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Abstract—Partially observable Markov decision processes
(POMDPs) have been widely applied in various real-world ap-
plications. However, existing results have shown that learning in
POMDPs is intractable in the worst case. The main challenge lies
in the lack of latent state information. For example, in wireless
channel scheduling, due to energy and security constraints, it is
usually difficult or impossible for the user to know the condi-
tions/states of all channels. Thus, a key fundamental question
here is: how much online state information (OSI) is sufficient
to achieve tractability? In this paper, we make the first effort
to establish fundamental conditions and methods for bridging
the gap between partially observable reinforcement learning and
networking with incomplete state information. Specifically, we
establish a lower bound that reveals a surprising hardness result:
unless we have full OSI, we need an exponentially scaling sample
complexity to obtain an ϵ-optimal policy solution for POMDPs.
Nonetheless, motivated by the structures of practical systems,
we identify important subclasses of POMDPs that are tractable,
even with only partial OSI. For two subclasses of POMDPs with
partial OSI, we provide new algorithms that are proved to be
near-optimal by establishing new regret upper and lower bounds.

Index Terms—reinforcement learning, partial observability,
sample complexity, regret analysis, wireless channel scheduling

I. INTRODUCTION

We investigate partially observable Markov decision pro-
cesses (POMDPs) in reinforcement learning (RL) systems,
where an agent interacts with the environment sequentially
without observing the latent state (e.g., complete channel
conditions). The goal is to achieve a large cumulative reward.

Consider wireless channel scheduling as an example [1]–
[3]. At each time, a user must choose one of the channels for
transmission. The conditions of these channels evolve along
the time. However, due to energy and security constraints, the
user may not know the complete conditions of all channels.
Others examples include autonomous tanks that typically do
not have a global view of traffic conditions due to limited
reception [4], AI-trained robots that receive noisy observations
of the battle field due to sensory noise [5], and so forth (Fig. 1).

Existing information-theoretical results have shown that
learning in partially observable MDPs is intractable in the
worst case [6] and PSPACE-complete [7]. This is in contrast to
fully observable MDPs, where many efficient algorithms have
been developed. The challenge of POMDPs lies in the lack
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Fig. 1: Due to energy and security constraints, the user
(e.g., the edge device used by the soldier) cannot know the
conditions of all wireless channels during communication

of latent state information, such that the Markov property that
simplifies fully observable MDPs does not hold any more.

To resolve the intractability issue, recent work has exploited
hindsight state information [8], [9], where full state informa-
tion becomes available at the end of each episode (i.e., after
a certain number of time slots). This is motivated by the fact
that, although the true latent state is unknown before the agent
takes an action, some information may become available in
hindsight. However, this assumption on full hindsight informa-
tion may not hold, e.g., the conditions of the wireless channels
that were not probed will still remain unknown to the user.

This issue motivates us to study partial state information
based on query. We call it partial “Online State Information”
(OSI). For example, in wireless channel scheduling [1]–[3],
partial OSI corresponds to the conditions of probed channels.

To model such partial OSI concretely, we consider vector-
structured states [10]–[13]. Specifically, the state is given by a
d-dimensional vector with each element representing a feature,
such as the condition of one channel. Then, partial OSI means
that at each step, a subset of d̃ (1 ≤ d̃ < d) elements in the
state-vector will be revealed to the agent after her query, e.g.,
conditions of the d̃ channels that are probed by the user.

Our contributions: The key fundamental open question is
that with such partial OSI, can POMDPs be tractable? In this
paper, we provide in-depth answers to this open question.

(1) We establish a new lower bound in Theorem 1 that re-
veals a surprising hardness result: unless we have full OSI, we
need an exponentially scaling sample complexity of Ω̃(A

H

ϵ2 ) to
find an ϵ-optimal policy for POMDPs, where A and H are the
number of actions and the episode length, respectively. This
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result indicates a sharp gap between POMDPs with partial OSI
and POMDPs with full OSI (or full hindsight information).
This may seem somewhat counter-intuitive, because by com-
bining partial OSI from multiple steps (e.g., by querying each
state-element one-by-one), one may construct full information
of a state, and thus enjoy a similar tractability as that with full
OSI. However, in Sec. III, we carefully design a worst-case
instance, such that with only polynomial complexity, partial
OSI at each step and even a combination of it from multiple
steps are not sufficient to achieve an ϵ-optimal solution.

Then, one may ask: Is there any subclass that is tractable
with only partial OSI? To push the boundary further along
this axis, we identify two intriguing tractable subclasses of
POMDPs with only partial OSI. They are motivated by struc-
tures of practical systems for networking and communications.

(2) In Sec. IV, we identify a tractable subclass with partial
OSI, where additional partial noisy observations for the ele-
ments (e.g., channel conditions) in the state-vector that are not
queried/probed are available after query. For this subclass, we
provide a new near-optimal algorithm. Our algorithm design
and regret analysis involve a non-trivial generalization of the
observable operator method [14], [15] to handle the non-
trivial complexity structure of the partial noisy observations
under the adaptively queried partial OSI. Our result explains
the fundamental value of channel condition estimation during
transmission, e.g., utilizing past and side information.

(3) In Sec. V, we identify another tractable subclass of
POMDPs with partial OSI, where the transitions of the state-
elements are independent of each other. In the algorithm
design, we use adversarial importance weights (for address-
ing in-episode biases), heterogeneous decay parameters (for
addressing across-episode biases), and query-based Q-value
functions (for addressing parameter-related inconsistent learn-
ing rates). Our result explains the fundamental value of
probing capability in wireless communications. In addition,
our theoretical analysis shows that the regret can be further
reduced as the query/probing capability d̃ increases.

II. PROBLEM FORMULATION

In this section, we introduce the problem formulation for
POMDPs with partial online state information (OSI).

A. The Traditional Episodic POMDP

Episodic POMDPs (Fig. 2a) are usually modelled by a tuple
M = (S,A,O, H,∆1,P,O, r), where S , A and O denote the
state space with S states, the action space with A actions and
the observation space with O observations, respectively; H
denotes the number of steps in an episode; ∆1 : S → [0, 1]
determines the randomness of the initial state at the beginning
of an episode; P = {Ph : S × S × A → [0, 1]}H−1

h=1 and
O = {Oh : O × S → [0, 1]}Hh=1 denote the unknown
transition and emission probability measures, respectively; and
r = {rh : O × A → [0, 1]}Hh=1 denotes the reward function.
Specifically, an online agent interacts with the environment
in K episodes. At each step h of an episode k, the agent
receives a global noisy observation okh generated according to

the emission probability Oh(·|skh), where skh is the unknown
true latent state. Next, the agent takes an action akh and receives
the reward rh(o

k
h, a

k
h). Then, the environment transits to the

next state skh+1, which is drawn according to the transition
probability Ph(·|skh, akh). The goal of the agent is to find a
policy that achieves a high expected cumulative reward.

B. Partial OSI
Based on the traditional POMDP introduced above, we

provide a concrete formulation for partial OSI. Specifically,
we consider the vector-structured states [10], [11], [13], [16].
Each state s is represented by a d-dimensional feature vector
ϕ⃗(s) = [ϕ1(s), ..., ϕd(s)]

T ∈ S̃d, where S̃ is the universal set
of the values for each sub-state (i.e., element) in ϕ⃗(s), and
[·]T denotes the transpose of a vector. We use |S̃| to denote
the cardinality of the set S̃. In each episode k, the agent
interacts with the environment as follows: (Step-i) According
to a query policy πk

q , the agent actively queries d̃ sub-states
of the unknown latent state skh, where 1 ≤ d̃ < d; (Step-
ii) The queried sub-states {ϕi(s

k
h)}{i∈îkh}

, i.e., the partial
OSI, are revealed to the agent, where îkh denotes the indices
of the queried sub-states; (Step-iii) According to an action
policy πk

a , the agent chooses one sub-state ikh ∈ îkh and takes
an action akh ∈ A; (Step-iv) The agent receives a reward
rh(ϕikh

(skh), a
k
h), where rh : S̃×A → [0, 1].

Motivating example: Consider wireless channel scheduling
in military. Here, each sub-state ϕi(s) represents the condition,
e.g., busy or idle, of one wireless channel. At each step, the
user first actively probes the conditions of channels îkh, and
then observes the conditions of the sensed channels, i.e., the
partial OSI. However, due to energy and security constraints,
the agent cannot sense all the channels. Finally, she transfers
packets using one sensed channel ikh ∈ îkh, and receives a
reward associated with this chosen channel ikh and action akh.

C. Performance Metric
In episode k, the agent queries sub-states according to a

query policy πk
q , e.g., it determines which wireless channels to

probe. After receiving the partial OSI ϕîkh
(skh) at each step, the

agent takes an action according to an action policy πk
a , e.g., it

determines which wireless channel to use for communication.
Moreover, before the partial OSI for step h is revealed in
episode k, the feedback revealed to the agent is Φk

h =
(ϕîk1

(sk1), a
k
1 , ..., ϕîkh−1

(skh−1), a
k
h−1) ∈ Φ̂h, where Φ̂h denotes

the feedback space. After the partial OSI has been revealed,
the feedback revealed is Φk,′

h = {Φk
h ∪ ϕîkh

(skh)} ∈ Φ̂
′

h. We

use the V -value V πk

≜ E{πk
q ,π

k
a ,P,∆1}[

∑H
h=1 rh(ϕikh

(skh), a
k
h)]

to denote the expected total reward in episode k.
We take the regret as the performance metric, which is

the difference between the expected cumulative reward of the
online joint policies and that of the optimal policy, i.e.,

Regπ
1:K

(K) ≜
∑K

k=1

[
V π∗ − V πk]

, (1)

where π∗ ≜ arg sup{πq,πa} V
π denotes the optimal policy. To

the best of our knowledge, we are the first to provide near-
optimal regrets for partially observable RL with partial OSI.
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(c) With partial OSI and independency

Fig. 2: A sketch of one step: the squares represent the feedback, and the triangles represent the actions and/or queries

III. PERILS OF NOT HAVING FULL OSI

In this section, we answer the long-standing open question:
whether POMDPs with online state information are tractable
without full OSI (i.e., d̃ = d)? In Theorem 1 below, we
establish a new lower bound that reveals a surprising hardness
result: unless we have full OSI, we need an exponential sample
complexity to find an ϵ-optimal policy for POMDPs, where a
policy π is ϵ-optimal if V π ≥ V π∗ − ϵ.

Theorem 1. (Intractability for not having full OSI) For
POMDPs with only partial online state information introduced
in Sec. II-B, there exist hard instances, such that with a
probability p ≥ 1/3, any algorithm needs at least Ω(AH/ϵ2)
samples to find an ϵ-optimal policy.

Theorem 1 demonstrates the hardness of POMDPs with-
out full OSI: a polynomially scaling sample complexity
Poly(A,H, S,K) is impossible for finding an ϵ-optimal policy.
Theorem 1 may be counter-intuitive, because by combining
partial OSI from multiple steps (e.g., querying each sub-state
one-by-one), one may construct full information of a state, and
thus enjoy similar tractability as that with full OSI. Below, we
provide a worst-case instance and key proof ideas. Please see
our technical report [17] for the complete proof.

A. Our Key Proof Ideas for Theorem 1

The important parts in our proof are to design special state
representations and transitions, such that partial OSI cannot
help the agent to improve her statistical knowledge about the
true latent state. Towards this end, we construct a worst-case
instance with four states, i.e., s(1), s(2), s(3) and s(4).

Idea I (Semi-correlated state representations): Our first idea
is to construct the states, such that by observing d̃ = 1 sub-
state, it is impossible to infer the true state. Specifically, we let
ϕ⃗(s(1)) = [x1, x2]

T, ϕ⃗(s(2)) = [x3, x4]
T, ϕ⃗(s(3)) = [x1, x4]

T

and ϕ⃗(s(4)) = [x3, x2]
T, where x1, ..., x4 are sub-states.

We now introduce the high-level idea for constructing such
state representations. Let us consider states s(1) and s(2) as
a group of states, and we call it group a. Similarly, we call
states s(3) and s(4) group b. Thus, under our construction of
the state representations, each state in group a (i.e., s(1) and
s(2)) must contain one and only one common sub-state as
that in each state of group b (i.e., s(3) and s(4)). This is why
we call it “semi-correlated”. For example, the first sub-states
of both state s(1) and state s(3) are x1. This means that, by

only querying the first sub-state i = 1, the agent cannot know
whether she is in a state from group a or group b.

However, whether a combination of partial OSI from mul-
tiple steps would be enough? To answer this question, we
construct special state transitions using our idea II below.

Idea II (Closed-loop state transitions): Our second key idea
is to construct closed-loop state transitions. Specifically, in
each episode, the agent starts from state s1 = s(1). At step
h = 1, (i) if action a(1) is chosen, the state will transition to
s(1) and s(2) with the same probability (wsp); (ii) if action
a(2) is chosen, the state will transition to s(3) and s(4) wsp.
At step h = 2, (i) if a(1) is chosen, both states s(1) and s(2)
will transition to s(3) and s(4) wsp; (ii) if a(2) is chosen, they
will transition to s(1) and s(2) wsp. Similar for step h = 4.

Then, together with the semi-correlated state representa-
tions, even when the partial OSI about the first and second sub-
states from multiple steps are combined, such a closed-loop
state transition still prevents the agent from knowing which
group of states she is in. For example, at step h = 1 of two
episodes, the agent can keep taking action a(1) and query
the first and second sub-states one-by-one. Then, the partial
OSI at step h = 2 could be ϕ1(s

k
2) = x1 (i.e., the first sub-

state of s(1)) and ϕ2(s
k+1
2 ) = x4 (i.e., the second sub-state

of s(2)). However, the first and second sub-states of s(3) are
also x1 and x4. Thus, such a combination of partial OSI (i.e.,
ϕ1(s

k
2) = x1 and ϕ2(s

k+1
2 ) = x4) is not enough for the agent

to distinguish between visiting (s(1), s(2)) and visiting s(3).
Idea III (Group-based reward functions): Up to here, only

with partial OSI, the agent cannot improve her statistical
knowledge. Thus, she can only rely on the statistical relation
between the sequence of actions that is taken and the reward
that is received. Hence, to create difficulties, (i) we let the
rewards rh at steps h = 1, 2, 3 be 0; (ii) if the final state
is in group b, the reward at step h = 4 follows Bernoulli
distribution with mean 1

2 ; (iii) if the final state is in group
a, the reward at step h = 4 follows Bernoulli distribution
with a slightly higher mean equal to 1

2 + ϵ. In this way, the
optimal policy will take action sequence (a(1), a(2), a(1)) for
all episodes, so that she can remain in group a and enjoy
an expected total reward equal to 1

2 + ϵ in every episode. In
contrast, the online agent has to try every sequence of actions
to figure out which sequence provides larger reward with high
probability. Since there are AH action sequences, according
to the Hoeffding’s inequality, we can show that the sample
complexity for achieving an ϵ-optimal policy is Ω(AH/ϵ2).
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Algorithm 1 Optimistic MLE with Partial OSI

Initialization: Θ0 = {θ ∈ Θ : min{h,̂i} σS̃(Õî
h) ≥ α}.

for k = 1 : K do
Step-1: Estimate the problem model θ̂ ≜ (P̂, ˆ̃O, ∆̂1):

Θk = Θ0 ∩
{
θ̂ ∈ Θ0 :

∑k−1

τ=1
logPπτ

θ̂
(Γτ ) ≥

max
(P′,Õ′,∆′

1)∈Θ0

∑k−1

τ=1
logPπτ

P′,Õ′,∆′
1
(Γτ )− β

}
. (2)

Step-2: Update the joint policy πk ≜
argmaxπ:θ̂∈Θk E{πq,πa,∆1,θ̂}[

∑H
h=1 rh(ϕikh

(skh), a
k
h)].

for h = 1 : H do
Step-3: Query the partial OSI ϕîkh

(skh) according to
the query policy πk

q,h. Collect partial noisy observation
õkh. Specify one sub-state ikh and take an action akh
according to the action policy πk

a,h.
end for

end for

IV. TRACTABILITY AND OPTIMALITY UNDER PARTIAL
OSI AND PARTIAL NOISY OBSERVATIONS

In the next two sections, we answer the key open question:
Is there any subclass that is tractable with partial OSI? To
this end, we identify two intriguing tractable subclasses under
partial OSI motivated by channel estimation, and provide new
near-optimal algorithms. The tractable subclass with flexible
query capability that we study in this section is as follows.

Subclass 1. (POMDPs with partial OSI and partial noisy
observations) See Fig. 2b. At each step h of an episode k:
(Step-i) the agent actively queries sub-states îkh; (Step-ii) The
partial OSI ϕîkh

(skh) is revealed; (Step-iii) The agent receives
the partial noisy observation õkh for the other d − d̃ sub-
states that are not queried, where õkh is generated according to
the partial emission probability Õîkh

h

(
·
∣∣{ϕi(s

k
h)}{i/∈îkh}

)
. The

partial emission matrix Õî
h ∈ RO×|S̃|d−d̃

satisfies the partially
revealing condition: there exists a constant α > 0, such that
σS̃(Õî

h) ≥ α for any sub-states î and step h, where S̃ = |S̃|d−d̃

and σS̃(·) denotes the S̃-th largest singular value of a matrix.
Namely, min{h,̂i} σS̃(Õî

h) ≥ α holds; (Step-iv) The agent
chooses a sub-state ikh ∈ îkh, takes an action akh, and receives a
reward rh(ϕikh

(skh), a
k
h); (Step-v) The next state skh+1 is drawn

according to the joint transition probability Ph(·|skh, akh).

We make two claims. (i) In contrast to standard POMDPs,
the partial noisy observation õkh in Subclass 1 depends on the
query policy, whose outputs further affect the action policy.
These two new dependencies require non-trivial developments
in the algorithm design and regret analysis. (ii) In wireless
channel scheduling, the partial noisy observation could be
collected using condition estimation and prediction, e.g., by
utilizing past and side information. Our results below show the
fundamental value of such observations in communications.

A. Optimistic MLE with Partial OSI (OMLE-POSI)
We develop a near-optimal algorithm for Subclass 1, called

Optimistic Maximum Likelihood Estimation with Partial OSI
(OMLE-POSI). See Algorithm 1. The new challenge here is:
how to design the query policy, such that the combination
of partial OSI and partial noisy observations guarantee the
existence of a near-optimal OMLE solution? To overcome this
difficulty, our algorithm involves a non-trivial generalization
of the standard observable operator method [14], [15].

Idea-I (Partial-information based bonus term): In contrast to
the full noisy observation or full hindsight state information in
standard POMDPs, only partial noisy observation is available
in our case. To make it worse, it is affected by the adaptive
query of the agent. Hence, when applying maximum likeli-
hood estimation in Step-1 of Algorithm 1, we design a new
bonus term β = O

(
(|S̃|2dA+ |S̃|d−d̃O) ln(|S̃|dAOHK)

)
,

which depends on the size of the non-queried sub-state space
|S̃|d−d̃. Γτ ≜ {ϕîτ1

(sτ1), õ
τ
1 , a

τ
1 , ..., ϕîτH

(sτH), õτH , aτH} denotes
the feedback that includes partial noisy observations õτ1:H .
This new bonus term captures the new complexity of partial-
information space Õî

h, and satisfied the optimism-in-the-face-
of-uncertainty principle [18] under incomplete information.

Idea-II (Bilevel query-and-action optimization): In contrast
to standard POMDPs, the action policy πa,h here relies on the
output of a query policy πq,h. Thus, the query îkh and action
akh cannot be simply mapped to a single decision space. As a
result, in the value iteration step (Step-2 of Algorithm 1), the
reward maximization becomes a bilevel optimization problem.

Theorem 2. (Regret) For POMDPs with the partial OSI and
partially revealing condition, with probability 1−δ, the regret
RegOMLE-POSI(K) of OMLE-POSI can be upper-bounded by,

Õ

(
|S̃|2d−d̃OAH4

√
K(|S̃|2dA+ |S̃|(d−d̃)/2O)/α2

)
.

Theorem 2 shows that (i) the regret depends polynomially
on A, H and |S̃|; (ii) The regret further decreases exponentially
as d̃ increases; (iii) The regret of OMLE-POSI depends on√
K, which is tight. To the best of our knowledge, this is

the first such near-optimal result for POMDPs with partial
OSI. Note that in our proof of Theorem 2 (in our technical
report [17]), the main difficulty is the non-trivial complexity
structure of partial noisy observations under adaptively queried
partial OSI. Indeed, directly applying the observable operator
method will result in a regret that does not decrease with d̃.

Note that the only parameter that the above regret does not
have a polynomial dependency on is d. Below, we provide a
lower bound, which shows the necessity of such a dependency.

Theorem 3. (Lower bound) For POMDPs with partial OSI
and partially revealing condition, the regret of any algorithm
π can be lower-bounded as follows,

Regπ(K) ≥ Ω̃
(√

AH · |S̃|d/2 ·
√
K
)
. (3)

Our key proof idea (in [17]) is to construct a special state
transition, such that even with partial OSI, all combinations
of sub-states must be explored to achieve a sub-linear regret.
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V. TRACTABILITY AND OPTIMALITY UNDER PARTIAL OSI
AND INDEPENDENT SUB-STATES

In this section, we discuss another tractable subclass with
relatively restricted query capability in each episode.

Subclass 2. (POMDPs with partial OSI and independent
sub-states) See Fig. 2c. In each episode k: (Step-i) the agent
actively queries sub-states îk (not for each step h, i.e., rel-
atively restricted query capability); (Step-ii) After the partial
OSI ϕîk(s

k
h) is revealed at each step, the agent chooses a

sub-state ikh ∈ îk, takes an action akh, and then receives
a reward rh(ϕikh

(skh), a
k
h); (Step-iii) The next state skh+1 is

drawn according to the transition probability Ph(·|skh, akh) =∏d
i=1 Ph,i(ϕi(·)|ϕi(s

k
h), a

k
h), where the product form indicates

that the sub-states have independent transition kernels.

This subclass is motivated by practical applications, e.g.,
wireless channel scheduling. Due to probing energy and delay,
the user may not probe frequently. Here, we do not assume
additional partial noisy observations for non-queried sub-
states. However, without partial OSI in Step-ii of Subclass 2,
learning under independent sub-states could still be intractable.

Proposition 1. (Intractability for not having partial OSI)
There exist POMDPs with independent sub-states, such that
learning an ϵ-optimal policy requires Ω̃(AH/ϵ2) samples.

A. Optimistic-In-Pessimistic-Out Learning (OIPOL)

We develop new near-optimal algorithms for Subclass 2.
The new challenge here is: how to query partial OSI to avoid
intractability in Proposition 1 and achieve optimality? To
overcome this difficulty, our algorithms involve three inter-
esting and important ideas. Due to page limits, we focus on
introducing our new algorithm OIPOL for the case with d̃ > 1
(see Algorithm 2). We use mod(k, x) to denote the remainder
when k is divided by x, and let κ = ⌈(d− 1)/(d̃− 1)⌉.

Idea-I (Adversarial importance weights for addressing in-
episode biases): Note that the query î could cause errors in V -
values. Additionally, these errors could result in non-stationary
in-episode biases for future decisions (although the state-
transition and reward are stationary) [19]. Hence, in contrast
to existing POMDP solutions that maintain a confidence set,
a more conservative solution is required.

Step-1 and Step-2 of (2): at the beginning of every κ
episodes, OIPOL updates the global weights and probabilities
for each sub-state i according to a new exponential weighting:

wk(i) = wk−κ(i) · e
(d−1)η1
d(d̃−1)

∑k−1
τ=k−κ

∑H
h=1 r̂τh(ϕi(s

τ
h),a

τ
h),

and pk(i) = (1− η1)w
k(i)/

∑d

i′=1
wk(i′) + η1/d, (4)

and then chooses a leading sub-state according to pk(i). We
note that (i) η1 is the first key decay parameter (see the
second one η2 in (5)). With a smaller η1, the global weight
increases more slowly, and thus the algorithm behaves more
pessimistically. (ii) The estimated reward r̂τh(ϕi(s

τ
h), a

τ
h) is

rτh(ϕi(s
τ
h), a

τ
h) − rτh(ϕĩ⌊k/κ⌋(sτh), a

τ
h) if i ∈ îτ , and is 0

otherwise. Removing the common leading sub-state reward

Algorithm 2 Optimistic-In-Pessimistic-Out Learning

for k = 1 : K do
if mod(k, κ) = 1 then

Step-1: Update the global weights wk(i) and probabil-
ities pk(i) according to (4).
Step-2: Choose a leading sub-state ĩ⌈k/κ⌉, i.e., the
leader, according to the global probability pk(i).
Step-3: Initialize the local weight w̃k(i) according to
the global weight wk(i), i.e., w̃k(i) = wk(i).

end if
Step-4: Choose d̃ − 1 supporting sub-states, i.e., the
follower, uniformly randomly from the sub-states that
have not yet been chosen in most-recent κ episodes, i.e.,
from

⌊
k−1
κ

⌋
· κ+ 1 to (

⌊
k−1
κ

⌋
+ 1) · κ.

Step 5: According to (5), update the local weights w̃k(i)
and probabilities p̃k(i) for sub-state i queried.
Step-6: Choose the rewarding sub-state ikh according to
the updated local probability p̃k(i).
for h = H : 1 do

Step-7: Update Q-values according to (6).
end for
for h = 1 : H do

Step-8: Take an action akh that maximizes the updated
Q-value function, and collect the partial OSI.

end for
end for

rτh(ϕĩ⌊k/κ⌋(sτh), a
τ
h) is the critical idea for eliminating the

in-episode bias. (iii) The first term in pk(i) captures how
important the sub-state ϕi(s) is, and the second term is a
uniform distribution for exploiting different sub-states.

Idea-II (Heterogeneous decay parameters for addressing
across-episode biases): Note that sub-optimal queries î at the
beginning of episodes result in unavoidable across-episode
biases for choosing rewarding actions at each step. Hence, in
contrast to gradient descents that use homogeneous learning
rates, a heterogeneous solution is required.

Step-5 and Step-6 of Algorithm 2: At the beginning of
episode k, OIPOL updates the local weights w̃k(i) and prob-
abilities p̃k(i) for sub-states ϕi(s) in query set îk (formed by
the leading sub-state ĩk and d̃− 1 supporting sub-states):

w̃k(i) = w̃k−1(i) · e
η2
d̃

∑H
h=1 rk−1

h (ϕi(s
k−1
h ),ak−1

h ), and

p̃k(i) = (1− η2)w̃
k(i)/

∑
i′∈îk

w̃k(i′) + η2/d̃, (5)

and chooses the rewarding sub-state ikh according to p̃k(i). We
note that (i) to make the algorithm optimistic enough in the
episode, the value of the decay parameter η2 should be larger
than the value of η1. Theorem 4 below provides a sufficient
condition on how much η2 should be larger than η1. (ii) The
factor (d− 1)/(d̃− 1) in (4) does not appear in (5), because
the local weight is updated for the sub-states in îk. (iii) The
denominator in the first term of p̃k(i) only includes i ∈ îk.

Idea-III (Query-based Q-value functions for addressing
parameter-related inconsistent learning rates): The remaining
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question is how to get the correct factor (i.e., (d−1)η1/d(d̃−
1)) for wk(i)? We choose d̃−1 supporting sub-states uniformly
randomly from the sub-states that have not yet been queried in
most-recent episodes (i.e., Step-3 and Step-4 in Algorithm 2).
Then, conditioned on the leading sub-state, each sub-state
is chosen with probability d̃−1

d−1 , which results in the factor
η1/(d

d̃−1
d−1 ) =

(d−1)η1

d(d̃−1)
.

Step-7 and Step-8 of Algorithm 2: In order to address the
inconsistent-learning-rate issue due to heterogeneous decay
parameters, we construct query-based Q-value functions that
follow an optimism-in-face-of-partial-OSI principle,

Qk
h(ϕi(s), a) = min{rh(ϕi(s), a) + [Pk

hV
k
h+1](ϕi(s), a)

+O(
√

H2/N k
h (ϕi(s), a)), H}, for all i ∈ îk, (6)

where Pk
h(ϕi(s

′)|ϕi(s), a) =
Nk

h (ϕi(s),a,ϕi(s
′))

Nk
h (ϕi(s),a)

is the estimated
transition kernel, N k

h (ϕi(s), a) and N k
h (ϕi(s), a, ϕi(s

′)) are
the number of times (ϕi(s), a) and (ϕi(s), a, ϕî(s

′)) have
been visited at step h up to episode k, respectively, and
V k
h (ϕi(s)) = maxa Q

k
h(ϕi(s), a). Finally, OIPOL takes an

action to maximize Qk
h(ϕi(s), a).

Theorem 4. (Regret) For POMDPs with partial online state
information and independent sub-states, by choosing η1 =
Õ(1/

√
K) and η2 = 16(d−1)

d̃−1
η1, with probability 1 − δ, the

regret RegOIPOL(K) can be upper-bounded by

Õ

(
H

5
2 |S̃|2A

√
dK ln d
d̃−1

(
ln H2|S̃|AK

δ

)2
)
. (7)

Theorem 4 shows that (i) the regret of OIPOL depends
polynomially on all problem parameters; (ii) The regret
of OIPOL decreases further as the query capability d̃ increases;
(iii) The dependency on K is Õ(

√
K), which is tight. To the

best of our knowledge, this is the first such near-optimal result
for POMDPs with partial OSI. Further, our regret analysis
(in [17]) includes new technical developments to handle the
correlations (i) between the action and query policies, and (ii)
between the in-episode and across-episode biases.

VI. CONCLUSION

In this paper, we establish a lower bound that reveals
a surprising hardness result: unless we have full OSI, we
need an exponentially scaling sample complexity to obtain
an ϵ-optimal policy for POMDPs. Nonetheless, motivated by
practical wireless communications, we identify two intriguing
tractable subclasses of POMDPs with only partial OSI, e.g.,
probed channel conditions. We provide new RL algorithms,
which are proved to be near-optimal by establishing regret
upper and lower bounds. Our solutions resolve the open prob-
lem when applying RL to real-world networking, and could
serve as a key foundation for future work in this direction.
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