 2o = 01,

(b) Nlyp, ia)ll < 1y = O(52—), for any xi s satisfying ||xi ¢ < 7} = O(72—).

Yuy Ud’l‘rt

The assumption that ||x; || < 7 = O (#) will be proven later, but for now, it ensures that x; ; is
Ht

bounded relative to o, , further supporting the use of the bounds for y;, (x; ;) and v}, (i 1)

Proof. (a) By the Ly, -Lipschitz continuity of f; and o ,-strong convexity of w;t in Assumption 1,
we can deduce that

) - 1
[ 7: 060535, i) < Ly and [[[9550, (x37, Ga)] | < o
For v (xi¢) = [Vyyz/)m (xz £ Y, (Xi, ,))] Vi (xu, Y., (xi,t)), we have
L
Vi Gea) | < (| [Vt Geier v o)) ™| 90 ey Geie) | < o

(b) Assume ||x; +|| < r%. By the optimality of y}, (x; ) and Lemme 11 (a), we take x; = 0 and have

Ly
vy, (xi)ll < %yl

[Ixi.e = Ol + Iy, ()]

“w
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Ly, .
= — x4l + [y}, (0) = O]
Oy

"

Ly, 1 .
< ?lei,tll + J“vyw#((Lyy,t (0)) = Vy 1. (0,0)|

I I3

Ly 1
< Xty ||V 0,0
= 0’#}“ Tac+ O’qut H ywm( ) )”7

where the second inequality follows from the strong convexity of ¢, (X; ¢, -), the last inequality
follows from the optimality of y,, (0). O

Lemma 4. Forany i € [m), the sequence of X; 1,y 1, Vi generated by our algorithm satisfy

HYi,t-H - yzt (Xz‘,t)H2

* 2 1 it]|2
<(1=oy,,B) lyie — Yo, (xi0)||” — <2Bt%t+% - 53) ||hy’t|| )

and
[Visr = vi, i)l < (1= mow,,) Vi — vi, (xin)||”

2 2
o (L 93 501+ L) i =3, Gei)

_|_

Ht

if we choose By < and n; <

2
Tpuy +LU’M qut ’

Proof. We begin by analyzing the update for the LL solution, y; ;1. Recall that the update is
performed via a projected gradient step:

[yi,t - ﬂtvy1/)ut (Xi,m yi,t)]a

where PT{) [-] denotes the projection onto the feasible set with radius rty. This projection ensures

that y; 141 = ¥4 ¢+1(X;,+1) remains bounded, preventing it from diverging. To analyze the error
llyit+1 — ¥}, (%), we decompose the update step:

Yit+1 = P,

t
Y

¥ierr =y, i1 = [1Pre [yie = BeVytu, (Xt ¥ie)] = ¥5o, (%0 I

Since the projection 1s non-expansive, 1.e., 1t does not increase distances, and Hyf“ (xiﬁt) || < 7“; by
Lemma 3, we have:

1yiee1 = ¥y, i) II? < A¥ie = BeVy Wy, (Xie, yie) — vy, (xi0) 1%
Next, we expand the right-hand side:
« 2
HYi,t+1 Y (Xi7t)H
* 2 * 2
< ||yi,t —Yu. (Xi,t)H — 206 <Yi,t —Yu (Xi,t) » Vy¥u, (Xi,t7}’i,t)> + 5152 IVytu, i, yi)ll”,

To bound the inner product term, by the o, -strong convexity and Ly, -smoothness of 1, (x, ),
since Vy 1, (xu, Yy, (xw)) = 0, Theorem 2.1.12 in (Nesterov, 2018) implies that

(Yit =¥, Xit), Vythu, (Xit,¥in))
=(yis — Vi (Xiit) Vytu, Xit, ¥it) = Vytu, (Xi,tayzt (xit)))

o, Ly 1 ?
o Tu Lo, IVythu, (Xt yie)lI”-

* . 2
_o_wut + Lﬂ},tt Hyi,t - yut (Xz,t)H + 70'1/),” T Lw“t

Hence, when 0 < 3, < , we have

-2
Ty Ty,
||Yz',t+1 - y:t (Xz‘,t)||2
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204, L, ) * (g |[2 1 2 _ g2
< (1 - Wﬁt) HyZ,t Y (Xz,t)H - (257:0%,,"'% - ﬁt> IVytu, (Xit,¥i)l
- 2%, Ly T EVNTT R TS U
- <1 - O—Qﬂ*‘t + Lwﬂrt Bt) Hyl’t - yMt (XZ7t)H - (Qﬁt Uﬂ’ut + qut - Bt th ‘ ’

. . . . . Ly .. .
which implies the desired result since % < ﬁ < 1. This inequality shows that the error
Kt 33

in y; + contracts as long as the step size (3; is chosen appropriately, ensuring the progress of the
algorithm toward the optimal solution y7;, (i ¢)-

Now, we proceed to bound the error in the multiplier v; ;41 = V;11(X;41) by using
[V?,y’ll)m (xi’t,y:t (X”))] A\ (xit) = Vyfi (xi_,t,y;t (x”)) As with the previous projection
for y; 111, the non-expansiveness property of the projection operator P, [-] gives us:
Hvi,t+1 - V;t (Xi,t)H2
=||Pre[vie = ne ([Viy ¥, it ¥in)] vie — Vyfi (%o, yi0))] = V5, (Xi,t)||2
< Hvi,t - V;,, (Xi,t) — e ([Viyi/)u, (Xi,t,}’i,f,)] Vit — Vylfi (Xi,f,,}’i,f,)) ||2 ) (13)

where the inequality holds because ||V;¢ (xit) ||2 < r! by Lemma 3. Next, we expand the right-hand
side, which gives:

Vit — VZ,, (Xit) =M ([Viy%t (Xi,t;Yi,t)] Vit — Vyfi (Xi,t7Yi,t))
=Vit =V, (Xit) —m (Vaytu, (it yin)] [Vie — v (i)
— Nt [szd]m (Xit,Yit) — Viyi/}m (Xi,t»yzt (th))} Vzt (Xi,t)
— e [Vyfi (Xi,¥5, (Xin)) = Vyfi (Xi6,¥54)] - (14)
Hence, by Cauchy-Schwarz inequality, for all e > 0, we incorporate (14) into (13) and have
Ve =i i)
<(1+e¢) || [I — ntv§y¢ﬂt (X3t Yi,t)] [Vi,t -V, (Xi,t)] ||2
* (1 + i) 77752 X || [viywm (Xz}tvyiﬂf) - viywﬂt (Xi7t’y;t (Xivt))] VZt (Xi’t)
+ (vyfz' (Xi,hy;t (Xi,t)) = Vyfi (Xiat’y;k,t)) ||2

Whenn;, <1/Ly, by the oy, - strongly convexity of ¢),,, (x;, ), since the spectral norm is monotone,
we have

T = 06V, (Xie isn)] [Vie = v, (x| || < (1= moy,, ) [Ivie — V5, (xi)l.

Next, by Lipschitz continuity of V3 1, (x,-) and Vy fi(x, -), we get

| [V§y¢ut (Xit, Yie) — viy%u (Xi,tay;t (Xi,t))] V;t (xi,t) + Vy fi (Xi’t’y:t (Xi’t))
—Vyfi (Xit,yid)ll

< (Lowa ¥ i)l + Ly, ) 1900 = ¥, i)
Taking ¢ = 0y, , we have

Vi = vy, (xin)[|”

< (L4 moy,,) (L—moy,,)" [vie = vi, (xid)|

1 * 2 *
(1 ) 7 (B I, 0+ L) e = 3 0

2

)

which implies the desired result since n7 < n;/Ly, < 1n¢/0y,, - O
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This shows that the error in the multiplier v; ; also contracts over iterations, provided that the step
size 7; is chosen appropriately.
By the above lemmas, we can now proceed to analyze the error of LL and multiplier variables.

Lemma 5. Suppose Assumptions hold. For any i € [m), the the sequence of X; 1,¥ i, Vi, generated
by our algorithm satisfy

2
2 2L2 SHYZHI (Xi,tJrl)H _ 2

* X e X H < 'l/)yl Xy — X 2 /’Lt /*’Lt+1
o ) =i | € S o= maal P+ == )
and

2
2 2(Lyp ||V (X"t) + Lyo
Hvzt (Xi6) = Viies (X”“)H < (L MOAZ [+ Lva) %5, — X1l

Yuy
+2((Cu Vi, Gris)| + L) i Goose|

) _ 2
Mt — Ht41
‘vyfi (Xi,t+1ayzt+1 (Xz',t—i-l))H) <,u2 ) ;
t

+Cy2

where both Cy1 and Cyo are constants given by

Cy1:=2 (Lhim + Lgim> Jor., Cyz:=2 <Lfiy2 + Lgiﬂ) Jor..

Proof. By the triangle inequality, and Lemma 11(a) and 13(a) with ¢/ = p; and g = pyy1,
Hy;t (xit) — YZM (Xi,t+1)H

< ||y:1t (Xit) =¥, (Xz‘,t+1)” + Hyf"‘ (Xit41) — thH (Xi,t+1)H

2 H}’Zt+1 (Xi,t-i-l)H (Mt - Mt+1)

L
<= e — X || +
Ulbut O-hi Mt

Then with ¢/ = p¢ and p = g1, we have

IN

||VZ,, (Xi,t) - V,jt (Xi,t+1)H + ‘ Vzt (Xz‘,t+1) - VZM (Xi,t-i-l)H

I * ) L
< ( vl HVM;(Z,ILI)H T VQ) 156 — %X 441]|

Yy
+ ((Cvl ‘VZM (Xi,t+1)H + Lfiyz) H}’Zt+1 (Xi,t+1)H

* Mt — Hi+1
‘Vyfi (Xi,t+17yut+1 (Xi,t+1)> H) (t’qu> .
t

Hv;t (Xit) = V., (Xi,t+1)H

+Cy2

O

Building upon the aforementioned lemmas, we can now proceed to analyze the iteration-wise
differences in the errors of LL and multiplier variables.

Lemma 6. Then for any i € [m)], the sequence of X; 1, Y1, Vi, generated by our algorithm satisfy

2
Yit+1 — y;H—l (Xi,t+1)H - HYi,t - y;i,, (Xi,t)HQ

1 * 2 1 1 2 i,t]12
<- iﬁtaww HYi,t ~—Yu (th)H - (1 + QBtUwut> <2ﬁtm - 5t) ”hy |
2
+ % i6 — X041 ]% + i Hy””“ (xi’t+1)H (Mt - ﬂt+1>2
it At )
Bto—im o U}%iﬁtaw#t He
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and

2 2
Vit+l — VZHI (Xi,t+1)H - ||Vi,t - V;it (th)H

6 (L [|v5, (xi)[| + Ly2)”

1
<= Smoy,, |Vie — Vi, (i) +

i, — Xi 441

2 ntgzm
37775 * 2 * 2
+ oy (Lwny Hv#t (Xi,t)H + Lfiyz) Hyi»t - yut (Xiyt)H
wt

2
) e (0 i G|+ 21 [ i)
+( ,LL% > Nt0ap,,, vE Vi (XZ’H_I) T Fiyo ) || 111 (Xlxt""l)

Vy fi (Xi,t+17yzt+1 (Xi,t+1)> H)

2

+Cy2

Proof. By Cauchy-Schwarz inequality, it is easy to check that for any € > 0, we have

yiit1 — YZ,,“ (Xz’,t+1)||2

=[lyitr1 =¥y, Kie) + 55 Kie) =¥, Ko
* 1 * *
<L+ O)lyierr — vy, x>+ (1+ Myn, Xie) = Vi, (i)
Taking € = % ﬂta%t , by Lemma 4 and Lemma 5, we have

Iyies1 =¥, Kiern)l?

1 * 2 1 1 2 i,t]2
< (1 - Qﬁt%w) [y = vy, )| = (1 + 2@0%,,) (2@% - @) ey

33

2L2 9
+ ;byl (1 + ) l[%i,¢6 — Xi,e41]2
qut ﬁta et

2
8[|, Goan) <1+ 2 )(utumy
U;ZH Bioy,, et ’

which implies the desired result since S0, < 1when 8; < 2/(0y,, + Ly, )-

Similarly, for any § > 0, by Cauchy-Schware inequality,
Vit = Vi, (i)
=[|viir1 = v, (Xie) + V5, (i) = Vi (X))

* 1 * *
<A+ 8)Ivigsr — v, () + (1 + 5)||Vut (%i) = Vi, (i) [

Taking 6 = %m%w by Lemma 4 and Lemma 5, we have
1 N 2
<(1- 3o, ) Ivas = vi, G|

N 2
A G G ) UM W
0'31;% N0y, o v

2
*
Vit+1 = Vi (Xi,t+1)H

> 1 ’
+ U«z}i <1 + 2?7%%) (oo 15 )| + L) [y =9, Gei)|
Kt

+2 ((Cv1

‘v;t+1 (Xi,t+1)H + Lfiy2> HyZH—l (Xii-‘rl)H
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+C52

2 2 Mt — Ht+1 2
Vyfi (xi yr X; )H) X (1 + > (
‘ y A1 Y ey ( ,t+1) N0y, Mf

This desired result follows since Mo, < 1lwhenn <1/ L%t' O

Step 3: Controlling both the consensus steps and the gradient tracking steps.

In this step, we are focusing on controlling both the consensus steps and the gradient tracking steps
within our decentralized algorithm. The goal is to show that the iterates contract over time, which
means that both the decision variables x; and the gradient tracking variables h’, converge as the
algorithm progresses. This lemma proves that the discrepancy between these variables across agents
reduces over iterations, thus guaranteeing convergence.

Lemma 7 (Iterates Contraction). The following contraction properties of the iterates hold:

1 _
Ixer1 — 1@ K ]|? < (L4 1)N % — L@ %> + (1 + T)a?‘lhi —1®hl|?
1
and

_ _ 1
s = 1@ B® < (14 1) N[fhs — 1@ b + (14 ) 5™ — i,
2

where Iy and ls are arbitrary positive constants.
Additionally, we have

i1 —x]|* < 8[(xe = 1 @ %) [|* + 4af|hy — 1 @ hi||* + daim| b,
And also,

[yeer = yell* < 87 Iy ||

The first inequality states that the deviation of the iterates x; 1, from their consensus value 1 ® X; 11
(where 1® represents the averaging operator) is bounded by a factor that depends on the previous
deviation, scaled by the contraction factor A, and the gradient tracking error. The second inequality
bounds the change in the gradient tracking variables h! between iterations ¢ and ¢ + 1, showing
that it contracts over time, depending on the contraction factor ) and the difference in the gradient
correction steps di™' — df. These two contraction results help ensure that the iterates (both the
decision variables and the gradient tracking variables) converge towards their consensus values over
time.

Proof. We begin by analyzing the iterates of x;, ;. The idea is to show that the deviation of x;;

from its average consensus value 1 ® X; 1 contracts over iterations. Define M = M ® I,,,. First for
the iterates x;, we have the following contraction:

IMx, — 1@ % = [M(x; — 1@ %,)[]> < A%, — 1@ %2 (15)

This is because x; — 1 ® x; is orthogonal 1, which is the eigenvector corresponding to the largest
eigenvalue of M, and A = max{|\z|, |\, |}. Recall that X; = X; 1 — a;_1hL !, hence,

i — 1@ %¢|* = [|Mx; 1 — oy 1hi' = 1® (%1 — ap 1B

(a) —~ 1 _

< (14 0)[IMx; 1 = 1@ %al* + (14 )ag by — 1@ b H?

1

1
5}
where (a) is because of triangle inequality and (b) is from (15). Next, we analyze the gradient

tracking steps. The goal here is to show that the deviation of the gradient tracking variables from
their consensus value also contracts over time. Using the update rule for hl, we have

(b) _
< (T4 0)X[xim1 — 1@ %>+ (14 —)of | — 1@ hl

[ — 1 @ hy|?
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=M dl — T -1 (T df - )P
_ 1 _ _
SO RN = TR+ (1 P)lld = di! = 1@ (d = 4 )

<(1+B)N | = 1 b+ (1 + >||( 1T o) (AL - i) P

a) _

S+ )Nt = 1@ R P+ (1+ l—)lldi -, (16)
2

where (a) is due to ||T — i( NeI| <1

m

/\

From (16), letting > = , we can further have

= 1
(1+1)3 [ - 1@ hf:1||2 + (1 Dl — &

AT = 1@ B 4 [l — a5
Then we have
1 t+1
t 1t (12 t+1—s s _ gs—12

By using ||ht||? = ||h — 1 ® h!||? 4 n|/h%||? and (17), we can immediately deduce that

t+1
1 Ctas ae -
B < T 37 (g — dg ) + k.

5=0
According to the updating mechanism detailed in (5), we have
% —Xt71||2
ZHMXt,l — oy hit —x )?
=[|(M ~ T)x,—1 — p P2
<2|| (M~ D)1 |2 + 2074 b
=20/ (M = D)1 = 1@ %) [ + 20, [
<8[(xe—1 — 1@ %) + 4o bt — 1@ ? + daf_ym| b2
Also,
lye — yi1|® = ||P7°Z[Yt71 — 62y 1] =y |2 < llyee1r — BPhy_y —yia|? < BEHh;_lHQ,

where the first inequality holds because ||y;_1||*> < ri~1 < r} by the algorithm setting, implying the
non-expensive property. O

Lemma 8. Let r, be defined as in (9). Then, the following inequality holds:

1
Ixi¢l|* <72 =0 (2) :
Ty,

This lemma states that the squared norm of the vector x; ; is bounded by 2 , which is of the order

o) 1
012/}” ’

Proof. By Assumption 2, we have

%] = IV fi(Xit, ¥irt) — Viy®i(Xits ¥it) Vil
<V fi(Xits Vi)l + 1 Vy i (i e, Yio) | [ Vil
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S Lf”) + (Lwiyl,r”) = Bl = O( 1 )7
Ty,
and
it i - it _ 1
0 < 5 e < B = 0

Here we also prove that

1Ay = [IVy i (Xi, yie) | < [IVyi(Xie yie) = Viyti(0,0)]] + [[Vy¢0(0,0)

< Ly, (Il + llyiel) < Ly, (7 + 1) + [ Vy:(0,0)|| < Bz = 0(02

and

1

);

||di,t|| = Hvyfi(xi,taYi,t) - vyywi(xi,taYi,t)Vi,tH < Lfio + (Lwiﬂ?"u) = B = 0(7)

We can deduce that
m 2 t+1
it+112 4m By t+1—s 2 4 2
3 48 (S ) o < (14 )

From Xit+1 = Zi’ENi [M]“‘/Xi/’t — Otthic’t, we have

m

Z %41 — Xi¢ ]|

i=1

- 2
= Z Z [Mjirxir, ¢ — athjét - Z M % 41 — at—lhiét_l

=1 lli'eN; i'EN;

1 <& 2 Lo ' | .
SX ; l,eZN [M]ii/xigt - z/EZN M]irxir p—1]| + TR ; Hath;’t . Oét—lh;t71 ||

1 m 2 1 m ‘ | )
<3| D i (i = xie-n) | + 7—0i Y [B by

i=1 |li’eN; - P

where the second inequality is due to the Cauchy-Schwarz inequality. Now we have

m 2

D

i=1

Z [M]iirxir e — Z Miirxir g1 — (X — X¢—1)

i'eN; i'eN;

m
<\? Z %0 — X401 — (X¢ — itfl)Hz .
i=1

Moreover, we have
2

iEN; i EN;
2

Z [M]iirxirt — Z [M]iirXir t—1 — (X¢ — X¢—1)
M]

+m ||it — it—1||2

E i Xt — E M X7 11

i EN; i'eN;

m
i=1

m
i=1

-2 Z < Z [M]iirxir ¢ — Z [MliiXir 11, %Xt — it—1>

i=1 \i’eN; i EN;
m 2
:Z Z [M];ixr ¢ — Z M g1 || —m||%¢ — %1,
i=1 |’ eN; ieN;
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and
m
Z 1% — Xip—1 — (X¢ — it71)||2
i=1
m m
:Z lIxi+ — Xi,t—1||2 +m||x — Xt,1||2 — QZ (Xit — Xi -1, Xt — X¢1)
i=1 =1

i = Xigo1])* = m | %e — %o ||

-

«
Il
-

Then we obtain

m 2
D Mlarxie — Y Mk i
i=1 ||ieN; i'EN;
m
Y i = Xl (1= A)m % — %]
i=1

m
=22 i = xia P+ (1= A)mad_, [[ds .
1=1

Now we have that

m
Z %401 — Xi,t”z
i=1

<)\ m HX t — Xt 1H2 _|_ l;vaZQ Hat*1||2 1 Oé2 m Hhi’t _ hi’t71H2
~ ;:1 (2 1,l— By t—1 x + DY 1 ;:1 5 i

m - )\2 7
=A E : i — i1 | + Tmaffl Hdi—lﬂz

i=1
2 , - | 2 N | 2
et (ST S ).

i=1 i=1

We set A = %4—%4—% and have

m m
D i = xial? A lIxie = xi il + M Bimai_,
=1 =1

m t
S )\t Z HXL() — XZ'7,1||2 + AlB%mZaifl

i=1 s=1

¢
<\ Bim Z ot

s=1

< MBimBi——————,
1 (t + 1)2(1+§r+p)

where a; = (t +1)737/28,11,%, and Zf;:l a? | < Bp% log(t + 1). Then we have
(G~ AT

m m

m
ZHXi,tHQ < QZHXi,t —x; 0l + QZHXi,OHQ
i=1 i=1 i—1

t—1 m m
<23 D xiers = XiallP 2D llxiol
s=0 =1 i=1
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_ t2
< 2)\1Bfmﬁﬂ— 2> %912
(t+ 1)2 fr+p) Z

< 2\ Bimpji + ‘A‘lex?\\2
=1

which implies ||x; ¢[| < Y27 [|xi.4]|* < r2 = O(=2—), where 7, is defined in (9). O

Yy

We now analyze the contraction properties of the iterates x;1 and h’"! respectively, as generated
by the algorithm. Specifically, we aim to track how the differences between successive iterations
decrease over time.

Lemma 9.
%41 = 1@ K [|? =[x — 1@ %2
< ((1+ )X = Dl = 1@+ (1+ 7)aF b ~ 1@ B P,
where ly is an arbitrary positive constant.
I — 1@ b2 — |hy — 1@ hi|?

. 1
< ((1+12)X* = 1)||hj - 1®hf<||2+(1+7)(L?z1
2

2
%11 —xi||” + L, 820G 1),
where lo is also an arbitrary positive constant.

Proof. We start by examining the difference in the updates between iterations for both x; and hl.

Using the smoothness assumptions (Assumption 2), we first bound the difference between successive
updates of d, which are defined as the gradient of the objective function:

I = dli* < L7, —x|* + L7,

yerr = il < L3, e — o) + L3, 57 | By |1

Applying the results from Lemma 7, we have:
[%e+1 — 1@ K 2
<1+ )N~ Lo 4 (14 ) Jad b — 1w B P
which reflects the contraction behavior of the consensus steps for the decision variable x;. Similarly,
the contraction property for h, the gradient tracking variable, follows:
i — 1@ h
DL, s = I + L3, B2 ).

Finally, we combine the two bounds to obtain the iterative contraction properties for both x;,; and
hitt:

<(1+1)A% L —1@ht|?+ (1 +

%641 = 1@ Kea | =[x — 1 @ %2
1 _

()N =Dl = 1@ %2 + (1+ 7)af b — 1@ hi||”
1

st =1 @b — by — 1@ hy|?

1

2
—)(LQi1 Ixet1 — xel|” + LQQBEHh;”Q)'

< ((1+1)A2 =1)|ht —1@h|? + (1 + z
2

O

Step 4: Choosing suitable coefficients such that the descent of Lyapunov function is well
controlled.
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The purpose of Step 4 is to identify suitable decreasing coefficients {a, b, ct, di }5°, and a well-
chosen averaging parameter j; such that the descent of the Lyapunov function is well-controlled and
can be bounded by a summable series. This ensures the algorithm converges under the framework
provided by the potential function.

In this lemma, we define a potential function V; that tracks the overall progress of the algorithm and
analyze its behavior over iterations. We then establish an upper bound on the difference between
Vi41 and V;, showing that the Lyapunov function V; decreases at each step, guided by well-chosen
coefficients that control the descent rate.

Lemma 10 (Potential function). We assume that {a:, b, ct,d}72, be a sequence of decreasing
positive constants, where Vy := ay [f(Xe,y5, (X)) — fo] + dellxe — 1 @ X¢||*> + dyay||hl — 1 @
he |12+ bellye — vy, ()1 + eellve — vy, (o) |12

Vier — Vi
Q410

_ = _ N 2
<- V@, (x0)[1* + Cr[[Ds]1* + Callx: — 1 @ %4[|* + Cs [y — y7;, (x2)]

+Cy ||lve = v, (x0)||” + Cs|lh — 1@ h&|? + Cg|hl |?

1 I 20441 Hvyfi (iwhbﬁt“ ()_(t+1)) H H}’Zt+1 (Xi,t+1)H (Mt _ Mt+1)
+ J—

m- = Oh, 1243

s Z 2azt+1Lf7y2||yﬂ,+1(xt+1)||2 (Mt - ut+1>2

m — h Ht

2
m_ 24by 44 Hyl*u,ﬂ (Xi7t+1)H Mt — M4 2
2 P

Pt p Boy,, ¢
6cer1 [t — eyl " *
35 8 (1) (0 s o] 12, ]
i1 Ty, Hi
2
+Cyo ‘vyfi (Xi7t+17yzt+1 (Xi,t+1)) H)
where
2r 6be1 L2, 6ci1 (Lot |[Ve, (i) + Loz)®
Ci = —ai1 (O;t - O;t qut) +40¢f — 3 el "‘40‘?7” et ( ! H #ts)( t)H 2)
O-il’uf, ﬁta"but ntaw“t
1
+ 1— )\dt+1at+1L?H4afm
2
Lo 6be+1 L5, | 6crer (Lvi ||V, (xid)|| + Ly2)
02 = Q¢41 +8 3 + 5
1/)w m ﬂta’/}ut ntawﬂt

1
+dipr (A —1)+ 8ﬁdt+1at+1L%1’

1
Cs = apprur— Ly, [IV7, i)l + L)

b 3 i
(B, ~ B (1 o G+ ) ).

Ty

QT 2 Ct+1
Lwyl 9 o 0%,

a2 <th+1L¢y1 n 6¢t1 (Lvt HV;t (Xz‘,t)H + Lv2)2>

Cy = Q1 ——

=

’ ﬂto’"‘?/)"ut nto—?/)ut
1
+ T )\dt+1a? + diprappr (A= 1) + — )\dt+1at+1L3¢il4a?a
Ce=d L . 1+ 16 23 L B2
= @ —Bio _ - )
6 t+1 t+1 Y f12 t t+1 2 tOvY,., taw“’t +wa t
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Proof.
Vit1 = Vi
=a¢41 |:f()_(t+1a Vs Xer1)) — f(Xe, )., (it))} + (a1 — a) f(Xe, ¥, (Xt))
Hdpr [[xe1 = 1@ Repa |2 =[x = L@ %e[|*] + (digr — do)l|x: — 1@ %2
+dpprace [[Ih — 1L — |h — 1 ® ]
+ (diy10e1 — diy) || by, — 1@ b2

2

+ by [Hyt-&-l - YﬁtH(XtH)H —|lye =y, (Xt)Hz] + (b1 = b0) |lye — v, (x0)|
2

+ciqn |:HVt+1 - V;t+1(Xt+1)H — [|ve = v, (xt)]ﬂ + (ce1 — ) ||ve — V;t(xt)HQ

e [f(%e1 ¥, (F1)) = F(% 7, (%0))]
+degr [[Ixe1 — L@ X ] — IIxe — 1@ %¢|?]
+ds10gs [T — 1@ BEH? — ||hE — 1@ hl|?]

) ) R S A
= 2
+ Ciy1 Z‘Vz’,t+l *VZ,H Xi,t41 H ZHVzt vy, (% t)” 1
i=1
By combining the estimates from the above lemmas, we have
Vil =V
o _ o a?L o L
Sarr | =5 IV, (=) = | 5 = S5 | i)+ =g Z 1% — 4,6l
2 2 20w
Kt t
T 2 2
t
3 L [V i)+ L) i = v, (i)
i=1
ayrL? m
Jr%;"vm -V, (Xi,t)} + 2047 Zdlt ht
i—
15 [t i, ) I 0] (1=
m p Oh, 1t
1 = 2Ly, 1y, (eI ?
4= Z m+1 t+1 <ut - #t+1)
m = h Mt
m 2
1 * 2 6L’¢) 2
b1y [—2@‘7% |yie =y, i) || + B’ (%06 = Xi 41
i 123
(14 2800, ) (28— — 52 it
2" T Y
2
+24 Hy:;t+l (Xi’t“)H <,ut - ,Ut+1>2
o Broy,, e

2
[vie = v, (i)

[ 1

=1
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6L [vi, i)l + Lve)’

mo? .6 — Xi el
Yuy

+ 3n:
o

2
(Lo 15, i) |+ Lgye) [y = v, (i)

Mt

6 P — ?
P8 () (e
NeOp,, M

‘Vyfi (x”ﬂ’ Yiiess (xi’tﬂ)) H)Q}

‘VZM (Xi,t+1)H + Lfm) H)’Zt+1 (Xz‘,t+1)H

+Cv2

1 _
+di1 [((1 HIDA =[x —1@% |2+ (1 + T)OZ?HhZ -1® hi|2}
1
+ dip101 ((1+12)A* = 1)||hl — 1 @ hi|]?

1
+dir1og1 (1 + f)(Lf‘n %41 — x| + L3, B2 Ihy [1*)
2

Rearranging it, we have

Vier = V4
G100 —\2 Qi OZL<1>
<= ——— VO, x)I" — a1 | 5 — t el N0
2 2
L
R b Dus || x —1@x
ww
QT — 2 2
t * *
a0 23 (L Vi )+ L1, s = )|
i=1
ayrL wl v 2 1« it gt ’
+ a1 ———— ZHV” XZt)H + 2a¢4 1047 E;d’é — h,
1=
1|2 Hvyfi (Xt+17y:lt+1 (Xt+1)> H Hy;'it+1 (itﬂ)H [ — Hes
+ ap41—
m-= Oh; 1243
m * S 2 2
+ Gt+1i Z 2Lfiy2||ym2+1(xt+1)|| (Mt - Mt+1>
mi 1 O'hv Mt
by o Obipi Ly
/Bto-lli;u,ZHth ym( 1t)” + ﬂ : Zszt X5 t+1||
wut =1

—b 1 4+ 2y 2 h’i,t 2
i ( 2&%”) ( &aww + Ly, Bt) ;H v

2
i 24bt+1 Hy;t+1 (Xi7t+1)H (Mt — ,ut+1>2
+

or Bioy,, 4t

i=1
_ Ct+17]t d)l‘t Z | Vi — v* Xlt)HQ

+z“ﬂwwmewuNu

2
Xit — Xi,t+1||

i=1 Moy,

m 3Ct+177t « 2 . 9
+ Z Tou. (Lwyy2 va (xi,e) || + Lfiy2> llyie — Y (xi¢) ||

i=1 ne
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o3 g (=) (e,

=1 0, t

’VZM (Xi,t+1)H + Lfiyfz) Hy;im (Xi,t+1)H

2
Vy fi (Xi,tﬂ,yztﬂ (Xi,t+1)) H)

1 _
Fd (010X = Dl = Lo+ (14 o, - 1 R

+C52

a0 (14 )% = Dl 1@ B

+dt+1at+1(1+l )(L3,, et — xe]|” + L3, LBEImg[1%)

Rearranging it, we have

Vigr = Vi
2
Qg1 _ « ai Lo
<= Ve, (%P = a5 — et ) (R
2 2 2o'w
Bt
o Lo
+ gy —g H X — 1@ %
roy,
ut
1 & ? ater m 9
+ 201007 || — z;d;’t —hi|| +ag— Z [vie = vy, (ki)
i

m
#0012 3 (B [V G0l + Er)? e = G0l

=1
™ (6byy1 L2 6cia1 (Lot |Iv% (x5.0)|| 4+ Loa)?
+ Z ( . Py1 + t+1 ( vl H Ht5( 1,t)” v2) ||Xi,t B X¢7t+1H2
=1 Btaﬂlut nto‘w#t

(b 3Ci41M: 2 2
3 (P e P (L I G+ ) ) s = G0
i=1

wa
— byt 14_1@%1 251:;—53 i||hz‘,t”2
2 Kt Oy " JerM P Yy

_ Ct+1 no o, Z ||V'L . — v* Xz t)||2

13.|2 Hvyfi (it+1’y;‘“+1 (it+1)) H HYZL+1 (it+1)H [t — Hes1
+ a1 —
mi3 Th; e
+a li 2Lft‘y2||y;t+1(it+l)”2 <,ut Nt-‘rl)Q
t+1 >
mi4 Th He

2
i 24by 11 Hy/*‘t-H (x¢,t+1)H (ﬂt _ Mt+1>2
+

i=1 O—]?L ﬂto’wut ,LL

+Z 6cry1 <Mt Mt+1) ((C\d

i1 Moy, Nt

t

‘V2t+1 (xl,tJrl)H + Lfin) Hyzt+1 (Xzyt+1)H

2
Vy fi (Xi,t+17yzt+1 (Xi,t+1)) H)

1 _
ol [((1 SN~ D~ TR+ (14 adlib -1 ®hi||2]

+Cv2

+ dpprop1 (14 1)A° — 1)|hl — 1@ hL|]?
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1
+dprraip1 (1 + 7)@321 41 — x| + L3, 57|y |1%).

Since Hv; Xt H is of order O( ), to simplify the proof, we take Hv (1) H as its maximal
l

value over all m agents at iteration ¢. By further calculating the terms from the previous result, we
have

Vier = V4
2
apy10y _ ar  aiLg
<= =V, ()P — asr | — 2 | ||
2 2 2011}
Mt
L 1 & ?
« . —
+ at+1t2%%||xt -1® 5(1;”2 + 2a441047 E Z d;’t - h;
¢;tt =1

1
avronr o (L, [V, i)l + Lra)* llye = vy, GOl

b 3 2
— (A0, - 2 (L v, sl + Lay,) ) = v G0l

— Pt0O
2 7T gy,

o S L, ve = vy, G |F = S5, [ve = vy, Gl
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3 + 5 llx: — ¢4
Broy,, U

m 20441 Hvyfi (%HJZLHI ()_(t+1)) H HYZHI (Xi,t+1)H [t — fest
+ Z - m
h.

i

t

L L Z 2azt+1Lf7y2||yﬂ,+1(xt+1)||2 p — e\
T pa o2 e

h;

2
A Hy’*"*l (Xi’tH)H Mt — Hi41 ?
2 P

po o5, Biow,, :
6crpr  phe — Pt X *
+ Z n 2 ((CVl ’vut+1 (X’i,t+1)H + sz‘y2> Hyp«url (Xi7t+1)"
i=1 t wpt :ut
2
+Cy2 ‘vyfi (Xi7t+17yzt+1 (Xi,t+1)) H)

1 _
+dia [((1 )N = 1)|x — 1@ %> + (1 + f)at2||hi -1® hiHQ]
1
+ diprapg1 (14 12)A* = 1)[[hl — 1 @ hi|J?
1
+dipras(1+ g)(Lfﬁl 41 — x| + L3, BEIm (%)

Then, we obtain the following expression:

Vitr = Vi
At 104 _ Qg o L<I>
<= VO, (x)[? = arir | 5 - t | [ ?
2 2
L 1 ’
oy . _

+at+1 S || Xt — 1®Xt|| +2(1t+10[t7" EZd;’t *hi

"/)#t i=1

1
a0 (L Vi, (20) [+ Lr)” lye = w7, G0
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b 3 2
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1237

1
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+diyropr (1 + )(L2 %41 — x> + L3, BRI [[%).

lo

Then, we obtain the following expression:
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For algorithm 1, with 7 [L>om, dit — flf(HQ = 0, we have
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1 1 1
+ (dt+1at+1 (1 + 12) L?&gﬁf — b1 (1 + Qﬁtawu,) (25tW - 53)) Hh§1||2

Mt

1 i 2a;41 Hvyfi (it+17y;§t+1 (it+1)) H H}’Zt+1 (Xi,t+1)H (Mt _ Mt+1)
_l’_ P
m = Oh; et
N 1 i 2ae41 Ly, Iy, (Rera) |12 <m ,ut+1)2
i=1 U’%i He

2
o 2 i 0l
+2 ;

2
i=1 Uh'BtUwut t

+Z 6cry1 (Mt gt-i-l) ((Cvl

7 MOyp,, i ‘v’*‘t“ (Xi’Hl)H + Lfiﬂ) Hyzt“ (Xi’tH)H
i=

2
+Cyo ‘Vyfi (Xi7t+17yzt+1 (Xi,t+l)) H)
Then, it holds that
Vigr —
g1 _ _ . 2
< - t+1 VO, (%) + CoBL? + Collxe — 1@ %12 + Cs ||lye — y5, (%)

2 I —
v Gl ol 1 S B+ Gl

1 I 20641 Hvyfi (it+1,yzt+1 (it—&-l)) H ’

Yiarsa (Xi’tJ’l)H Pt — fhg1
" m = Oh; ( Ht )
l Z 2a¢41Ly, , ||ym+1 (Xer1)? (ut — P41 ) ?
m _ h e

2
m 24bt+1 Hy,’jtﬂ (Xi,tJrl)H e — g1 2
+> ju

2
i=1 Uh-f@ta"/)m t

+Z 6cti1 (Mf élt+1> ((Cvl

= MOy, K

’V}Zm (Xi,t+1)H + Lfm) H)’Zt+1 (Xi,t+1)H

2
+Cyv2 ‘vyfi (Xi,t+17yzt+1 (xi,t+1)) H)
where
2L 6b41 L2 6c Lot [V (x50 + Ly2)”
C1 = —aps1 (O;t 0‘21‘, 2¢‘Ht> +4a%m 5 3%1 +4o¢fm t+1( vl H m5( th)H V2)
Ty T, ",
1

+ dt+104t+1 (1 + l ) L?cllélafm,

tLq% s <6bt+1‘ U 6¢i41 (Lvi HVZt (th)H + Lv2)2>

Cy = ap41
+ 3 5
roZ m Bro o

Yy i dm,, It Puy

1
+ diy1 ((1 + 11))\2 - 1) + 8t 106441 (1 + 12) Lf“n’
1
Cs = at—&-latTE (wayz HVZt (Xi,t)H + Lfix2)2

b 3 2
- (%70, = B (L v, G+ ) )

Tty
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_ QT 2 Ct+1
Cao= a1 Ly, — =m0y,
2
5 6bt+1L12py1 6cer1 (Lv || V5, (xid)| + Lv2)
05 = 4at 3 —+ 3
Btoqmt ntawut
1Y 5 2 1Y 2
+ dt+1 1+ I (e + dt+1at+1 ((1 + lg) A ].) + dt+10lt+1 1+ ] L i140[t,
1 2
Ce=d 1+1 L2 B2 —b 1+15 2 L 52
= o - - =fio _ - .
6 t+10¢ 41 I 1, Pt 1 5 Pt t%u,, F Ly, i

Step 5: Step-size calculations.

To ensure convergence, we choose step-sizes carefully by setting I; =[5 = % — 1, which simplifies
several terms. Under this setting, we have 1 + % =1+ % = ﬁ and (1 +1)X\2 —1=\—1.
Using these values, we proceed to calculate each of the constants C through Cg , which represent
various components that contribute to the change in the Lyapunov function.

27, 6b; 1L2 6c Ly || V] (x4 + Ly ?
Cl = _at+1 % at 2‘1’%& + 40(? % + 40(?7’77, t+1 ( 1 H Ntr( 7t>H 2)
2 20y, B, MY,

1
—+ 7dt+1at+1L?il4afm,

1-—A
2
atL<I>ut 6bt+1L12Py1 6Ct+1 (LVI Hv;t (Xivt)H + LV2)
Cg = Q¢41 ) +8 3 + 5
Toﬂ’ut m ﬁtaww ntawut

1
+dipr (A—1)+ SdelaHlLil,

1
Cs = apr0ar— Ly V7, i)l + L1)”

b 3 )
- (%52, =2 (i 0 1))

- QT 2 Ct+1
Cao= a1 Ly, — =m0y,

Co— 4@3 <6bt+1L'L2by1 L 6ciy1 (Lv1 ||V:‘“ (x”)H + Lv2)2>

Bi03,, M"Y,
1 1
+ 1 )\dt+1a? +diprog (A —1) + T )\dt+104t+1L?c“404t27
Cs=d L 2 " 1+16 23 L 2
= Qpp1—— — — B0 _ .
6 = Grp1Qur T bp, P = Ot 9 Pt9%u, taww + Ly, ¢
Next, we set the unified form as follow:
B, € B(tJrl)fr/z;; n:cbt—“ 2 oy = en My
t 7Lfi7/2+Lgy2 s It nct+1 t qua t och_l t wm’
where
Ct+1 Mt _9 Ct+1 Qg _5
cp = — o “, Co = — o, °.
K <bt+1) (Bt) Ve (at+1> <77t> Vi
Also, we set

me=(t+1)"7/28, ap = (t+1) 7B,
)T b= (1)
)Tel, . dia = (t+ 1)/
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For C1, we have

2L 6bs 1L
Ci = —ai41 (at - & (b“t) + 4afm703 v1

2 202

+ 4:04,?m6qyrl (LVI ‘

Vi, ()| + Lve)” 1
3 +
N0y, 11—

2 2
dt+1at+1Lfil 40ét m

2
W10 G410 Lo,

2 2
dt+1at+1Lf7;14at m

2 _
2 QU%t 1—A
6bs 10 L2
a t+100 2
— 40[?771 tHl Cq Igyl + 66t+1 (Lvl ||sz (Xi,t)H + LVQ)
o Catty15:0y,, '

By further simplification and applying our chosen step-size settings, we derive:

1 )
C = —5@ + 1) 2By} + 24m(t + 1) 772 Byl (Lwy1 + (Lv1 HVZt, (Xz‘,t)H + Lv2)2)

L LY
(0 )T o Am (b 1) B,
iy

As we can see, the dominant term for Cy is —(t + 1)7°7/23,43, which is smaller than 0. This
indicates that C contributes to the overall decrease in the Lyapunov function.

Next, for Cy, we have

oLy, 48 <6bt+1L12py1 + 6ciy1 (Lvt ||V:l,, (xi.0)|| + Lv2)2>

CQ = at+1
2 3 5
ro m 3 g g
Yy %, Ny,

1
+dipr (A =1) + 8mdt+1&t+1L?u

2
_ atL‘bMt + 8at+1 6bt+1athy1
R o Ca Calyr1Bi03
Yy Yy
1

1—A

+6 (Lot ||V, (x00)[| + Lv2)®

tdir (A—1)+8

2
dt+1at+1Lfi1~

Simplifying further, we obtain:
L 8L2.
Co= (4 1)T/3 (N — 1) 4 2991 (44 1)-57/2,3 o —fin gy o 1)-137/83 3
= (t+1) ( )‘f'rmaiw(-l-) ,ut+17>\(_|_) Byl
1

+ E(t +1)77/2 (48 +48 (L1 ||v5, (xi0)|| + Lv2)2> .

The leading term is —(t 4+ 1)~7/8, ensuring that Cy is negative.

For C3, we have

1
Cs = 10T (Lutey [V, (i) || + Lf“‘?)Q
b 3¢ n * ?
— (22_1 to-wut N Ut#lt (Lwyyz Hvﬁ«t <Xi’t)H + Lfiyz) >

biy1

_ 3Ct1Mt (
2

nt

1
+ at+1atra (L¢xy2 HV;t (Xi,t)H + Lf'ix2)2

6c n * °
Gmgﬁﬁqﬁwﬂwm@mw+Mm)

2
Biow,, + Lisse [V i)l + L,y )
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210 * 2 bit1
_m (L’lbny Hvut (Xi,t)H + LfiXQ) ) X %ﬁt(jww
=—|1-c M(L HV* (X‘t)H—I—L )2
! CﬁbtJrlBtUiM Yyy2 e\, fiya

20441047 . ,
b g Lo Vi i)l L) )

b
X %1@01;%.

After simplification, we have:

1 —T
Cs = §(t+ 1) ﬂﬁtaiu

2
. <_1 ety (6 (Loes IV, o)l + L1,

t

2r

4+ 1)1 (L [, G| + Lf,,,xf)) ,

which is negative as well, with the dominant term —(t + 1)~7/23,.

For C}, the calculation proceeds similarly:

2
= T 1o Ci41 - 1 2at+1athy1T Ct41
4= Qe+ Yy1 Moy, = — o 2 N4, -
m Ct+1Mt0p,,m

2
Then

5
o
Cy = f% (1= (t+1) 7" %) (¢ +1)737/28,
ensuring Cy is negative with its dominant term being — (¢ + 1)_37/ 28,.
For C5, we have

9 <6bt+1L12[,y1 66t+1 (Lvl HVL (Xi,t)H + Lv2)2>
Cs = ot -
ﬁtaww Utad,w

1 1
+ 1_ )\dt+1at2 + dt+10ét+1 ()\ — 1) + 1_ )\dt+10ét+1L?c“4O¢t2

2(1 + 6bt+1atL
= 40ét ¢ 1CO [ Yy

o 6 (Lot [[vi, (e[| + Lv2)®

3
Calry1P10y,

1 1
+ ﬁdtﬂaf + dt+1at+1 ()\ — ].) + ﬁdtJrlatJrlL?iléla?.

Then we have

C5 - 24(t + 1)777/2575;’&; |:L3’yl + (LVl HV;t (Xivt)H + Lv2)2:|

1 4
+ m(t +1) B2 4 (A= 1) (t+ 1) TRy} + mL?“(t + 1)

As we can see, Cs should be the same order as the order of — (¢ + 1)~ 37/83, 3, which is smaller
than 0.

Finally, for Cg, we have

1 1 1
Ce = ——d L2 B2 —b 1+ = 28— — B2
6 = Ty dr10er1 Ly, B — b ( + 2575‘71/1#,,) ( 5160%% L. B
1 btt1 Ty 1
= ——I2 dia 29— 4 2 Tm 4 Sop. .
T Lr, A1 By /53%11 L. t+15; oo + Ly, 2 t+15; 0,
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Then we can get
(t+1)"7/%03

Ce = —20 kit + 1 % (t + 1)_257/8ﬁ3u3 + (t + 1)—7’/2%52
- i t Mt t
Oy, T qut 1— )i O, + qut

1
+o(t+ )26y,

As we can see, C should be the same order as the order of —(¢ 4+ 1)~7/2f,, which is smaller than 0.
Step 6: Proof of Theorem.

It is helpful to find suitable coeffcients asy1,b¢41, Ct41, drr1 such that Cq to Cg < 0 and all of the

sequences involving 11y — (41 (denoted by Af” Bf“ C’Z respectively) are summable. Achieving this

would allow us to conclude convergence using Lemma 10. First, we establish the following inequality
for the change in the potential function V;:

Vigr = Vi <AL+ B, + CL.

By the definition of potential function, we get V; > 0 for all £. This implies that the potential function
is bounded from below, and we can write:

Ve <Vo+ > (AL +B,+Cl).
t=1
Since the sequences A?, BZ, and CZ are summable, we can conclude that:
Vr=0(1) as T — oo.
Next, applying Lemma 10, we have the following summation over the interval t = T to ¢t = 27T + 1:

2T+1

> (%IIV‘% (%e)|* = Crl[bgc]|? = Callxe — L@ %[> — Cs [|ye — 7, (o)
t=T

2

~Cy|[ve — v, (x1)||” = Cs[|hk — 1@ bl — 06||h§,\|2> =0(1).

Mt

Since the constants C; through Cg are all strictly negative, the terms on the left-hand side are non-

negative, and thus, the overall sum remains bounded. Note that Zf:;fl (t+1)"°> 2T +2 k=3dk =

L = JT+1
2 1_;1 (T + 1)1—8.

Now, by lower-bounding the coefficients, according to different step size strategies and the coefficients
of Lyapunov function, we can get the estimates on

, SN2 L it 2 _— 2
R (HV‘DW(Xt)H + L[] + [Ix¢ — L@ %e||* + ||y — ¥, (x0)]]

[lve = vi, () |” + I = 1@ BE|? + 1B |2)

Kt

By choosing suitable upper bounds for the parameters p and 7, we conclude that the desired con-
vergence holds, completing the proof. To further lead to the convergence rates as measured by the
KKT residual, due to the optimality of y}, (x;) and the definition of v} (x;) , there exists a positive
constant C', independent of ¢, such that:

KKT(Xta Yt, Vt)
— _ 2 2
<C (IV@u (ROIP + ke = 1@ %2 + e = w7, (0)[|* + [[ve = v, () [[* + 123)
D SUPPORTING LEMMAS

Now, we present the technical lemmas that would be useful throughout our main result.

To establish the convergence result of DUET , we first characterize the Lipschitz continuity of y}; (x;)
in x; and v (x;) in x;, without any boundedness assumption of Vy f;(x;, y;).
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Lemma 11. Suppose assumptions holds, the follow statement holds.
(a) Forany i € [m], the function y?, (x;) is Lipschitz continuous in x;, i.e, for all x;,X,
R . Ly
Ilyi(xi) =y ()l < —= = — xill,

n
where both Ly, = pLy, , + (1 —p)Lg, , and oy, = pop, + (1 — p)og, are constants.

*

1 (xi) satisfies

(b) Forany i € [m), the function v

Vi 6ol = | [y Gy x)] ™ 0 s )| < LV OV

Uﬂm
and for all x;, %,
. . (Lva [V (%)l + Lv2)
V7 (xi) = vy (x| < s [I%; —xil,
o
Yu
where both L., = Lwyyszyl + Ld,yyldw“ and Lo = LfinLwyl + Lfiylo‘w“ are

constants.

Proof. (a) By the optimality of y; , to LL problem, we have V), (x;,y};(x;)) = 0. Thus

(vy¢u (%4, YZ(Xz)) = Vyi, (x4, y;j (x;)))
+ (Vﬂbu(xi, Y,’Z(X;)) - Vy%(XE, YZ(X;») =0.
Multiplying the above equation by y7;(x;) — y},(x}), by the o, - strongly convexity of 1/, (x, -) and
Ly, -smoothness of 1, (-, y), we have

7y, 1y (xi) =y ()2

< I Vythu (i, v (x7)) = Vytu (x, v () -y (i) — v (xi)
< Ly, lIxi = x| - [y, (i) =y (xi)ll-

Then the conclusion follows immediately from the above inequality.
(b) First, by the o, - strongly convexity of 1, (x, -) and Cauchy-Schwarz inequality, we have

Ty, Vi) P < (v (xi), Viythu (i, 3 (x2)) vii(x0))
= (viu(xi), Vy fi (xi,y,(x1))) < IV o) [V fi (x5 37 (x0) |,

which implies the conclusion.
F?Econd, the definition of v7 (x;) implies that [V2 1, (x;, y5(x}))] vi(x:) = Vyfi (X, y5(x:)).
us

[Vay (X v (x)] [V (%) — v (xi)]
= [vyfi (XQ,YZ(XD) = Vy /i (XuYZ(Xi)ﬂ
+ [Viyw#(xi’ y;(xl)) - Viyﬂ)p(xga YZ(XQ))] V;(Xi)o

By (a), the oy, - strongly convexity of v,,(x;, -) and Lipschitz continuity of Vy1),, and Vy f;, we
have

oy, IV7 (%) — v (x) |
< (Lﬂ-y1 Ixi = x5l + Ly, ,, Iy}, (xi) — YZ(X§)|\)
[V )| (Lyya 1% = X1 4 Ly |y (x:) — v (xD)I])

1% =xill (o
So_i’d)“ (HVN(XZ)H (L'l/}yy2L'¢y1 + O-'QbuL"l)yyl) + LfinLwyl + O-'LbuLfiy1) ’
which implies the desired result. O
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Next, we have a lemma that characterizes the smoothness of @L(Xi) = fi (xi7 y;(xz)) in x;,

without any boundedness assumption of Vy, f;(x;,y;), where V@L(xi) = V«/fi (xi, y;(xl)) -

V2 Uk (%6, y5(xi)) vi(x0).

Lemma 12. Suppose all assumptions holds, for any i € [m] and x; € RP', we have

(Car [[vii(i)[| + Cao)
p)

O',(Z)u

[V, (xi) = Vo, ()| <

i —xill,

where both Cgq := L?ﬂmeyy? + Ly, (Lwyy1 + L¢Xy2) Ty, +way1‘712p“ and Cgpo := L?pylLfiyz +
Ly, (L fign T L fz‘xz) oy, + L fixla?p“ are constants.

Proof. Recall that v (x;) = [Vi,, (xi7y;(xi))]_lvyfi (xi,y5(x:)) and V&, (x;) =

Vi (%6, ¥5(%0)) — [V2y ¥ (%6, ¥5(xi)) ] vii(x;). Thus
VO, (x;) — V!, (x}) =V fi (xi,y5(xi)) — Vi (x5, 57, (%))
+ [Viy®u (x5 v (xD)] Vi (%) = [Vig¥u (%, 35,(x0)) ] v (x0).
First, by Lipschitz continuity of Vy f;, we have
[V fi (%0, y7(x2)) = Vi fi (x5, y7 (D) || < Loy, 1% = x50 + Ly, vy (xi) = v (x9)]] -
Second, note that
[ViyUu (%5 v (<))] vin (%0) = [Vig®u (%0, y5(x:))] v, (%)
= [Viyu (%55 (D) [v7, (5) = V()]
+ [Viy¢n (X;ay: (X;)) - V)Qcyw/_t (XzaYZ(Xz)ﬂ V:(Xi)~
Thus, by Lipschitz continuity of Viywu and Lemma 11, we have
[V ¥ (x5 y7 )] vy (x3) — [V (i, 37 (xa)) | v (1) |
<Ly, [[vy (x1) = Vi (xa) || + [[Vi )| (D 155 = il + L I35 (x0) = v (x5)]))
L Lv . 7 Lv
<Low Ml b))
Yy
Vi )| (L 15 = Xill + Loy, [y (%) = v (XD)]]) -

where Ly, is constant given by Ly, = L, , + (1 — p)Lg, ..

It implies the desired result since
Ly, Lt + Ly Ly, 0, + Ly 00 = L3 Ly + Ly, (Lyyyy + Ly ) O + Ly 05,
and
2 2 2
Lwylva + Lfix2L¢ylg¢u + Lfixla-wp = LwylLfiyz + Ld’yl (Lfiyl + Lfixz) Oy + Lfixl O"L/Ju'

O

Next lemma characterize the smoothness of y;(x;) and v},(x;) in s when the LL problem has
multiple minimizers.

Lemma 13. Suppose assumptions holds, let 0 < pn < 1/2 and i’ < 2p, the follow statements hold.

(a) Foranyi € [m],

2|9y (i v | =gl 2liGell e w

i) = v x| < S0 = e L
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(b) Foranyi € [m],

Vi) = Vi x| < (Corlvioell + L) Iy e - Yl

where both Cyq := 2 (Lhiyyz + Lgim) Jop and Cyg = 2 (Lf,iy,2 + Lgiﬂ) /o are
constants.

Proof. (a) Recall that y} , =y (x;) satisfies uVyh; (xi,y7,,) + (1= 1) Vygi (xi,y7,) = 0. Thus
(:u - ) (XZ7 yi u) [ (Xi7 Y;:H) - vyhz (Xi7 Y;M/)]
+ (W = w)Vygi (xiy7,) + (1= 1) [Vygi (%0 ¥7,) = Vygi (xi,¥7,0)] =0,
which imply that
1 [Vyhi (xi,57 ) = Vyhi (xi57,0)] + Q= 1) [Vygi (xi57 ) = Vygi (%i,57,0)]

* * ! V hi Xi’y;
= (1" — ) Vyhi (xi,y7,) + (0 — p)—— V hi (%0, ¥5,) = (1 *N)M~

1 1—p
Since h;(x;, -) is op,- strongly convex, we have
<Vyhz (Xia y'?,,u,) - Vyhz (Xia y;p/) ’y?,u - y;u’> 20 - y:‘:p/ ||2

Similarly, since g;(x;, -) is convex, we get
<vygz (Xia y;'k”u) - Vyg’t (Xia y;,u/) 7y;'k,/_L - y;'k,,u’> > 0.
Combining the above inequalities, we have

I
W=
0 < Won vty = il < (522 ) (Tyhs (os¥E) ¥ = ¥i

Since 0 < < 1/2, we get 1/(1 — p) < 2 and then

=y ? <20Vyhi (xiyr ) e =il s, —yiwl
=2yl e =l Nyi =il

which implies the desired result.
(b)The definition of v, = vi(x;) says that [Vyy v, (xs, y5,(x)))] Vi (xi) = Vyfi (xi,¥5(x:))-
Thus we have

[Viy%ﬂ (X’i’y;*/)} (V;u - VZM') + [Viy%(xuyﬁ) - viywlﬂ (i, y;/)] Vi
=Vy fi (Xz‘,}’f,,L) — Vy fi (Xi,Yf,u/) .
Multiplying the above equation by v; , — v7 ,, by the oy, - strongly convexity of ,,, (xi,-), we get
05, Vi = Vi 1 S IV (i, ¥7) = Vg (i, i)l 1V V5 = Vi
+ IVyfi (%, ¥5 ) = Vyfi (%0575 0) 1 1V = Vil
Note that by the definition of 1), we have
Vy¥u(Xi, ¥, = Vg (%0, Y7 1)
=(p = 1 )Vyyhi (%057 ,) + 1 [Viyhi (%057 ,) — Vayhi (xi,y7 )]
+ (0 = 1) Vg9 (% ¥i) + (1= 1) [V3y0i (xio¥i,) = Viyoi (% vi,)] -
Since p/ < 2u < 1, we get

Tty Vi, — Vi |

43



Published as a conference paper at ICLR 2025

A o e B (WS o | s e | e B T e
< [(Brigya + Loy ) Wil + L | 197, = Yol + (ngs + Lasys ) 17,0

By (a), since oy, , = W on, when oy, = 0, we have

| e — ]

. R 8
||Vi,u - Vi,u’” < |:(Lhiyy2 + Lgiyy?) ”Vi’”ll + Lfiyz} :;21 - (Ml)z
(Lhiy2 + Lgiy2) * |M - /’L/|
gl ) i,

Since p’ < 2u, Lemma 11 implies that

Vs fi Gy )| _ 2|V fi (ki v (i) |
KO, o Oh, ’

PVl <
Hence we get the desired result. O

Finally, we present the lemma that characterizes the Lipschitz properties of the approximate gradient
by using || Vy fi(xi,y:)|| < Ly,, from Assumption 1.

Lemma 14. For any i € [m],
2 2 2
IV fi(xisyi) = V< y)IIT < L3l = xi|1" + L, lyi — yill
2 _ 472 2 1 72 1 72 72 2 72 1 72 2 _
where I3 = AL3 4+ 4L3 L2 442 L3 4 AL 12 L3 and L3 =

2 2 3
o o o
L Y P0Gy,

2 2 1 72 1 72 12 2 72 _1 72
4Lfix2 + 4Lwy1 Lfiy2 + 4aLfioway2 +4L ylL L

2 . 4 .
O'w“ fu) o-'kbu '4pyy2

Proof. Recall that
Vi(xi,yi) = Vfi (%i,¥i) = Vay ¥ (Xi,y4) Vi,
where v; € RP2 is define as:
vi o= [V2 ), (xi,yi)] ' Vy fi(xi, ¥3)-
Then, we have
IV fi(xi,yi) = V fu(x;, yi)|I?
< 2|V fi(xi, yi) = Vi fi(x}, y7) |12
+ 2| V2 0, (%4,¥:) [Vay ¥l (%6, yi)] 7' Vy fi(xi, ¥1)
— ViyWr (x5, ¥0) [Vay 0h, (<5, yI ' Vy fi(xG, y) |12
< 2|V fi(xi, yi) = Vi fi(x}, y7) |12
+ 2|V iy, (xi,50) [Viy ¥, (0, i) T (Vy fi(xi,yi) = Vy fi (55, y)IIP
+ 2/[(Vay ¥, (xi,¥:) — Vayl, (x5, yi)) [Vayr (xi, y:)] ' Vy fi(xi, yi) |12
+ 2 Vi v (X5, 51) (Vo (%, y)] T ([Viay 01 (%6, ¥4)]
— [Viy by (X YD [V Ur (x5 y DI~ Vy fi(x5, 7|12

Then we have the following:

2
IV fi(xiyi) = Vi3 Yl < Loy 1% = %5017 + Ly, lyi = will -

IVy fi(xi,¥i) = Vy fi(xi, YOI < Ly, % = x5+ Ly, lyi — yill-
Furthermore, we have
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Vg (%0 ¥i) = Ve U, (i YD < Ly, i = Xl + Lusyyo lyi = vill -
Assuming that |[VZ 4!, (xi,y:)|| < Ly, and [|Vy fi(xi,y:)|| < Ly, ,, then we have
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Thus we have
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E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

All numerical experiments were conducted on a MacBook Pro equipped with an Apple M3 Pro chip,
featuring a 12-core CPU with 6 performance cores and 6 efficiency cores, and 36GB of memory.

E.1 A PEDAGOGICAL EXAMPLE

In this section, we present the results of a pedagogical example using the DU ET and DSGT algorithms.

For the DUET algorithm, we set the LL learning rate to 0.005, W1th p=1qgandT = 0. For the
DSGT algorithm, the LL learning rate is set to 0.001, with p = and T = E

The following figures illustrate the norm of the variables x and y durlng the optimization process.

E.2 DECENTRALIZED META-LEARNING PROBLEMS WITH REAL-WORLD DATA:

In this section, we present more details for decentralized meta-learning problems with Real-World
Data. Ateach node, we construct a neural network classifier comprising an input layer, a single hidden
layer with 32 neurons using a sigmoid activation function, and a linear layer as final output layer param-
eterized by 6. The hidden layer parameters x are shared across all nodes to ensure global consensus,
while the output layer parameters 6 are fine-tuned locally to adapt to the specific data available at each
node. The objective functions f; and g; are: f;(x,0) = Z(su,bu)eDi bij In(y;(x, 0;5:5)) + 2167,
and g;(x,0) = Z(si,-,bi,-)eD,; bi; In(y;(x,0; s:5)), where (s;;, b;;) represents the j-th sample at node
1, with s;; as the feature vector and b;; as the corresponding label. Here, v = 0.1 denotes the
regularization coefficient, and y;(x, 0; s;;) denotes the output of the neural network.
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Figure 4: The norms of x and y.

The decentralized stochastic gradient descent (DSGD) approach is used as baseline for i.i.d. case
that updates 6 first by gradient descent and then uses the updated 6 to calculate the gradient of x,
subsequently updating x via SGD.

We compare the performance of DUET and DSGT in both i.i.d. and non-i.i.d. settings. Figures 5 and
6 illustrate the train loss and accuracy results for both settings.
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Figure 5: Comparisons between DUET and DSGT in the i.i.d. data scenario on the meta-learning
problem with a 5-agent network on MNIST.
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Figure 6: Comparisons between DUET and DSGT in the non-i.i.d. data scenario on the meta-learning
problem with a 5-agent network on MNIST.

In Figure 5, the DUET algorithm demonstrates superior performance by achieving the highest training
accuracy, along with fast convergence. For the non-i.i.d. case (Figure 6), the algorithms with gradient
tracking handle the heterogeneity of the data well, with better performance.

Figure 7 shows the label distributions of data heterogeneity across different nodes, highlighting the
strong non-i.i.d. nature of the data used in our experiments. This visual representation of non-i.i.d.
data distribution provides a clear understanding of the varying degrees of heterogeneity.

For a 10-agent network (Figure 8) and a 50-agent network (Figure 9) in the i.i.d case, DUET continues
to perform effectively and demonstrates the best performance among the tested methods DSGT and
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Figure 7: Label distributions of data heterogeneity across nodes for non-iid case on the meta-learning
problem with a 5-agent network on MNIST.

baseline DSGD, maintaining robust convergence and accuracy even in larger, more complex network
settings.
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Figure 8: Comparisons between DUET and DSGT in the i.i.d. data scenario on the meta-learning
problem with a 10-agent network on MNIST.
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Figure 9: Comparisons between DUET and DSGT in the i.i.d. data scenario on the meta-learning
problem with a 50-agent network on MNIST.

The following table summarizes the parameter settings for the DUET , DSGT , and DSGD algorithms
under both i.i.d. and non-i.i.d. cases, illustrating the diverse configurations tested in our experiments.
E.3 DECENTRALIZED HYPERPARAMETER OPTIMIZATION WITH REAL-WORLD DATA:

In this section, we explore the hyperparameter optimization problem, which is formulated as a bilevel
optimization task. Specifically, we employ softmax regression (with parameters y;) as the classifier
and introduce hyperparameters x; to weight samples for training.

Let Dy, ; and D, ; as the training and validation sets for agent <. We define L(y;;u4,v;) as the
cross-entropy loss function, where y; denotes the classification parameters and (u;, v;) are the data
pairs. The LL problem minimizes the softmax regression loss over the training dataset, and the LL
objective function is formulated as follows: g;(X;,¥:) = >_(u, vi)ep,,., [0(%:)]¢(yi; i, vi), where
x; is the hyperparameter that penalizes the objective for different training sample.

Simultaneously, the UL problem aims to improve the performance of the regression model
on the validation dataset by fine-tuning the hyperparameters. The UL objective is defined as:

47



Published as a conference paper at ICLR 2025

Setting | Algorithm | UL Learning Rate | LL Learning Rate | Parameters (u, p)
DUET 10 0.01 (0.1, 3)
1D DSGT 0.5 0.00001 ()
DSGD 1 0.01 -
i DUET 0.1 0.0001 (0.1, D)
non-lID 55T 0.001 0.001 03,5

Table 3: Parameter settings for DUET, DSGT, and DSGD under iid and non-iid conditions on the
meta-learning problem on MNIST.

2

fil%i,¥1) = 2w viye Do LY (i) 1, vi) + éZle %, where p = 10~ is the reg-
ularization parameter. This regularizer is non-convex and is applied in a distributed manner. To
evaluate the proposed method, we use the FashionMNIST dataset, which consists of images of
clothing categories and serves as an alternative to the classic MNIST dataset. For each agent, the
dataset is split into training, validation, and testing sets, each containing 5000 samples. We compare
the performance of DUET and DSGT algorithms in terms of test accuracy and F1 score, utilizing a
10-agent communication network with a connection probability p. = 0.5.

As show in Figure 10, the analysis of F1 score and test accuracy reveals similar trends across the three
algorithms, indicating consistency between the metrics in evaluating performance. DUET achieves
the best results in both F1 score and test accuracy, with the fastest convergence and highest stability
across epochs. DSGT follows closely, showing competitive performance but slightly behind DUET.
In contrast, DSGD, which lacks gradient tracking, exhibits slower convergence, lower overall
performance in both metrics. These results highlight the effectiveness of gradient tracking in
DUET and DSGT, with DUET emerging as the most robust and generalizable approach. The similar
trends in F1 score and test accuracy further validate the reliability of these algorithms’ performance
in decentralized optimization.
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Figure 10: Comparisons between DUET and DSGT on the hyperparameter optimization problem
with 10-agent network on FashinMNIST.

The following table summarizes the parameter settings for the DUET, DSGT, and DSGD algorithms

on the hyperparameter optimization problem with 10-agent network on FashinMNIST.

Algorithm | UL Learning Rate | LL Learning Rate | Parameters (u, p)
DUET 0.001 0.1 0.1, %
DSGT 0.1 0.01 0.9, %
DSGD 0.01 0.01 -

Table 4: Parameter settings for DUET, DSGT, and DSGD on the hyperparameter optimization

problem with 10-agent network on FashinMNIST.
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