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Abstract— The remarkable success of reinforcement learning
(RL) heavily relies on observing the reward of every visited state-
action pair. In many real world applications, however, an agent
can observe only a score that represents the quality of the whole
trajectory, which is referred to as the trajectory-wise reward.
In such a situation, it is difficult for standard RL methods to well
utilize trajectory-wise reward, and large bias and variance errors
can be incurred in policy evaluation. In this work, we propose
a novel offline RL algorithm, called Pessimistic vAlue iteRaTion
with rEward Decomposition (PARTED), which decomposes the
trajectory return into per-step proxy rewards via least-squares-
based reward redistribution, and then performs pessimistic value
iteration based on the learned proxy reward. To ensure the value
functions constructed by PARTED are always pessimistic with
respect to the optimal ones, we design a new penalty term to
offset the uncertainty of the proxy reward. We first show that our
PARTED achieves an O(dH?3/+/N) suboptimality for linear
MDPs, where d is the dimension of the feature, H is the episode
length, and NV is the size of the offline dataset. We further extend
our algorithm and results to general large-scale episodic MDPs
with neural network function approximation. To the best of
our knowledge, PARTED is the first offline RL algorithm that is
provably efficient in general MDP with trajectory-wise reward.

Index Terms— Linear Markov decision processes (MDPs),
neural networks, function approximation, reward redistribution,
pessimistic principle.

I. INTRODUCTION

EINFORCEMENT learning (RL) aims at searching for
an optimal policy in an unknown environment [1].
To achieve this goal, an instantaneous reward is typically
required at every step so that RL algorithms can maximize
the cumulative reward of a Markov Decision Process (MDP).
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In recent years, RL has achieved remarkable empirical success
with a high quality reward function [2], [3], [4], [5], [6].
However, in many real-world scenarios, instantaneous rewards
are hard or impossible to be obtained. For example, in the
autonomous driving task [7], it is very costly and time con-
suming to score every state-action pair that the agent (car)
visits. In contrast, it is fairly easy to score the entire trajectory
after the agent completing the task [8]. Therefore, in practice,
it becomes more reasonable to adopt trajectory-wise reward
schemes, in which only a return signal that represents the qual-
ity of the entire trajectory is revealed to the agent in the end.
In recent years, trajectory-wise rewards have become prevalent
in many real-world applications [9], [10], [11], [12], [13].

Although trajectory-wise rewards are convenient to be
obtained, it is often challenging for standard RL algorithms
to utilize such a type of rewards well due to the high bias and
variance it can introduce in the policy evaluation process [14],
which leads to unsatisfactory policy optimization results.
To address such an issue, [8], [15] proposed to encode the
whole trajectory and search for a non-Markovian trajectory-
dependent optimal policy using the contextual bandit method.
Although this type of approaches have promising theoretical
guarantees, they are difficult to be implemented in practice
due to the difficulty of searching the large trajectory-dependent
policy space whose dimension increases exponentially with the
horizon length. Another type of approaches widely adopted in
practice is called reward redistribution, which learns a reward
function by allocating the trajectory-wise reward to every
visited state-action pairs based on their contributions [14],
[16], [17], [18], [19]. Since the reward function in reward
redistribution is typically learned via solving a supervised
learning problem, such an approach is sample-efficient and can
be integrated into the existing RL frameworks easily. However,
most of existing reward redistribution approaches do not have
theoretical performance guarantee. So far, only [19] proposes
a provably efficient reward redistribution algorithm, but is only
applicable to tabular episodic MDP and requires both reward
and transition kernel to be horizon-independent.

Despite the superior performance of the reward redistribu-
tion method, all previous algorithms considered only the online
setting, which are not applicable to many critical domains
where offline sampling is preferred (or can be required),
as interactive data collection could be very costly and risky [7],
[20]. How to design reward redistribution in offline RL for
trajectory-wise rewards is an important but fully unexplored
problem. For such a problem, designing reward redistribution
algorithms can be hard due to the insufficient sample coverage
issue [21] in offline RL. Further challenges can be encountered
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when we try to design provably efficient reward distribution
algorithms for general MDPs with large state space and
horizon-dependent rewards and transition kernels, which has
not been studied in online setting.

The goal of this work is to design an offline RL algorithm
with reward redistribution for trajectory-wise rewards, which
has provable efficiency guarantee for general episodic MDPs.

A. Main Contributions

In this paper, we consider episodic MDP with possibly
infinite state space and horizon-dependent reward function
and transition kernel. The trajectory-wise reward adopts a
standard sum-form as considered previously in [18], [19],
[22], [23], [24], and [25], in which only the summation of
rewards over the visited state-action pairs is revealed at the
end of each episode.

We propose a novel Pessimistic vAlue iteRaTion with
rEward Decomposition (PARTED) algorithm for offline RL
with trajectory-wise rewards, which incorporates a least-
square-based reward redistribution into the pessimistic value
iteration (PEVI) algorithm [26], [27], [28], [29], [30]. Dif-
ferently from the standard PEVI with instantaneous reward,
in which reward and value function can be learned together
by solving a single regression problem, in PARTED, reward
need to be learned separately from the value function by
training a regression model to decompose the trajectory return
into per-step proxy rewards. In order to capture the reward
and value function for a large state space, we adopt over-
parameterized neural networks for function approximation.
Moreover, to offset the estimation error of proxy rewards,
we design a penalty function by transferring the uncertainty
from the covariance matrix of trajectory features to step-wise
proxy rewards via an “one-block-hot” vector, which is new in
the literature.

We show that our proposed new penality term ensures
that the value functions constructed by PARTED are always
pessimistic with respect to the optimal ones. We then show
that PARTED achieves an O(dH?/v/N) suboptimality in the
linear MDP setting, where d is the feature dimension, H
is the time horizon of MDPs, and NN is amount of offline
data. We further extend such results to general MDPs with
large scales. We show that with over-parameterized neu-
ral network function approximation, PARTED achieves an
@(DeffH 2/v/N) suboptimality, where Deg is the effective
dimension of neural tangent kernel matrix and generalizes the
feature dimension in linear MDPs when D.; = dH. To the
best of our knowledge, PARTED is the first-known offline RL
algorithm that is provably efficient in general episodic MDPs
with trajectory-wise rewards.

B. Related Works

1) Trajectory-Wise Reward RL: Policy optimization with
trajectory-rewards is extremely difficult. A variety of prac-
tical strategies have been proposed to resolve this technical
challenge by redistributing trajectory rewards to step-wise
rewards. RUDDER [14] trains a return predictor of state-action
sequence with LSTM [31], and the reward at each horizon is
then assigned by the difference between the predications of
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two adjacent sub-trajectories. Later, [16] improves RUDDER
and utilizes a Transformer [32] for better reward learning.
IRCR [17] assigns the proxy reward of a state-action pair
as the normalized value of trajectory returns that contain the
correspondingly state-action pair. RRD [18] learns a proxy
reward function by solving a supervised learning problem
together with a Monte-Carlo sampling strategy. Although those
methods have achieved great empirical success, they all lack
overall theoretical performance guarantee.

Differently from empirical studies, existing theoretical
works of trajectory-wise reward RL are rare and focus only
on the online setting. One line of research assumes trajectory
reward being non-Markovian, and thus focuses on searching
for a non-Markovian, trajectory-dependent optimal policy.
[8] assumes that trajectory-wise reward is a binary signal
generated by a logistic classifier with trajectory embedding
as the input. In this setting, the policy optimization problem
is reduced to a linear contextual bandit problem in which the
trajectory embedding is the contextual vector. Reference [15]
considers a similar setting as [8] but assumes only having
access to a binary preference score between two trajectories
instead of an absolute reward of a trajectory. Another line
of research assumes that the trajectory-wise reward is the
summation of underlying step-wise Markovian rewards. The
goal of this line of work is to search for an optimal Markovian
policy. Reference [33] adopted a mirror descent approach so
that the summation of rewards alone is sufficient to perform
the policy optimization. This approach relies on the on-policy
unbiased sampling of trajectory rewards, and can hardly be
extended to the offline setting. Reference [19] proposed to
recover the reward by solving a least-squared regression prob-
lem that fits the summation of reward estimation toward the
trajectory reward.

To our best knowledge, offline RL with trajectory-wise
rewards (where no interaction with the environment is allowed)
has not been studied before, and our work develops the
first-known algorithm for such a setting with provable sample
efficiency guarantee. Further, although our reward redistribu-
tion approach applies the least-square based method, which has
also been adopted in [19], our algorithm is designed for gen-
eral MDPs with possibly infinite state and horizon-dependent
rewards and transition kernels, which is very different from
that in [19] designed for tabular MDPs with time-independent
rewards and transition kernels.

2) Offline RL: The major challenge in offline RL is the
insufficient sample coverage in the pre-collected dataset, which
arises from the lack of exploration [21], [34]. To address
such a challenge, two types of algorithms have been studied:
(1) regularized approaches, which prevent the policy from vis-
iting states and actions that are less covered by the dataset [35],
[36], [371, [38], [39]; (2) pessimistic approach, which penalize
the estimated values of the less-covered state-action pairs [40],
[41]. So far, a number of provably efficient pessimistic offline
RL algorithm have been proposed in both tabular MDP set-
ting [28], [30], [42], [43], [44], [45], [46], [47], [48] and linear
MDP setting [21], [26], [29], [49], [50], [51], [52]. However,
the efficiency of all those works relies on both the availability
of instantaneous reward and special structures of MDP, which

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.



XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD

can hardly be satisfied in practical settings. In this work,
we take a first step towards relaxing those two assumptions
by proposing PARTED, which is provably efficient in general
episodic MDPs with trajectory-wise rewards.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Episodic Markov Decision Process

An episodic Markov decision process (MDP) is defined
by a tuple (S, A,P,r,H), where S and A are the state
and action spaces, [ > 0 is the length of each episode,
and P = {Py}neci) and ©» = {74 }neqm) are the transition
kernel and reward, respectively, where [n] = {1,2,--- ,n}
for integer n > 1. We assume S is a measurable space of
possibly infinite cardinality and A is a finite set. For each
h € [H], Py(+]s,a) denotes the transition probability when
action a is taken at state s at timestep h, and rp(s,a) € [0,1]
is a random reward that is observed with state-action pair
(s,a) at timestep h. We denote the mean of the reward as
Rp(s,a) = E[rp(s,a)ls,a] for all (s,a) € S x A. For any
policy 7 = {7 }ne[m], We define the state value function
Vir(-) ©+ 8§ — R and state-action value function Q7(-) :
S x A — R at each timestep h as

Shp = S] )

Z
(sn,an) = (s,a)} ,

Styat

t=h
H

Be |2 m

where the expectation ]E7T is taken with respect to the random-
ness of the trajectory induced by policy 7, which is obtained
by taking action a; ~ m(-|s;) and transiting to the next state
St41 ~ Pi(+|se,ar) at timestep ¢t € [H|. At each timestep
h € [H], for any f : S — R, we define the transition
operator as (Pnf)(s,a) = E[f(spt1)|(sn,an) = (s,a)] and
the Bellman operator as (B, f)(s,a) = Rp(s,a)+(Pnf)(s,a).
For episodic MDP (S, A, P, r, H), we have

Qr(s,a) = (BthﬂJrl)(s? a)7
Vir (s) = (QR(s,), mn(:]s)) 4,

VIZIT+1(S) = Oa
where (-,-) 4 denotes the inner product over .A. We define
the optimal policy 7* as the policy that yields the optimal
value function, i.e., V;* (s) = sup, V;"(s) for all s € S and
h € [H]. For simplicity, we denote V™~ and QF as V;* and
@}, respectively. The Bellman optimality equation is given as
follows

5t>at

Qh(s,a) =

Qi (s,a) = (BLV,)(s,0a), (1)

Vi (s) = argmax Q7 (s, -), 2)
ac A

Viigi(s) =0. (3)

The goal of reinforcement learning is to learn the optimal
policy 7*. For any fixed 7, we define the performance metric
as

SubOpt(, s) = Vi*(s) — V" (s),

which is the suboptimality of the policy 7 given the initial
state s; = s.
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B. Trajectory-Wise Reward and Offline RL

In the trajectory-wise reward setting, the transition of the
environment is still Markovian and the agent can still observe
and interact with the environment instantly as in standard
MDPs. However, unlike standard MDPs in which the agent
can receive an instantaneous reward 7, (s, a) for every visited
state-action pair x at each timestep h, in the trajectory-wise
reward setting, only a reward that is associated with the whole
trajectory can be observed at the end of the episode, i.e., r(7)
where 7 = {(s7,a7),-- -, (s},al)} denotes a trajectory and
(s}, af,) is the h-th state-action pair in trajectory 7, which
is called “trajectory reward” in the sequel. In this work,
we consider the setting in which the trajectory reward is the
summation of the underlying instantaneous reward in the tra-
jectory of MDP (S, A, P, 7, H), i.e., () = Y1, (s}, af).
We denote the mean of the trajectory reward as R(7) =
E[r(r)|r] = Zthl Ry(s},a},). Such a sum-form reward
has been commonly considered in both theoretical [19] and
empirical studies [18], [22], [23], [24], [25]. It models the
situations where the agent’s goal is captured by a certain metric
with additive properties, e.g., the energy cost of a car during
driving, the click rate of advertisements during a time interval,
or the distance of a robot’s running. Such a form of reward can
be more general than the standard RL feedback and is expected
to be more common in practical scenarios. Note that RL
problems under trajectory-wise rewards is very challenging,
as traditional policy optimization approach typically fails due
the obscured feedback received from the environment, which
causes large value function evaluation error [22].

We consider the offline RL setting, in which a learner has
access only to a pre-collected dataset D consisting of [V trajec-
tories {7;, ()} fv ,;Zl rolled out from some possibly unknown
behavior policy u, where 7; and r(7;) are the i-th trajectory
and the observed trajectory reward of 7;, respectively. Given
this batch data D with only trajectory-wise rewards and a
target accuracy €, our goal is to find a policy 7 such that
SubOpt(r, s) < € for all s € S.

C. Linear MDPs

We mainly consider linear MDPs [53], [54] in this paper.
An episodic MDP (S, A,P,r,H) is a linear MDP with a
known feature map ¢(-) : X — R if for each h < H, there
exist unknown vectors wj (s) € R%, Vs € S and an unknown
vector 05 € R? such that

Ph(s/‘sa a) = <¢(87 a)? w;;(sl»’ 4)
Rh(87a) = <¢(s,a),6’;>, &)

forall (s,a,s’) € SxAxS. Here we assume ||¢(z)|, < 1 for
all z € X and max{|lw};(S)|,. |16;,} < V/d at each step
h € [H], where [lw}(S)ll, = [s lwy(s)ll ds

In linear MDPs, it has been shown that both reward Ry, (-)
and transition value function (Pj,Vj,41)(-) are linear functions
with respect to ¢(-) [53], [55].

Notations: We use O(X) to refer to a quality that is upper
bounded by X, up to poly-log factors of d, H, N, m and (1/6).
Furthermore, we use O(X) to refer to a quantity that is upper
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bounded by X up to constant multiplicative factors. We use
I as the identity matrix in dimension d. Similarly, we denote
by 0; € R? as the vector whose components are zeros. For
any square matrix M, we let || M|, denote the operator norm
of M. Finally, for any positive definite matrix M € R%*? and
any vector z € R%, we define ||z||,, = V2T Mz.

III. ALGORITHM

In this section, we propose a Pessimistic vAlue iteRaTion
with rEward Decomposition (PARTED) algorithm for linear
MDPs. PARTED shares a similar structure as that of pes-
simistic value iteration (PEVI) [26], [28], [47], but has a
very different design due to trajectory-wise rewards. In PEVI,
a pessimistic estimator of the value function is constructed
from the dataset D and the Bellman optimality equation is
then iterated based such an estimator. Since instantaneous
rewards are available in PEVI, given a function class G, PEVI
constructs an estimated Bellman backup of value function
(BrVht1) by solving the following regression problem for all
h € [H] in the backward direction:

By Vis1) (6)
= argmin Ly, (g5) N
gn€g
N 2
=3 (D) + Van i) —aueR)) @)
T€D
+ A - Reg(gn). &)

In eq. (9), ‘7h+1(-) is the pessimistic estimator of optimal
value function constructed for horizon h + 1, A > 0 is
a regularization parameter and Reg(-) is the regularization
function. The optimal state-action value function can then be
estimated as Qp,(-) = min{(B,Vs4+1)(:) —Trn(:), H} T, where
—I'y, is a negative penalty used to offset the uncertainty in
(BjVis1)(-) and guarantee the pessimism of Q.

However, in the trajectory-wise reward setting, the absence
of instantaneous reward functions 7, (-) renders previous algo-
rithms, which relied on eq. (9), inapplicable. To overcome
this issue, we propose to additionally construct estimations
of the instantaneous reward 7 using the dataset. Leveraging
these estimations and eq. (9), we can then derive estimations
for the Bellman backups of value functions (BjVjy1) that
form an integral part of our PARTED algorithm. Although
straightforward, the constraints of a limited dataset and the
stochastic nature of the MDPs further introduces uncertainty
to the reward estimation. In response, we incorporate the
concept of PEVI, constructing a penalty term to refine our
estimations. We address the uncertainty arising from unknown
instantaneous rewards by showing that the designed penalty
term provides a pessimism guarantee for our estimations.

A. Reward Redistribution

We first construct our estimations of the instantaneous
rewards from the trajectory-wise reward. Specifically, we esti-
mate each Ry () for all h € [H] using a linear function
(p(s,a),0y), where 0, € R? is the estimation parameter.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

0] € R
by minimizing the following loss function L, : R — R:

We aim to obtain the estimations © = [4] , - -

2

H
Le(©) = > | (6(z]).0n) — r(7) (10)
7€D Lh=1
H
+ A (10 = 6ol (1n
h=1

where A1 > 0 is a regularization parameter. We then set the
per-step proxy reward Ry () as

where © = [é;r, e ,1/9;5] = argmin L, (O).
O€eRIH

B. Transition Value Function Estimation

Similarly, we also use linear function (¢(s,a),wp) to esti-
mate transition value functions {(PpV311)(:, ")} hejm) for all
h € [H], where wy, € R? is a learnable parameter. For each
h € [H], we define the loss function L"(wy,): R? — R as

L) = 3 (Vi (shn) — (0(af)wn))

7D
+ Az - lwn = woll3, (13)
where Ay > 0 is a regularization parameter. We then define
(PpVhs1)() : X = R as

(PrVit1) () = (("), @n),

@y, = argmin L (wy,).
whERd

(14)

where (15)

C. Penalty Term Construction

As discussed above, the estimations we obtained are uncer-
tain due to limited dataset and randomness from the MDPs.
We then construct the penalty term I'}, to offset the uncertain-
ties in them.

We first consider the penalty term that is used to offset
the uncertainty raised from estimating the reward. For any
trajectory 7 € D, we define the trajectory feature ®(7) =
[p(zT), -+, 0(zF)] € R, Based on it, we define the
trajectory feature covariance matrix 3(0) € R *H a4

S=X-Tag+ Y O(r)2(n)".
T7€D

We further define an ‘“one-block-hot” vector ®p(z) =
0], - ,¢(x)",---,0]]" € R for all x € X, ie,
(@1 ()] a(h—1)+1:an = ¢(x) and the rest entries are all zero.

The penalty term b,. j, of the estimated reward is then defined
as

1/2

br)h(.%‘) = [q)h(x)TZ_lq)h(x)] (16)

Note that the reward penalty term is new and first proposed in
this work. By constructing b, () in this way, we can capture
the effect of uncertainty caused by solving the trajectory-wise
regression problem in eq. (12), which is contained in the
covariance matrix X, on the proxy reward Ry, at each step
h € [H], via the “one-block-hot” vector ®,(x).
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Algorithm 1 Linear Pessimistic Value Iteration With Reward
Decomposition (PARTED)
N,H

Input: Dataset D = {7;,7(7;)}; ;=
Inltlallzatlon Set VH+1 as zero function
Obtain Rh and @ according to eq. (12)
for h=H,H—-1,-,1do
Obtain @h‘/}h_lrl and wj, according to eq. (14)
Obtain I'y(-) according to eq. (18)
Qn() =min{Rp,(-) + Pu Vi1 () = Ta(), H — h+1}F
#u(-|s) = argmax,, (Qn (s, ), wa(-]s)
V() = (@n(: ), Th(-]-))a

Next, we consider the penalty term that is used to offset the
uncertalnty raised from estimating the transition value function
(P, Vii1)(-) for each b € [H]. We define a matrix Aj, € R4x4
as

Ap=2Xp-Io+ Y o(f)d(ah)
TeD

The penalty term b, j, of the estimated transition value function
is then defined as

bon() = [6(2) A ()] (17

Finally, the penalty term for the estimated Bellman operation
By Vhi1(-) is obtained as Finally, the penalty term for the

estimated Bellman operation B, V41 (-) is obtained as

Fh(x) = ﬂlbr,h(x) + 62bv,h(z)7 (18)
where 1, 32 > 0 are constant factors and will be determined
in algorithm design. The estimator of Qp(-) and V3 () can
then be obtained as

Qn(-) = min{Ry(-) + (B Vis1)() — Tu(e),
H—-h+1}1, (19)
Vi(+) = argmax Qp (-, a). (20)
acA

We present our PARTED for linear MDPs in Algorithm 1 as
follows.

While our PARTED algorithm shares similarities in form
and concept with previous PEVI methods, both incorporating
a penalty term, it is crucial to emphasize our major innovation
lies in the construction of a penalty term specifically designed
to offer pessimism guarantees for the estimation of instanta-
neous rewards. This issue is introduced by the trajectory-wise
reward setting and cannot be effectively tackled by preceding
methods.

We present our algorithm tailored for linear MDPs here
for the sake of convenience and simplicity. As we elaborate
later, we can further extend and generalize our methods to
encompass general MDPs in conjunction with neural network
function approximation.
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IV. MAIN RESULTS
A. Suboptimality of PARTED Under Linear MDPs

In this section, we illustrate our results for linear MDPs with
trajectory-wise rewards. We adopt a standard assumption that
is widely assumed in offline RL works, e.g., [26], [56], [57],
[58], [59], [60], [61], [62], [63], [64], and [65]. It assumes that
the dataset is collected by a well-explored behavior policy g,
which is also known as global data coverage assumption.

Assumption 1 (Well-Explored Dataset): The N trajectories
in dataset D are independent and identically induced by a fixed
behaviour policy p. There exist absolute constants C,, > 0 and
C. > 0 such that

)\min(M(@O)) 2 C(r
and )\min(mh(wo)) Z Cg Vh S [H],

where
M=E,[®(r)®(r)"]
=E, [¢(z])o(}) "]

We recognize the global data coverage in the offline setting,
acknowledging the possibility of relaxing it to partial coverage
through the design of an alternative standard pessimistic
penalty term, e.g., [26], [30], [34], [40], [44], [47], [48],
[66], and [67]. However, it is important to underscore that the
primary contribution of our work lies in addressing uncertainty
arising from the trajectory-wise reward. This aspect stands in
contrast to existing works that primarily focus on managing
uncertainty inherent in the dataset itself and is orthogonal to
them. While integrating their methods with ours is feasible
for a broader application to a more general offline setting,
opting for such integration may unnecessarily complicate the
presentation. Therefore, we choose to present our results
under the assumption of global coverage, with the aim of
emphasizing the distinctive contribution of our approach in
handling uncertainties associated with trajectory-wise rewards.

The following theorem characterizes the suboptimality of
Algorithm 1.

Theorem 1: Consider Algorithm 1. Let )\ =
A = 1 and 4 = O(H\/dHlog(N/))) and
Bo = O(dH?\/log(dH3N>/2/§)). Then, with probability at
least 1 — §, we have

and 7, (wp)

SubOpt(7, s)

<o e e (7))

To highlight why trajectory-wise reward RL is more
challenging than instantaneous reward RL, we observe that
Theorem 1 with trajectory-wise rewards has an additional
dependence on the horizon H, compared to the suboptimality
O(dH?/\/N) [26, Corollary 4.5] of PEVI for linear MDP
with instantaneous rewards. In contrast to the prior results
obtained under the instantaneous reward setting, we have intro-
duced an additional penalty term to mitigate uncertainty during
the reward redistribution process. Specifically, PARTED is
required to solve a trajectory-level regression problem with
features ®(7) € R, leading to increased uncertainty in
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the regression solution utilized for constructing the per-step
proxy reward. This supplementary penalty term introduces
a higher level of pessimism compared to previous PEVI,
resulting in an additional H dependence in the suboptimality.
When assuming full knowledge of the instantaneous reward,
we can set #; = 0 in the penalty term, and the suboptimality
aligns with that of PEVI. Thus, we contend that this additional
dependence is introduced by the trajectory-wise reward setting
and is unavoidable.

1) Discussion of Proof of Theorem 1: Comparing to the
analysis of PEVI for linear MDP with instantaneous reward,
which has been extensively studied in offline RL [26], [27],
[29], our analysis needs to address the following challenge. In
instantaneous reward setting, both Ry (+) and (PpVj41)(+) can
be learned together by solving a single regression problem
in per-step scale. However, in our trajectory-wise reward
setting, Ry (-) and (P, V,41)(:) need to be learned separately
by solving two regression problems (eqs. (12) and (14)) in
different scales, i.e., eq. (12) is in trajectory scale and eq. (14)
is in per-step scale. In order to apply union concentrations to
bound the Bellman estimation error |(B,V3,)(-) — (B Vi) (-]
we need to develop new techniques to handle the mismatch
between eqs. (12) and (14) in terms of scale.

B. Suboptimality of PARTED for General MDPs

In this section, we extend our PARTED to general MDPs
with large state space and present the main results. We provide
a concise overview of our findings, with a more comprehensive
and detailed discussion available in Section A and Section B.
Our overarching objective is to validate two pivotal claims:
(1) Our framework adeptly manages uncertainty arising from
the trajectory-wise reward setting, even in the most general
settings lacking latent structures; and (2) The suboptimality
exhibited by PARTED in general MDPs corresponds with
that observed in linear MDPs, signifying an extension of
the preceding algorithm design without the introduction of
additional sample complexity.

When the problem scale is large, especially for the gen-
eral MDPs, we consider the function approximation setting,
in which the state-action value function is approximated by a
two-layer neural network. We denote X = S x A and view it
as a subset of R?. We further assign a feature vector z € X to
represent a state-action pair (s, a). Without loss of generality,
we assume that ||z||, = 1 for all x € X. We also allow
x = 0 to represent a null state-action pair. We now define a
two-layer neural network f(-,b,w) : X — R with 2m neurons
and weights (b, w) as

2m
1

r;bw) = — b -o(w, x), 21
where o(-) : R — R is the activation function, b, € R and
w, € R? for all r € [2m], and b = (by,- -+ ,byy,) " € R?™
and w = (w{,--+ ,w,y,,)" € R4,

With the neural network approximation we introduced,
we extend our PARTED to the general MDP setting. Although
the algorithm design follows a similar framework as the linear
MDP setting, unlike linear MDPs where both Rj(-) and
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(P, Vii1)(+) can be captured exactly by linear functions, for
general MDPs with neural network approximation, we need
to design new estimation and penalty terms to tackle the
difficulties introduced by the approximation.

1) Reward Redistribution: We use a neural network f(-,0},)
given in eq. (21) to represent per-step mean reward Rj,(-) for
all h € [H], where the parameter 6, € R?*™? is obtained by
minimizing the loss function

L(©) =) lz f(@h, On) — T(T)]

T7€D Lh=1

H
+ Ay [16n = Goll;- (22)
h=1
Then, the per-step proxy reward I%h() is obtained as
Ri(-) = £(-,0n),
where © = argmin L.(©)
GERZde
and © = 0], ,0}]". (23)

2) Transition Value Function Estimation: Similarly, we use
H neural networks given in eq. (21) with parameter {wp, } e[
to estimate {(]P’h\A/;,+1)(~)}he[H], where w;, € R?™? is the
parameter of the h-th network. Specifically, for each h € [H],
we define the loss function L”(wy,): R?™4 — R as

Liun) = 3 (Vs (sh0) — Flafn)
T€D

+As - [lwp, — woll3, (24)

where Ao > 0 is a regularization parameter and wy is the
initialization shared by all neural networks. The estimated
transition value function (PpVp41)(-) : X — R can be
obtained by solving the following optimization problem

(PrVir1) () = f(, @n),

@y, = argmin L (wp,).
wp, €R2MA

(25)
where (26)

3) Penality Term Construction: For any 7 € D and
© € RMMIH_ we define a trajectory feature ®(7,0) =
[p(27,601) ", ,d(z%,0m) "], Based on ®(7,0), the tra-
jectory feature covariance matrix ¥(0) € R2mdHx2mdH jq
then defined as

2(0) = A1 - Lan + 3 cp @(1,0)®(7,0) .

We also define an “one-block-hot” vector ®p(z,0) =
(00,000 &z, 0p) T -+ ,05 1T for all =z € X,
where @ (z,0) € RImdd
[@n (2, 0)]2md(h—1)+1:2mdn = ¢(x,0,) and the rest entries
are zero. The penalty term of reward for a given © € R?™dH
is defined as:

is a vector in which

br’h(m,@)

= [®4(2,0)S"1(©)B)(x,0)] .

27)
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Next, we consider the penalty of (P,Vj41)(-) for each
h € [H]. We define the per-step feature covariance matrix
Ah(wh) c R2mdx2md 4

Ah(w) = )‘2 . I2md + Z (b(x;,w)qﬁ(xz,w)-r

T7€D
Then, the penality term of (]f"h ‘7h+1)(') for a given w € R?™d
is defined as
bu,h(xv w)
_ 1/2
— [p(a,w) T Ap(w) " (e, w) ]2 (28)

Finally, combining egs. (27) and (28), the penalty term for
By Vi+1(+) is constructed as

Ty (z,0,w)
= ﬂlbr,h(-r7 C—)) + ﬁ?bv,h(l‘> ’U)),

where 31, 82 > 0 are parameters.

Based on the constructions of the estimation and penalty
terms and our previous design of PARTED for linear MDPs,
we design the PARTED algorithm for the general MDPs with
neural network approximation in Algorithm 2. The algorithm
follows the same framework as the linear PARTED, but with
different estimation and penalty terms.

We then informally present the suboptimality of the policy
7 obtained via our PARTED for general MDPs. The formal
and accurate result can be found in Section B.

Theorem 2 (Informal): Assume that the function class
defined by the neural network is reward realizable and Bellman
complete, and further assume that the dataset is collected
by a well-explored policy. Then with probability at least
1 — (N2H*)~!, the suboptimality of PARTED for general
MDP is

(29)

SubOpt(7,s) < O (H\“}j;‘éif*c“) .
Theorem 2 shows that Algorithm 2 can find an e-optimal
policy with O(H? max{3, 32}%/€?) episodes of offline data
in the trajectory-wise reward setting up to some function
approximation error, which vanishes as the neural network
width increases. R

Unlike linear MDPs where both Ry, (-) and (P, Vj,11)() can
be captured exactly by linear functions, for general MDPs
with neural network approximation, we need to develop new
analysis to bound the estimation error that caused by the
insufficient expressive power of neural networks in order to
characterize the optimality of 6;, and wy,, respectively.

Note that linear function with feature ®(7) and ¢(x) can be
viewed as a special case of our general MDPs, both of which
belonging to a reproducing kernel Hilbert space (RKHS).
We hence further extend our results to the RKHS setting under
the finite spectrum NTK assumption as follows.

Corollary 1 (Informal): With probability at least
(N2H*)~1, we have

SubOpt(7, 5) = O (DerrH? //NC,C?)

where Deg denotes the effective dimension of the reproducing
kernel.

1 —
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For the linear MDPs, the effective dimension satisfies D =
dH, which implies that the suboptimality in Corollary 1
(and Theorem 2) for general MDPs recover the suboptimality
of linear MDPs in Theorem 1, which implies our results
are self-consistent and we extend our results to the general
MDP setting. A more detailed discussion can be found in
Section B.

V. CONCLUSION

In this paper, we propose a novel offline RL algorithm,
called PARTED, to handle the episodic RL problem with
trajectory-wise rewards. PARTED uses a least-square-based
reward redistribution method for reward estimation and incor-
porates a new penalty term to offset the uncertainty of
proxy reward. We showed that for linear MDPs, PARTED
achieves an O(dH?>/+/N) suboptimality. We further extended
our framework and method to general MDPs with neural
network approximation, where we showed PARTED achieves
an O(DeH? /+/N) suboptimality, which matches the result of
linear MDP when the effective dimension satisfies Doy = dH.
To the best of our knowledge, this is the first offline RL
algorithm that is provably efficient in general episodic MDP
setting with trajectory-wise rewards. As a future direction, it is
interesting to incorporate the randomized return decomposition
in [18] to improve the scalability of PARTED in the long
horizon scenario.

APPENDIX A
DESIGN OF PARTED FOR GENERAL MDPs

In this section, we first provide our design of PARTED for
general MDPs in details.

A. Reward Redistribution

In order to estimate the instantaneous rewards from the
trajectory-wise reward, we use a neural network f(-, 6} ) given
in eq. (21) to represent per-step mean reward Rp(-) for all
h € [H], where 0, € R?>" is the parameter. We further
assume, for simplicity, that all the neural networks share the
same initial weights denoted by 0y € R?™?. We define the
following loss function L,(-) : R?™H — R for reward
redistribution as

L:(0) = S e [Shy f(oh ) — (7))

H
+ XY [16n = ol (30)
h=1

where © = [0, ,05]"T € R?™H and \; > 0 is a regu-
larization parameter. Then, the per-step proxy reward Ry, (-) is
obtained by solving the following optimization problem

Ri(-) = f(-.0n),

where © = argmin L.(9)
O¢cR2mdH
and é:[é:r7 7@{}—'—' (31)
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B. Transition Value Function Estimation

Similarly, we use H neural networks given in eq. (21)
with parameter {wp, }neim) to estimate {(PpVii1)(-)}nem,
where w;, € R?*™ is the parameter of the h-th network.
Specifically, for each h € [H|, we define the loss function
LM (wp): R?™4 — R as

LI (wp) =Y ep (vh+1(37};+1) - f(xf”wh))Q

+ A2 - [lwn — woll3, (32)

where Ay > 0 is a regularization parameter and wq is the
initialization shared by all neural networks. The estimated
transition value function (PpVjp41)(-) : X — R can be
obtained by solving the following optimization problem

(@h‘/}h-‘rl)(') = f('vﬂj\h)7

@y, = argmin L (wy,).
thRQM,d

(33)

where (34)

C. Penality Term Construction

It remains to construct the penalty term I'j, to offset
the uncertainties in f{h and (@thH)- First consider the
penalty of Rp(-) for each h € [H|. For any 7 € D and
© € RMIH_ we define a trajectory feature ®(7,0) =
[p(27,601) ", ,d(z%,0m) "] . Based on ®(7,0), the tra-
jectory feature covariance matrix ¥(©) € R2mdHx2mdH jq
then defined as

2(0) = A1 - Iopmanr + 3 rep ®(7,0)2(7,0) .

We also define an ‘“one-block-hot” vector ®,(z,©) =
0] 4 d(x,0,)7,---,0] ]T for all = € X,
where @, (r,0) € R2mdH g

[@n(z,O)]2md(h—1)+1:2mdn = ¢(x,0,) and the rest entries
are zero. The penalty term of reward for a given © € R?mdH
is defined as:

brp(2,0) = [04(2,0)TZ7H(O) D) (2,0)]

Note that the reward penalty term b, 5, (x, ©) is new and first
proposed in this work. By constructing b, 5, (z, ©) in this way,
we can capture the effect of uncertainty caused by solving
the trajectory-wise regression problem in eq. (30), which is
contained in the covariance matrix 3(©), on the proxy reward
f(-,0p) at each step h € [H], via the “one-block-hot” vector
by (-, 0). L

Next, we consider the penalty of (P,Vj41)(-) for each
h € [H]. We define the per-step feature covariance matrix
Ah(wh) c R27nd><2md as

Ap(w) = Ao - Ioa + Z ¢(I;,w)¢(zf:aw)T-
TED

a vector in which

1/2

Then, the penality term of (Pj,Vj,41)(-) for a given w € R2m4
is defined as

by p(z,w) = [, w) T Ap(w)  (z,w) ]

Finally, combining eq. (27) and (28), the penalty term for
By Vi+1(+) is constructed as

Iz, ©,w) = Bibyp (2, 0)

1/2

(35)
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+ ﬁgbq;,h(x,'LU), (36)

where (31, 32 > 0 are parameters. The estimator of @, (-) and
Vi (+) can then be obtained as

Qn(-) = min{H,
Ri(-) + (PrVis1) () = T (-, 6, @n)

17;1() = argmax @h(-, ). (37)
a€A
Furthermore, for any h e [H], we denote

Vi(z, Rp,, Rp,, A1, A2) as the class of functions that
takes the form V', (-) = maxgea Q) (-, a), where

Qn(2)
= min{{¢(x, 0y),0 — 0o) + (d(x, wy), w—wp)
— 61/ Pu(x,00) TS 1Dy (2, 0)

— Ba B, wo) A B, wo), HY,

in which [|0 — Op|l, < H\/N/A1, |lw —wolly, < Hy/N/Xg,
B € [0.Ryl B> € [0.Ral. [, > A and [A], >
A2. To this end, for any ¢ > 0, we define J\/'e“h as the
e—covering number of Vj,(x, Ra,, Rg,, A1, A2) with respect
to the {oo—norm on X, and we let N = maxp ¢ {N7), }.

With the estimation terms and the penalty terms constructed,
we present our PARTED for general MDPs with neural net-
work function approximation as follows.

Algorithm 2 Neural Pessimistic Value Iteration With Reward
Decomposition (PARTED)

Input: Dataset D = {7;,7(7;)}
Initializgtion: Sgt XA/HH as zero function
Obtain R;, and © according to eq. (31)
for h=H,H—1,-,1do
Obtain I?PhIA/hH and Wy, according to eq. (25)
Obtain T'y, (-, @, wp,) according to eq. (29)
Obtain @h() and ‘7;1() according to eq. (37) and let

#n(|s) = argmax,, (Qn(s, ), mn("|s))
end for

N,H
i,h=1

APPENDIX B
RESULTS FOR GENERAL MDPS WITH NEURAL NETWORK
FUNCTION APPROXIMATION

In this section, we present the major results for the general
MDPs.

We first make the following standard assumption on the
activate function of the neural network, which can be satisfied
by a number of activation functions such as ReLU and tanh(-).

Assumption 2: For all z € X, we have |o'(2)] < C, <
+o00 and ¢’(0) = 0.

We initialize b and w via a symmetric initialization
scheme [68], [69]: for any 1 < 7 < m we set by, ~
Unif({—1,1}) and wp, ~ N(0,I4/d), where I; is the
identity matrix in R?, and for any m+ 1 < r < 2m,
we set by, = —bgr—m and wo, = wo,r—m. Under such an
initialization, the initial neural network is a zero function, i.e.
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f(z;b0,wp) = 0 for all z € X, where by = [bo,1," " ,bo.2m] "
and wo = [wg;,- -+ , W ,]  are initialization parameters.
During training, we fix the value of b at its initial value
and only optimize w. To simplify the notation, we denote
f(z;b,w) as f(x;w) and V,, f(z,w) as ¢(z, w).

In the overparameterized scheme, the neural network width
2m is considered to be much larger than the number of
trajectories N and horizon length H. Under such a scheme,
the training process of neural networks can be captured by the
framework of neural tangent kernel (NTK) [70]. Specifically,
conditioning on the realization of wg, we define a kernel
K(z,2'): X x X - R as

K(xv $/) = <¢)(SIJ7 wO)v (b(x/a wO)>
2m
1
=5, 2 0'(w$rx)a'(warx’)xTx’,

V(z,2') € X x X,

where o’ (+) is the derivative of the action function o (+). It can
be shown that f(-,w) is close to its linearization at wy when
m is sufficiently large and w is not too far away from wy, i.e.,

f(wi) ~ fO(xﬂU)
= f(z,wo) + ($(x, wo), w — wo)
= (p(z,wp), w —wp), VoeX.

Note that fo(x,w) belongs to a reproducing kernel Hilbert
space (RKHS) with kernel K (-, ). Similarly, consider the sum
of H neural networks f(7,0) = Zthl f(x},0n) with the
same initialization 6, for each neural network, where 7 =
[z, - 2} and © = [0],--- ,0}]". If 0}, is not too far
away from 6 for all h € [H| and m is sufficiently large, it can
be shown that the dynamics of f(7,©) belong to a RKHS
with kernel Ky defined as Ky (r,7') = Zthl K(zp, ).
We further define Hx and Hg, as the RKHS induced by
K(-,-) and Kg(-,-), respectively.

Based on the kernel K(-,-) and Kg(-,-), we define the
Gram matrix K,, K, 5 € RV*N as

Kr = [KH(Ti7 Tj)]i,jE[N]7
Kyn = [K (@2, jein)-

We further define a function class as follows

]:31732
- {fz(fv) = [ o) T w)dp()
sup 8w, < Brosup VL2 <

where ¢ : RY — R? is a mapping, B, By are positive
constants, and p is the density of N(0,1;/d). We then make
the following assumption regarding the expressive power of
the above function class.

Assumption 3: We assume that there exist aq, ag, Ay, As >
0 such that Ry(:) € Fy,.a, and (Prf)(:) € Fa, 4, for any
()X — [0, H). )

Assumbtion 3 ensures that both Ry () and (PyVj41)(+) can
be captured by an infinite width neural network. Note that
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Assumbtion 3 is mild since Fp, p, is an expressive function
class as shown in Lemma C.1 of [68]. Similar assumptions
have also been adopted in many previous works that consider
neural network function approximation [59], [71], [72], [73],
[74]. Additionally, we assume that the data collection process
explores the state-action space and trajectory space well. Note
that similar assumptions have also been adopted in [26], [29],
and [62]. We similarly assume the dataset is collected by a
well-explored behavior policy as the linear MDP setting.
Assumption 4 (Well-Explored Dataset): Suppose the N tra-
jectories in dataset D are independently and identically
induced by a fixed behaviour policy p. There exist absolute
constants C, > 0 and C; > 0 such that for all h € [H],

)‘min (M(@O))

Amin (mh (wO ))

Co

>
2 CSW

where

M(00) = E,, [®(7,00)®(r, )]

i (wo) = By, [¢(aF,, wo)d(aF, wo) ] -

We can now formally present the suboptimality of the policy
7 obtained via Algorithm 2.

Theorem 3: Consider Algorithm 2. Suppose Assumbtion 2-
4 hold. Let Ay = Xy = 1+ 1/N, B1 = Rg, and B2 = Rg,,
in which Rg, and Rg, satisfy

Rg, > H<4a%)\1/d+ 2log det (I-i— Kr/)\1>
1/2
+ 1010g(NH2)> :
1/2
Rg, > H <8A§A2 /d+6C. + 1610g(NH2N:)>

4 logdet ( I+ Kypn/As )},
+ ;ﬁg?ff}{Og e ( + Kyn/ 2)}

where € = A C.H/(2NCy), C. > 1 is an adjustable
parameter, and Cy > 0 is an absolute constant. In addition,
let m be sufficiently large. Then, with probability at least
1 — (N2H*)~1, we have

SubOpt(7,5) < O (Lmexlfual) o,

where

_ /N2
e1 = max{B H*®, B H"/°}O <>

ml/12
- H17/6N5/3
10 <m1 al )

Theorem 2 shows that Algorithm 2 can find an e-optimal
policy with O(H? max{f, 32}%/€*) episodes of offline data
in the trajectory-wise reward setting up to a function approx-
imation error €1, which vanishes as the neural network width
2m increases. Note that the dependence of £; on the network
width, which is O(mfl/ 12)'matches that of the approximation
error in the previous work of value iteration algorithm with
neural network function approximation [71].
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A. Discussion of Proof of Theorem 2

Comparing to the analysis of PEVI for linear MDP with
instantaneous reward, which has been extensively studied in
offline RL [26], [27], [29], our analysis needs to address the
following two new challenges: (1) In instantaneous reward
setting, both Ry, (-) and (P, Vi11)(-) can be learned together
by solving a single regression problem in per-step scale.
However, in our trajectory-wise reward setting, Ry (-) and
(PpVh41)(+) need to be learned separately by solving two
regression problems (eqs. (31) and (25)) in different scales,
i.e., eq. (31 is in trajectory scale and eq. (25) is in per-step
scale. In order to apply union concentrations to bound the
Bellman estimation error |(ByVy)() — (BrV4)(+)], we need
to develop new techniques to handle the mismatch between
eqgs. (31) and QS) in terms of scale. (2) In linear MDP, both
Ry (+) and (PpVj41)(+) can be captured exactly by linear func-
tions. However, in the more general MDP that we consider,
we need to develop new analysis to bound the estimation
error that caused by the insufficient expressive power of neural
networks in order to characterize the optimality of 8, and wp,
in egs. (31) and (25), respectively.

To obtain a more concrete suboptimality bound for
Algorithm 2, we impose an assumption on the spectral struc-
ture of kernels Kz and K.

Assumption 5 (Finite Spectrum NTK [71]): Conditioned
on the randomness of (bg,wp), let Tk, and Tk be the
integral operator induced by Ky and K (see Section J for
definition of Tk, and Tk), respectively, and let {w;};>1
and {v;};>1 be eigenvalues of Tk, and Tk, respectively.
We have w; = 0 for all j > D; + 1 and v; = 0 for all
v; > Dy + 1, where Dy, D, are positive integers.

Assumbtion 5 implies that Hg, and Hg are
Di-dimensional and D,-dimensional, respectively. For
concrete examples of neural networks that satisfy

Assumbtion 5, please refer to Section B.3 in [71]. Note
that such an assumption is in parallel to the “effective
dimension” assumption in [75] and [76].

Corollary 2: Consider Algorithm 2. Suppose Assumb-
tion 2-5 hold. Let \; = X\ = 14+ 1/N, 8, = O(HD;)
and 3, = O(H max{D1, Dy}). Then, with probability at least
1— (N2H*)7L, we have

SubOpt(7, s) = O (DeﬁcH2 /\/N) +e,

where Doy = max{Dj, D>} denotes the effective dimension
and

€2 = max {\/ﬁa maX{DhDQ}’ w}

mi/12

_ [ [13/6 N1/12

o ()
ml/12

Corollary 2 states that when 7 and (s are chosen properly
according to the dimension of Hy,, and H g, the suboptimal-
ity of the policy 7 incurred by Algorithm 2 converges to an
e-optimal policy with O(D%.H*/€?) episodes of offline data
up to a function approximation error €.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

APPENDIX C
PROOF FLOW OF THEOREM 2

In this section, we present the main proof flow of
Theorem 2.

Theorem 4: Let \y = Ay =1+ 1/N, 51 = Rg, and B2 =
Rg,, in which Rg, and Rg, satisfy

Rg, > H(4a3\1/d + 2logdet (I + K, /\;)
+10log(NH2))"?,

Rgp, > H(8A§A2 /d+ 6C. + 161log(N H>N)

1/2
+ 4 max {log det (I + Kq,yh//\2)}> ,
he[H]

where ¢ = VAC.H/(2NCy), Cc > 1 is an adjustable
parameter, and Cy > 0 is an absolute constant. In addition,
let m be sufficiently large. Then, with probability at least
1— (N2H*)7L, we have

SubOpt(7, s) < O (W) +e1,

where

_ /N/12
g1 = max{61H5/37ﬁgH7/6}(9 ()

- H17/6N5/3
10 (1 ) .
m1/6

We first decompose the suboptimality SubOpt(r,s), and
then present the two main results of Lemma 1 and Lemma 2 to
bound the evaluation error and summation of penality terms,
respectively. The detailed proof of Lemma 1 and Lemma 2
can be found at Section F and Section G.

We define the evaluation error at each step h € [H| as

on(s,a) = (Bh‘/}h+1)(s7a) — @h(s,a),

where By, is the Bellman operator defined in Section II-A
and V}, and () are estimation of state- and state-action
value functions, respectively. To proceed the proof, we first
decompose the suboptimality into three parts as follows via
the standard technique (see Section A in [26]).

(38)

SubOpt(m, s)

H

S ZE” [5h(5h7ah)}51 = s]
h;l

+ ZJE”* [5h(3haah)|81 = 5]

h

Il
_

"
M=

Eﬂ* |:<Q\h(sha ')a 71'7.:('|Sh)

>
Il

1
h('|8h)>|81 = 8:| .

In Algorithm 2, the output policy at each horizon 7y, is greedy
with respect to the estimated Q-value (). Thus, we have for
Vh € [H],Vs, € S

(@Qn(sn, )75 (-|sn) — Tn-|sn)) < 0.

)

(39)
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According to eq. (39), we have the following holds for the
suboptimality of 7 = {7, }/L |

SubOpt(7, s)

H
=— ZE% [5h(sh,ah)‘sl = s]
h=1
H
+ ZE”* [(5h(sh,ah)|81 =s]. (40)
h=1

In the following lemma, we provide the first main technical
result for the proof, which bounds the evaluation error d (s, a).
Recall that we use X to represent the joint state-action space
S x A and use x to represent a state action pair (s, a).

Lemma 1: Let A\, A2 =1+ 1/N. Suppose Assumbtion 3
holds. With probability at least 1 — O(N~2H~*%), it holds for
all h € [H] and = € X that

—&p S 5h(£L')

<2 {51 ben(z, 0) + Fs - by, n(z, Wp) + €b] ;

where
‘ NY12(Jog m)1/4
£ = maX{ﬂ1H2/3, ﬁQHl/G}O <,nil/12)>
H17/6 N5/3 log(N2H5m)
+ 0O ml/6 ’

T

+ 2log det (I—i— KN)
A1

4a2 )\
ﬁ1=H< jll

1/2
+ 1Olog(NH2)) ,

A2 K
By = H<8 ;AQ —|—4max{logdet <I+ —

1/2
+6C, + 16log(NH2J\/€”)> ,
€=+ C.H/(2NCy), where C. > 1.

Proof: The main technical development of the proof
lies in handling the uncertainty caused by redistributing the
trajectory-wise reward via solving a trajectory-level regression
problem and analyzing the dynamics of neural network opti-
mization. The detailed proof is provided in Section F. (]

Applying Lemma 1 to eq. (40) yields

SubOpt(7, s)

H
= *ZE% [On(sn, an)|s1 = s]
h=1
H
+ ZE’T* [6n(sh,an)|s1 = s]
h=1
H o~
< 3Hep + max 20 - Z br,h(xa @)
h=1

H
+ max 20, - > bon(a, @n). (41)

h=1
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The following lemma captures the second main technical result
for the proof, which bounds the summation of the penalty
terms By - vy byn(2,0) 4 Bo - o1 by (a, @).

Lemma 2: Suppose Assumbtion 3&4 hold. We have the
following holds with probability 1 — O(N~2H %)

H H
B ben(x,0) + B2 > byn(w, ©n)
h=1 h=1

<< B n B2 )\/iHC¢
“\WC, VG ) VN
+max{ﬁ1H5/3,ﬁgH7/6}
o <N1/12(10gm)1/4>

ml/12

Proof: The proof develops new analysis to characterize
the summation of the penality term b, ; constructed by tra-
jectory features, which is unique in the trajectory-wise reward
setting. The detailed proof is provided in Section G. ]

Applying Lemma 2 to eq. (41), we have

SubOpt(7, s)
2V2HC,
VN

B B2
< 3Hegp + <\/CTI+ \/@)

+ max{61H5/3,62H7/6}
o <N1/12(10gm)1/4)

mi/12
B B2\ 2V2HC,
54}“’”(@*@) N @

which completes the proof.

APPENDIX D
PROOF OF COROLLARY 2

To provide a concrete bound for SubOpt(7, s) defined in
eq. (42), we first need to bound the penalty coefficients 31,
(2 under Assumbtion 5. Recalling the properties of (31, 32 in
Theorem 2, we have

4a3 ) K7
H( a; ! + 2log det <I+ )\N)

1
1/2
+ 1010g(NH2)>

< Rg, = p1, (43)
842Xy KRn
H(—2= 44 1 I+ —==
( a 52?13‘]{ Ogdet< T )}
1/2
+6C, + 1610g(NH2N:)>
< Rp, = 2. (44)

Recall that we use X to represent the joint state-action space
S x A and use = to represent a state action pair (s,a).
We define the maximal information gain associated with
RHKS with kernels K7 and K, as follows

g (N, A1)

= sup {1/2logdet(logmm + A\ ' - KN)},
DCD,

(45)
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L(V, A2)

= sup {1/2-logdet(Iogm + Ay ' - K% i
DCD,

r K, (46)

where D, and D, are discrete subsets of state-action pair
x € X and trajectory 7 € X X --- x X with cardinality no
more than N, respectively. Applying Lemma 9 in Section J
and Assumbtion 5, we have

Lry (N, A1) < Ck, - Dy -log N “47)
and

T K3,

(N, As) < Ci, - Dy - log N, (48)

where C,, C, are absolute constants. Recall that V), is the
cardinality of the function class. Next, we proceed to bound
the term N = max,c(m{N, }-

Vn(z, Ry, Ry, Rp,, Rg,, A1, A2)

= {I;leaf{@h(s,a,ﬁ,w,ﬁl,ﬁg,z,A)} : S — [0, H],
16— boll, < Ro. o = woll, < Rus 1 € [0, Ry, ]
B2 € [0, R, My = A 1AL, > Ao

= H\/N/A1, Ry = H\/N/)z, and

@h(x79awaﬁl7ﬁ27E7A)
= min{{¢(z, 0y),0 — 0o) + ((x, wy), w—wy)

B /B, 00) TE1 By (o)
— Bo - Bl w0) TA Bl wo), HYT.

Note that

where Ry

I&a}{@h(sa a, 67 w, 617 ﬁQa 27 A)}

7?63%{6,7,(57&’ 0’71‘0,7517/8572/’/\,)}‘

@h(sv a, 07 w?ﬁlaﬂ?v Za A)

< max
acA

- @h(sv a, 9,7 wlv ﬂi; ﬁéa Z/a A,)

(%)
< I(?eaj( |<¢($790)>9 - 9/>|

_ !
+ maxc|(6(z, wo), w—u)

(81 = B1)

+ max

/@l 60) TE 1By (. )

—|—majl< \/@h (z,00)T2~1®,(z,00)

- \/¢h(I790)T2’_1¢h($7 90)]
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o+ max (B2 — B3) - \/(a wo) TA1 6z, wo)
—|—m€ax [\/gb z,wg) A~ 1g(x, wp)

— \/Qﬁ(x, wp) T A —1¢(z, wo)] |

(i1)
< max\(@h(x 0p),0 — O]

+f;16aj<|< (z,wo), w— w>|+\/i|ﬂl B
C¢ /

_|_ R —
\/E ‘52 ﬂ2|

+ R, g?ﬂ”‘l’h(%@o)”z—l — | @n(x,00)|5-1]

+ Ry mae [0z, wo) 5+ = 9z, w0)llyo1], @49)
where (i) follows from contractive properties of operators
min{-, H}* and max,c4{-} and the triangle inequality, and
() follows from the fact that ||¢(x, wo)|l5, [|Pr(x,00)], <
Cs.

Following arguments similar to those in the proof of Corol-
laries 4.8, Corollaries 4.4 and Section D.1 in [71], we have
the followings hold for terms in the right hand side of eq. (49)

[(®n(2,00),0 — O)] = |g1(2)

— 92()|

where ||9iHHK < Ry =2H/Tky (N, A1), (50)
[(¢(, wo), w—w')| = [h1(x) — ha(z)]
where [|Rilly,, < Ra=2H, /Ty (N, A2), (51D

1®n(z, 00) |51 — ||<I>h(x,90)llg~1|
= [V (2)llg = ¥ (2)]lo

o€z, wo)lla—+ — llé(x, wo)l[ -]
= v @)y = 1@

where ¢1(-),92(-) are two functions in RKHS Hg,,
hi(-), ho(:) are two functions in RKHS Hg, ¥(-) and ()
are feature mappings of RKHSs Hg,, and Hg, respectively,
0, : Hg, — Hx, are self-adjoint operators with eigen-
values bounded in [0,1/)\], and Y,Y’" : Hx — Hg are
self-adjoint operators with eigenvalues bounded in [0,1/\s].
We define the following two function classes

Fr=AIO)llg = 1€y < 1/}, (52)

and

Fo = {00l : [Tl < 1/Ao}

For any ¢ > 0, we denote N(e,H,R) as the e-covering
of {f € H : ||fll; < R}, denote N(e,F1,A;) as the
e-covering number of Fj in eq. (52), denote N (e, Fa, \2) as
the e-covering number of F; in eq. (53), and denote N (e, R)
as the e-covering number of the interval [0, R] with respect to
the Euclidean distance. Note that eq. (49) implies

N(E/(GRﬁ2)=f2ﬂ)‘2)

(53)

<N(e/6 Hicrr, Ry) -
(6/6 HK,M )
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N(e/(6C), Ra,) - N(e/(6Cy), Rp,)
N(e/(6R51)’fla)\1)'

Based on Corollary 4.1.13 in [77], we have the followings hold
for N(e/(6Cy), Rg,) and N (¢/(6Cy), Rg, ), respectively

N(e/(6Cy), Rg,) <1+ 12C4Rp, /e and
N(G/(60¢), Rﬁz) <1+ 120¢R52/€'

(54)

(55)

Moreover, as shown in Lemma D.2 and Lemma D.3 in [71],
under the finite spectrum NTK assumption in Assumbtion 5,
we have the followings hold

log N'(¢/6, Hycrr, Ry)

< Ci- Dy -[log(6Ry/€) + Cs], (56)
10gN(€/6, HKm y R}L)

< C5- Dy - [log(6Ry/€) + C4l, (57)
log N'(e/(6Rg,), F1,\1)

< Cs- D? - [log(6Rg, /€) + Cs), (58)
log N(e/(6Rg,), F2, Az)

< Cy-Dj - log(6Rgs,/¢) + Cs]. (59)

where C; (i € {1,---,8}) are absolute constants that do
not rely on N, H or e. Then, substituting eq. (55)-(59) into
eq. (54), we have
log/\/?fh
< N(¢/6, Hn, Ry) +N(c/6, Hr,.. Rp)
+ N(e/(6C5), Ry,) + N (e/(6C,), Ra,)
+N(e/(6Rgz,), F1, A1) + N(€e/(6Rg,), Fa, \2)
<log(l+12Cy4Rg, /€) +log(1l + 12CyRg, /€)
+ C1 D1 [log(6R,/€) + Cs)
+ C3Dslog(6 Ry /€) + Cy]
+ Cs DY [log(6Rg, /€) + Cé]
[

+ C7D3[log(6Rg, /€) + Cs, (60)

We next proceed to show that there exists an absolute constant
Rg, > 0 such that eq. (43) holds. Substituting eq. (48) to
eq. (43), we can obtain

L.H.S of eq. (43)
a )\ 1/2
<H ( — L 4 4Ck, Dy log N + 1010g(NH2)> .

If we let

R, = Cy, H\/Dy log(NH?), (61)

in which Cp, is a sufficiently large constant, then we have the
following holds

L.H.S of eq. (43) < Rg,.
Note that eq. (60) directly implies that

log MY

— 1 N’U
}{2%{ og N}

<log(l+12CyRg, /€) +log(1 + 12CyRg, /€)
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+ C1D4[log(6Ry/€) + C4]
[log(6Ry/€) + Cy]

+ C5D?[log(6Rg, /¢) + C)

+ C7D3[log(6Rs, /€) + Cs]

< C1DYlog(Rg, /€) + C3D3 log(Rg, /e)
+ €Dy log(H /D1 /e) + CyDalog(H/ D2 [e)
(i1)
< Oy Dilog(NH?\/Di/e) + C3D3log(Rp, /¢)
+ C4Dy log(HA/ D1 /€)
+ Cy Dy log(H+/ Do /€)

where in (i) we let C],C%,C% and C) be sufficiently large
absolute constants, in (ii) we use eq. (61) and let C} be
sufficiently large. Then, we proceed to show that there exists
an absolute constant IZ5, > 0 such that eq. (44) holds. Using
eq. (48) and eq. (62), the left hand side of eq. (44) can be
bounded as follows

(62)

L.H.S of eq. (44)
8AZ\
d

§H( +8Ck, - Ds-log N

1/2
+20log(NH?) + 6C, + 161ogj\/:)

(@)
< HCﬁz’l vV D2 10g(NH2) + HC,gz’g\/logJ\/g’
+ H05273\/ C.

S HCﬁz’l DQ IOg(NHz)
+ HCp, » [Dl \/ C1 log(NH2\/D; /e)

C log(Rp, /€)

+ Dy
+/CyDy log(H /D fe)
/01D, log (1 /Dy )|
+ HCj, 3+/C..

where (i) follows from the fact that v/a + b < \/a + v/b and
Cg,.1, Cp, 2 and Cp, 3 are sufficiently large constants. Clearly,
if we let

8, = C, Hmax{Dy, Dy}

log(NH? max{Dy, Dy}/e), (63)

where Cjg, is a sufficiently large absolute constant, then we
have

L.H.S of eq. (44) < Rg,. (64)

Finally, substituting the value of Rg, in eq. (61) and value of
Rg, in eq. (63) into eq. (42) and letting C, = max{Dq, Da}?
(which implies € = /Ay max{D1, D2} H/(2NCy)), we have
SubOpt(7, s)
< < B1 n B2 )QﬂHC¢
Ve te) TR

< )0 (1)

+4H€b
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+ max{Rg, H*/® Ry, H/}
N1/12(1Og m)1/4
-0 ( mi/12 >

H23/6N5/3
+o<

m1/6
S(9<}12Hlax{l)1,l)2}
VN
) log <NH2 maX{Dl,D2}> )

€

log(N2H5m) )

+ max {\/ﬁ, max{D1, Dg}}
13/6 \71/12 1/4
0 (H N2 (logm) log (NQHQ))

mi/12
HZ/SN5/3, /log(N2Hom)
ml/6

(4) <H2 max{Dy, Dy}
o
VN
+ max {\/ﬁ, max{D1, Dy},

o (H13/6N1/12(10g m)1/4

mi/12

o

_|_

)

IN

log (2C¢N2H)>

H5/3N19/12
mi/12 }

log (N2H5m)) ,

where (i) follows from the definition of € and the fact that
Ao > 1.

APPENDIX E
LINEAR MDP WITH TRAJECTORY-WISE REWARD

In this section, we present the full details of our study on
the offline RL in the linear MDP setting with trajectory-wise
rewards.

A. Linear MDP and Algorithm

We define the linear MDP [53] as follows, where the
transition kernel and expected reward function are linear in
a feature map. We use X to represent the joint state-action
space S x A and use z to represent a state action pair.

Definition 1 (Linear MDP): We say an episodic MDP
(S, A,P,r,H) is a linear MDP with a known feature map
#(-) : X — RY if there exist an unknown vector w} (s) € R?
over S and an unknown vector 0; € R? such that

Ph(s/‘sva) = <¢(saa)vw2(sl)>a
Rh(sva) = <¢(S,CL),9;;>,

for all (s,a,s’) € & x A x § at each step h € [H].
Here we assume |[|¢(z)|, < 1 for all z € X and
max{[[w;(S)l,. [65],} < Vi at each step h € [H],
where with an abuse of notation, we define ||wj(S)|, =
S I ()1l ds.

We present our PARTED algorithm for linear MDPs with
trajectory-wise rewards in Algorithm 3. Note that Algorithm 3
shares a structure similar to that of Algorithm 2. Specifically,
we estimate each Ry () for all h € [H] using a linear
function (4(s, a), 05), where 6;, € R? is a learnable parameter.

(65)
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Algorithm 3 Linear Pessimistic Value Iteration With Reward
Decomposition (PARTED)
N,H

Input: Dataset D = {7;, T(Ti)}i,h:1

Initializgtion: Sgt V41 as zero function
Obtain Ry, and © according to eq. (67)
for h=H, H—-1,-,1do
Obtain I?Ph‘A/h_H and wj, according to eq. (69)
Obtain I'y(+) according to eq. (72)
Qn(-) = min{Rp,(-) + Py Vi1 (-) = Tn (), H = h+1}F
7 (-[s) = argmax,, (Qn(s, ), ma([s))
V(1) =(Qn(- ), Tn(-[))a

end for

We define the vector © = [0],--- 0] € R¥! and the loss
function L, : R’ — R for reward learning as

H 2

LT(@) = Z Z<¢('x;)79h> - T(T)

7€D Lh=1

H
+ A1 > 10 = oll3, (66)
h=1

where A1 > 0 is a regularization parameter. We then define
Ry (-) as

Ru) = (61,5,

where © = argmin L,(O)
O¢cR2dmH
and © = [0],--- 0" 67)

Similarly, we also use linear function (¢(s,a),wy) to estimate
transition value functions {(PyViy1)(-,)}repp for all h €
[H], where w;, € R? is a learnable parameter. For each h €
[H], we define the loss function L”(wy): R — R as

L) = Y (Vo) — (6(af)wn))

T€D
+ X2 - [lwn — woll3 (68)
where Ay > 0 is a regularization parameter. We then define
(PpVit1)() : X = R as

(thh-i-l)(') = <¢(')77ﬂh>7

@y, = argmin L (wy,).
whERd’

where (69)
It remains to construct the penalty term I'y,. We first consider
the penalty term that is used to offset the uncertainty raised
from estimating the reward Ry, () for each h € [H]. We define

the vectors ®p(z) = [0, -+ ,¢(z)",---,0)]" € R and
O(r) = [p(z]), -, d(zf)] € R, where ®y(z) € R
is a vector in which [®,(2)]4(h—1)+1:an = ¢(x) and the rest
entries are all zero. We define a matrix X(©) € R4 *IH 44

X=X -Igg + Z (I)(T)(I)(T)T.
T7€D
The penalty term b,.j, of the estimated reward is then defined
as

1/2

brp(z) = [Qh(z) TS 0, (2)] (70)
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Next, we consider the penalty term that is used to offset the
uncertainty raised from estimating the transition value function
(P, Viy1)(-) for each h € [H]. We define a matrix Aj, € R?*4
as

Ap=2X Ig+ Y oa})b(z})".
T7€D

The penality term b, ;, of the estimated transition value func-
tion is then defined as

bun(@) = [d(z) A o) "]

Finally, the penalty term for the estimated Bellman operation
BpVhi1(:) is obtained as

Th(z) = Bibrn(x) + Babyn(z),

where (31, 82 > 0 are constant factors.

1z 1)

(72)

B. Main Result

We consider the following dataset coverage assumption so
that we can explicitly bound the suboptimality of Algorithm 3.
Note that the following assumption has also been considered
in [26].

Assumption 6 (Well-Explored Dataset): Suppose the N tra-
jectories in dataset D are independent and identically induced
by a fixed behaviour policy u. There exist absolute constants
Cy >0 and C; > 0 such that Vh € [H]

Amin(ﬂ((—)O)) 2 00'7 Amin(mh(wO)) 2 Cg»

where

M =E, [®(r)®(r)],
mn(wo) = By, [¢(a])p(xh) "] -
We provide a formal statement of Theorem 1 as follows,
which characterizes the suboptimality of Algorithm 3.

Theorem 5 (Formal Statement of Theorem 1): Consider
Algorithm 3. Let Ay = X = 1 and [ =

O(H+/dH log(N/$)) and B = O(dH?+/log(dH3N5/2/3)).

Then, with probability at least 1 — §, we have

H3 H3N5/2
subopt(%,s)gc9<d ] (d ))

NS

C. Proof Flow of Theorem 1

In this section, we present the main proof flow of
Theorem 1. Our main development is Lemma 3, the proof
of which is presented in Section H.

Recalling the suboptimality of 7 = {7}/, in eq. (40),
we have

SubOpt(7, s)

H
= — ZEﬁ [5h(5haah)‘51 = s]
h=1
H
+ ZEﬂ* [5h(5h7ah)|81 =],
h=1
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where Jp,(+) is the evaluation error defined as

Sn(s,a) = (BnrVis1)(s,a) — Qu(s, a).

To characterize the suboptimality SubOpt(7,s), we provide
the following lemma to bound dj,(-) in the linear MDP setting.

Lemma 3: Let A\, Ao = 1, and let (4 =
Cp,H+\/dH log(N/é) and By = Cp,dH?\/log(dH3N>/2/§),
where Cj,,C3, are two absolute constants. Suppose
Assumbtion 3 holds. With probability at least 1 — §/2,
it holds for all h € [H] and (s,a) € S x A that

0 < on(x) <2[B1 - brp(x) + B2 - byn(x)].

Proof: The main technical development here lies in han-
dling additional challenges caused by the reward redistribution
of trajectory-wise rewards, which are not present in linear
MDPs with instantaneous rewards [26]. The detailed proof is
provided in Section H. (]

Applying Lemma 3 to eq. (40), we can obtain

SubOpt(7, )

H
<283 - Z max by p, ()
h=1

H
+26- ) max by (). (73)
h=1

Then, following steps similar to those in Section G, we have
the followings hold with probability at least 1 — §/2

/ 1"

and b, p(z) < —,
VN @) < 75

where C’ and C" are absolute constants dependent only on
C,, C. and log(1/0). Then, substituting eq. (74) into eq. (73),
we have the following holds with probability 1 — §

bnh(aj) S

(74)

SubOpt(7, s)

C
< 2C5, H*+/dH log(N/5) -
N
\/> C//

+2C,dH?\/log(dH3N5/2/5) -
f; y/ log( /9) N0y

<0 dH?3 ) dH3N>5/?
<o(Tmy(5))

which completes the proof.

!

APPENDIX F
PROOF OF LEMMA 1

Recall that we let (bg,wp) be the initial value of net-
work parameters obtained via the symmetric initialization
scheme, which makes f(-;wg) a zero function. We denote
(@h‘/}h+1)(') = }A%h()j— (@h"/\vh+1)(') as the estimator of
Bellman operator (B,Vi11)(:) = Ru(:) + (PaVht1)().
To prove Lemma 1, we show that (]@hl/}hﬂ)() —B1br (-, (:))—
Boby p (-, W) is approximately a pessimistic estimator of
(B, ‘7h+1)(') up to a function approximation error. We consider
m to be sufficiently large such that m > NH?2.
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A. Uncertainty of Estimated Reward E;L( )

In this step, we aim to bound the estimation error
Bi() = Bu()|
function L, defined in eq. (30), we have

H 2
0)=>" [Z f(xmh)—rm]

T7€D Lh=1

q 2
-,
h=1

Since O is the global minimizer of the loss

< NH?, (75)

where () follows from the fact that f(x,0y) = 0forallz € X
and (74) follows from the fact that (7) < H for any trajectory
7 and we have total N trajectories in the offlline sample set

D. We define the vector ©g = [ ,---,07]" € R*™4 Note
that eq. (75) implies
N 2
[0~ o
2
N 2
<8 -el,
q 2
=3 [t
h=1 2
< NH?/\, Vhe[H]. (76)
Hence, each @L belongs to the Euclidean ball By = {0 €

R2™md 2|10 — 0o, < Hy/N/A1}.

Since the radius of By does not depend on m, when m
is sufficient large it can be shown that f(-,0) is close to its
linearization at 6, i.e.,

f(70) ~ <¢(790)?9 - 90>>

where ¢(-,0) = Vyf(-,0). Furthermore, according to
Assumbtion 3, there exists a function £, 4, : R? — R? such
that the mean of the true reward function Rp(-) = E[ry(-)]
satisfies

Vo € By,

Ri(o) = [ oO70) TG00, D

where supy |16, (8)[l, < ax, supp(11£+(O)]], /p(6)) < az and p
is the density of the distribution N (0, /;/d). We then proceed
to bound the difference between Rp(-) and Rp(-).

Step I: In the first step, we show that with high probability
the mean of the true reward Ry (-) can be well-approximated
by a linear function with the feature vector ¢(-, 6p). Lemma 4
in Section I implies that that Rj(-) in eq. (77) can be
well-approximated by a finite-width neural network, i.e., with
probability at least 1 — N~2H~* over the randomness of
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initialization €y, for all h € [H], there exists a function
R () : X — R satisfying

sup | Rp(z) — Rh(z)‘
TEX
2(Lyas + C2%a3)+/log(N2H?)
. (78)
vm
where Rj,(+) can be written as
Ry (x (0,%) z "¢,
\F Z 0

where ||(,]l, < ax/Vdm for all » € [m] and 0y =
[00.1, - ,00.m] is generated via the symmetric initialization
scheme. We next proceed to show that there exists a vector
0, € R4 such that Ry,(-) = (¢(-,600),0, — 6o). Let 6, =

001, 0 5] T, in which 6 = 6o, + bo - £r/V/2 for
all 7 € {1,---,m} and 0] . = 0o, + boy + £, //2 for all
re{m-+1,---,2m}. Then, we have
Rh<.');‘)
1 m
752 bOT /(9(‘)I'T ) Tgr
\/tZTbOT (907~)' Te,
P i i(bo e () R AN
Vam = V2T 0.r o
1 2m
=— by, -0 0] x) 2" (Oh,— 00,
Vam 2" (09,,2) -z (On,r — Oo,r)

= ¢(x,00) " (0 — bo).

Thus, the true mean reward Ry, (-) is approximately linear with
the feature ¢(-,6p). Since 6y, — 0y = bo.r -4, /2 or bo,r -
ET,m/ﬁ, we have

61— 4], < axv2am,

(79)

Step II: In this step, we show that ﬁh() learned by neural
network in Algorithm 2 can be well-approximated by its
counterpart learned by a linear function with feature ¢(-,6p).

Consider the following least-square loss function

L.(©)
i 2
=> [Z(fb(xﬁ,@o), Oy — 0o) — 7“(7')]
T€D h;l
+ A > [10n — ol
h=1

=Y [(@(7,00),0 — 6) — r(7)]?
T€D
+1-11© = 6o]l3.
The global minimizer of L,(©) is defined as
O = argmin L,(6),

OeR2dmH

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.



XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD

We define Ry, (-) = (¢(-,60),0n —0o) for all h € [H]. We then
proceed to bound the term ‘ﬁh(x) - Rh(x)‘ as follows

~

Bi(@) = (@)
= |£@,00) = (@(,00),01 — 00)|
= |£(@.81) — (@1 (2,00).8 - €0)|

= |f(x,0,) — (®p(x,00),0 — O)

IN
Py
—
&
>
S~—
\
A
=
—
&

f(l”,ah) (on(w,00), On — o)

+[@n( €0, [6 -8,

= | F(2,01) — (@n (. 00), 01 — o)
@

+ e fo)ll, | - 8.

IN

(i)

IN

According to Lemma 5 and the fact that th —90H
2

N/\1, we have the followings hold with probability at
least 1 — N2H~*

2774 1/3
(i) <O <C¢ <%> \/1ogm> ,

(i) < C, H@ —@HQ.

(81)

(82)

We then proceed to bound the term H(:) — @H . Consider the
2

minimization problem defined in eq. (31) and eq. (80). By the
first order optimality condition, we have

M (6-0)
=Z< Zf mh,€h> (1,0) (83)
T€D
)\1 @ @0 Z CI) T @0
T€D
(r(1) = (®(7,00),0 — Oy)) . (84)
Note that eq. (84) implies
5(00) (6= 69) = > r(7)®(r,00). (85)

T€D

Adding the term Y., (®(7, 0p), 0 — ) ®(7, ©) on both

sides of eq. (83) yields
2(00) (@ - @0)

6497

=Y r(r)(r,0)
T€D
+ 37 [(®(7.64),6 — ) (T, ©0)
T€D
(Zf xhaeh ) T 9) (86)
Then, subtracting eq. (85) from eq. (86), we can obtain
%(60)(6 - ©)
= > r(7) (@(r,8) - 2(r.00))
T€D
+ 37 [(®(,64),0 — 0)(r, ©0)
T€D
H ~ ~
- (Z f(x;—m 9]1)) (I)(Tv @) ’ (87)
h=1
which implies
(RCEHICEIOIN
- 2
<Y or(r \JZH¢ (27,,00) — (l“ﬁﬁh)Hz
T€D =1
+ > (@(r,64),6 — ) (7, ©p)
T€D
(Zf ;. 0n) ) 7,6) (88)
2

To bound the term [(®(7,0),0 — Og)®(r,04) —
(Zthl f(x;,éh)) O (7,0)]|2, we proceed as follows

(®(7,6q),0 — Og) (T, O)
<Zf (27,01 ) (1,0)
= (B(7,00), 6 — O)((7,8) — @(7,6))
- <<<1>(T, ©0),0 — ) — XH: fag, éh)> ®(7,0)

= <¢(T7 60)3 é - ®0>(q)(7—7 60 - @(T, 6))

H
- [Z (<¢(l‘7}1700)a é\h - 92> - f(x;u éh)) (I)(Tv @)a
h=1
which implies
(®(1,00),0 — O)®(7, O)
H A o~
- <Z f(x£79h)) (I)(Tv @)
h=1 2
< [|®(7,00)], H@ @0H H<I> (r,00) — (T,é)HQ

uMm

S ottt ) - f(x;,@,w |60,
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" _
_ \l S letag, 03 H9 - 90H2

il
L

[o(a7.00) — (o700

>
Il
—

+
()= [[1]=

<¢(l‘;, 90)7(/9\11 - €2> - f(l‘;, éh)‘]

r

>
Il
—

2
) (89)
2

M=

’d’(l’béh)

where the last equality follows from the fact that | ®(7, ©) ||§ =

Zthl (7, Gh)||§ for any © € R2?™¥  According to

Lemma 5 and the fact that Héh — 6o H < H\/m, we have
2

the followings hold with probability at least 1 — N ~2H 4 for
all h € [H] and 7 € D

¢(zh, 00)ll; < Co,
oz = .

(a7 00) = (a7 )|

1/3
<O | Cy (H \/]7%/)\1> Vdegm |, 91

>
Il
—

(90)

(67, 00), 01— 00) — £ (.00

4p72 /32 1/3
<o (TR ien). on

Substituting eq. (90), eq. (91) and eq. (92) into eq. (89),
we have

(®(7,00),0 — Oy)®(7, V)

H
- (Z f<x27éh)> (I)(Tv é)
h=1
< (H*\/N/\1)
1/3
ofe <W> oo

H4N2 2 1/3
4O <C§,H3/2 (\/m“l) Vlogm

C2H17/6N2/3 1
go( : 2/3Og(m) .
ml/6\]

93)

Then, substituting eq. (93) into eq. (88), we have the following
holds with probability at least 1 — N—2H %

|z©)®-9)|

2

1/3
0N
0 C¢,</)\1> Vlogm

< NH-VH - 7
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N0 <C¢27H17/6N2/3 log(m))
2/3
m1/6\2/
-0 <C§H17/6N5/3 log(m)>

2/3
ml/ 6)\1/
where we use the fact that r(7) < H. We then proceed to
bound the term HG) — G)OH as follows
2

o3,

=[5 ©0zEn®E -9,

< [z @], [©n® -8,
< A7 Hz(@o)(@ - @Hz

C2H17/6N5/3 1
go( ? 5/3°g(m) .
ml/6\]

(94)

Substituting eq. (94) into eq. (82), we can bound (ii) as

follows
3 1717/6 A75/3
(i) < O <C’¢H /6 N5/ log(m))
= 5/3 :
m1/6)\1/

95
Taking summation of the upper bounds of (i) in eq. (81) and
(1) in eq. (95), we have
‘ﬁh(x) - Eh(x)‘
< (3) + (4)
N2H4 1/3
< —— 1
_O<C¢ <)\%\/7n) \/logm
C3HY/6 N5/3 floa(m
) ( é g(m)

5/3
ml/ﬁ)\l/

C3 T/ NB/3 /]
go( ? S/SOg(m) .
ml/6)]

(96)

Step II: In this step, we show that the bonus term b, (-, (:))
in Algorithm 2 can be well approximated by b, (-, Og).
According to the definition of b, (-, ©), we have

br,h(xa @)) - bnh(l’y ®0>‘

_ ‘ [cph(x,@)Tzfl(é)qm(;@,é)}” ’

— [®4(x,00) TS (O0) By (2, )]

< ’(I’h(l", ©0) ' E71(00) @4 (z, O)

1/2
— 2(,0) "7 (O)y(2,0)] (97)
where the last inequality follows from the fact
that [z — y| < /|r—y|. We then proceed
to bound the term |®(z,0)TE(O)P)(2,0) —

®,(z,00) "EX"1(Og) P (z,00)| as follows
@ (2,0)TE71(0) By (2, 0)
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— ®(2,00) 'S (B0) P (x, O0)| which implies
= [[@1(2,8) = ®u(z,00)] "= (B)2n(w, O)| |=®) -z(@0)|

+ |21, 00) T (271(6) — 271 (©0)) <X (o0, |28 -acren,
T€D

(I)h(iué\)) ~
+ |0, 8) - e(r.00)| e 00)l1,].  ©9)
+ |(Ph X, @O)TE (@0)
By definiti f &(7,0), have the followi hold fi
(@h(l’ 6) 0) | A @i]éeen]l%;?nrzg (T ) we have the 1roliowings no or any
< [@)(2,6) — ‘I’h(x 90)] ~(©)®y(,6)
~ ~ —~ 2
+ [ @1, 00)T(27(8) - 571 (00))Pu(x, 6) |2.8)], = J > [eeran], oo
+ ’@h(l', @0) (@0) helH]
(@12, 0) — B (z,00))] |2(7.8) - a(r,00)
§H<I>hx@)—<1>hx@o H Z H - H2
O, e8], Jhewl i
+ ||<I’h(33 @0)”2 Applying Lemma 5 to eq. (100) and eq. (101), we have the
( ) — @O)H H@h(x’ @)H followings hold with probability at least 1 — N ~2H 4
2 2
+1@a(z, ©0)lly =71 (©0)] |e(.0)|, < cova,

[1.8) — B0 |o6) - 2 00,

- H(b(x’éh) B ¢($790)H2 HZ_I(@)Hz ”¢(x’§h)"2 <0 <C¢H5/6N1/6\/m> .

+ 1oz, 00)l; | 27 (©)(2(8) - £(€0)= ! (©0), /6710
. Hd)(x’ @\h)H Substituting the above two inequalities into eq. (99) yields
2 ~
+ 100 00) 1270, 602 8) = ot 001 [=® =0,
< [[ete ) = ot 0], [= @], ot B <0 (Cimsljilg/ﬁbgm) - (102)

+ (@ 00)ll, [=71®)|_||=®) - (@0 | N |
N 2 Finally, combining eq. (102) and eq. (214) and eq. (215) in
. ||2‘1(@0)H2 Hgb(a:, 0p) Lemma 5, we can bound the right hand side of eq. (98) as

+ (@, 00)lly [=7(©0)|, [o(a.00) = o, 00) @1, 8) 727 (0)2u (. 6)

< 5 [Jotw B - ot a0 ot B DI ERE)
< 3, o) o0, o]

N [

+ 5 l6.00)1, [28) ~ 2(00) [ ote- 1) :

+ 5 It 80) 1, [£6) - =00

1 —~
+ 5 oG, Bo)l, || 6. Bh) — o 60| ©98)
(XN
where the last inequality follows from the fact that | 3(©)||, > 1 0 0 0
)\1 for any e c RdeH. For E(@) _ 2(60), we have + Al Hd)(xv 0)”2 HQS("E, h) ¢($, 0)”2
<0 CZH'Y3NY/6\/logm
2(0) — %(0y) = m/o\T/0
= [26.0)2(.6)" ~ (r.€)2(r.00) ] , ((CHHN1/o g
TeD + m1/6>\i3/6
= Z [(I)(T @)(@(7—3 6) - (I)(T, @O))T (OgH4/3N1/6\/w>
TeD =0 . (103)
(2(7,6) — ©(r, €))% (7, 60) '], mi/0A¢
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Substituting eq. (103) into eq. (97), we have the following
holds with probability at least 1 — N~2H 4

br,h(x,(:)) - br,h($7@0)‘

“o C;H2/3N1/12(10g m)1/4
- m1/12)\13/12

(104)

Step IV: In Steps 1 and II, we show that the mean of
the real reward Ry (-) can be well approximated by a linear
function Ry, (-) with feature ¢(-,60) and our learned reward
Ry (-) can be well approximated by a linear function Ry,(-)
with feature ¢(-,6p). In this step, we want to show that

the reward estimation error [Rj,(-) — Ry,(-)| is approximately

B1 - brn(x,©0) with an approximately chosen f3;. B
Recall that Rp(-) = (&(-,60),0n — 0o) and Rp(-) =
(¢(+,6p), 0 — ). Considering the difference between Ry, (-)
and ﬁh(-), we have
Ry (x) — Ra()
= (¢(x,00), 0 — 0)
= (®y(,09),0 — O), (103)

where the last equality follows from the definition of @+, ©).
By eq. (85), we have

@ — @0 = E(@O)_l Z T(T)‘I’(T, @0)

T€D
By the definition of 3(©), we have

6 -0,
= (0" [)\1 (é - @0)

+ (Z ®(r, O0) (7, @0)T> (é - @0) }

T€D

(106)

(107)

Subtracting eq. (107) from eq. (106), we have

6-06
= ~%(00) " (6 - )
+3(60) ! Z ®(7,00)

T7€D

[r(7) = (®(7,00),6 - €9)] (108)

Taking inter product of both sides of eq. (108) with vector
Dy, (z,00) aNnd using the fact that R(7) = Zhe[H] Ry, («}) and
(9(.00),6 — Op) = X, 1) (6(a7.60). B — o). we have
(®1(2,00),0 — O)
= —)q‘bh(l‘, @O)TE(@o)_l/Qz(Qo)_l/2
(5-2)
+ Py (x,00) TE(0p) 28(0) 1/

' <Z ®(7,00) (r(1) — R(T)))

TED
+ @ (2,00) 'S(00) H28(00) 2

(109)
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. (Z(I)(T,@O)

T€D

: [ Z (Rh(%) — ((27,,00), 0n — 90>> ] >

he[H]

Recall that Ry (z]) = (¢(z],00),0n — 0o), and eq. (109)
implies that

[(@4(2,00),6 - &)
< \/EHQM(JC,@())TZ(@O)A/ZHQ Hé B @OHQ
NV

Z O(71,00)e(7)

T€D

2(©0)t

+ \/%—1 H‘Dh(% @())TZ(@O)A/QH2

~ <Z 18(7,©0)ll,

T7€D
Y ]Rh(:cDEh(xZ)\), (110)
he[H]
where we denote €(7) = 7(7) — R(7) and use the fact

that ||E(®)*1/2||2 < 1/y/A1 for any © € R*mH By the
definition of © in Step I, we have

ué—eH > -
he[H],re[m)
>

he[H],re[m]

H/d.

2
14112

<72 (111

By Lemma 5 and eq. (78), we have the followings hold with
probability at least 1 — N—2H 4

|®(7,00)ll, < CyVH, (112)
|Ru(a7) ~ Ra(a7)
2(Lyay + C2a3)+/log N2ZH
< . (113)
Jm
Substituting eq. (111), eq. (112) and eq. (113)

into eq. (110) and using the fact that b,,(z,09) =
| @5 (z,00) TE(©0) /2|, we have

’<¢>h(w‘,®o),@— @>‘ (114)

< (a \/ —AlH
> 2 d
N 2(Lyas + C2a%)CyNH3/2\/log HN

)\1m

Z O (7,00)e(T)

T€D

+

>br,h(x; @0)

2(69) "t
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Given that the events in eq. (112) and eq. (113) occur, applying
eq. (235) in Lemma 8, we have the following holds with

probability at least 1 — N~2H 4
2

> o(r,00)e(7)

T€D

2(©0) !
< H?logdet(I + Kj /A1)
+ H2N(\ = 1) + 4H?log(NH?),  (115)
where K% € RV*N s the Gram matrix defined as
Ky = [Ku (i, 7)]ijen) € RNV,

Combining eq. (114) and eq. (115) and letting A\; = 1+ N !
and m be sufficiently large such that

2(Lyas + C2a%)CyNH?/2\/log HN
vV )\1m

[MH
S a2 77

we have the following holds with probability at least 1 —
N—2H~2

|(@4(2.60).8 - 6)]

M H
< <2a2 17
K7,
+\/H210gdet <I+ )\N>
1

+V/H? + 412 log(NH2)> br.n(, ©0)

4a3 K,
<H ax1 +2logdet | I+ =X
d A1

1/2
+ 101og(NH2)> brn(, Op), (116)

where in the last inequality we use the fact that a + b <

v/2(a? + b?). Substituting eq. (116) into eq. (105), we have
the following holds with probability at least 1 — N~2H %
[Ri(@) = F(@)| < 1 b, 00),  (117)

where

daZ\ K*,
B = H( 22 | 9logdet ( I+ =N
d A1

1/2
+ 1010g(NH2)> .

Next, we proceed to bound the reward estimation error
’Rh(a:) - Rh(x)’. By the triangle inequality, we have

‘Rh(l‘) - Eh(x)‘

= |Rp(2) — Ru(z) + Rp(x) — Ru(2)
+ Ry (x) — Rp(z)|

< ]Rh(x) - Eh(x)‘ n ‘Eh(x) ~ Ru(x)

6501

+ |Rale) = Rua)
(2 2(Lyas + C%a3)
< NG

C3H'/SN5/3, /log(m)

+0 1/65/3

ml/OX]

+ 61 brw(z, ©9)
(i) 17/6 n75/3
2o <H N log(m)>
= mi/6

+ 01 - by n(x, O9).

where (i) follows from eq. (78) and eq. (96) and (iz) follows
from the fact that \; = 1 +1/N and L,,Cy,,a2,Cy = O(1).

log(HN)

(118)

B. Uncertainty of Estimated Transition Value
Function (@hf/h-&-])( -)

In this subsection, we aim to bound the estimation error of
the transition value function |(P,V)(:) — (IPhIA/)()‘ For each

h € [H], since Wy, is the global minimizer of the loss function
L"(wy,) defined in eq. (24), we have

Ly (@n)
. 2
= > (Vo) = F(oh )
T€D

+ Ay - ||@h — woll2
< LM (wy)

= Z (‘7h+1(52+1) - f(xivaO))z

T€D

O (Thalsi))

(i1)

< NH?, (119)

where (i) follows from the fact that f(x,wo) = 0 for all
x € X and (i) follows from the fact that V}(s) < H for any
h € [H], s €S, and |D| = N. Note that eq. (119) implies

|@n — wolla < NH? /Xy, Vh e [H]. (120)

Hence, each @y, belongs to the Euclidean ball B, = {w €
R2™m4  |lw — wp ||, < H\/N/X2}, where A2 does not depend
on the network width m. Since the radius of B, does not
depend on m, when m is sufficient large, it can be shown that
f(-,w) is close to its linearization at wy, i.e.,

fw) = (@(-, wo), w —wo), Yw € By,

where ¢(-,w) = V,f(-,w). Furthermore, according to
Assumbtion 3, there exists a function £4, 4, : R? — R4 such
that (P, Vj41)(+) satisfies

<m%mw:/

Rd

o' (07 x) - 2Tl (w)dp(w),  (121)
where sup,, [[£y(w)ll; < Ar, supy, ([[to(w)]ly /p(w)) <
As and p is the density of N(0,1;/d). We then proceed to
bound the difference between (PpV)(-) and (P,V)(-).
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Step I: In the first step, we show that the transition value
function (PyV341)(-) can be well-approximated by a linear
function with the feature vector ¢(-,6y). Lemma 4 in Section I
implies that with probability at least 1 — N=2H~* over the
randomness of initialization wo, for all h € [H], there exists
a function (PpVi41)(+) : X — R satisfying

sup | (B V1) (@) ~ BV )(2)|
EAS

2(L,As + C2A3)\/log(N2H?) (122)
— \//)’H )

where (P, Vi41)(:) is a finite-width neural network which can
be written as

(Ph Vh+1 Z g Tf;ﬁ,
where |[¢Y], < Az/Vdm for all r € [m] and wy =
[wo,1,- -+ ,wom] is generated via the symmetric initialization
scheme. Following steps similar to those in eq. (79), we can
show that there exists a vector @y, € R2™? such that

(PrVis1)(-) = (-, wo), W

where W, = [zD,Il, e .w,jzm]i in which w;r = wp, +
bo, - £2/\/2 for all r € {1,---,m} and ZI),IT = wo, +
bo 02, /2 forall 7 € {m+1,--- ,2m}. Moreover, since
Wh,r — Wo,r = bo r /2 or bo -¥_, /\/2, we have

||’lI)h — w0||2 S A2v2dm.

*’LU()>7

Step II: In the second step, we show that with high probabil-
ity, the estimation of the transition value function (P Vj41)()
in Algorithm 2 can be well-approximated by its counterpart
learned with a linear function with the feature ¢(-,6p).

Consider the following least-square loss function

L (wn)
~ 2
= (Vhsa(s42) = (Blh, wo), wn — wo))
Te€D
+ Xo - [Jwp —woll;- (123)
The global minimizer of L”(wy,) is defined as
W), = argmin L (w). (124)

weR2dm

We define (@h‘/}hﬂ)(-) = (B(-,wo),wp — wp) for all h €
[H]. Then, in a manner similar to the construction of Qp()
in Algorithm 2, we combine Rj(-) in eq. (80), b4 (-, Op),
?h‘/}hJ’,l(‘) and b, (-, wp) to construct Q,(-) : X — R as

Qn()
= min{Rp,(-) + PnVis1)()
- ﬁl : br,h('a 90) - 52 . bv,h

Moreover, we define the estimated optimal state value function
as

(125)

(-,U}o), H}+

V() = max @, (-, a).

12
acA (126)
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We then proceed to bound the estimation

’(@h‘/}h+l)($) - Fh?h+1)(x)‘ as follows

error

’(@hffhﬂ)(x) - ph‘/}h-&-l)(x)‘
= | [z, @n) = (P2, wo), Wh — wo)|
= |(z, @n) — (p(z, wo), W — wo)
— (¢(- wo), Wy, — Wh)|
< |f (@, @n) — (d(x,wo), W — wo)|
+ [(¢(, wo), Wn —wh)|
< |f(@, @n) — (&(+; wo), Wn — wo)|
(2)
+ [[é(z, wo) |, || @
(i2)
We then bound the term () and term (i¢) in the above inequal-
ity. According to Lemma 5 and the fact that ||@), — wol|, <

H.\/N/)2, we have the followings hold with probability at
least 1 — N~2H 4

2774\ 1/3
(1) <O <C’¢ <NH> Vlogm) ) (127)

_wh“2'

2
(it) < Cy || Wy, — W ||, - (128)

We then proceed to bound ||@w;, — @Wy||,. Consider the mini-
mization problem defined in eq. (31) and eq. (80). By the first
order optimality condition, we have

A2 (Wp, — wo)

=" (Vasa(sia) = (@i, @n) ) o(ah, @)
T7€D

A2 (wh - wO)

=3 (Vhsa(sTsn) -

T€D
- ¢(x}, wo).
Note that eq. (130) implies

E Vi1 (54)

T€D

(129)

(¢(x,, wo), Wp, — w0>>

(130)

Ay (wo) (W, — wo) o(xh,wo).  (131)

Adding the term ) __,(p(z},wo), Wy — wo)p(zh,wo) on
both sides of eq. (129) yields

Ap(wo) (Wh — wo)

= Vis(sh41)0 (], ©n)
T7€D
+ > [(d(@F, wo), @ — wo)d(a,, wo)
T7€D

= f (@, @n)d(aF, )] (132)
Then, by subtracting eq. (131) from eq. (132), we have

Ap(wo)(wWh, — Wh)

=" Viii(shy1) (8, Bn) — ¢f,, wo))
T€D
+ > [(d(@F, wo), @n — wo)p(aF,, wo)

T7€D

- f(-r;,’[l)\h)(b(-f;;f&)\h)], (133)
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which implies

[ A (wo)(@n — )|,

= Vi1 (shoa) l6(xh, @) — (@, wo)ll,
T€D

+ Z (b (aF,, wo), Wh — wo)(xF,, wo)

TED
— faf, Wn)e(x, @n)]|-
To bound the term |[{(¢(x],wo), Wp — wo)P(x],wy) —
f(x7, Wp)p(x], W), we proceed as follows
(¢(zh, wo), Wn — wo)d(xy, wo) — f(@h, Wn)d(x, W)
= (¢(},, wo), W — wo) (P(x}, wo) — G(},, Wh))

- (<¢(z;aw0)aﬂ}h - w0> - f(I;,@h))qb(I;,’L/ljh)

which implies

(134)

~

[{¢(zF, wo), Wn — wo)(zh,, wo) — f(ap, Wn)d(@h, Wn)ll
< [lg(2h, wo)lly lwn — woll
Nlo(@h, wo) — G(ar, wn)ll,
+ [¢(zf,, wo), Wh — wo) — f(x}, Wh)|
s, wn)ll, -
According to Lemma 5 and the fact that |w), —wpll, <

H\/N/\z, we have the followings hold for all h € [H] and
7 € D with probability at least 1 — N—2H~*

(135)

[¢(z, wo)lly < Co, (136)
lp(xr,, Wn)ll, < Co, (137)
||d)($;—”w0) - d)(x;vwh”b
1/3

H\/N/\
<o|c, (\/771/2> Vlogm (138)
[{(@(xF, wo), Wy, — wo) — f(z7,, W)

H4N2 )\2 1/3
<0 <c¢ (\/%/2) Vlog m> ) (139)

Substituting eq. (137), eq. (138) and eq. (139) into eq. (135),
we can obtain

[{¢(@h, wo), Wn — wo)(x}, wo)
- f(x;;ﬂ ﬂ)\h)(ﬁ(l‘;, ﬂ)\h)”

< (H\/N/X2)

1/3
-0 Cﬁ (H%/)\g) v/logm

4872 772\ 1/3
+0 <C’£ (H\NFm/)\Q) \/logm>

2 774/3 \12/3
<o CZH*/3N?/3,/log(m) .
- m1/6>\§/3

(140)

Substituting eq. (140) into eq. (134), we have the following
holds with probability at least 1 — N2 H 4

[ An (wo) (@ — 1),

6503
VA>T R—
2
N0 CZH*3N?/3\/log(m)
m1/6>\§/3
-0 C2H*3N®/3, flog(m) 141
- m1/6)\§/3 (141)

where we use the fact that ‘A/hﬂ(s) < H for any s € S.
We then proceed to bound ||@wy, — Wy ||, as follows

| W, — @[,
= [|A (o) A(wo) (@ — W)
< [[A7 (wo) [, 1A (wo) (@h — wn )l
1 CZH*3N5/3,/log(m)
P o 2/3
2 ml/6);
co CZHY3N5/3,/log(m)

<

(142)

Substituting eq. (142) into eq. (128) yields

(i) <O <C$H4/3N5/3 10g(m)>
- 5/3 :
ml/G)\Q/

(143)

Taking summation of the upper bounds of (¢) in eq. (127) and
(1) in eq. (143), respectively, we have the following holds for
all x € X with probability at least 1 — N"2H 4

‘(I?th/hﬂ)(x) - @hf/hﬂ)(w)‘

N2H4 1/3
<O|Cy | ——= 1
co(e (3 v
C3H*3N5/3/log(m)
ml/6)

3 774/3 \75/3
<o C3H*/3N5/ , log(m) .
- ml/e)\;/f3

(144)

Step III: In this step, we show that the bonus term
by n(-, W) in Algorithm 2 can be well approximated by
by.p (-, wp). By the definition of b, (-, w), we have

|bo,n (2, @Wh) = by n(z,w0)|
. IR 1172
= | [, @) TA (@) (, )]
_ 1/2
— [on(w,w0) A (wo)n (z, wo)] |
< |pn(z, @n) " AT (@) n(z, @)
_ 1/2
— on(w,wo) AT (wo) o (, wo)| %,

where the last inequality follows from the fact that

’f - \/ﬂ‘ < /|z — y|. Following steps similar to those in

eqg. (98), we can obtain

\pn (2, @p) " A (@) o (2, @)
— dnl@,wo) T AT (wo) e (x, wo)
< ||¢(x, Wn) — ¢z, wo)lly [|A~(@h)|,

(145)
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Nz, @n)ll,

+ [l oz, wo)lly [[A™ (@) |, |A(@R) —
AT (wo) ], ||¢($’wh)||2

+ (e, wo)lly | A (wo)]],

A(wo)ll,

. ||¢7(Jf, wh) - ¢($,Wo)”2
1
% [6(z, @Wn) — ¢z, wo)lly [|d(x, @)l
[¢(z, W)

+ P ool 14(@1) - Adun)],

¢z, wo)lly,  (146)

1 PN
+ 1 oz, wo)ll, llé(x, wn) —
2
where the last inequality follows from the fact that ||A(w)||, >
Az for any w € R?™4, For A(w) — A(wp), by following steps
similar to those in eq. (99), we can obtain

| A(@n) — Alwo)ll,
<> [l @)l ll¢(r, @n) — d(af, wo)l,
T7€D

+ll¢(ah, @) — ¢(ah, wo)lly @ (a7, wo)ll, |-
Applying Lemma 5 to eq. (147), we have the followings hold
with probability at least 1 — N~2H 4
lo(aR, wn)lly < Cog,
[6(ah, Wn) — ¢(xf,, wo)ll

<O <C’¢H1/3N1/6\/logm>

7711/6)\5/6

(147)

Substituting the above two inequalities into eq. (99) yields
[A(@n) — A(wo)ll,
C2ZH'/3N6/logm
<0 ( ¢ 5T

m1/6)\é/6

(148)

Finally, combining eq. (148) and eq. (214) and eq. (215) in
Lemma 5, the right hand side of eq. (146) can be bounded by

|¢n (a0, @) T AT (W) (w0, W)
— dn(@, wo) T AT (wo) o (x, wo)|
1 N ~
< N ¢(z, @n) — (2, wo)ll, [|¢(z, Wh)ll

1 _ _
DY [[6(2, wo)ll [[A(@r) — A(wo)ll; l¢(x, @n)ll,

1 .
5, 19 wo)lly [¢(z, @n) = é(z, wo)ll,

2 771/3 771/6
-0 C2H'3NY5\/logm
- ml/ﬁ)\;/G

Lo CLHYBNYS\/logm
m1/6)\§3/6 '

By eq. (145), we have the following holds with probability at
least 1 — N"2H~*

by, (2, Wp) — by, (x, wo)]
< |pn(a, @n) " AT (@n)pn (x, )
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— Gn(, wo) TAT (wo) i (&, wo) |

2 171/6 A71/12 1/4
SO<C¢H/N/ (logm)/>.

RRVEINCIE (149)

Step IV: In Steps I and II, we show that (]Pth+1)(~) can be
well approx1mated by a linear function (P Vh+1)(‘) with the
feature ¢(-, ), and @Dh Vh+1)( ) can be well approximated by
a linear function (P, Vj,41)(-) with the feature ¢(-,6p). In this
step, we want to show that the difference between (P, Vj,41)(:)
and (PpVy41)(-) is approximately s - by p(x,O0) with an
approximately chosen [3.

Recall that (P,Vii1)(:) = (&(,wo), @, — wo) and
(PrVig1)(:) = (¢(-,wo), Wy — wo). Consider the difference
between (P, Vie1)(+) and (P, Vie1)(-). We have

(P Vis1) (@) — (P Vir1)(2)
= (¢(x, wo), W, — W),

By eq. (130), we have

(150)

w — Wy

§ Vi1 (sh41)

T7€D
By the definition of A(w), we have

W — Wy (152)

= A(wo) ™" [)\2 (W — wo)

+ (Z ¢($;—z7 w0)¢(

T€D

(3}, wo). (151)

m;,ww) (@ w0)|

Subtracting eq. (152) from eq. (151), we have

w—w (153)
= —)\QA( )_1 (@ — ’wo)

Z¢ l‘h’wo

T€D

[V (5740) = (07, w0), @ = wo)]

+ A(wo)™

Taking inter product of both sides of eq. (153) with vec-

tor ¢(x},wp) and using the fact that (]INDthH)(s;H) —
(p(2],, wo), Wn, — wo), we have

<¢h('r;—ww0)7w_ @>
= —Xogn (e, wo) T A(wo) ™A (wo) TV (@ — wo)
+ dn(ah, wo) T A(wo) A (wo) M2

(Z ¢ (z,, wo)

T€D

(XA/h+1(S;+1) - (Ph{Achrl)(x;)) )
+ dn (@, wo) T Awo) T2 A(wo) 12

(5 otofuo

T€D

(BuTiea) () — (6aF ) — o) )
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_ _/\2%(%’ wO)TA(wO)A/zA(wO)A/Q o (C;Nl/m(log m)1/4>
(@ — wp) m!/12 ’
+ dn (@, wo) T A(wo) T2 A (wo) T/ we then have the following holds for all & € [H] and s € S
(Z d(@h, wo) (Vg1 (shyr) — (thhﬂ)(ffﬁ))) |AVi(s)] < ev.
+T;:(x;’ wo)TA(wo)*l/ZA(wo)*lﬂ eq. (154) together with eq. (155) imply

|<¢h(x;—w wO)aw - {EH

xh,wo) (AVht1(shiq) — (PrAVig1)(xf,
<Z¢( boe) (AW (eh) = ErVina ) ’”) < Vs |onaf ) Awo) ™2 - wll

T€D
T —1/2 —1/2
A A . _
+ 9n(,wo) " Alwo) (wo) + H¢h(1’h’wo)TA(wo) 1/2H2
o(ah, wo) ((PaVier) (#7) — BaVisr) (a7) ) , . .
(T;) ( ) Z ¢z, wo)ew ()
(154) T€D A(wo)~1
2ey T —1/2
~ — + ‘gb x7,wo) Alw / H
where in the last equality we denote AV} (s ) = Vi(s)=Vi(s). Vg IPh ) Aluwo) 2
By the definition of Vj(-) in Algorithm 2 and V,(-) in Z ||¢ zh,wo) |,
eq. (126), we have TED
R o )T —1/2
‘Vh(x) _ Vh(.%‘)’ /7 Hﬁbh Th,wo)  Awo) H
< sup [Qn(a) ~ @4 )] (Z Io(eh, wol
TeX T€D
< :17,5 — (p(x,60),0, — 0 ’ = - ~ -
— f( hz <¢( 0) h O> ‘(Pth+1)(1’h) _ (Pth+1)($h)’>, (156)
+ | f (2, @n) — (¢(x, wo), Wh — wo)]
+ 61 by (z, @) by (z, @0)‘ where we denote €, (z],) = Vh+1(5h+1) (PrV h+1)(z],) and
use the fact that ||A(w)~'/2||, < 1/v/Ag for any w € R4,
+ B2 [bo,n (2, @) = bu,n (@, wo) By the definition of w in Step I, we have
(1) H4N2/)\% 1/3
S (@) O¢ (\/ﬁ) \/ logm ||’le — U}OH2 = HEU”Q S AQ\/ H/d (157)
HAN? / A2 1/3 By Lemma 5 and eq. (78), we have the followings hold with
+0|Cy (2) v/log probability at least 1 — N~2H~* over the randomness of
vm initialization wyq
C§N1/12(10g m)1/4 T
A e Vi 67wl < Cor (158)
C’iHl/ﬁNl/l?(log m)1/4 (PrVht1)(z],) — (thh—&-l)(x;;)‘
+62-0 m1/12)13/12 2(L0A2—|—C’3A§)\/logN2H5. (159
3 1/3 B Vvm
(21) H4N2
<0 <C¢ ( T > V/1og m) Substituting eq. (157), eq. (158) and eq. (159)
into eq. (156) and using the fact that b, ;(zr,wo) =
+ max{H?/36,, H/3,} (| on (z, wo) T A(w) 1/2H2 we have
C2N1/12(log m) /4 _
0 ( o Uosm) ), (155) (T, wo), @ — )
m
Mo H
< by (], wo) [ A2y 2
where (i) follows from eq. (216) in Lemma 5, eq. (104) and d

eq. (149), and (i7) follows from the fact that A;, A2 > 1. UL Ao+ C2A2YC, NH3/2\/log AN
Denoting + (Lo 4 z 2))\¢m &
VA2

E’U T T
g 1/3 Z o(xh, wo)ey(27,) ) (160)
H*N — ™ -
— O <C¢ ( \/7 > 10gm> €D A(’LUU) !
m Given that the events in eq. (158) and eq. (159) occur, applying
+ max{H?/38,, H'/3,} eq. (234) in Lemma 8, we have the following holds with
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probability at least 1 — N—2H 4

2

S 6(af, wo)eu(a7)

TED Awg)—1

< 2H?logdet(] + K§j,/A2) + 2H>N(Xo — 1)

+4H?log(N),/8) + 8N>CZe* [ As, (161)

RNXN

where K}(, n € is the Gram matrix defined as

Ky = [K(zy) 27 )i e € RAV*N,
and N, is the cardinality of the following function class

Vi(2, R, Ru, Rg,» Rpy, My A2)
= {max{Qy(s,a)} : § — [0, ]
101l < Ro, [wlly < Ru, 61 € [0, Rg, ], B2 € [0, Rg, ],
XMl = Ax, 1]y = Az},
= H\/N/\i, Ry, = H\/N/X; and

Qp(x)
= min{<¢(x,90),0 - 90> + <¢(JU,’LUO),’LU—IUO>

— - \/‘I’h(x, 0p) "X~ Py, (z, 0p)

- 52 : \/¢(x,w0)TA_1¢>(x,wO), H}+

where Ry

Combining eq. (160) and eq. (161), defining N’ =

maxpe{N,} and letting
€ =1/ AQCGH/(2N0¢), (162)
Ce > 1, (163)
Ao=1+N"1 (164)

and m be sufficiently large such that

2(Ly Ay + C2A2)CyNH?'2\/log HN

)\2m
S AQ\( )QTHa

we have the following holds with probability at least 1 —
N—2H*

(@ (], wo), W — w)]

< <2A2 )\gdH

K’U
+ \/2H2 log det <1 + Aih
2

-%V%HQbQAUPN?Obmdfﬂm)

8AZ )\, K3,
<H 2 4 logdet | I
< ( d + }{rel%(]{()g e ( + /\2 )}

1/2
+6C, + 1610g(NH2N:)> bo.n(z,wo),  (165)

) + 3C.H?
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where in the last inequality we use the fact that a + b <
v/2(a? + b?). Substituting eq. (165) into eq. (150), we con-
clude that the following holds with probability at least 1 —
N2~

|(BuVii) (@) = Vi) (@)] < B2 - bun(w,wo),  (166)

where

65
8A3N K}
:H( 222 4 4 max {logdet(l—i— N’h)}
d he[H] Ao

1/2
+ 22 1og(NH2Ng’)) .

bound the
By the triangle inequality,

Next, we term

| Vii1) ()
we have

proceed to
(PthH)(x)‘-

(BuVis1)(@) = (BrVhi) (@)
(B Vis1) (@) = (BrVign) (@)]

)
+ |BuVi) (@) — BaPhia) (@)
+ | Vi) (@) = BaTis) @)|

(1) 2(L,Ag + C2A3)\/log(N2H?)

<
< N
+ B2 - by (z, wo)

0 C£H4/3N5/3 log(m)
ml/ﬁ)\g/?’

(i4) 4/3 N75/3 275
8 O(H N5/3, flog(N2H m)>

mi/6

+52 'b’u,h(w7w0)a (167)

where (i) follows from eq. (122), eq. (144) and eq. (166)
and (i¢) follows from the fact that Ay = 1 4+ 1/N and
L,,Cys,As,Cy = O(1).

C. Upper and Lower Bounds on Evaluate Error 6p( )

By definition, we have the following holds with probability
1-2N2?H~*

@mmm%@mmmm

= |Bu(@) + BaTan)(@) — Rule) — BT )(@)|
[Buie

< Ri(@)] + | BrVhsa) (@) = (PaThia)(@)
S B by n(2,00) + B2+ by n(w, wo)
HY/3N5/3, flog(N2 H5m)
+0 < ml/6
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Lo H17/6 N5/3 1og(m)
ml/6

S 61 : b’r,h(xa @O) + 62 : bv,h(xa ’LU())
<H17/6N5/3 1og(N2H5m)>

+0 (168)

ml/6

where (i) follows from eq. (118) and eq. (168). Moreover,
by the triangle inequality, eq. (104) and eq. (149), we have
the following holds with probability 1 — 2N 2 H 4

B+ brn(w,©0) + B2 - by n(z,wo)

< B1 - bpn(z, ©)+ 8- by, n(, W)
+ 1+ [brn(@,8) = by, ©0)
+ B2 - br,n (@, W) — by p (2, wo)

< B1 by (2,0) + Ba - by (x, @)

5.0 C§H2/3N1/12(10gm)1/4
! m1/12)\}3/12

i O (CiH1/6N1/12(logm)1/4>
5 -

13/12
ml/12 )} /

(1) ~ N
< ﬁl . br,h(xa @) + 62 . bv,h(xawh)
+max{ﬁ1H2/3,ﬁ2H1/6}

N1/12(10g m)1/4
16) <ml/12> , (169)

where (i) follows from the fact that Ay = Ay = 1+ 1/N
and Cy = O(1). Substituting eq. (169) into eq. (168), we can
obtain
|B1 V1) (@) = (BaThsn) @)
< ﬂl . br,h(x7 @) + 52 . b’U,h(‘rv @h)
+ max{f H*?, B, H'/}
o <N1/12(logm)1/4>

ml/12
Lo HYT/SN5/3, /log(NZH>m)
ml/6 :
Denoting
N1/12(loe m)L/4
ey, = max{B H*/®, B, H/5}O (nil/gl2)>
Lo HYT/SN5/3, flog(N2H5m)
m1/6 :

we have
|BiVii)(@) — (BuVain)(@)|

< By bpp(2,0) + By - byp(x, @) + 5. (170)

Up to this point, we characterize the uncertainty of

(BiViy1)(-). Next, we proceed to bound the suboptimality

6507

of Algorithm 2. Recalling the construction of @h(x) in
Algorithm 2, we have

Qn(*)
= min{(]@thJrl)(') - /61 . br,h('v @)
- ﬁQ : bv,h('a ﬁ)\h)’ H}+'

If (BpVig1)(z) < By - byn(x,0) + Ba - by p(x, @), we have
Qn() =0.

Note that V},41(-) is nonnegative. Recalling the definition of
On(z) in eq. (38), we have

on(x) = ByViy1) (@) = Qn(x) = (BrViya)(x) > 0.

Otherwise, if (B, Viy11)(x) > B1-brp (2, ©) + Ba by (, @),
we have

Qn(z)

= min{(BVii1)(@) — b1 - brp(z,©)

— Ba - by p(x,wy), HY'

< (BrVis1) (@) = B - by (2,0) — Bo - by s, @),

which implies that
on(x)
> (B Vs ) (z) — |:(@h‘7h+l)(x) — By - byp(z,0)

— B2 bv,h(%@h)}

i (CAGIORIEANIE]
+ Bt brn(@,0) + B by, Bn).

Note that eq. (170) implies the followings hold with probabil-
ity 1l —2N2H~*

(BaVit1)(x) — BrVis1) (@)

> —p - br,h(%@) — B2 - by p(z, Wp) — €. (171)
(BiVit1)(x) — BrVis1) (@)
< By - by p(z, (:)) + B2 - by p(x, Wp) + 5. (172)

As a result, we have the following holds with probability
1-2N2H*
on(x) = —ep. (173)

It remains to establish the upper bound of d(x). Consider-
ing the event in eq. (172) occurs, we have

(ByVit1) () — B - br,h('7é> — B2 - by (-, Wh)
< (B Vig1) (@) + B1 - by (, ©)

+ By - by n(x, @) + b | — B brn(-,O)

— B2 - by (-, Wp)
= (Bth+1)(1’) +ep < H + €b,
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where the last inequality follows from the fact that Ry (z) <

1 and ‘7;,+1(s) < H forall z € X and s € S. Hence, we have

Qn(z)
= min{a@h%m( ) = B1 b, )
— B2 - by (2, W), H}*
> min{(B4Vis1) (@) — 1 - brp(z, ©)
— B2 - by p(x, W) — €, H}+
= max{(ByVis1)(@) — B1 - brp(z,0)
— B2 by p(x, Wh) — €5, 0}
> By V1) (@) = Br - by, ©)
— B2 - by p(z, Wp) — €, (174)
which by definition of §;,(z) implies
On(z)
= (BuViy1)(2) — Qnl2)
< (BuVig1)(@) = (BaVig1) (@) + Bu - b(2, ©)
+ B2 - by n(x, Wn) + €
<2[B1 by, 0) + B by @) +5) . (175)

where the last inequality follows from eq. (172). Combining
eq. (173) and eq. (175), with probability 1 — 2N ~2H 4,
we have

< On(2)
<2|B:1- br,h(%@) + B2 - by p(x, Wh) + Eb] ,
which completes the proof.

APPENDIX G
PROOF OF LEMMA 2

For Zthl bnh(x,@), we have the following holds with
probability 1 — N=2H 4

H o~
Z br,h(xv @)

=1

H
Zbrh LC 90

h=1

>

+ brhzc@

=

brn (7, @o)‘

—~
)
=

M=

br.n(x,©0)

>
Il

1
o (H5/3N1/12(10gm)1/4)

—75 (176)

where (i) follows from eq. (104). We next proceed to bound
the term Zthl by.p(z,0p). Recall that in Assumbtion 4 we
define M(©g) = E, [®(1,00)®(7,00)"]. For all 7 € D,
we define the following random matrix M (©y)

00) = 3 4.(6).

T€D

(177)
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A;(8¢) = ®(1,00)®(1,00) " — M(6Oy).

Note that eq. (90) implies || ®(7, ©p)|, < C4VH. By Jensen’s
inequality, we have

(178)

17 (80)],
u [12(7.©0)2 (7, ©0) ||,
< C3H (179)
For any vector v € R?™4H with |v||, = 1, we have
147(©0)oll,
< ||@(7, ©0)®(7,00) "v||, + [[M(60)v],
< ||@(1,00)®(7,00) " ||, 10l
+ HM(@O)Hz o]l
< QCiH vl
=202H
which implies
1A-(©0)ll, <2C3H (180)
14+(©0)4-(€0) ",
< 14+ (o)l | 4+(80) |,
< 4C H?. (181)
Since {A;(B¢)}rep are i.id. and E[A,(Op)] = 0 for all 7,
we have
|EliT(00)37 <@o>T1H2
ZE/L (60) }
T€D 2

= N -||E, [Ar,(00) A7, (©0) "],

(@)
LN -5, [ 4 (00) A, (00)T]
<4CjH* N
where (i) follows from Jensen’s inequality. Similarly, we can
also obtain

HE (©0)7 (@0)]H2 <4CIH? N

Applying Lemma 10 to Z/W\(@o), for any fixed h € [H] and
any & > 0, we have

P ([iren], = &)

£1/2
< : - '
< 4mdH eXp< ACLH?N +2C2H/3 - &

For any ¢; € (0,1), let

& = C;H\/mzv log <4de),
01

Then, we have

P ([iren, 2 )
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/2
< : -
< 4mdH - exp ( 4C4H2N T 20;H/3 -&

< 4mdH - exp ( 10045}121\[) =4,

which implies that the following holds with probability at least
1 — 6; taken with respect to the randomness of D

J7c@0rn],

%Z B(7, 00)®(

T€D

10 dmdH
<CZH|—1 .
<Cy \/N 0g ( o )
By the definition of ¥(0g), we have
M(80) = (5(60) ~

By Assumbtion 4, thjrﬁ: exists an absolute constant C, >
0 such that Apin(M(©0)) > C,, which implies that
| M (@o)_le < 1/C,. Letting N be sufficiently large such

that
40C*H? 40 AmdH
¢
N > max{cg ) log( 5 )

T, @O)T — M(@o)

(182)

A - Ioman) — N - M(0g).  (183)

and combining eq. (182) and eq. (183), we have
Amin (5(04)/N)
= Amin(M(80) + M(O0) /N + M1 /N - Iman)
> Auin(V(60)) — || M(©0) /]|

> O, — C;H\/;?l <4m5dH>

> C, /2.

Hence, the following holds with probability 1—4d; with respect
to randomness of D

I=©0)7",

2
< (N - AIni1r1 N =
< (2(00)/N) ™" < 575
which implies the following holds for all z € X’ and h € [H]

br,h(x7@0)
= \/q)h(x,@o)TE_l(@o)q)h(x ©o)
1/2
< (2,00, - | (©0)]|2/
ﬂ
~ VC,VN’

where we use the fact that ||®(z,00)l|, = [|o(2F,00)|, <
Cy. Substituting eq. (184) into eq. (176), we have

H ~
Z bnh(x, @)

\f V2HC,
= VGVN

(184)
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H5/3N1/12(] 1/4
+(’)( (logm) ) (185)

mi/12

Next, we proceed to bound the term Zthlbv,h(x,@h).
According to eq. (149), we have the following holds with
probability at least 1 — N—2H 4

H
va,h(l’/@h)
h—

H

<Y bya(x,wo)

h=1

H
+ ) [bu,n (@, @) — by p (2, wo))|
h=1

—~

iy H
<D bonle, wo)

h=1

Lo (H7/GN1/12(logm)l/4)

oy (186)

We then proceed to bound the summation of the penalty
terms Zthl by, p(z,wo). Recall that in Assumbtion 4 we
define 7, (wo) = E,, [¢(x], wo)p(x}, wo) " ]. For all h € [H]
and 7 € D, we define the following random matrix M (wp)

i (wo) = > B (wo), (187)
T€D
Bjy (wo) = ¢(x,, wo) (], wo) T — Mip(wp). (188)

Note that eq. (90) implies ||¢(x},, wo)|l, < Cg. By Jensen’s
inequality, we have
[[70h (wo)l
< Eu [H¢(‘T;—ww0)¢(‘r;7 wO)THQ}
< C3. (189)
For any vector v € R?™ with ||v||, = 1, we have
1B, (wo)vll,
< ||¢(1’;, w0)¢(x;a wO)TUHQ + ||mh(w0)v||2
< [Jé(af, wo)p(af, wo) ||, [1vlly + 7n (wo)lly vl
<202 |vll, = 2C3,

which implies

1B7, (wo) |, < 2CZ, (190)
|| Bf, (wo) B, (wo) " ||,
< [|Bf (wo)ll, || BF (wo) T ||, < 4C3. (191)

Since {B} (wo)}rep are iid. and E[B](wg)] = 0 for all T,
we have

|2 o ),

> E,. [Bf(wo) B, (wo) ']

TED 2
= N - || By [BR (wo) B! (wo) ' ]|

0)By! (wo)

2

)

(@) "
< N-E, [[|B (w
< 4CYN,

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.



6510
where (i) follows from Jensen’s inequality. Similarly, we can
also obtain

(| B [ (wo) " (wo)]]|, < 4CEN.

Applying Lemma 10 to 7, (wo), for any fixed h € [H| and
any & > 0, we have

P (|lmn(wo)lly > &2)

£3/2
CACIN+2C%/3-& )

02
40 dmdH
N> —"1
> g o ()

Then, we have

P ([lmn(wo)ll, > €2)

<dmd-exp | ———=7 53/22
4CIN +2C2/3- &
&3 b2
< . _ = =
< dmd eXp< 0CIN | ~ &'

which implies that we have the following holds with proba-
bility at least 1 — 0o/ H taken with respect to the randomness
of D

172 (wo) /N1,

1
N Z gb(x;,wo)gb(x};,wo)T - mh(wo)

T7€D

2

10 dmdH
< . 192
ch\/ ( 5 > (192)
By the definition of Ay (wg), we have
mp(wo) = (An(wo) — A2 - Iama) — N -mp(wo).  (193)

By Assumbtion 4, there exists an absolute constant C. >
0 such that A\pin(Mp(©p)) > C., which implies that
||m(wo)*1H2 < 1/C.. Letting N be sufficiently large such

that
40C3 40 4mdH
¢
NZmaX{C?,g 10g< 62 )
and combining eq. (192) and eq. (193), we have

)\mm(Ah(wO)/ )
= Amin (2 (wo) + M(wo) /N + X1 /N - Ioynq)
2 Amin(M(wo)) — [[m(wo) /N,

10, (4mdH
N 8\ s,

>C.—C3H

> C/2.
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Hence, the following holds with probability 1 — do/H with
respect to randomness of D

HAh ’w() 1||2 N )\mln(Ah(wO)/N))
< 2 .
= NC.

Taking union bound of eq. (194) over [H|, we have the
following holds for all € X and h € [H]| with probability

(194)

1—4
bo. (., w0) = /1, w0) T Ay (w0) dn (o)
< lléne,wo)l,- HAh (wo)~"I;*
< \/\(/T:C\;%, (195)

where we use the fact that ||¢(2},600)|, < Cy. Substituting
eq. (195) into eq. (186), we have

H

> byn(x, B) (196)

h=1

- \/iHC(j) Lo H7/6N1/12(10g m)1/4

= JO/N ml/12 :
Finally, letting 0y = N~2H~*/2 and 6o = N=2H~*/2 and

combining eq. (185) and eq. (196), we have the following
holds with probability 1 — N=2H 4

H H
B ben(@,0) + B2 > byn(w, @)
h=1 h=1

+ max{ﬁ1H5/3,ﬁ2H7/ﬁ} -0 (

N1/12(10g m)1/4
ml/12 ) ’

which completes the proof.

APPENDIX H
PROOF OF LEMMA 3

Similarly to the proof of Lemma 1, we first bound the
uncertainty of the estimated reward Rh() in eq. (67) and
then bound the uncertainty of the estimated transition value
function (]P’thH)(-) in eq. (69).

A. Uncertainty of Estimated Reward ﬁh( -)

Following steps similar to those in the proof of Lemma B.1
in [26], we can obtain

10*||, < HVAH and H@Hng dHN/ . (197)

For simplicity, we denote r(7) = >, ¢y r(a]), R(T) =
> nerm) (@) and 5( ) = R(7) — r(7). Consider the esti-
mation error Rp,(-) — Ry (). We have

Rh( ) Rh( )
= (9(),07 — )
= (@,(x).0" - )
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= (®4(z),0%) — Op(z) "B (Z ‘P(T)T(T)>
T€D
= (®p(2),07)

— Oy (z) 27! (Z (I)(T)q)(T)T@*>

T€D

+ @y (z) T2t (Z @(T)E(T))

T€D
= (Pn(x), 07)
— (I)h(l‘)TZ_l (Z e IdH) Ch

+ @y (z) T2t (Z <I>(T)€(7')>

T€D
=\ - Oy(z)"271O"

+ ®p(2) 'S (Z @(r)e(ﬂ) :

TE€D

(198)

Applying the triangle inequality to eq. (198), we have
‘Rh(x) - Eh(x)‘
<A1 |@u(z)'ETIO”
(4)

+ | By () T2 (Z @(T)S(T)> ‘ .

T€D

(199)

(49)
We then proceed to bound (i) and (i7) separately. For (i),
we have

(i) = A - ‘@h(m)Tz—l/Qz—l/Qe*
S A ®r(@) g1 075

(i.1)
< HV/dHM, ||®4(2)]|5-1

where (i.1) follows from eq. (197) and the following
inequality

(200)

[CX-

_ Vo1

< ||I= Y22 e,
< H+\/dH/\,.

For (ii), we have

(i1) = |®p(x) TH"Y2871/2 <Z @(7‘)6(7’))‘
T€D
<SS emem)|  IE@ls .. @on

T€D n-1

(#i4)
Following steps similar to those in eq. (116) and Lemma B.2

in [26], we have the following holds with probability at least
1-9

(i17) < H - \/21og(1/8) + dH -log(1 + N/\y),

6511

which implies

(i1) < H+/2log(1/6) + dH -log(1 + N/)\;)

[P (@) g-1 - (202)

Recalling that b, (x) = ||®4(2)|y-1 and substituting eq.
(202) and eq. (200) into eq. (199), we can obtain

|[Ru(@) = Bi(@)| < Ra, - bra(a), (203)

where %5, is an absolute constant satisfying
Ry,
>H (m+
V/2log(1/6) + dH -log(1 + N/A1)).

Letting Ay = 1 and C, > 0 be a sufficiently large constant,
we can verify that Rg, = Cg, H+/dH log(NN/¢) satisfies the
above inequality.

B. Uncertainty of Estimated Transition Value Function
(PpVhtr)(+)

Following steps similar to those in the proof of Lemma B.1
in [26], we can obtain

|w*|, < HVd and

||, < H+\/dN/s.
Consider the estimation error (IP’hYA/hH)(-) - (I?”hf/hﬂ)(). For

simplicity, we define ,(z) = (PyVis1)(z) — (@h,\A/;,+1)(:c)
for all z € X. Following steps similar to those in eq. (198),
we can obtain

(P Vir1)(z) — (B Vir1) (2)
< =Xg-d(x) AL i

+o(a) AL (Z ¢(x2)ev(wz>> : (205)

T€D

(204)

Applying the triangle inequality to eq. (205), we have
|BAis1) (@) = (BaTisn) ()]
< o [o(2) T AL wy
(4)

o(x)T A, (Z ¢<x;>a@<xz>> ‘ .

TE€D

n (206)

(i)

Following steps similar to those in eq. (199), we can obtain

(i) < Hy/@a |62+ o7)
For (i1), we have
(i) = |o(x) " A, /2N, (Z ¢(Iﬁ)€u(xﬁ)>|
T€D
<2 d@Deun)|| @y (208)
T7€D A;l

(i)
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We then proceed to upper bound the term (zi:). Following
steps similar to those in eq. (161) and Lemma B.2 in [26],
we have the following holds with probability at least 1 — ¢

(iii) < Ry, [|6(x) 5+ 209)
where %, is an absolute constant satisfying
Rp, > 2H
: \/log(H “NZ,/8) + d - log(1 + N/Az) + 8€2N? /X,
(210)

and J\/{” ,, 1s the cardinality of the following function class
Vh(LE, Rf?a va Rﬁl’ Rﬁza )‘la A2)
= {max{Qy(s,a)} : § — [0, H]
with ”@”2 < Ry, Hw”Q < Ry, b1 € [OvRB1}7ﬁ2 € [07Rﬁ2}7
1Zlly = Ars [[Ally = Ao},

where Ry = H\/dHN/\, R, = H\/dN/\s, and
Qn(@) = min{(2n(2), ©) + (¢(x), w)
— B JOu(@) TSy ()
— By -y /d(x)TA L p(z), H — h+1}7.
Then, following steps similar to those in Section D, we have
| I;lea}{@h(s, a,0,w, By, 82,2, A)}
= max{Q(s,0,0',w', 5, 55, %', A}
< max | (,(2),0 ~ ©)]

1
+max|(¢(«), w—w’)| + Vv bl

1 ,
+\/T—2\52—52|

+ R, max|[[| @4 (2)llg-1 = 18n (@)l

+ R, max|[|¢(a)l| -1 — [l¢(2)ll -1

(1)

<0 -0, + lw—w'l, + |6 — B
+ |82 — B3]
+ Rp (/127 =X

+ B, /A = A,

where (i) follows from the fact that [|¢(z)||, < 1 and Ay, Ay >
1. Following arguments similar to those used to obtain eq. (60)
and applying Lemma 8.6 in [55], we have

log J\/evh

@211)

2 N(e/6,RU Ry) + N(e/6,R% R,)
+ N(e/6,Rp,) + N(e/6,Rg,)
+ N (e?/(36R3,), F,VdH /\)
+N(€2/(36R3,), F,Vd/As)

(i)
< dHlog(1+ 12Rg/€) + dlog(1 + 12R,, /)
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+log(1 + 12Rg, /€) + log(1 + 12Rg, /€)
+ d*H?log(1 + 36R3, VdH /e*)
+d?log(1 + 36R%,Vd/e%)

(#)

< dHlog(1+ 12HVdHN /¢)

+ dlog(1 4+ 12HVdN /€)

+log(1 + 12C5, H/dH log(N/6) /)

+log(1 4+ 12Rg, /¢€)

+ d*H?log(1 + 36C3 dH*V/dH log(N/6)/€?)
+ d*log(1 + 36R%,Vd/€?)

(S) Cld2H2 10g(d3/2H7/2N1/2/€2)

+ Cad? log(RE, Vd/e?), (212)
where in (i) we use N (e, R?, B) to denote the e-covering of
ball with radius B in the space R%, A(e, B) to denote the
e-covering of interval [0, B], and N (e, F, B) to denote the
e-covering of the function class F = {M : ||M| < B},
(i) follows from Lemma. 8.6 in [55], (i¢i) follows from the
definition of Ry, R,, and Rg,, and in (iv) we let C; and C5 be
sufficiently large and waive the log(log(+)) term.

Substituting eq. (212) into eq. (209), we can obtain

2H -\ [log(H - N2,,/8) +d - 1og(1 + N/X2) + 8N/ Ao

< 9H - (\/loa(H/9) + \ g N,

+/d - log(1+ N) + V8e2N2)
<o2H . ( log(H/3)

+\/CLd2H? log(d3/2HT/2N1/2 e2)
+ \/02d2 log(R3, Vid/e?)
+/d log(1+N) + \/862N2>.

(213)

Letting ¢ = (dH)Y/*/N, we can see that when Rg, =
Cp,dH?\/log(dH3N5/2/§), where Cj, is a sufficiently large

constant, we have
Rg, > RH.S of eq. (213),

which satisfies the inequality in eq. (210).

C. Upper and Lower Bounds on Evaluation Error 6p( )

Using the properties that we obtained from Section H-A &
H-B and following steps similar to those in Section F-C,
we can obtain

0 < on(x) <2[B1-brp(z)+ B2 byn(x)],

where 31 = R, = Cg H

Cpp, dH?\/log(dH3N5/2/5).

dH1log(N/§) and Rp, =
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APPENDIX I
SUPPORTING LEMMAS FOR OVERPARAMETERIZED
NEURAL NETWORKS

The following lemma shows that an infinite-width neural
network can be well-approximated by a finite-width neural
network.

Lemma 4 (Approximation by Finite Sum): Let g¢g(x) =
Jrao z " l(w)dp(w) € Fy, 4 Then for any € > 0,
with probablhty at least 1 — € over wy,--- ,w,, drawn i.i.d.
from N(0,1;/d), there exist 1, ,{,, where £; € R? and

14:]l, < g2/Vdm for all ¢ € [m] such that the function
g(x) = (1/ym) >t o (w; z)x " ¢; satisfies

sup |g(z) — g(z)|
2.2
S 2L0'92 + \/iCUgQ log }
Jm T m 5

with probability at least 1 — 6.

Proof: The proof of Lemma 4 follows from the proof of
Proposition C.1 in [68] with some modifications. In Lemma 4
we consider a different distribution of w; and upper bound
on ||¢;]|, from those in [68]. First, we define the following
random variable

a(wy, - —g(z)].

s W) = sup [g(x)

Then, we proceed to show that a(-) is robust to the perturbation
of one of its arguments. Let ¢; = ¢(w;)/(v/dmp(w;)). For

wi,- -, Wy and w; (1 < ¢ < m), we have
|a(wla"' ,'UJm) —Cl('lUl,"' 71211‘7"‘ 7wm)|
1
vdm
o’ ( (w] 2)z"; — o' (0] z)x Tf’
1
Vdm
o' (w z)z " l(w;) 3 o' (w] z)x T (w;)
p(w;) p(w;)
1
<
= Vim
o' (wl )z l(w;) o (W x)x (W)
sup - —
TEX p(wz) p(wl)
1
< -
= am
< o' (w z)z T l(w;) o' (0] z)z T (w;) )
sup =
wex p(w;) p(w;)
1 T H £(w;)
< sup (||o’(w; z)x
Vdm zex (H ) H p(w;) ||
£(wi)
+ ||o w x)x —
ROEERED
20092
< —== =
S Jam ¢

where the last inequality follows from the facts that ||z||, = 1,
lo’(-)| < Cy and sup,, ||¢(w)/p(w)||, < g2. Then, we proceed
to bound the expectation of a(-). Note that our choice of ¢;
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ensures that v/d - By, ... 4, Gn(-) = g(-). By symmetrization,

we have
Ea = Vd - E sup [§(z) — Eg(z)|
rzeX
2
\—C- wssup ZEO’ w x)x VAR

are a sequence of Rademacher random

1ill, < g2/+/m and o'(-) is
L,-Lipschitz, we have that the function b(-) = o’(-)z " ¢; is
(Lsg2/+/m)-Lipschitz. We then proceed as follows

2vd Zez wxa:€

Ea < T

T
5

af,wZ

where {&;}icim

variables. Since |z /]

“Ey,c sup
reX

Q) 2\/&[/0'92
S N w € Sllp

m reEX

“) 2\[L092

'w

2

(lll QIngg \/E

w0, 1a/d) [[0]]3

_ 2L092

=
where (i) follows from Talagrand’s Lemma (Lemma 5.7)
n [78], (it) follows from the fact that ||z|, = 1 for all
x € X and Cauchy-Schwartz inequality and (ii7) follows from
Jensen’s inequality. Then, applying McDiarmid’s inequality,
we can obtain

2L,
P(“z v *6)

<Pla>Ea+e)

2¢2
< exp —m—CQ =exp | —

m€2
2C2%g3 )

Letting ¢ = ﬂ%ﬁ'bgg log (%), we have
2L 2 1
Pla> g2 \[C"QQ log () <4,
Vm vm §

which completes the proof. ]

The following lemma bounds the perturbed gradient and
value of local linearization of overparameterized neural
networks around the initialization, which is provided as
Lemma C.2 in [71].

Lemma 5: Consider the overparameterized neural network.
Consider any fixed input z € X. Let R < ¢y/m/(logm)? for
some sufficiently small constant c. Then, with probability at
least 1 —m ™2 over the random initialization, we have for any
w € B(wp, R), where B(wg, R) denotes the Euclidean ball
centred at wy with radius R, the followings hold

[o(z, w)ll, < Co, (214)
6z, w) — oz, wo)l,
R 1/3
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|f(33’w) - <¢($7wo)T(w - w0)>|
R4 1/3
S ) O¢ <\/m> \/ 10g m|,
where Cyy = O(1) is a constant independent from m and d.
Proof: Please see Lemma C.2 in [71] for a detailed proof,

which is based on Lemma F.1, F.2 in [72], Lemma A.5, A.6
in [68] and Theorem 1 in [79]. [l

(216)

APPENDIX J
SUPPORTING LEMMAS FOR RKHS

In this section, we provide some useful lemmas for general
RKHS. Consider a variable space X’. Given a mapping ¢(-) :
X — R? we can assign a feature vector ¢(z) € R? for
each x € X. We further define a kernel function K(-,-) :
X xX —Ras K(z,2') = ¢(x) "¢(2') for any z,2" € X.
Let H be a RKHS defined on X with the kernel function
K(-,-). Let {-,-)3 : HxH — R and ||-|,, : H — R denote
the inner product and RKHS norm on H, respectively. Since
‘H is a RKHS, there exists a feature mapping ¥(-) : X —
H, such that f(x) = (f(:),¢(x))y for all f € H and all
x € X. Moreover, for any z,2’ € X we have K(z,2') =
(¥(x), ¥ (x"))s. Without loss of generality, we further assume
[6(x)ll, < Cy and (@) |, < Cy for all & € X.

Let £2(X) be the space of square-integrable functions on
X with respect to the Lebesgue measure and let (-, -) -2 be the
inner product on £2?(X). The kernel function K(,-) induces
an integral operator Ty : £?(X) — L£2(X) defined as

TKf(z):/XK(J:,x’)-f(:E’)dm', Vfe £*(x). (17

Consider the kernel function K (-,-) of the RHKS . Let
{z;}72, C X be a discrete time stochastic process that is
adapted to a filtration {F;}$°, i.e., z; is F;—1 measurable
for all ¢ > 1. We define the Gram matrix K € RV*N and
function ky(-) : X — RY as

Ky = [K (%5, 25)]ijen) € RV,
kn(z) = [K(x1,2), -, K(zn,2)]" € RV,

(218)
(219)

Note that Ky and ky(z) can also be expressed as
Ky=®0" = 00T e RV*V,
kn(z) = @o(z) = Uy(z) € RV,

where ® = [p(z1), - ,¢(xn)]T € RV*? and ¥ =

[(21), - ,¥(zn)]T € RN*®. Given a regularization
parameter A > 1, we define the matrix Q5 based on ® and
an operator Y in RKHS H based on V¥ as

On=0Td+ A1y,
TN =0T0+ )\ Iy

(220)
(221)

We next provide some fundamental properties for the RKHS
H.

Lemma 6: For any z € X, considering Ky, kn(-), Qnx and
Ty defined in eq. (219) and eq. (221), we have the followings
hold

PN (Ky+1Iy) ' =040, (222)
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U (Ky+In) t =TT, (223)
o(x) QN o()

—kn(@) T (Kn 4+ X In) Ykn(2)
@ (@) TP (). (224)

Proof: The result in Lemma 6 can be obtained from
steps spread out in [71]. We provide a detailed proof here for
completeness.

We first proceed to prove eq. (222) and (i) in eq. (224).
According to the definition of X, we have
One’
=3Tdd" + D"
=37 (@D + M)
=o' (Ky + Iy).

Multiplying Qj}l on both sides of the above equality yields
o' =Q e (Ky + Iy),

which implies eq. (222) as follows

T (Ky+1Iy) ' =030 . (225)
We next proceed as follows
¢(r) = Q' Qv ()
= Q3 (PTO + A~ Ig)o(x)
= (Qy'2T)Po(x) + A2 o()
DT (Ky + In) ' o()
+ AN (), (226)

where (i) follows from eq. (225). Taking inter product with
¢(x) on both sides of eq. (226) yields

x,T)
()" ¢(a)
o(x) 0T (Ky + In) ' @p(z) + Ad(x) " Q' é(x)
= kn(2) " (Kn + In) " thn (@) + Ao (2) T Q3 ¢ (),

K(

which implies

)0 0(o) = § | K. )

—kn(z) (Ky + IN)lk:N(a:)} . (227)

We next proceed to prove eq. (223) and (ii) in eq. (224).
According to the definition of Y, we have

TNT "

=0 U 4 AT T

=0 (WU +Iy)

=V (Ky+In). (228)
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Multiplying Tg,l on both sides of the above equality yields

U =T, (Ky + Iy),

which further implies eq. (223) as follows

UKy +In) P =T 0. (229)

We next proceed as follows

U(z) = T Tne(z)
=Y (U0 4 N Iy)()
= (TN )WY(z) + AT ()

@

=0 (Ky +In) ' 0%(z) + \Y ' o(2),  (230)

where (i) follows from eq. (229). Taking inter product with
1(x) on both sides of eq. (230) yields
K(x,x)
= (Y(@), ¥ (@))n
= (x) U (Ky + Iy) ' Uy(x)
+ () T ()
=ky(z) (Kn+1In)"
+ M () TR (),

1]431\/(.%)

which implies

U(@) TR ()
= % K(x,x)

—kn(2) T (Ky + In) Yen ()] (231)
Combining eq. (228) and eq. (231) completes the proof. [

The following two lemmas characterize the concentration
property of self-normalized processes.

Lemma 7 (Concentration of Self-Normalized Process in
RKHS [80]):

Let {€;}32, be a real-valued stochastic process such that
(i) € € ]-'t and (ii) €; is zero-mean and o-sub-Gaussian
conditioned on F;_1 satisfying Vx € R

E [5i|}—i71] = 0, (232)
KE; k20?2
E e <e |f7;_1 . (233)
Moreover, for any t > 2, let Exy = [e1,--- ,eny_1]" € RN 7L,

For any n > 0 and any § € (0,1), with probability at
least 1 — 6, we have the following holds simultaneously for all
N >1:

_ —1
EN[(En+n-Ina) ' +1Ina]  Ex
< o?-logdet[(1+1) - Iny1 + Kn]

+ 202 - log(1/46).

Moreover, if Ky is positive definite for all N > 2 with
probability one, then the above inequality also holds with
n=0.

Lemma 8: Let G C {G : X — [0,C4]} be a class of
bounded functions on X. Let Ge C G be the minimal e-cover
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of G such that N. = |G.|. Then for any § € (0,1), with
probability at least 1 — 6, we have

sup Z d(x) (Glw;) — E[G(x)| Fi-1))
Geg oyt
< 203 logdet(I + Kn/\)
+2C5N (A — 1) + 4C7 log(N./6)
+8N?CZe /A (234)
Moreover, if G(-) does not depend on {x;}ic[n), we have
2
Z¢ ;) (G(x:) — E[G(x)| Fi1))
oy

< 092 logdet(I + Kn/A)

+ CZN (A= 1) +2C7 log(1/6). (235)

Proof: The proof is adapted but different from the proof
of Lemma E.2 in [71]. We first proceed to prove eq. (234) and
will show that eq. (235) can be obtained as a by-product of
proving eq. (234). For any G € G, there exists a function G’
in G, such that sup, ¢y |G(z) — G'(z)| < e. Denote Ag(x) =
Gz)-G (:r) We have the following holds
2

¢ ;) (G(z:) — E[G(2:)| Fi-1])

-1
Qy

—E[G"(2i)|Fi-1])

Qy'

AG xz

i

2

—E[Ag(z)|Fi-1]) (236)

For the second term on the right hand side of eq. (236),
we have
2

) (Ag(zi) — E[Ag()|Fi-1])

—1
Qy

< N?C3 - (2€)% /A = AN?C3e? /. (237)

To bound the first term on the right hand side of eq. (236),
we apply Lemma 5 to G'(z;) — E[G'(z;)|Fi—1]. We fix
G € G and let ¢; = G'(z;) — E[G'(x;)|Fi—1] and Exy =

le1,- - {-:N_l]T € RN—1, Using this notation, we have
2
Z ¢(x:) (G'(2:) — E[G'(2:)|Fi-1])
Qy'
2
oyt
=||[®"Ex]|, -
[ En g
= EyPQ,' 0" Ey

9D ETooT (Ky + My) By =
ENKn(Ky +My) 'Ex
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(i)
< EY(Kn+ (A= 1)IN)(Ky +My) 'Ey
=EN(Kn +(\—1)Iy)

[In 4+ (Ky+ (A= 1)Iy)] 'Ex
= EN[(Kn + (A= DIn)™! + IN)Ew, (238)
where (7) follows from eq. (222) in Lemma 6 and (i¢) follows
from the fact that A\ > 1 and K + Ay is positive definite.
Note that each entry of Ey is bounded by C, in absolute
value. Applying Lemma 7 to eq. (238) and taking a union
bound over G, for any 0 < § < 1, we have the following
holds with probability at least 1 — 9

N 2

sup

o(x:) (G (i) — B[G(2s)|Fi1])
G’'eG. 1

< Clogdet[(1 +n)I + K]
+ 207 log(N./9).

-1
Qy

(239)

Moreover, note that (1+n)I+ Ky = [[+(14+n) " Ky][(1+
n)I], which implies

log det[(1 4+ n)I + Ky]
= logdet[I + (1 +n) ' Kx] + Nlog(1 +n)

<logdet[I + (1 + 1) 'Ky]+ Nn. (240)
Combining eq. (236), eq. (237), eq. (238), eq. (239) and
eq. (240) and letting n = A — 1, we have the following holds
with probability 1 — §

N 2

> o) (Gla:) — B [G(a)|Fia))

i=1 9;71
< 2C2logdet(l + Ky/A) +2C2N(A - 1)
+4C7 1og(Ne/6) + 8N?CZe* /A,

which completes the proof of eq. (234). To prove eq. (235) we
do not need to go through the “e-cover” argument since G(-)
is independent from {x;};c . We can directly apply Lemma 7
and then follow steps similar to those in eq. (240) to obtain
eq. (235). O
For any integer NV and A > 0, we define the maximal
information gain associated with the RKHS H as

Tx(N,\) = sup {1/2-logdet(I; + X" Ky)},
DCX

where the supremum is taken over all discrete subset D of X
with the cardinality no more than N.

Lemma 9 (Finite Spectrum/Effective Dimension Property):
Let {o;},>1 be the eigenvalues of Tk defined in eq. (217) in
the descending order. Let A € [c1,c2] with ¢; and ¢y being
absolute constants. If o; = 0 for all j > D + 1, where D is a
positive integer. Then, we have T'x (N, \) = Ck - D - log N,
where C'ic is an absolute constant that depends on C;, Cs,
c1, ¢ and Co.

Proof: See the proof of Lemma D.5 in [71] for a detailed
proof. (]
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APPENDIX K
OTHER USEFUL LEMMAS
Lemma 10 (Matrix Bernstein Inequality [81]): Suppose
that {A;}¥ , are independent and centered random matrices
in R4*42_ that is, E[A;] = 0 for all i € [N]. Also, suppose
| Ayll, < Ca for all i € [n]. Let Z =Y | A; and

v(Z) =max {[[E[2Z7]|,.|[E[27Z]],} -
For all £ > 0, we have
P([[Z]l, =€)
£2/2 )
< (dy+dsy)-e - ].
< (d 2) XP< U(Z)+CA/3~£
Proof: See Theorem 1.6.2 in [81] for a detailed proof.
O
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