
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024 6481

Provably Efficient Offline Reinforcement Learning
With Trajectory-Wise Reward

Tengyu Xu, Yue Wang, Shaofeng Zou , Member, IEEE, and Yingbin Liang , Fellow, IEEE

Abstract— The remarkable success of reinforcement learning
(RL) heavily relies on observing the reward of every visited state-
action pair. In many real world applications, however, an agent
can observe only a score that represents the quality of the whole
trajectory, which is referred to as the trajectory-wise reward.
In such a situation, it is difficult for standard RL methods to well
utilize trajectory-wise reward, and large bias and variance errors
can be incurred in policy evaluation. In this work, we propose
a novel offline RL algorithm, called Pessimistic vAlue iteRaTion
with rEward Decomposition (PARTED), which decomposes the
trajectory return into per-step proxy rewards via least-squares-
based reward redistribution, and then performs pessimistic value
iteration based on the learned proxy reward. To ensure the value
functions constructed by PARTED are always pessimistic with
respect to the optimal ones, we design a new penalty term to
offset the uncertainty of the proxy reward. We first show that our
PARTED achieves an Õ(dH3/

√
N) suboptimality for linear

MDPs, where d is the dimension of the feature, H is the episode
length, and N is the size of the offline dataset. We further extend
our algorithm and results to general large-scale episodic MDPs
with neural network function approximation. To the best of
our knowledge, PARTED is the first offline RL algorithm that is
provably efficient in general MDP with trajectory-wise reward.

Index Terms— Linear Markov decision processes (MDPs),
neural networks, function approximation, reward redistribution,
pessimistic principle.

I. INTRODUCTION

REINFORCEMENT learning (RL) aims at searching for
an optimal policy in an unknown environment [1].

To achieve this goal, an instantaneous reward is typically
required at every step so that RL algorithms can maximize
the cumulative reward of a Markov Decision Process (MDP).

Manuscript received 12 April 2023; revised 19 January 2024; accepted
30 June 2024. Date of publication 12 July 2024; date of current version
20 August 2024. The work of Shaofeng Zou was supported by the U.S.
National Science Foundation under Grant CCF-2007783, Grant CCF-2106560,
and Grant ECCS-2337375 (CAREER). The work of Yingbin Liang was
supported in part by the U.S. National Science Foundation under Grant
RINGS-2148253 and Grant CNS-2112471. (Corresponding author: Shaofeng
Zou.)

Tengyu Xu was with the Department of Electrical and Computer Engi-
neering, The Ohio State University, Columbus, OH 43210 USA. He is now
with GenAI Meta AI Team, Meta Platforms, Menlo Park, CA 94025 USA
(e-mail: xu.3260@buckeyemail.osu.edu).

Yue Wang is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
yue.wang@ucf.edu).

Shaofeng Zou is with the Department of Electrical Engineering, University
at Buffalo, The State University of New York, Buffalo, NY 14228 USA
(e-mail: szou3@buffalo.edu).

Yingbin Liang is with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH 43210 USA
(e-mail: liang.889@osu.edu).

Communicated by A. Krishnamurthy, Associate Editor for Machine Learn-
ing and Statistics.

Digital Object Identifier 10.1109/TIT.2024.3427141

In recent years, RL has achieved remarkable empirical success
with a high quality reward function [2], [3], [4], [5], [6].
However, in many real-world scenarios, instantaneous rewards
are hard or impossible to be obtained. For example, in the
autonomous driving task [7], it is very costly and time con-
suming to score every state-action pair that the agent (car)
visits. In contrast, it is fairly easy to score the entire trajectory
after the agent completing the task [8]. Therefore, in practice,
it becomes more reasonable to adopt trajectory-wise reward
schemes, in which only a return signal that represents the qual-
ity of the entire trajectory is revealed to the agent in the end.
In recent years, trajectory-wise rewards have become prevalent
in many real-world applications [9], [10], [11], [12], [13].

Although trajectory-wise rewards are convenient to be
obtained, it is often challenging for standard RL algorithms
to utilize such a type of rewards well due to the high bias and
variance it can introduce in the policy evaluation process [14],
which leads to unsatisfactory policy optimization results.
To address such an issue, [8], [15] proposed to encode the
whole trajectory and search for a non-Markovian trajectory-
dependent optimal policy using the contextual bandit method.
Although this type of approaches have promising theoretical
guarantees, they are difficult to be implemented in practice
due to the difficulty of searching the large trajectory-dependent
policy space whose dimension increases exponentially with the
horizon length. Another type of approaches widely adopted in
practice is called reward redistribution, which learns a reward
function by allocating the trajectory-wise reward to every
visited state-action pairs based on their contributions [14],
[16], [17], [18], [19]. Since the reward function in reward
redistribution is typically learned via solving a supervised
learning problem, such an approach is sample-efficient and can
be integrated into the existing RL frameworks easily. However,
most of existing reward redistribution approaches do not have
theoretical performance guarantee. So far, only [19] proposes
a provably efficient reward redistribution algorithm, but is only
applicable to tabular episodic MDP and requires both reward
and transition kernel to be horizon-independent.

Despite the superior performance of the reward redistribu-
tion method, all previous algorithms considered only the online
setting, which are not applicable to many critical domains
where offline sampling is preferred (or can be required),
as interactive data collection could be very costly and risky [7],
[20]. How to design reward redistribution in offline RL for
trajectory-wise rewards is an important but fully unexplored
problem. For such a problem, designing reward redistribution
algorithms can be hard due to the insufficient sample coverage
issue [21] in offline RL. Further challenges can be encountered

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2821-6941
https://orcid.org/0000-0003-2631-4262

6482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

when we try to design provably efficient reward distribution
algorithms for general MDPs with large state space and
horizon-dependent rewards and transition kernels, which has
not been studied in online setting.

The goal of this work is to design an offline RL algorithm
with reward redistribution for trajectory-wise rewards, which
has provable efficiency guarantee for general episodic MDPs.

A. Main Contributions
In this paper, we consider episodic MDP with possibly

infinite state space and horizon-dependent reward function
and transition kernel. The trajectory-wise reward adopts a
standard sum-form as considered previously in [18], [19],
[22], [23], [24], and [25], in which only the summation of
rewards over the visited state-action pairs is revealed at the
end of each episode.

We propose a novel Pessimistic vAlue iteRaTion with
rEward Decomposition (PARTED) algorithm for offline RL
with trajectory-wise rewards, which incorporates a least-
square-based reward redistribution into the pessimistic value
iteration (PEVI) algorithm [26], [27], [28], [29], [30]. Dif-
ferently from the standard PEVI with instantaneous reward,
in which reward and value function can be learned together
by solving a single regression problem, in PARTED, reward
need to be learned separately from the value function by
training a regression model to decompose the trajectory return
into per-step proxy rewards. In order to capture the reward
and value function for a large state space, we adopt over-
parameterized neural networks for function approximation.
Moreover, to offset the estimation error of proxy rewards,
we design a penalty function by transferring the uncertainty
from the covariance matrix of trajectory features to step-wise
proxy rewards via an “one-block-hot” vector, which is new in
the literature.

We show that our proposed new penality term ensures
that the value functions constructed by PARTED are always
pessimistic with respect to the optimal ones. We then show
that PARTED achieves an Õ(dH3/

√
N) suboptimality in the

linear MDP setting, where d is the feature dimension, H
is the time horizon of MDPs, and N is amount of offline
data. We further extend such results to general MDPs with
large scales. We show that with over-parameterized neu-
ral network function approximation, PARTED achieves an
Õ(DeffH

2/
√
N) suboptimality, where Deff is the effective

dimension of neural tangent kernel matrix and generalizes the
feature dimension in linear MDPs when Deff = dH . To the
best of our knowledge, PARTED is the first-known offline RL
algorithm that is provably efficient in general episodic MDPs
with trajectory-wise rewards.

B. Related Works
1) Trajectory-Wise Reward RL: Policy optimization with

trajectory-rewards is extremely difficult. A variety of prac-
tical strategies have been proposed to resolve this technical
challenge by redistributing trajectory rewards to step-wise
rewards. RUDDER [14] trains a return predictor of state-action
sequence with LSTM [31], and the reward at each horizon is
then assigned by the difference between the predications of

two adjacent sub-trajectories. Later, [16] improves RUDDER
and utilizes a Transformer [32] for better reward learning.
IRCR [17] assigns the proxy reward of a state-action pair
as the normalized value of trajectory returns that contain the
correspondingly state-action pair. RRD [18] learns a proxy
reward function by solving a supervised learning problem
together with a Monte-Carlo sampling strategy. Although those
methods have achieved great empirical success, they all lack
overall theoretical performance guarantee.

Differently from empirical studies, existing theoretical
works of trajectory-wise reward RL are rare and focus only
on the online setting. One line of research assumes trajectory
reward being non-Markovian, and thus focuses on searching
for a non-Markovian, trajectory-dependent optimal policy.
[8] assumes that trajectory-wise reward is a binary signal
generated by a logistic classifier with trajectory embedding
as the input. In this setting, the policy optimization problem
is reduced to a linear contextual bandit problem in which the
trajectory embedding is the contextual vector. Reference [15]
considers a similar setting as [8] but assumes only having
access to a binary preference score between two trajectories
instead of an absolute reward of a trajectory. Another line
of research assumes that the trajectory-wise reward is the
summation of underlying step-wise Markovian rewards. The
goal of this line of work is to search for an optimal Markovian
policy. Reference [33] adopted a mirror descent approach so
that the summation of rewards alone is sufficient to perform
the policy optimization. This approach relies on the on-policy
unbiased sampling of trajectory rewards, and can hardly be
extended to the offline setting. Reference [19] proposed to
recover the reward by solving a least-squared regression prob-
lem that fits the summation of reward estimation toward the
trajectory reward.

To our best knowledge, offline RL with trajectory-wise
rewards (where no interaction with the environment is allowed)
has not been studied before, and our work develops the
first-known algorithm for such a setting with provable sample
efficiency guarantee. Further, although our reward redistribu-
tion approach applies the least-square based method, which has
also been adopted in [19], our algorithm is designed for gen-
eral MDPs with possibly infinite state and horizon-dependent
rewards and transition kernels, which is very different from
that in [19] designed for tabular MDPs with time-independent
rewards and transition kernels.

2) Offline RL: The major challenge in offline RL is the
insufficient sample coverage in the pre-collected dataset, which
arises from the lack of exploration [21], [34]. To address
such a challenge, two types of algorithms have been studied:
(1) regularized approaches, which prevent the policy from vis-
iting states and actions that are less covered by the dataset [35],
[36], [37], [38], [39]; (2) pessimistic approach, which penalize
the estimated values of the less-covered state-action pairs [40],
[41]. So far, a number of provably efficient pessimistic offline
RL algorithm have been proposed in both tabular MDP set-
ting [28], [30], [42], [43], [44], [45], [46], [47], [48] and linear
MDP setting [21], [26], [29], [49], [50], [51], [52]. However,
the efficiency of all those works relies on both the availability
of instantaneous reward and special structures of MDP, which

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6483

can hardly be satisfied in practical settings. In this work,
we take a first step towards relaxing those two assumptions
by proposing PARTED, which is provably efficient in general
episodic MDPs with trajectory-wise rewards.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Episodic Markov Decision Process

An episodic Markov decision process (MDP) is defined
by a tuple (S,A,P, r,H), where S and A are the state
and action spaces, H > 0 is the length of each episode,
and P = {Ph}h∈[H] and r = {rh}h∈[H] are the transition
kernel and reward, respectively, where [n] = {1, 2, · · · , n}
for integer n ≥ 1. We assume S is a measurable space of
possibly infinite cardinality and A is a finite set. For each
h ∈ [H], Ph(·|s, a) denotes the transition probability when
action a is taken at state s at timestep h, and rh(s, a) ∈ [0, 1]
is a random reward that is observed with state-action pair
(s, a) at timestep h. We denote the mean of the reward as
Rh(s, a) = E[rh(s, a)|s, a] for all (s, a) ∈ S × A. For any
policy π = {πh}h∈[H], we define the state value function
V πh (·) : S → R and state-action value function Qπh(·) :
S ×A → R at each timestep h as

V πh (s) = Eπ

[
H∑
t=h

rt(st, at)

∣∣∣∣∣sh = s

]
,

Qπh(s, a) = Eπ

[
H∑
t=h

rt(st, at)

∣∣∣∣∣(sh, ah) = (s, a)

]
,

where the expectation Eπ is taken with respect to the random-
ness of the trajectory induced by policy π, which is obtained
by taking action at ∼ πt(·|st) and transiting to the next state
st+1 ∼ Pt(·|st, at) at timestep t ∈ [H]. At each timestep
h ∈ [H], for any f : S → R, we define the transition
operator as (Phf)(s, a) = E [f(sh+1)|(sh, ah) = (s, a)] and
the Bellman operator as (Bhf)(s, a) = Rh(s, a)+(Phf)(s, a).
For episodic MDP (S,A,P, r,H), we have

Qπh(s, a) = (BhV πh+1)(s, a),
V πh (s) = ⟨Qπh(s, ·), πh(·|s)⟩A,

V πH+1(s) = 0,

where ⟨·, ·⟩A denotes the inner product over A. We define
the optimal policy π∗ as the policy that yields the optimal
value function, i.e., V π

∗

h (s) = supπ V πh (s) for all s ∈ S and
h ∈ [H]. For simplicity, we denote V π

∗

h and Qπ
∗

h as V ∗
h and

Q∗
h, respectively. The Bellman optimality equation is given as

follows

Q∗
h(s, a) = (BhV ∗

h)(s, a), (1)
V ∗
h (s) = argmax

a∈A
Qπh(s, ·), (2)

V ∗
H+1(s) = 0. (3)

The goal of reinforcement learning is to learn the optimal
policy π∗. For any fixed π, we define the performance metric
as

SubOpt(π, s) = V ∗
1 (s)− V π1 (s),

which is the suboptimality of the policy π given the initial
state s1 = s.

B. Trajectory-Wise Reward and Offline RL

In the trajectory-wise reward setting, the transition of the
environment is still Markovian and the agent can still observe
and interact with the environment instantly as in standard
MDPs. However, unlike standard MDPs in which the agent
can receive an instantaneous reward rh(s, a) for every visited
state-action pair x at each timestep h, in the trajectory-wise
reward setting, only a reward that is associated with the whole
trajectory can be observed at the end of the episode, i.e., r(τ)
where τ = {(sτ1 , aτ1), · · · , (sτH , aτH)} denotes a trajectory and
(sτh, a

τ
h) is the h-th state-action pair in trajectory τ , which

is called “trajectory reward” in the sequel. In this work,
we consider the setting in which the trajectory reward is the
summation of the underlying instantaneous reward in the tra-
jectory of MDP (S,A,P, r,H), i.e., r(τ) =

∑H
h=1 rh(s

τ
h, a

τ
h).

We denote the mean of the trajectory reward as R(τ) =
E[r(τ)|τ] =

∑H
h=1Rh(s

τ
h, a

τ
h). Such a sum-form reward

has been commonly considered in both theoretical [19] and
empirical studies [18], [22], [23], [24], [25]. It models the
situations where the agent’s goal is captured by a certain metric
with additive properties, e.g., the energy cost of a car during
driving, the click rate of advertisements during a time interval,
or the distance of a robot’s running. Such a form of reward can
be more general than the standard RL feedback and is expected
to be more common in practical scenarios. Note that RL
problems under trajectory-wise rewards is very challenging,
as traditional policy optimization approach typically fails due
the obscured feedback received from the environment, which
causes large value function evaluation error [22].

We consider the offline RL setting, in which a learner has
access only to a pre-collected dataset D consisting of N trajec-
tories {τi, r(τi)}N,Hi,h=1 rolled out from some possibly unknown
behavior policy µ, where τi and r(τi) are the i-th trajectory
and the observed trajectory reward of τi, respectively. Given
this batch data D with only trajectory-wise rewards and a
target accuracy ϵ, our goal is to find a policy π such that
SubOpt(π, s) ≤ ϵ for all s ∈ S .

C. Linear MDPs

We mainly consider linear MDPs [53], [54] in this paper.
An episodic MDP (S,A,P, r,H) is a linear MDP with a
known feature map ϕ(·) : X → Rd if for each h ≤ H , there
exist unknown vectors w∗

h(s) ∈ Rd, ∀s ∈ S and an unknown
vector θ∗h ∈ Rd such that

Ph(s′|s, a) = ⟨ϕ(s, a), w∗
h(s

′)⟩, (4)
Rh(s, a) = ⟨ϕ(s, a), θ∗h⟩, (5)

for all (s, a, s′) ∈ S×A×S . Here we assume ∥ϕ(x)∥2 ≤ 1 for
all x ∈ X and max{∥w∗

h(S)∥2 , ∥θ
∗
h∥2} ≤

√
d at each step

h ∈ [H], where ∥w∗
h(S)∥2 =

∫
S ∥w∗

h(s)∥2 ds.
In linear MDPs, it has been shown that both reward Rh(·)

and transition value function (PhV̂h+1)(·) are linear functions
with respect to ϕ(·) [53], [55].

Notations: We use Õ(X) to refer to a quality that is upper
bounded by X , up to poly-log factors of d,H,N,m and (1/δ).
Furthermore, we use O(X) to refer to a quantity that is upper

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6484 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

bounded by X up to constant multiplicative factors. We use
Id as the identity matrix in dimension d. Similarly, we denote
by 0d ∈ Rd as the vector whose components are zeros. For
any square matrix M , we let ∥M∥2 denote the operator norm
of M . Finally, for any positive definite matrix M ∈ Rd×d and
any vector x ∈ Rd, we define ∥x∥M =

√
x⊤Mx.

III. ALGORITHM

In this section, we propose a Pessimistic vAlue iteRaTion
with rEward Decomposition (PARTED) algorithm for linear
MDPs. PARTED shares a similar structure as that of pes-
simistic value iteration (PEVI) [26], [28], [47], but has a
very different design due to trajectory-wise rewards. In PEVI,
a pessimistic estimator of the value function is constructed
from the dataset D and the Bellman optimality equation is
then iterated based such an estimator. Since instantaneous
rewards are available in PEVI, given a function class G, PEVI
constructs an estimated Bellman backup of value function
(B̂hV̂h+1) by solving the following regression problem for all
h ∈ [H] in the backward direction:

(B̂hV̂h+1) (6)

= argmin
gh∈G

LhPEVI(gh) (7)

=
∑
τ∈D

(
rh(xτh) + V̂h+1(sτh+1)− gh(xτh)

)2

(8)

+ λ · Reg(gh). (9)

In eq. (9), V̂h+1(·) is the pessimistic estimator of optimal
value function constructed for horizon h + 1, λ > 0 is
a regularization parameter and Reg(·) is the regularization
function. The optimal state-action value function can then be
estimated as Q̂h(·) = min{(B̂hV̂h+1)(·)−Γh(·), H}+, where
−Γh is a negative penalty used to offset the uncertainty in
(B̂hV̂h+1)(·) and guarantee the pessimism of Q̂h.

However, in the trajectory-wise reward setting, the absence
of instantaneous reward functions rh(·) renders previous algo-
rithms, which relied on eq. (9), inapplicable. To overcome
this issue, we propose to additionally construct estimations
of the instantaneous reward rh using the dataset. Leveraging
these estimations and eq. (9), we can then derive estimations
for the Bellman backups of value functions (B̂hV̂h+1) that
form an integral part of our PARTED algorithm. Although
straightforward, the constraints of a limited dataset and the
stochastic nature of the MDPs further introduces uncertainty
to the reward estimation. In response, we incorporate the
concept of PEVI, constructing a penalty term to refine our
estimations. We address the uncertainty arising from unknown
instantaneous rewards by showing that the designed penalty
term provides a pessimism guarantee for our estimations.

A. Reward Redistribution

We first construct our estimations of the instantaneous
rewards from the trajectory-wise reward. Specifically, we esti-
mate each Rh(·) for all h ∈ [H] using a linear function
⟨ϕ(s, a), θh⟩, where θh ∈ Rd is the estimation parameter.

We aim to obtain the estimations Θ = [θ⊤1 , · · · , θ⊤H] ∈ RdH

by minimizing the following loss function Lr : RdH → R:

Lr(Θ) =
∑
τ∈D

[
H∑
h=1

⟨ϕ(xτh), θh⟩ − r(τ)

]2

(10)

+ λ1 ·
H∑
h=1

∥θh − θ0∥2
2 , (11)

where λ1 > 0 is a regularization parameter. We then set the
per-step proxy reward R̂h(·) as

R̂h(·) = ⟨ϕ(·), θ̂h⟩, (12)

where Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H] = argmin
Θ∈RdH

Lr(Θ).

B. Transition Value Function Estimation

Similarly, we also use linear function ⟨ϕ(s, a), wh⟩ to esti-
mate transition value functions {(PhV̂h+1)(·, ·)}h∈[H] for all
h ∈ [H], where wh ∈ Rd is a learnable parameter. For each
h ∈ [H], we define the loss function Lhv (wh): Rd → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(sτh+1)− ⟨ϕ(xτh), wh⟩

)2

+ λ2 · ∥wh − w0∥2
2 , (13)

where λ2 > 0 is a regularization parameter. We then define
(P̂hV̂h+1)(·) : X → R as

(P̂hV̂h+1)(·) = ⟨ϕ(·), ŵh⟩, (14)

where ŵh = argmin
wh∈Rd

Lhv (wh). (15)

C. Penalty Term Construction

As discussed above, the estimations we obtained are uncer-
tain due to limited dataset and randomness from the MDPs.
We then construct the penalty term Γh to offset the uncertain-
ties in them.

We first consider the penalty term that is used to offset
the uncertainty raised from estimating the reward. For any
trajectory τ ∈ D, we define the trajectory feature Φ(τ) =
[ϕ(xτ1), · · · , ϕ(xτH)] ∈ RdH . Based on it, we define the
trajectory feature covariance matrix Σ(Θ) ∈ RdH×dH as

Σ = λ1 · IdH +
∑
τ∈D

Φ(τ)Φ(τ)⊤.

We further define an “one-block-hot” vector Φh(x) =
[0⊤
d , · · · , ϕ(x)⊤, · · · ,0⊤

d]
⊤ ∈ RdH for all x ∈ X , i.e.,

[Φh(x)]d(h−1)+1:dh = ϕ(x) and the rest entries are all zero.
The penalty term br,h of the estimated reward is then defined

as

br,h(x) =
[
Φh(x)⊤Σ−1Φh(x)

]1/2
. (16)

Note that the reward penalty term is new and first proposed in
this work. By constructing br,h(x) in this way, we can capture
the effect of uncertainty caused by solving the trajectory-wise
regression problem in eq. (12), which is contained in the
covariance matrix Σ, on the proxy reward R̂h at each step
h ∈ [H], via the “one-block-hot” vector Φh(x).

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6485

Algorithm 1 Linear Pessimistic Value Iteration With Reward
Decomposition (PARTED)

Input: Dataset D = {τi, r(τi)}N,Hi,h=1

Initialization: Set V̂H+1 as zero function
Obtain R̂h and Θ̂ according to eq. (12)
for h = H,H − 1, ·, 1 do

Obtain P̂hV̂h+1 and ŵh according to eq. (14)
Obtain Γh(·) according to eq. (18)
Q̂h(·) = min{R̂h(·) + P̂hV̂h+1(·)−Γh(·), H − h+1}+

π̂h(·|s) = argmaxπh
⟨Q̂h(s, ·), πh(·|s)⟩

V̂h(·) = ⟨Q̂h(·, ·), π̂h(·|·)⟩A
end for

Next, we consider the penalty term that is used to offset the
uncertainty raised from estimating the transition value function
(PhV̂h+1)(·) for each h ∈ [H]. We define a matrix Λh ∈ Rd×d
as

Λh = λ2 · Id +
∑
τ∈D

ϕ(xτh)ϕ(x
τ
h)

⊤.

The penalty term bv,h of the estimated transition value function
is then defined as

bv,h(x) =
[
ϕ(x)⊤Λ−1

h ϕ(x)⊤
]1/2

. (17)

Finally, the penalty term for the estimated Bellman operation
B̂hV̂h+1(·) is obtained as Finally, the penalty term for the

estimated Bellman operation B̂hV̂h+1(·) is obtained as

Γh(x) = β1br,h(x) + β2bv,h(x), (18)

where β1, β2 > 0 are constant factors and will be determined
in algorithm design. The estimator of Qh(·) and Vh(·) can
then be obtained as

Q̂h(·) = min{R̂h(·) + (P̂hV̂h+1)(·)− Γh(·),
H − h+ 1}+, (19)

V̂h(·) = argmax
a∈A

Q̂h(·, a). (20)

We present our PARTED for linear MDPs in Algorithm 1 as
follows.

While our PARTED algorithm shares similarities in form
and concept with previous PEVI methods, both incorporating
a penalty term, it is crucial to emphasize our major innovation
lies in the construction of a penalty term specifically designed
to offer pessimism guarantees for the estimation of instanta-
neous rewards. This issue is introduced by the trajectory-wise
reward setting and cannot be effectively tackled by preceding
methods.

We present our algorithm tailored for linear MDPs here
for the sake of convenience and simplicity. As we elaborate
later, we can further extend and generalize our methods to
encompass general MDPs in conjunction with neural network
function approximation.

IV. MAIN RESULTS

A. Suboptimality of PARTED Under Linear MDPs

In this section, we illustrate our results for linear MDPs with
trajectory-wise rewards. We adopt a standard assumption that
is widely assumed in offline RL works, e.g., [26], [56], [57],
[58], [59], [60], [61], [62], [63], [64], and [65]. It assumes that
the dataset is collected by a well-explored behavior policy µ,
which is also known as global data coverage assumption.

Assumption 1 (Well-Explored Dataset): The N trajectories
in dataset D are independent and identically induced by a fixed
behaviour policy µ. There exist absolute constants Cσ > 0 and
Cς > 0 such that

λmin(M(Θ0)) ≥ Cσ

and λmin(mh(w0)) ≥ Cς ∀h ∈ [H],

where

M = Eµ
[
Φ(τ)Φ(τ)⊤

]
and mh(w0) = Eµ

[
ϕ(xτh)ϕ(x

τ
h)

⊤] .
We recognize the global data coverage in the offline setting,

acknowledging the possibility of relaxing it to partial coverage
through the design of an alternative standard pessimistic
penalty term, e.g., [26], [30], [34], [40], [44], [47], [48],
[66], and [67]. However, it is important to underscore that the
primary contribution of our work lies in addressing uncertainty
arising from the trajectory-wise reward. This aspect stands in
contrast to existing works that primarily focus on managing
uncertainty inherent in the dataset itself and is orthogonal to
them. While integrating their methods with ours is feasible
for a broader application to a more general offline setting,
opting for such integration may unnecessarily complicate the
presentation. Therefore, we choose to present our results
under the assumption of global coverage, with the aim of
emphasizing the distinctive contribution of our approach in
handling uncertainties associated with trajectory-wise rewards.

The following theorem characterizes the suboptimality of
Algorithm 1.

Theorem 1: Consider Algorithm 1. Let λ1 =
λ2 = 1 and β1 = O(H

√
dH log(N/δ)) and

β2 = O(dH2
√
log(dH3N5/2/δ)). Then, with probability at

least 1− δ, we have

SubOpt(π̂, s)

≤ O

(
dH3

√
NCσCς

√
log
(
dH3N5/2

δ

))
.

To highlight why trajectory-wise reward RL is more
challenging than instantaneous reward RL, we observe that
Theorem 1 with trajectory-wise rewards has an additional
dependence on the horizon H , compared to the suboptimality
Õ(dH2/

√
N) [26, Corollary 4.5] of PEVI for linear MDP

with instantaneous rewards. In contrast to the prior results
obtained under the instantaneous reward setting, we have intro-
duced an additional penalty term to mitigate uncertainty during
the reward redistribution process. Specifically, PARTED is
required to solve a trajectory-level regression problem with
features Φ(τ) ∈ RdH , leading to increased uncertainty in

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6486 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

the regression solution utilized for constructing the per-step
proxy reward. This supplementary penalty term introduces
a higher level of pessimism compared to previous PEVI,
resulting in an additional H dependence in the suboptimality.
When assuming full knowledge of the instantaneous reward,
we can set β1 = 0 in the penalty term, and the suboptimality
aligns with that of PEVI. Thus, we contend that this additional
dependence is introduced by the trajectory-wise reward setting
and is unavoidable.

1) Discussion of Proof of Theorem 1: Comparing to the
analysis of PEVI for linear MDP with instantaneous reward,
which has been extensively studied in offline RL [26], [27],
[29], our analysis needs to address the following challenge. In
instantaneous reward setting, both Rh(·) and (PhV̂h+1)(·) can
be learned together by solving a single regression problem
in per-step scale. However, in our trajectory-wise reward
setting, Rh(·) and (PhV̂h+1)(·) need to be learned separately
by solving two regression problems (eqs. (12) and (14)) in
different scales, i.e., eq. (12) is in trajectory scale and eq. (14)
is in per-step scale. In order to apply union concentrations to
bound the Bellman estimation error |(BhV̂h)(·)− (B̂hV̂h)(·)|,
we need to develop new techniques to handle the mismatch
between eqs. (12) and (14) in terms of scale.

B. Suboptimality of PARTED for General MDPs

In this section, we extend our PARTED to general MDPs
with large state space and present the main results. We provide
a concise overview of our findings, with a more comprehensive
and detailed discussion available in Section A and Section B.
Our overarching objective is to validate two pivotal claims:
(1) Our framework adeptly manages uncertainty arising from
the trajectory-wise reward setting, even in the most general
settings lacking latent structures; and (2) The suboptimality
exhibited by PARTED in general MDPs corresponds with
that observed in linear MDPs, signifying an extension of
the preceding algorithm design without the introduction of
additional sample complexity.

When the problem scale is large, especially for the gen-
eral MDPs, we consider the function approximation setting,
in which the state-action value function is approximated by a
two-layer neural network. We denote X = S ×A and view it
as a subset of Rd. We further assign a feature vector x ∈ X to
represent a state-action pair (s, a). Without loss of generality,
we assume that ∥x∥2 = 1 for all x ∈ X . We also allow
x = 0 to represent a null state-action pair. We now define a
two-layer neural network f(·, b, w) : X → R with 2m neurons
and weights (b, w) as

f(x; b, w) =
1√
2m

2m∑
r=1

bj · σ(w⊤
r x), (21)

where σ(·) : R → R is the activation function, br ∈ R and
wr ∈ Rd for all r ∈ [2m], and b = (b1, · · · , b2m)⊤ ∈ R2m

and w = (w⊤
1 , · · · , w⊤

2m)⊤ ∈ R2md.
With the neural network approximation we introduced,

we extend our PARTED to the general MDP setting. Although
the algorithm design follows a similar framework as the linear
MDP setting, unlike linear MDPs where both Rh(·) and

(PhV̂h+1)(·) can be captured exactly by linear functions, for
general MDPs with neural network approximation, we need
to design new estimation and penalty terms to tackle the
difficulties introduced by the approximation.

1) Reward Redistribution: We use a neural network f(·, θh)
given in eq. (21) to represent per-step mean reward Rh(·) for
all h ∈ [H], where the parameter θh ∈ R2md is obtained by
minimizing the loss function

Lr(Θ) =
∑
τ∈D

[
H∑
h=1

f(xτh, θh)− r(τ)

]2

+ λ1 ·
H∑
h=1

∥θh − θ0∥2
2 . (22)

Then, the per-step proxy reward R̂h(·) is obtained as

R̂h(·) = f(·, θ̂h),
where Θ̂ = argmin

Θ∈R2mdH

Lr(Θ)

and Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H]⊤. (23)

2) Transition Value Function Estimation: Similarly, we use
H neural networks given in eq. (21) with parameter {wh}h∈[H]

to estimate {(PhV̂h+1)(·)}h∈[H], where wh ∈ R2md is the
parameter of the h-th network. Specifically, for each h ∈ [H],
we define the loss function Lhv (wh): R2md → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(sτh+1)− f(xτh, wh)

)2

+ λ2 · ∥wh − w0∥2
2 , (24)

where λ2 > 0 is a regularization parameter and w0 is the
initialization shared by all neural networks. The estimated
transition value function (P̂hV̂h+1)(·) : X → R can be
obtained by solving the following optimization problem

(P̂hV̂h+1)(·) = f(·, ŵh), (25)

where ŵh = argmin
wh∈R2md

Lhv (wh). (26)

3) Penality Term Construction: For any τ ∈ D and
Θ ∈ R2mdH , we define a trajectory feature Φ(τ,Θ) =
[ϕ(xτ1 , θ1)

⊤, · · · , ϕ(xτH , θH)⊤]⊤. Based on Φ(τ,Θ), the tra-
jectory feature covariance matrix Σ(Θ) ∈ R2mdH×2mdH is
then defined as

Σ(Θ) = λ1 · I2mdH +
∑
τ∈D Φ(τ,Θ)Φ(τ,Θ)⊤.

We also define an “one-block-hot” vector Φh(x,Θ) =
[0⊤

2md, · · · , ϕ(x, θh)⊤, · · · ,0⊤
2md]

⊤ for all x ∈ X ,
where Φh(x,Θ) ∈ R2mdH is a vector in which
[Φh(x,Θ)]2md(h−1)+1:2mdh = ϕ(x, θh) and the rest entries
are zero. The penalty term of reward for a given Θ ∈ R2mdH

is defined as:

br,h(x,Θ)

=
[
Φh(x,Θ)⊤Σ−1(Θ)Φh(x,Θ)

]1/2
. (27)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6487

Next, we consider the penalty of (P̂hV̂h+1)(·) for each
h ∈ [H]. We define the per-step feature covariance matrix
Λh(wh) ∈ R2md×2md as

Λh(w) = λ2 · I2md +
∑
τ∈D

ϕ(xτh, w)ϕ(x
τ
h, w)

⊤.

Then, the penality term of (P̂hV̂h+1)(·) for a given w ∈ R2md

is defined as

bv,h(x,w)

=
[
ϕ(x,w)⊤Λh(w)−1ϕ(x,w)⊤

]1/2
. (28)

Finally, combining eqs. (27) and (28), the penalty term for
B̂hV̂h+1(·) is constructed as

Γh(x,Θ, w)
= β1br,h(x,Θ) + β2bv,h(x,w), (29)

where β1, β2 > 0 are parameters.
Based on the constructions of the estimation and penalty

terms and our previous design of PARTED for linear MDPs,
we design the PARTED algorithm for the general MDPs with
neural network approximation in Algorithm 2. The algorithm
follows the same framework as the linear PARTED, but with
different estimation and penalty terms.

We then informally present the suboptimality of the policy
π̂ obtained via our PARTED for general MDPs. The formal
and accurate result can be found in Section B.

Theorem 2 (Informal): Assume that the function class
defined by the neural network is reward realizable and Bellman
complete, and further assume that the dataset is collected
by a well-explored policy. Then with probability at least
1 − (N2H4)−1, the suboptimality of PARTED for general
MDP is

SubOpt(π̂, s) ≤ Õ
(
Hmax{β1,β2}√

NCσCς

)
.

Theorem 2 shows that Algorithm 2 can find an ϵ-optimal
policy with Õ(H2 max{β1, β2}2/ϵ2) episodes of offline data
in the trajectory-wise reward setting up to some function
approximation error, which vanishes as the neural network
width increases.

Unlike linear MDPs where both Rh(·) and (PhV̂h+1)(·) can
be captured exactly by linear functions, for general MDPs
with neural network approximation, we need to develop new
analysis to bound the estimation error that caused by the
insufficient expressive power of neural networks in order to
characterize the optimality of θ̂h and ŵh, respectively.

Note that linear function with feature Φ(τ) and ϕ(x) can be
viewed as a special case of our general MDPs, both of which
belonging to a reproducing kernel Hilbert space (RKHS).
We hence further extend our results to the RKHS setting under
the finite spectrum NTK assumption as follows.

Corollary 1 (Informal): With probability at least 1 −
(N2H4)−1, we have

SubOpt(π̂, s) = Õ
(
DeffH

2/
√
NCσCς

)
,

where Deff denotes the effective dimension of the reproducing
kernel.

For the linear MDPs, the effective dimension satisfies Deff =
dH , which implies that the suboptimality in Corollary 1
(and Theorem 2) for general MDPs recover the suboptimality
of linear MDPs in Theorem 1, which implies our results
are self-consistent and we extend our results to the general
MDP setting. A more detailed discussion can be found in
Section B.

V. CONCLUSION

In this paper, we propose a novel offline RL algorithm,
called PARTED, to handle the episodic RL problem with
trajectory-wise rewards. PARTED uses a least-square-based
reward redistribution method for reward estimation and incor-
porates a new penalty term to offset the uncertainty of
proxy reward. We showed that for linear MDPs, PARTED
achieves an Õ(dH3/

√
N) suboptimality. We further extended

our framework and method to general MDPs with neural
network approximation, where we showed PARTED achieves
an Õ(DeffH

2/
√
N) suboptimality, which matches the result of

linear MDP when the effective dimension satisfies Deff = dH .
To the best of our knowledge, this is the first offline RL
algorithm that is provably efficient in general episodic MDP
setting with trajectory-wise rewards. As a future direction, it is
interesting to incorporate the randomized return decomposition
in [18] to improve the scalability of PARTED in the long
horizon scenario.

APPENDIX A
DESIGN OF PARTED FOR GENERAL MDPS

In this section, we first provide our design of PARTED for
general MDPs in details.

A. Reward Redistribution

In order to estimate the instantaneous rewards from the
trajectory-wise reward, we use a neural network f(·, θh) given
in eq. (21) to represent per-step mean reward Rh(·) for all
h ∈ [H], where θh ∈ R2md is the parameter. We further
assume, for simplicity, that all the neural networks share the
same initial weights denoted by θ0 ∈ R2md. We define the
following loss function Lr(·) : R2mdH → R for reward
redistribution as

Lr(Θ) =
∑
τ∈D

[∑H
h=1 f(x

τ
h, θh)− r(τ)

]2
+ λ1 ·

H∑
h=1

∥θh − θ0∥2
2 , (30)

where Θ = [θ⊤1 , · · · , θ⊤H]⊤ ∈ R2mdH and λ1 > 0 is a regu-
larization parameter. Then, the per-step proxy reward R̂h(·) is
obtained by solving the following optimization problem

R̂h(·) = f(·, θ̂h),
where Θ̂ = argmin

Θ∈R2mdH

Lr(Θ)

and Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H]⊤. (31)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

B. Transition Value Function Estimation

Similarly, we use H neural networks given in eq. (21)
with parameter {wh}h∈[H] to estimate {(PhV̂h+1)(·)}h∈[H],
where wh ∈ R2md is the parameter of the h-th network.
Specifically, for each h ∈ [H], we define the loss function
Lhv (wh): R2md → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(sτh+1)− f(xτh, wh)

)2

+ λ2 · ∥wh − w0∥2
2 , (32)

where λ2 > 0 is a regularization parameter and w0 is the
initialization shared by all neural networks. The estimated
transition value function (P̂hV̂h+1)(·) : X → R can be
obtained by solving the following optimization problem

(P̂hV̂h+1)(·) = f(·, ŵh), (33)

where ŵh = argmin
wh∈R2md

Lhv (wh). (34)

C. Penality Term Construction

It remains to construct the penalty term Γh to offset
the uncertainties in R̂h and (P̂hVh+1). First consider the
penalty of R̂h(·) for each h ∈ [H]. For any τ ∈ D and
Θ ∈ R2mdH , we define a trajectory feature Φ(τ,Θ) =
[ϕ(xτ1 , θ1)

⊤, · · · , ϕ(xτH , θH)⊤]⊤. Based on Φ(τ,Θ), the tra-
jectory feature covariance matrix Σ(Θ) ∈ R2mdH×2mdH is
then defined as

Σ(Θ) = λ1 · I2mdH +
∑
τ∈D Φ(τ,Θ)Φ(τ,Θ)⊤.

We also define an “one-block-hot” vector Φh(x,Θ) =
[0⊤

2md, · · · , ϕ(x, θh)⊤, · · · ,0⊤
2md]

⊤ for all x ∈ X ,
where Φh(x,Θ) ∈ R2mdH is a vector in which
[Φh(x,Θ)]2md(h−1)+1:2mdh = ϕ(x, θh) and the rest entries
are zero. The penalty term of reward for a given Θ ∈ R2mdH

is defined as:

br,h(x,Θ) =
[
Φh(x,Θ)⊤Σ−1(Θ)Φh(x,Θ)

]1/2
.

Note that the reward penalty term br,h(x,Θ) is new and first
proposed in this work. By constructing br,h(x,Θ) in this way,
we can capture the effect of uncertainty caused by solving
the trajectory-wise regression problem in eq. (30), which is
contained in the covariance matrix Σ(Θ), on the proxy reward
f(·, θ̂h) at each step h ∈ [H], via the “one-block-hot” vector
Φh(·,Θ).

Next, we consider the penalty of (P̂hV̂h+1)(·) for each
h ∈ [H]. We define the per-step feature covariance matrix
Λh(wh) ∈ R2md×2md as

Λh(w) = λ2 · I2md +
∑
τ∈D

ϕ(xτh, w)ϕ(x
τ
h, w)

⊤.

Then, the penality term of (P̂hV̂h+1)(·) for a given w ∈ R2md

is defined as

bv,h(x,w) =
[
ϕ(x,w)⊤Λh(w)−1ϕ(x,w)⊤

]1/2
.

Finally, combining eq. (27) and (28), the penalty term for
B̂hV̂h+1(·) is constructed as

Γh(x,Θ, w) = β1br,h(x,Θ) (35)

+ β2bv,h(x,w), (36)

where β1, β2 > 0 are parameters. The estimator of Qh(·) and
Vh(·) can then be obtained as

Q̂h(·) = min{H,
R̂h(·) + (P̂hV̂h+1)(·)− Γh(·, Θ̂, ŵh)}+,

V̂h(·) = argmax
a∈A

Q̂h(·, ·). (37)

Furthermore, for any h ∈ [H], we denote
Vh(x,Rβ1 , Rβ2 , λ1, λ2) as the class of functions that
takes the form V h(·) = maxa∈AQh(·, a), where

Qh(x)
= min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w−w0⟩
− β1 ·

√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)

− β2 ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+,

in which ∥θ − θ0∥2 ≤ H
√
N/λ1, ∥w − w0∥2 ≤ H

√
N/λ2,

β1 ∈ [0, Rβ1], β2 ∈ [0, Rβ2], ∥Σ∥2 ≥ λ1 and ∥Λ∥2 ≥
λ2. To this end, for any ϵ > 0, we define N v

ϵ,h as the
ϵ−covering number of Vh(x,Rβ1 , Rβ2 , λ1, λ2) with respect
to the ℓ∞−norm on X , and we let N v

ϵ = maxh∈[H]{N v
ϵ,h}.

With the estimation terms and the penalty terms constructed,
we present our PARTED for general MDPs with neural net-
work function approximation as follows.

Algorithm 2 Neural Pessimistic Value Iteration With Reward
Decomposition (PARTED)

Input: Dataset D = {τi, r(τi)}N,Hi,h=1

Initialization: Set V̂H+1 as zero function
Obtain R̂h and Θ̂ according to eq. (31)
for h = H,H − 1, ·, 1 do

Obtain P̂hV̂h+1 and ŵh according to eq. (25)
Obtain Γh(·, Θ̂, ŵh) according to eq. (29)
Obtain Q̂h(·) and V̂h(·) according to eq. (37) and let
π̂h(·|s) = argmaxπh

⟨Q̂h(s, ·), πh(·|s)⟩
end for

APPENDIX B
RESULTS FOR GENERAL MDPS WITH NEURAL NETWORK

FUNCTION APPROXIMATION

In this section, we present the major results for the general
MDPs.

We first make the following standard assumption on the
activate function of the neural network, which can be satisfied
by a number of activation functions such as ReLU and tanh(·).

Assumption 2: For all x ∈ X , we have |σ′(x)| ≤ Cσ <
+∞ and σ′(0) = 0.

We initialize b and w via a symmetric initialization
scheme [68], [69]: for any 1 ≤ r ≤ m we set b0,r ∼
Unif({−1, 1}) and w0,r ∼ N(0, Id/d), where Id is the
identity matrix in Rd, and for any m + 1 ≤ r ≤ 2m,
we set b0,r = −b0,r−m and w0,r = w0,r−m. Under such an
initialization, the initial neural network is a zero function, i.e.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6489

f(x; b0, w0) = 0 for all x ∈ X , where b0 = [b0,1, · · · , b0,2m]⊤

and w0 = [w⊤
0,1, · · · , w⊤

0,2m]⊤ are initialization parameters.
During training, we fix the value of b at its initial value
and only optimize w. To simplify the notation, we denote
f(x; b, w) as f(x;w) and ∇wf(x,w) as ϕ(x,w).

In the overparameterized scheme, the neural network width
2m is considered to be much larger than the number of
trajectories N and horizon length H . Under such a scheme,
the training process of neural networks can be captured by the
framework of neural tangent kernel (NTK) [70]. Specifically,
conditioning on the realization of w0, we define a kernel
K(x, x′) : X × X → R as

K(x, x′) = ⟨ϕ(x,w0), ϕ(x′, w0)⟩

=
1
2m

2m∑
r=1

σ′(w⊤
0,rx)σ

′(w⊤
0,rx

′)x⊤x′,

∀(x, x′) ∈ X × X ,

where σ′(·) is the derivative of the action function σ(·). It can
be shown that f(·, w) is close to its linearization at w0 when
m is sufficiently large and w is not too far away from w0, i.e.,

f(x,w) ≈ f0(x,w)
= f(x,w0) + ⟨ϕ(x,w0), w − w0⟩
= ⟨ϕ(x,w0), w − w0⟩, ∀x ∈ X .

Note that f0(x,w) belongs to a reproducing kernel Hilbert
space (RKHS) with kernel K(·, ·). Similarly, consider the sum
of H neural networks f(τ,Θ) =

∑H
h=1 f(x

τ
h, θh) with the

same initialization θ0 for each neural network, where τ =
[x⊤1 , · · · , x⊤H]⊤ and Θ = [θ⊤1 , · · · , θ⊤H]⊤. If θh is not too far
away from θ0 for all h ∈ [H] and m is sufficiently large, it can
be shown that the dynamics of f(τ,Θ) belong to a RKHS
with kernel KH defined as KH(τ, τ ′) =

∑H
h=1K(xh, x′h).

We further define HK and HKH
as the RKHS induced by

K(·, ·) and KH(·, ·), respectively.
Based on the kernel K(·, ·) and KH(·, ·), we define the

Gram matrix Kr,Kv,h ∈ RN×N as

Kr = [KH(τi, τj)]i,j∈[N],

Kv,h = [K(xτi

h , x
τj

h)]i,j∈[N].

We further define a function class as follows

FB1,B2

=
{
fℓ(x) =

∫
Rd

σ′(w⊤x) · x⊤ℓ(w)dp(w) :

sup
w

∥ℓ(w)∥2 ≤ B1, sup
w

∥ℓ(w)∥2

p(w)
≤ B2

}
,

where ℓ : Rd → Rd is a mapping, B1, B2 are positive
constants, and p is the density of N(0, Id/d). We then make
the following assumption regarding the expressive power of
the above function class.

Assumption 3: We assume that there exist a1, a2, A1, A2 >
0 such that Rh(·) ∈ Fa1,a2 and (Phf)(·) ∈ FA1,A2 for any
f(·) : X → [0, H].

Assumbtion 3 ensures that both Rh(·) and (PhV̂h+1)(·) can
be captured by an infinite width neural network. Note that

Assumbtion 3 is mild since FB1,B2 is an expressive function
class as shown in Lemma C.1 of [68]. Similar assumptions
have also been adopted in many previous works that consider
neural network function approximation [59], [71], [72], [73],
[74]. Additionally, we assume that the data collection process
explores the state-action space and trajectory space well. Note
that similar assumptions have also been adopted in [26], [29],
and [62]. We similarly assume the dataset is collected by a
well-explored behavior policy as the linear MDP setting.

Assumption 4 (Well-Explored Dataset): Suppose the N tra-
jectories in dataset D are independently and identically
induced by a fixed behaviour policy µ. There exist absolute
constants Cσ > 0 and Cς > 0 such that for all h ∈ [H],

λmin(M(Θ0)) ≥ Cσ

λmin(mh(w0)) ≥ Cς ,

where

M(Θ0) = Eµ
[
Φ(τ,Θ0)Φ(τ,Θ0)⊤

]
mh(w0) = Eµ

[
ϕ(xτh, w0)ϕ(xτh, w0)⊤

]
.

We can now formally present the suboptimality of the policy
π̂ obtained via Algorithm 2.

Theorem 3: Consider Algorithm 2. Suppose Assumbtion 2-
4 hold. Let λ1 = λ2 = 1 + 1/N , β1 = Rβ1 and β2 = Rβ2 ,
in which Rβ1 and Rβ2 satisfy

Rβ1 ≥ H

(
4a2

2λ1/d+ 2 log det
(
I +Kr/λ1

)
+ 10 log(NH2)

)1/2

,

Rβ2 ≥ H

(
8A2

2λ2/d+ 6Cϵ + 16 log(NH2N v
ϵ)
)1/2

+ 4 max
h∈[H]

{log det
(
I +Kv,h/λ2

)
},

where ϵ =
√
λ2CϵH/(2NCϕ), Cϵ ≥ 1 is an adjustable

parameter, and Cϕ > 0 is an absolute constant. In addition,
let m be sufficiently large. Then, with probability at least
1− (N2H4)−1, we have

SubOpt(π̂, s) ≤ Õ
(
Hmax{β1,β2}√

N

)
+ ε1,

where

ε1 = max{β1H
5/3, β2H

7/6}Õ
(
N1/12

m1/12

)
+ Õ

(
H17/6N5/3

m1/6

)
.

Theorem 2 shows that Algorithm 2 can find an ϵ-optimal
policy with Õ(H2 max{β1, β2}2/ϵ2) episodes of offline data
in the trajectory-wise reward setting up to a function approx-
imation error ε1, which vanishes as the neural network width
2m increases. Note that the dependence of ε1 on the network
width, which is O(m−1/12), matches that of the approximation
error in the previous work of value iteration algorithm with
neural network function approximation [71].

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6490 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

A. Discussion of Proof of Theorem 2

Comparing to the analysis of PEVI for linear MDP with
instantaneous reward, which has been extensively studied in
offline RL [26], [27], [29], our analysis needs to address the
following two new challenges: (1) In instantaneous reward
setting, both Rh(·) and (PhV̂h+1)(·) can be learned together
by solving a single regression problem in per-step scale.
However, in our trajectory-wise reward setting, Rh(·) and
(PhV̂h+1)(·) need to be learned separately by solving two
regression problems (eqs. (31) and (25)) in different scales,
i.e., eq. (31 is in trajectory scale and eq. (25) is in per-step
scale. In order to apply union concentrations to bound the
Bellman estimation error |(BhV̂h)(·) − (B̂hV̂h)(·)|, we need
to develop new techniques to handle the mismatch between
eqs. (31) and (25) in terms of scale. (2) In linear MDP, both
Rh(·) and (PhV̂h+1)(·) can be captured exactly by linear func-
tions. However, in the more general MDP that we consider,
we need to develop new analysis to bound the estimation
error that caused by the insufficient expressive power of neural
networks in order to characterize the optimality of θ̂h and ŵh
in eqs. (31) and (25), respectively.

To obtain a more concrete suboptimality bound for
Algorithm 2, we impose an assumption on the spectral struc-
ture of kernels KH and K.

Assumption 5 (Finite Spectrum NTK [71]): Conditioned
on the randomness of (b0, w0), let TKH

and TK be the
integral operator induced by KH and K (see Section J for
definition of TKH

and TK), respectively, and let {ωj}j≥1

and {υj}j≥1 be eigenvalues of TKH
and TK , respectively.

We have ωj = 0 for all j ≥ D1 + 1 and υj = 0 for all
υj ≥ D2 + 1, where D1, D2 are positive integers.

Assumbtion 5 implies that HKH
and HK are

D1-dimensional and D2-dimensional, respectively. For
concrete examples of neural networks that satisfy
Assumbtion 5, please refer to Section B.3 in [71]. Note
that such an assumption is in parallel to the “effective
dimension” assumption in [75] and [76].

Corollary 2: Consider Algorithm 2. Suppose Assumb-
tion 2-5 hold. Let λ1 = λ2 = 1 + 1/N , β1 = Õ(HD1)
and β2 = Õ(Hmax{D1, D2}). Then, with probability at least
1− (N2H4)−1, we have

SubOpt(π̂, s) = Õ
(
DeffH

2/
√
N
)
+ ε2,

where Deff = max{D1, D2} denotes the effective dimension
and

ε2 = max
{√

H,max{D1, D2}, H
5/3N19/12

m1/12

}
· Õ
(
H13/6N1/12

m1/12

)
.

Corollary 2 states that when β1 and β2 are chosen properly
according to the dimension of HKH

and HK , the suboptimal-
ity of the policy π̂ incurred by Algorithm 2 converges to an
ϵ-optimal policy with Õ(D2

effH
4/ϵ2) episodes of offline data

up to a function approximation error ε2.

APPENDIX C
PROOF FLOW OF THEOREM 2

In this section, we present the main proof flow of
Theorem 2.

Theorem 4: Let λ1 = λ2 = 1 + 1/N , β1 = Rβ1 and β2 =
Rβ2 , in which Rβ1 and Rβ2 satisfy

Rβ1 ≥ H
(
4a2

2λ1/d+ 2 log det (I +Kr/λ1)

+ 10 log(NH2)
)1/2

,

Rβ2 ≥ H

(
8A2

2λ2/d+ 6Cϵ + 16 log(NH2N v
ϵ)

+ 4 max
h∈[H]

{log det (I +Kv,h/λ2)}
)1/2

,

where ϵ =
√
λ2CϵH/(2NCϕ), Cϵ ≥ 1 is an adjustable

parameter, and Cϕ > 0 is an absolute constant. In addition,
let m be sufficiently large. Then, with probability at least
1− (N2H4)−1, we have

SubOpt(π̂, s) ≤ Õ
(
Hmax{β1,β2}√

N

)
+ ε1,

where

ε1 = max{β1H
5/3, β2H

7/6}Õ
(
N1/12

m1/12

)
+ Õ

(
H17/6N5/3

m1/6

)
.

We first decompose the suboptimality SubOpt(π, s), and
then present the two main results of Lemma 1 and Lemma 2 to
bound the evaluation error and summation of penality terms,
respectively. The detailed proof of Lemma 1 and Lemma 2
can be found at Section F and Section G.

We define the evaluation error at each step h ∈ [H] as

δh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a), (38)

where Bh is the Bellman operator defined in Section II-A
and V̂h and Q̂h are estimation of state- and state-action
value functions, respectively. To proceed the proof, we first
decompose the suboptimality into three parts as follows via
the standard technique (see Section A in [26]).

SubOpt(π, s)

= −
H∑
h=1

Eπ
[
δh(sh, ah)

∣∣s1 = s
]

+
H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]

+
H∑
h=1

Eπ∗

[
⟨Q̂h(sh, ·), π∗

h(·|sh)

− π̂h(·|sh)⟩
∣∣s1 = s

]
. (39)

In Algorithm 2, the output policy at each horizon π̂h is greedy
with respect to the estimated Q-value Q̂h. Thus, we have for
∀h ∈ [H], ∀sh ∈ S

⟨Q̂h(sh, ·), π∗
h(·|sh)− π̂h(·|sh)⟩ ≤ 0.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6491

According to eq. (39), we have the following holds for the
suboptimality of π̂ = {π̂h}Hh=1

SubOpt(π̂, s)

= −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]

+
H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]
. (40)

In the following lemma, we provide the first main technical
result for the proof, which bounds the evaluation error δh(s, a).
Recall that we use X to represent the joint state-action space
S ×A and use x to represent a state action pair (s, a).

Lemma 1: Let λ1, λ2 = 1 + 1/N . Suppose Assumbtion 3
holds. With probability at least 1−O(N−2H−4), it holds for
all h ∈ [H] and x ∈ X that

−εb ≤ δh(x)

≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
,

where

εb = max{β1H
2/3, β2H

1/6}O
(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
,

β1 = H

(
4a2

2λ1

d
+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

,

β2 = H

(
8A2

2λ2

d
+ 4max

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ)
)1/2

,

ϵ =
√
λ2CϵH/(2NCϕ), where Cϵ ≥ 1.

Proof: The main technical development of the proof
lies in handling the uncertainty caused by redistributing the
trajectory-wise reward via solving a trajectory-level regression
problem and analyzing the dynamics of neural network opti-
mization. The detailed proof is provided in Section F. □

Applying Lemma 1 to eq. (40) yields

SubOpt(π̂, s)

= −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]

+
H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]

≤ 3Hεb +max
x

2β1 ·
H∑
h=1

br,h(x, Θ̂)

+ max
x

2β2 ·
H∑
h=1

bv,h(x, ŵh). (41)

The following lemma captures the second main technical result
for the proof, which bounds the summation of the penalty
terms β1 ·

∑H
h=1 br,h(x, Θ̂) + β2 ·

∑H
h=1 bv,h(x, ŵh).

Lemma 2: Suppose Assumbtion 3&4 hold. We have the
following holds with probability 1−O(N−2H−4)

β1 ·
H∑
h=1

br,h(x, Θ̂) + β2 ·
H∑
h=1

bv,h(x, ŵh)

≤
(

β1√
Cσ

+
β2√
Cς

) √
2HCϕ√
N

+max{β1H
5/3, β2H

7/6}

· O
(
N1/12(logm)1/4

m1/12

)
.

Proof: The proof develops new analysis to characterize
the summation of the penality term br,h constructed by tra-
jectory features, which is unique in the trajectory-wise reward
setting. The detailed proof is provided in Section G. □

Applying Lemma 2 to eq. (41), we have

SubOpt(π̂, s)

≤ 3Hεb +
(

β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

+max{β1H
5/3, β2H

7/6}

· O
(
N1/12(logm)1/4

m1/12

)
≤ 4Hεb +

(
β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

, (42)

which completes the proof.

APPENDIX D
PROOF OF COROLLARY 2

To provide a concrete bound for SubOpt(π̂, s) defined in
eq. (42), we first need to bound the penalty coefficients β1,
β2 under Assumbtion 5. Recalling the properties of β1, β2 in
Theorem 2, we have

H

(
4a2

2λ1

d
+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

≤ Rβ1 = β1, (43)

H

(
8A2

2λ2

d
+ 4 max

h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ)
)1/2

≤ Rβ2 = β2. (44)

Recall that we use X to represent the joint state-action space
S × A and use x to represent a state action pair (s, a).
We define the maximal information gain associated with
RHKS with kernels Kr

N and Kv
N,h as follows

ΓKr
N
(N,λ1) (45)

= sup
D⊂Dτ

{1/2 · log det(I2dmH + λ−1
1 ·Kr

N)},

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

ΓKv
N,h

(N,λ2) (46)

= sup
D⊂Dx

{1/2 · log det(I2dm + λ−1
2 ·Kv

N,h)},

where Dx and Dτ are discrete subsets of state-action pair
x ∈ X and trajectory τ ∈ X × · · · × X with cardinality no
more than N , respectively. Applying Lemma 9 in Section J
and Assumbtion 5, we have

ΓKr
N
(N,λ1) ≤ CK1 ·D1 · logN (47)

and

ΓKv
N,h

(N,λ2) ≤ CK2 ·D2 · logN, (48)

where CK1 , CK2 are absolute constants. Recall that N v
ϵ,h is the

cardinality of the function class. Next, we proceed to bound
the term N v

ϵ = maxh∈[H]{N v
ϵ,h}.

Vh(x,Rθ, Rw, Rβ1 , Rβ2 , λ1, λ2)

=
{
max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)} : S → [0, H],

∥θ − θ0∥2 ≤ Rθ, ∥w − w0∥2 ≤ Rw, β1 ∈ [0, Rβ1],

β2 ∈ [0, Rβ2], ∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2

}
,

where Rθ = H
√
N/λ1, Rw = H

√
N/λ2, and

Qh(x, θ, w, β1, β2,Σ,Λ)
= min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w−w0⟩

− β1 ·
√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)

− β2 ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+.

Note that∣∣∣∣∣max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)}

−max
a∈A

{Qh(s, a, θ′, w′, β′
1, β

′
2,Σ

′,Λ′)}

∣∣∣∣∣
≤ max

a∈A

∣∣∣∣∣Qh(s, a, θ, w, β1, β2,Σ,Λ)

−Qh(s, a, θ
′, w′, β′

1, β
′
2,Σ

′,Λ′)

∣∣∣∣∣
(i)

≤ max
a∈A

|⟨ϕ(x, θ0), θ − θ′⟩|

+max
a∈A

|⟨ϕ(x,w0), w−w′⟩|

+max
a∈A

∣∣∣∣∣(β1 − β′
1)

·
√

Φh(x, θ0)⊤Σ−1Φh(x, θ0)

∣∣∣∣∣
+max

a∈A

∣∣∣∣∣β′
1 ·

[√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)

−
√
Φh(x, θ0)⊤Σ′−1Φh(x, θ0)

]∣∣∣∣∣

+max
a∈A

∣∣∣∣(β2 − β′
2) ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0)

∣∣∣∣
+max

a∈A

∣∣∣∣∣β′
2 ·

[√
ϕ(x,w0)⊤Λ−1ϕ(x,w0)

−
√
ϕ(x,w0)⊤Λ′−1ϕ(x,w0)

]∣∣∣∣∣
(ii)

≤ max
a∈A

|⟨Φh(x,Θ0),Θ−Θ′⟩|

+max
a∈A

|⟨ϕ(x,w0), w−w′⟩|+ Cϕ√
λ1

|β1 − β′
1|

+
Cϕ√
λ2

|β2 − β′
2|

+Rβ1 max
a∈A

|∥Φh(x, θ0)∥Σ−1 − ∥Φh(x, θ0)∥Σ′−1 |

+Rβ2 max
a∈A

|∥ϕ(x,w0)∥Λ−1 − ∥ϕ(x,w0)∥Λ′−1 | , (49)

where (i) follows from contractive properties of operators
min{·, H}+ and maxa∈A{·} and the triangle inequality, and
(ii) follows from the fact that ∥ϕ(x,w0)∥2 , ∥Φh(x, θ0)∥2 ≤
Cϕ.

Following arguments similar to those in the proof of Corol-
laries 4.8, Corollaries 4.4 and Section D.1 in [71], we have
the followings hold for terms in the right hand side of eq. (49)

|⟨Φh(x,Θ0),Θ−Θ′⟩| = |g1(x)− g2(x)|

where ∥gi∥HKH
≤ Rg = 2H

√
ΓKr

N
(N,λ1), (50)

|⟨ϕ(x,w0), w−w′⟩| = |h1(x)− h2(x)|

where ∥hi∥HK
≤ Rh = 2H

√
ΓKv

N,h
(N,λ2), (51)

|∥Φh(x, θ0)∥Σ−1 − ∥Φh(x, θ0)∥Σ′−1 |
= |∥Ψ(x)∥Ω − ∥Ψ(x)∥Ω′ | ,
|∥ϕ(x,w0)∥Λ−1 − ∥ϕ(x,w0)∥Λ′−1 |
= |∥ψ(x)∥Υ − ∥ψ(x)∥Υ′ | ,

where g1(·), g2(·) are two functions in RKHS HKH
,

h1(·), h2(·) are two functions in RKHS HK , Ψ(·) and ψ(·)
are feature mappings of RKHSs HKH

and HK , respectively,
Ω,Ω′ : HKH

→ HKH
are self-adjoint operators with eigen-

values bounded in [0, 1/λ1], and Υ,Υ′ : HK → HK are
self-adjoint operators with eigenvalues bounded in [0, 1/λ2].
We define the following two function classes

F1 = {∥Ψ(·)∥Ω : ∥Ω∥2 ≤ 1/λ1}, (52)

and

F2 = {∥ψ(·)∥Υ : ∥Υ∥2 ≤ 1/λ2}. (53)

For any ϵ > 0, we denote N (ϵ,H, R) as the ϵ-covering
of {f ∈ H : ∥f∥H ≤ R}, denote N (ϵ,F1, λ1) as the
ϵ-covering number of F1 in eq. (52), denote N (ϵ,F2, λ2) as
the ϵ-covering number of F2 in eq. (53), and denote N (ϵ, R)
as the ϵ-covering number of the interval [0, R] with respect to
the Euclidean distance. Note that eq. (49) implies

N v
ϵ,h ≤ N (ϵ/6,HKH

m
, Rg) · N (ϵ/(6Rβ2),F2, λ2)

· N (ϵ/6,HKm
, Rh)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6493

· N (ϵ/(6Cϕ), Rβ1) · N (ϵ/(6Cϕ), Rβ2)
· N (ϵ/(6Rβ1),F1, λ1). (54)

Based on Corollary 4.1.13 in [77], we have the followings hold
for N (ϵ/(6Cϕ), Rβ1) and N (ϵ/(6Cϕ), Rβ2), respectively

N (ϵ/(6Cϕ), Rβ1) ≤ 1 + 12CϕRβ1/ϵ and
N (ϵ/(6Cϕ), Rβ2) ≤ 1 + 12CϕRβ2/ϵ. (55)

Moreover, as shown in Lemma D.2 and Lemma D.3 in [71],
under the finite spectrum NTK assumption in Assumbtion 5,
we have the followings hold

logN (ϵ/6,HKH
m
, Rg)

≤ C1 ·D1 · [log(6Rg/ϵ) + C2], (56)
logN (ϵ/6,HKm

, Rh)
≤ C3 ·D2 · [log(6Rh/ϵ) + C4], (57)
logN (ϵ/(6Rβ1),F1, λ1)

≤ C5 ·D2
1 · [log(6Rβ1/ϵ) + C6], (58)

logN (ϵ/(6Rβ2),F2, λ2)

≤ C7 ·D2
2 · [log(6Rβ2/ϵ) + C8]. (59)

where Ci (i ∈ {1, · · · , 8}) are absolute constants that do
not rely on N , H or ϵ. Then, substituting eq. (55)-(59) into
eq. (54), we have

logN v
ϵ,h

≤ N (ϵ/6,HKH
m
, Rg) +N (ϵ/6,HKm

, Rh)

+N (ϵ/(6Cϕ), Rβ1) +N (ϵ/(6Cϕ), Rβ2)
+N (ϵ/(6Rβ1),F1, λ1) +N (ϵ/(6Rβ2),F2, λ2)

≤ log(1 + 12CϕRβ1/ϵ) + log(1 + 12CϕRβ2/ϵ)
+ C1D1[log(6Rg/ϵ) + C2]
+ C3D2[log(6Rh/ϵ) + C4]

+ C5D
2
1[log(6Rβ1/ϵ) + C6]

+ C7D
2
2[log(6Rβ2/ϵ) + C8], (60)

We next proceed to show that there exists an absolute constant
Rβ1 > 0 such that eq. (43) holds. Substituting eq. (48) to
eq. (43), we can obtain

L.H.S of eq. (43)

≤ H

(
4a2

2λ1

d
+ 4CK1D1 logN + 10 log(NH2)

)1/2

.

If we let

Rβ1 = Cβ1H
√
D1 log(NH2), (61)

in which Cβ1 is a sufficiently large constant, then we have the
following holds

L.H.S of eq. (43) ≤ Rβ1 .

Note that eq. (60) directly implies that

logN v
ϵ

= max
h∈[H]

{logN v
ϵ,h}

≤ log(1 + 12CϕRβ1/ϵ) + log(1 + 12CϕRβ2/ϵ)

+ C1D1[log(6Rg/ϵ) + C2]
+ C3D2[log(6Rh/ϵ) + C4]

+ C5D
2
1[log(6Rβ1/ϵ) + C6]

+ C7D
2
2[log(6Rβ2/ϵ) + C8]

(i)

≤ C ′
1D

2
1 log(Rβ1/ϵ) + C ′

2D
2
2 log(Rβ2/ϵ)

+ C ′
3D1 log(H

√
D1/ϵ) + C ′

4D2 log(H
√
D2/ϵ)

(ii)

≤ C ′′
1D

2
1 log(NH

2
√
D1/ϵ) + C ′

2D
2
2 log(Rβ2/ϵ)

+ C ′
3D1 log(H

√
D1/ϵ)

+ C ′
4D2 log(H

√
D2/ϵ), (62)

where in (i) we let C ′
1, C

′
2, C

′
3 and C ′

4 be sufficiently large
absolute constants, in (ii) we use eq. (61) and let C ′′

1 be
sufficiently large. Then, we proceed to show that there exists
an absolute constant Rβ2 > 0 such that eq. (44) holds. Using
eq. (48) and eq. (62), the left hand side of eq. (44) can be
bounded as follows

L.H.S of eq. (44)

≤ H
(8A2

2λ2

d
+ 8CK2 ·D2 · logN

+ 20 log(NH2) + 6Cϵ + 16 logN v
ϵ

)1/2

(i)

≤ HCβ2,1

√
D2 log(NH2) +HCβ2,2

√
logN v

ϵ

+HCβ2,3

√
Cϵ

≤ HCβ2,1

√
D2 log(NH2)

+HCβ2,2

[
D1

√
C ′′

1 log(NH2
√
D1/ϵ)

+D2

√
C ′

2 log(Rβ2/ϵ)

+
√
C ′

3D1 log(H
√
D1/ϵ)

+
√
C ′

4D2 log(H
√
D2/ϵ)

]
+HCβ2,3

√
Cϵ.

where (i) follows from the fact that
√
a+ b ≤

√
a+

√
b and

Cβ2,1, Cβ2,2 and Cβ2,3 are sufficiently large constants. Clearly,
if we let

Rβ2 = Cβ2Hmax{D1, D2}
· log(NH2 max{D1, D2}/ϵ), (63)

where Cβ2 is a sufficiently large absolute constant, then we
have

L.H.S of eq. (44) ≤ Rβ2 . (64)

Finally, substituting the value of Rβ1 in eq. (61) and value of
Rβ2 in eq. (63) into eq. (42) and letting Cϵ = max{D1, D2}2

(which implies ϵ =
√
λ2 max{D1, D2}H/(2NCϕ)), we have

SubOpt(π̂, s)

≤
(

β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

+ 4Hεb

≤ max{Rβ1 , Rβ2}O
(
H√
N

)
Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

+max{Rβ1H
5/3, Rβ2H

7/6}

· O
(
N1/12(logm)1/4

m1/12

)
+O

(
H23/6N5/3

√
log(N2H5m)

m1/6

)

≤ O
(
H2 max{D1, D2}√

N

· log
(
NH2 max{D1, D2}

ϵ

))
+max

{√
H,max{D1, D2}

}
· O
(
H13/6N1/12(logm)1/4

m1/12
log
(
N2H2

))
+O

(
H23/6N5/3

√
log(N2H5m)

m1/6

)
(i)

≤ O
(
H2 max{D1, D2}√

N
log
(
2CϕN2H

))
+max

{√
H,max{D1, D2},

H5/3N19/12

m1/12

}
· O
(
H13/6N1/12(logm)1/4

m1/12
log
(
N2H5m

))
,

where (i) follows from the definition of ϵ and the fact that
λ2 ≥ 1.

APPENDIX E
LINEAR MDP WITH TRAJECTORY-WISE REWARD

In this section, we present the full details of our study on
the offline RL in the linear MDP setting with trajectory-wise
rewards.

A. Linear MDP and Algorithm

We define the linear MDP [53] as follows, where the
transition kernel and expected reward function are linear in
a feature map. We use X to represent the joint state-action
space S ×A and use x to represent a state action pair.

Definition 1 (Linear MDP): We say an episodic MDP
(S,A,P, r,H) is a linear MDP with a known feature map
ϕ(·) : X → Rd if there exist an unknown vector w∗

h(s) ∈ Rd
over S and an unknown vector θ∗h ∈ Rd such that

Ph(s′|s, a) = ⟨ϕ(s, a), w∗
h(s

′)⟩,
Rh(s, a) = ⟨ϕ(s, a), θ∗h⟩, (65)

for all (s, a, s′) ∈ S × A × S at each step h ∈ [H].
Here we assume ∥ϕ(x)∥2 ≤ 1 for all x ∈ X and
max{∥w∗

h(S)∥2 , ∥θ
∗
h∥2} ≤

√
d at each step h ∈ [H],

where with an abuse of notation, we define ∥w∗
h(S)∥2 =∫

S ∥w∗
h(s)∥2 ds.

We present our PARTED algorithm for linear MDPs with
trajectory-wise rewards in Algorithm 3. Note that Algorithm 3
shares a structure similar to that of Algorithm 2. Specifically,
we estimate each Rh(·) for all h ∈ [H] using a linear
function ⟨ϕ(s, a), θh⟩, where θh ∈ Rd is a learnable parameter.

Algorithm 3 Linear Pessimistic Value Iteration With Reward
Decomposition (PARTED)

Input: Dataset D = {τi, r(τi)}N,Hi,h=1

Initialization: Set V̂H+1 as zero function
Obtain R̂h and Θ̂ according to eq. (67)
for h = H,H − 1, ·, 1 do

Obtain P̂hV̂h+1 and ŵh according to eq. (69)
Obtain Γh(·) according to eq. (72)
Q̂h(·) = min{R̂h(·) + P̂hV̂h+1(·)−Γh(·), H − h+1}+

π̂h(·|s) = argmaxπh
⟨Q̂h(s, ·), πh(·|s)⟩

V̂h(·) = ⟨Q̂h(·, ·), π̂h(·|·)⟩A
end for

We define the vector Θ = [θ⊤1 , · · · , θ⊤H] ∈ RdH and the loss
function Lr : RdH → R for reward learning as

Lr(Θ) =
∑
τ∈D

[
H∑
h=1

⟨ϕ(xτh), θh⟩ − r(τ)

]2

+ λ1 ·
H∑
h=1

∥θh − θ0∥2
2 , (66)

where λ1 > 0 is a regularization parameter. We then define
R̂h(·) as

R̂h(·) = ⟨ϕ(·), θ̂h⟩,
where Θ̂ = argmin

Θ∈R2dmH

Lr(Θ)

and Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H]⊤. (67)

Similarly, we also use linear function ⟨ϕ(s, a), wh⟩ to estimate
transition value functions {(PhV̂h+1)(·, ·)}h∈[H] for all h ∈
[H], where wh ∈ Rd is a learnable parameter. For each h ∈
[H], we define the loss function Lhv (wh): Rd → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(sτh+1)− ⟨ϕ(xτh), wh⟩

)2

+ λ2 · ∥wh − w0∥2
2 , (68)

where λ2 > 0 is a regularization parameter. We then define
(P̂hV̂h+1)(·) : X → R as

(P̂hV̂h+1)(·) = ⟨ϕ(·), ŵh⟩,
where ŵh = argmin

wh∈Rd

Lhv (wh). (69)

It remains to construct the penalty term Γh. We first consider
the penalty term that is used to offset the uncertainty raised
from estimating the reward Rh(·) for each h ∈ [H]. We define
the vectors Φh(x) = [0⊤

d , · · · , ϕ(x)⊤, · · · ,0⊤
d]

⊤ ∈ RdH and
Φ(τ) = [ϕ(xτ1), · · · , ϕ(xτH)] ∈ RdH , where Φh(x) ∈ RdH
is a vector in which [Φh(x)]d(h−1)+1:dh = ϕ(x) and the rest
entries are all zero. We define a matrix Σ(Θ) ∈ RdH×dH as

Σ = λ1 · IdH +
∑
τ∈D

Φ(τ)Φ(τ)⊤.

The penalty term br,h of the estimated reward is then defined
as

br,h(x) =
[
Φh(x)⊤Σ−1Φh(x)

]1/2
. (70)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6495

Next, we consider the penalty term that is used to offset the
uncertainty raised from estimating the transition value function
(PhV̂h+1)(·) for each h ∈ [H]. We define a matrix Λh ∈ Rd×d
as

Λh = λ2 · Id +
∑
τ∈D

ϕ(xτh)ϕ(x
τ
h)

⊤.

The penality term bv,h of the estimated transition value func-
tion is then defined as

bv,h(x) =
[
ϕ(x)⊤Λ−1

h ϕ(x)⊤
]1/2

. (71)

Finally, the penalty term for the estimated Bellman operation
B̂hV̂h+1(·) is obtained as

Γh(x) = β1br,h(x) + β2bv,h(x), (72)

where β1, β2 > 0 are constant factors.

B. Main Result

We consider the following dataset coverage assumption so
that we can explicitly bound the suboptimality of Algorithm 3.
Note that the following assumption has also been considered
in [26].

Assumption 6 (Well-Explored Dataset): Suppose the N tra-
jectories in dataset D are independent and identically induced
by a fixed behaviour policy µ. There exist absolute constants
Cσ > 0 and Cς > 0 such that ∀h ∈ [H]

λmin(M(Θ0)) ≥ Cσ, λmin(mh(w0)) ≥ Cς ,

where

M = Eµ
[
Φ(τ)Φ(τ)⊤

]
,

mh(w0) = Eµ
[
ϕ(xτh)ϕ(x

τ
h)

⊤] .
We provide a formal statement of Theorem 1 as follows,

which characterizes the suboptimality of Algorithm 3.
Theorem 5 (Formal Statement of Theorem 1): Consider

Algorithm 3. Let λ1 = λ2 = 1 and β1 =
O(H

√
dH log(N/δ)) and β2 = O(dH2

√
log(dH3N5/2/δ)).

Then, with probability at least 1− δ, we have

SubOpt(π̂, s) ≤ O

(
dH3

√
N

√
log
(
dH3N5/2

δ

))
.

C. Proof Flow of Theorem 1

In this section, we present the main proof flow of
Theorem 1. Our main development is Lemma 3, the proof
of which is presented in Section H.

Recalling the suboptimality of π̂ = {π̂h}Hh=1 in eq. (40),
we have

SubOpt(π̂, s)

= −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]

+
H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]
,

where δh(·) is the evaluation error defined as

δh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a).

To characterize the suboptimality SubOpt(π̂, s), we provide
the following lemma to bound δh(·) in the linear MDP setting.

Lemma 3: Let λ1, λ2 = 1, and let β1 =
Cβ1H

√
dH log(N/δ) and β2 = Cβ2dH

2
√
log(dH3N5/2/δ),

where Cβ1 , Cβ2 are two absolute constants. Suppose
Assumbtion 3 holds. With probability at least 1 − δ/2,
it holds for all h ∈ [H] and (s, a) ∈ S ×A that

0 ≤ δh(x) ≤ 2 [β1 · br,h(x) + β2 · bv,h(x)] .

Proof: The main technical development here lies in han-
dling additional challenges caused by the reward redistribution
of trajectory-wise rewards, which are not present in linear
MDPs with instantaneous rewards [26]. The detailed proof is
provided in Section H. □

Applying Lemma 3 to eq. (40), we can obtain

SubOpt(π̂, s)

≤ 2β1 ·
H∑
h=1

max
x

br,h(x)

+ 2β2 ·
H∑
h=1

max
x

bv,h(x). (73)

Then, following steps similar to those in Section G, we have
the followings hold with probability at least 1− δ/2

br,h(x) ≤
C ′
√
N

and bv,h(x) ≤
C ′′
√
N
, (74)

where C ′ and C ′′ are absolute constants dependent only on
Cσ , Cς and log(1/δ). Then, substituting eq. (74) into eq. (73),
we have the following holds with probability 1− δ

SubOpt(π̂, s)

≤ 2Cβ1H
2
√
dH log(N/δ) · C ′

√
N

+ 2Cβ2dH
3
√

log(dH3N5/2/δ) · C
′′

√
N

≤ O

(
dH3

√
N

√
log
(
dH3N5/2

δ

))
,

which completes the proof.

APPENDIX F
PROOF OF LEMMA 1

Recall that we let (b0, w0) be the initial value of net-
work parameters obtained via the symmetric initialization
scheme, which makes f(·;w0) a zero function. We denote
(B̂hV̂h+1)(·) = R̂h(·) + (P̂hV̂h+1)(·) as the estimator of
Bellman operator (BhV̂h+1)(·) = Rh(·) + (PhV̂h+1)(·).
To prove Lemma 1, we show that (B̂hV̂h+1)(·)−β1br,h(·, Θ̂)−
β2bv,h(·, ŵ) is approximately a pessimistic estimator of

(BhV̂h+1)(·) up to a function approximation error. We consider
m to be sufficiently large such that m ≥ NH2.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6496 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

A. Uncertainty of Estimated Reward R̂h(·)

In this step, we aim to bound the estimation error∣∣∣R̂h(·)−Rh(·)
∣∣∣. Since Θ̂ is the global minimizer of the loss

function Lr defined in eq. (30), we have

Lr(Θ̂) =
∑
τ∈D

[
H∑
h=1

f(xτh, θ̂h)− r(τ)

]2

+ λ1 ·
H∑
h=1

∥∥∥θ̂h − θ0

∥∥∥2

2

≤ Lr(Θ0)

=
∑
τ∈D

[
H∑
h=1

f(xτh, θ0)− r(τ)

]2

(i)
=
∑
τ∈D

[r(τ)]2

(ii)

≤ NH2, (75)

where (i) follows from the fact that f(x, θ0) = 0 for all x ∈ X
and (ii) follows from the fact that r(τ) ≤ H for any trajectory
τ and we have total N trajectories in the offlline sample set
D. We define the vector Θ0 = [θ⊤0 , · · · , θ⊤0]⊤ ∈ R2mdH . Note
that eq. (75) implies∥∥∥θ̂h − θ0

∥∥∥2

2

≤
∥∥∥Θ̂−Θ0

∥∥∥2

2

=
H∑
h=1

∥∥∥θ̂h − θ0

∥∥∥2

2

≤ NH2/λ1, ∀h ∈ [H]. (76)

Hence, each θ̂h belongs to the Euclidean ball Bθ = {θ ∈
R2md : ∥θ − θ0∥2 ≤ H

√
N/λ1}.

Since the radius of Bθ does not depend on m, when m
is sufficient large it can be shown that f(·, θ) is close to its
linearization at θ0, i.e.,

f(·, θ) ≈ ⟨ϕ(·, θ0), θ − θ0⟩, ∀θ ∈ Bθ,

where ϕ(·, θ) = ∇θf(·, θ). Furthermore, according to
Assumbtion 3, there exists a function ℓa1,a2 : Rd → Rd such
that the mean of the true reward function Rh(·) = E[rh(·)]
satisfies

Rh(x) =
∫

Rd

σ′(θ⊤x) · x⊤ℓr(θ)dp(θ), (77)

where supθ ∥ℓr(θ)∥2 ≤ a1, supθ(∥ℓr(θ)∥2 /p(θ)) ≤ a2 and p
is the density of the distribution N(0, Id/d). We then proceed
to bound the difference between R̂h(·) and Rh(·).

Step I: In the first step, we show that with high probability
the mean of the true reward Rh(·) can be well-approximated
by a linear function with the feature vector ϕ(·, θ0). Lemma 4
in Section I implies that that Rh(·) in eq. (77) can be
well-approximated by a finite-width neural network, i.e., with
probability at least 1 − N−2H−4 over the randomness of

initialization θ0, for all h ∈ [H], there exists a function
R̃h(·) : X → R satisfying

sup
x∈X

∣∣∣R̃h(x)−Rh(x)
∣∣∣

≤
2(Lσa2 + C2

σa
2
2)
√

log(N2H5)√
m

, (78)

where R̃h(·) can be written as

R̃h(x) =
1√
m

m∑
r=1

σ′(θ⊤0,rx) · x⊤ℓr,

where ∥ℓr∥2 ≤ a2/
√
dm for all r ∈ [m] and θ0 =

[θ0,1, · · · , θ0,m] is generated via the symmetric initialization
scheme. We next proceed to show that there exists a vector
θ̃h ∈ R2md such that R̃h(·) = ⟨ϕ(·, θ0), θ̃h − θ0⟩. Let θ̃h =
[θ̃⊤h,1, · · · .θ̃⊤h,2m]⊤, in which θ̃⊤h,r = θ0,r + b0,r · ℓr/

√
2 for

all r ∈ {1, · · · ,m} and θ̃⊤h,r = θ0,r + b0,r · ℓr−m/
√
2 for all

r ∈ {m+ 1, · · · , 2m}. Then, we have

R̃h(x)

=
1√
2m

m∑
r=1

√
2(b0,r)2 · σ′(θ⊤0,rx) · x⊤ℓr

=
1√
2m

m∑
r=1

1√
2
(b0,r)2 · σ′(θ⊤0,rx) · x⊤ℓr

+
1√
2m

m∑
r=1

1√
2
(b0,r)2 · σ′(θ⊤0,rx) · x⊤ℓr−m

=
1√
2m

2m∑
r=1

b0,r · σ′(θ⊤0,rx) · x⊤(θ̃h,r − θ0,r)

= ϕ(x, θ0)⊤(θ̃h − θ0). (79)

Thus, the true mean reward Rh(·) is approximately linear with
the feature ϕ(·, θ0). Since θ̃h,r − θ0,r = b0,r · ℓr/

√
2 or b0,r ·

ℓr−m/
√
2, we have∥∥∥θ̃h − θ0

∥∥∥
2
≤ a2

√
2dm.

Step II: In this step, we show that R̂h(·) learned by neural
network in Algorithm 2 can be well-approximated by its
counterpart learned by a linear function with feature ϕ(·, θ0).

Consider the following least-square loss function

L̄r(Θ)

=
∑
τ∈D

[
H∑
h=1

⟨ϕ(xτh, θ0), θh − θ0⟩ − r(τ)

]2

+ λ1 ·
H∑
h=1

∥θh − θ0∥2
2

=
∑
τ∈D

[⟨Φ(τ,Θ0),Θ−Θ0⟩ − r(τ)]2

+ λ1 · ∥Θ−Θ0∥2
2 .

The global minimizer of L̄r(Θ) is defined as

Θ = argmin
Θ∈R2dmH

L̄r(θ),

Θ = [θ̄⊤1 , · · · , θ̄⊤H]⊤. (80)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6497

We define Rh(·) = ⟨ϕ(·, θ0), θ̄h−θ0⟩ for all h ∈ [H]. We then
proceed to bound the term

∣∣∣R̂h(x)−Rh(x)
∣∣∣ as follows∣∣∣R̂h(x)−Rh(x)

∣∣∣
=
∣∣∣f(x, θ̂h)− ⟨ϕ(x, θ0), θ̄h − θ0⟩

∣∣∣
=
∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0),Θ−Θ0⟩

∣∣∣
=
∣∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0), Θ̂−Θ0⟩

+ ⟨Φh(x,Θ0), Θ̂−Θ⟩
∣∣∣∣

≤
∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0), Θ̂−Θ0⟩

∣∣∣
+
∣∣∣⟨Φh(x,Θ0), Θ̂−Θ⟩

∣∣∣
=
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣
+
∣∣∣⟨Φh(x,Θ0), Θ̂−Θ⟩

∣∣∣
≤
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣
+ ∥Φh(x,Θ0)∥2

∥∥∥Θ̂−Θ
∥∥∥

2

=
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣︸ ︷︷ ︸
(i)

+ ∥ϕ(x, θ0)∥2

∥∥∥Θ̂−Θ
∥∥∥

2︸ ︷︷ ︸
(ii)

.

According to Lemma 5 and the fact that
∥∥∥θ̂h − θ0

∥∥∥
2

≤
H
√
N/λ1, we have the followings hold with probability at

least 1−N−2H−4

(i) ≤ O

(
Cϕ

(
N2H4

λ2
1

√
m

)1/3√
logm

)
, (81)

(ii) ≤ Cϕ

∥∥∥Θ̂−Θ
∥∥∥

2
. (82)

We then proceed to bound the term
∥∥∥Θ̂−Θ

∥∥∥
2
. Consider the

minimization problem defined in eq. (31) and eq. (80). By the
first order optimality condition, we have

λ1

(
Θ̂−Θ0

)
=
∑
τ∈D

(
r(τ)−

H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂) (83)

λ1

(
Θ−Θ0

)
=
∑
τ∈D

Φ(τ,Θ0)

·
(
r(τ)− ⟨Φ(τ,Θ0),Θ−Θ0⟩

)
. (84)

Note that eq. (84) implies

Σ(Θ0)
(
Θ−Θ0

)
=
∑
τ∈D

r(τ)Φ(τ,Θ0). (85)

Adding the term
∑
τ∈D⟨Φ(τ,Θ0), Θ̂ − Θ0⟩Φ(τ,Θ0) on both

sides of eq. (83) yields

Σ(Θ0)
(
Θ̂−Θ0

)

=
∑
τ∈D

r(τ)Φ(τ, Θ̂)

+
∑
τ∈D

[
⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

]
. (86)

Then, subtracting eq. (85) from eq. (86), we can obtain

Σ(Θ0)(Θ̂−Θ)

=
∑
τ∈D

r(τ)
(
Φ(τ, Θ̂)− Φ(τ,Θ0)

)
+
∑
τ∈D

[
⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

]
, (87)

which implies∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥

2

≤
∑
τ∈D

r(τ)

√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)
∥∥∥2

2

+
∑
τ∈D

∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥
2

. (88)

To bound the term ∥⟨Φ(τ,Θ0), Θ̂ − Θ0⟩Φ(τ,Θ0) −(∑H
h=1 f(x

τ
h, θ̂h)

)
Φ(τ, Θ̂)∥2, we proceed as follows

⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

= ⟨Φ(τ,Θ0), Θ̂−Θ0⟩(Φ(τ,Θ0)− Φ(τ, Θ̂))

−

(
⟨Φ(τ,Θ0), Θ̂−Θ0⟩ −

H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

= ⟨Φ(τ,Θ0), Θ̂−Θ0⟩(Φ(τ,Θ0)− Φ(τ, Θ̂))

−

[
H∑
h=1

(
⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)

)]
Φ(τ, Θ̂),

which implies∥∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥∥
2

≤ ∥Φ(τ,Θ0)∥2

∥∥∥Θ̂−Θ0

∥∥∥
2

∥∥∥Φ(τ,Θ0)− Φ(τ, Θ̂)
∥∥∥

2

+

[
H∑
h=1

∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)
∣∣∣] ∥∥∥Φ(τ, Θ̂)

∥∥∥
2

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

=

√√√√ H∑
h=1

∥ϕ(xτh, θ0h)∥
2

2

∥∥∥Θ̂−Θ0

∥∥∥
2

·

√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)
∥∥∥2

2

+

[
H∑
h=1

∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)
∣∣∣]

·

√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ̂h)∥∥∥2

2
, (89)

where the last equality follows from the fact that ∥Φ(τ,Θ)∥2
2 =∑H

h=1 ∥ϕ(xτh, θh)∥
2
2 for any Θ ∈ R2mdH . According to

Lemma 5 and the fact that
∥∥∥θ̂h − θ0

∥∥∥
2
≤ H

√
N/λ1, we have

the followings hold with probability at least 1−N−2H−4 for
all h ∈ [H] and τ ∈ D

∥ϕ(xτh, θ0)∥2 ≤ Cϕ,∥∥∥ϕ(xτh, θ̂h)∥∥∥
2
≤ Cϕ, (90)∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)

∥∥∥
2

≤ O

Cϕ(H√N/λ1√
m

)1/3√
logm

 , (91)∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0⟩ − f(xτh, θ̂h)
∣∣∣

≤ O

(
Cϕ

(
H4N2/λ2

1√
m

)1/3√
logm

)
. (92)

Substituting eq. (90), eq. (91) and eq. (92) into eq. (89),
we have∥∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)

−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥∥
≤ (H2

√
N/λ1)

· O

C2
ϕ

(
H
√
N/λ1√
m

)1/3√
logm


+O

(
C2
ϕH

3/2

(
H4N2/λ2

1√
m

)1/3√
logm

)

≤ O

(
C2
ϕH

17/6N2/3
√
log(m)

m1/6λ
2/3
1

)
. (93)

Then, substituting eq. (93) into eq. (88), we have the following
holds with probability at least 1−N−2H−4∥∥∥Σ(Θ0)(Θ̂−Θ)

∥∥∥
2

≤ NH ·
√
H · O

Cϕ(H√N/λ1√
m

)1/3√
logm



+N · O

(
C2
ϕH

17/6N2/3
√
log(m)

m1/6λ
2/3
1

)

≤ O

(
C2
ϕH

17/6N5/3
√
log(m)

m1/6λ
2/3
1

)
,

where we use the fact that r(τ) ≤ H . We then proceed to
bound the term

∥∥∥Θ̂−Θ0

∥∥∥
2

as follows∥∥∥Θ̂−Θ
∥∥∥

2

=
∥∥∥Σ−1(Θ0)Σ(Θ0)(Θ̂−Θ)

∥∥∥
2

≤
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥

2

≤ λ−1
1

∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥

2

≤ O

(
C2
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
. (94)

Substituting eq. (94) into eq. (82), we can bound (ii) as
follows

(ii) ≤ O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
. (95)

Taking summation of the upper bounds of (i) in eq. (81) and
(ii) in eq. (95), we have∣∣∣R̂h(x)−Rh(x)

∣∣∣
≤ (i) + (ii)

≤ O

(
Cϕ

(
N2H4

λ2
1

√
m

)1/3√
logm

)

+O

(
C3
ϕH

17/6N5/3
√

log(m)

m1/6λ
5/3
1

)

≤ O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
. (96)

Step III: In this step, we show that the bonus term br,h(·, Θ̂)
in Algorithm 2 can be well approximated by br,h(·,Θ0).
According to the definition of br,h(·,Θ), we have∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)

∣∣∣
=
∣∣∣∣ [Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)

]1/2
−
[
Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)

]1/2 ∣∣∣∣
≤
∣∣∣∣Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)

− Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)
∣∣∣∣1/2, (97)

where the last inequality follows from the fact
that |

√
x − √

y| ≤
√

|x− y|. We then proceed
to bound the term |Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂) −
Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)| as follows∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6499

− Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)
∣∣

=
∣∣[Φh(x, Θ̂)− Φh(x,Θ0)]⊤Σ−1(Θ̂)Φh(x, Θ̂)

∣∣
+
∣∣∣∣Φh(x,Θ0)⊤(Σ−1(Θ̂)− Σ−1(Θ0))

· Φh(x, Θ̂)
∣∣∣∣

+
∣∣Φh(x,Θ0)⊤Σ−1(Θ0)

· (Φh(x, Θ̂)− Φh(x,Θ0))
∣∣

≤ [Φh(x, Θ̂)− Φh(x,Θ0)]⊤Σ−1(Θ̂)Φh(x, Θ̂)

+
∣∣∣Φh(x,Θ0)⊤(Σ−1(Θ̂)− Σ−1(Θ0))Φh(x, Θ̂)

∣∣∣
+
∣∣Φh(x,Θ0)⊤Σ−1(Θ0)

· (Φh(x, Θ̂)− Φh(x,Θ0))
∣∣

≤
∥∥∥Φh(x, Θ̂)− Φh(x,Θ0)

∥∥∥
2

·
∥∥∥Σ−1(Θ̂)

∥∥∥
2

∥∥∥Φh(x, Θ̂)
∥∥∥

2

+ ∥Φh(x,Θ0)∥2

·
∥∥∥Σ−1(Θ̂)− Σ−1(Θ0)

∥∥∥
2

∥∥∥Φh(x, Θ̂)
∥∥∥

2

+ ∥Φh(x,Θ0)∥2

∥∥Σ−1(Θ0)
∥∥

2

·
∥∥∥Φh(x, Θ̂)− Φh(x,Θ0)

∥∥∥
2

=
∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)

∥∥∥
2

∥∥∥Σ−1(Θ̂)
∥∥∥

2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2

∥∥∥Σ−1(Θ̂)(Σ(Θ̂)− Σ(Θ0))Σ−1(Θ0)
∥∥∥

2

·
∥∥∥ϕ(x, θ̂h)∥∥∥

2

+ ∥ϕ(x, θ0)∥2

∥∥Σ−1(Θ0)
∥∥

2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2

≤
∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)

∥∥∥
2

∥∥∥Σ−1(Θ̂)
∥∥∥

2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2

∥∥∥Σ−1(Θ̂)
∥∥∥

2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥

2

·
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2

∥∥Σ−1(Θ0)
∥∥

2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2

≤ 1
λ1

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+
1
λ2

1

∥ϕ(x, θ0)∥2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥

2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+
1
λ1

∥ϕ(x, θ0)∥2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2
, (98)

where the last inequality follows from the fact that ∥Σ(Θ)∥2 ≥
λ1 for any Θ ∈ R2mdH . For Σ(Θ̂)− Σ(Θ0), we have

Σ(Θ̂)− Σ(Θ0)

=
∑
τ∈D

[
Φ(τ, Θ̂)Φ(τ, Θ̂)⊤ − Φ(τ,Θ0)Φ(τ,Θ0)⊤

]
=
∑
τ∈D

[
Φ(τ, Θ̂)(Φ(τ, Θ̂)− Φ(τ,Θ0))⊤

+ (Φ(τ, Θ̂)− Φ(τ,Θ0))Φ(τ,Θ0)⊤
]
,

which implies∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥

2

≤
∑
τ∈D

[∥∥∥Φ(τ, Θ̂)
∥∥∥

2

∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥

2

+
∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)

∥∥∥
2
∥Φ(τ,Θ0)∥2

]
. (99)

By definition of Φ(τ,Θ), we have the followings hold for any
Θ, Θ̃ ∈ R2mdH

∥∥∥Φ(τ, Θ̂)
∥∥∥

2
=

√√√√∑
h∈[H]

∥∥∥ϕ(xτh, θ̂h)∥∥∥2

2
, (100)

∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥

2

=

√√√√∑
h∈[H]

∥∥∥ϕ(xτh, θh)− ϕ(xτh, θ̃h)
∥∥∥2

2
. (101)

Applying Lemma 5 to eq. (100) and eq. (101), we have the
followings hold with probability at least 1−N−2H−4∥∥∥Φ(τ, Θ̂)

∥∥∥
2
≤ Cϕ

√
H,∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥

2

≤ O

(
CϕH

5/6N1/6
√
logm

m1/6λ
1/6
1

)
.

Substituting the above two inequalities into eq. (99) yields∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥

2

≤ O

(
C2
ϕH

4/3N1/6
√
logm

m1/6λ
1/6
1

)
. (102)

Finally, combining eq. (102) and eq. (214) and eq. (215) in
Lemma 5, we can bound the right hand side of eq. (98) as∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)

− Φh(x,Θ)⊤Σ−1(Θ)Φh(x,Θ)
∣∣

≤ 1
λ1

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+
1
λ2

1

∥ϕ(x, θ0)∥2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥

2

·
∥∥∥ϕ(x, θ̂h)∥∥∥

2

+
1
λ1

∥ϕ(x, θ0)∥2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥

2

≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
7/6
1

)

+O

(
C4
ϕH

4/3N1/6
√
logm

m1/6λ
13/6
1

)

= O

(
C4
ϕH

4/3N1/6
√
logm

m1/6λ
13/6
1

)
. (103)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

Substituting eq. (103) into eq. (97), we have the following
holds with probability at least 1−N−2H−4∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)

∣∣∣
≤ O

(
C2
ϕH

2/3N1/12(logm)1/4

m1/12λ
13/12
1

)
. (104)

Step IV: In Steps I and II, we show that the mean of
the real reward Rh(·) can be well approximated by a linear
function R̃h(·) with feature ϕ(·, θ0) and our learned reward
R̂h(·) can be well approximated by a linear function Rh(·)
with feature ϕ(·, θ0). In this step, we want to show that
the reward estimation error

∣∣∣R̂h(·)−Rh(·)
∣∣∣ is approximately

β1 · br.h(x,Θ0) with an approximately chosen β1.
Recall that R̃h(·) = ⟨ϕ(·, θ0), θ̃h − θ0⟩ and Rh(·) =

⟨ϕ(·, θ0), θ̄h − θ0⟩. Considering the difference between Rh(·)
and R̃h(·), we have

Rh(x)− R̃h(x)

= ⟨ϕ(x, θ0), θ̄h − θ̃h⟩
= ⟨Φh(x,Θ0),Θ− Θ̃⟩, (105)

where the last equality follows from the definition of Φh(·,Θ).
By eq. (85), we have

Θ−Θ0 = Σ(Θ0)−1
∑
τ∈D

r(τ)Φ(τ,Θ0). (106)

By the definition of Σ(Θ), we have

Θ̃−Θ0

= Σ(Θ0)−1

[
λ1

(
Θ̃−Θ0

)
(107)

+

(∑
τ∈D

Φ(τ,Θ0)Φ(τ,Θ0)⊤
)(

Θ̃−Θ0

)]
.

Subtracting eq. (107) from eq. (106), we have

Θ− Θ̃

= −λ1Σ(Θ0)−1
(
Θ̃−Θ0

)
+Σ(Θ0)−1

∑
τ∈D

Φ(τ,Θ0)

·
[
r(τ)− ⟨Φ(τ,Θ0), Θ̃−Θ0⟩

]
. (108)

Taking inter product of both sides of eq. (108) with vector
Φh(x,Θ0) and using the fact that R(τ) =

∑
h∈[H]Rh(x

τ
h) and

⟨Φ(τ,Θ0), Θ̃−Θ0⟩ =
∑
h∈[H]⟨ϕ(xτh, θ0), θ̃h − θ0⟩, we have

⟨Φh(x,Θ0),Θ− Θ̃⟩ (109)

= −λ1Φh(x,Θ0)⊤Σ(Θ0)−1/2Σ(Θ0)−1/2

·
(
Θ̃−Θ0

)
+Φh(x,Θ0)⊤Σ(Θ0)−1/2Σ(Θ0)−1/2

·

(∑
τ∈D

Φ(τ,Θ0) (r(τ)−R(τ))

)
+Φh(x,Θ0)⊤Σ(Θ0)−1/2Σ(Θ0)−1/2

·

(∑
τ∈D

Φ(τ,Θ0)

·

[∑
h∈[H]

(
Rh(xτh)− ⟨ϕ(xτh, θ0), θ̃h − θ0⟩

)])
.

Recall that R̃h(xτh) = ⟨ϕ(xτh, θ0), θ̃h − θ0⟩, and eq. (109)
implies that∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩

∣∣∣
≤
√
λ1

∥∥∥Φh(x,Θ0)⊤Σ(Θ0)−1/2
∥∥∥

2

∥∥∥Θ̃−Θ0

∥∥∥
2

+
∥∥∥Φh(x,Θ0)⊤Σ(Θ0)−1/2

∥∥∥
2

·

∥∥∥∥∥∑
τ∈D

Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
Σ(Θ0)−1

+
1√
λ1

∥∥∥Φh(x,Θ0)⊤Σ(Θ0)−1/2
∥∥∥

2

·

(∑
τ∈D

∥Φ(τ,Θ0)∥2

·
∑
h∈[H]

∣∣∣Rh(xτh)− R̃h(xτh)
∣∣∣), (110)

where we denote ϵ(τ) = r(τ) − R(τ) and use the fact
that

∥∥Σ(Θ)−1/2
∥∥

2
≤ 1/

√
λ1 for any Θ ∈ R2mdH . By the

definition of Θ̃ in Step I, we have∥∥∥Θ̃−Θ
∥∥∥

2
=

√√√√ ∑
h∈[H],r∈[m]

∥∥∥θ̃h,r − θ0h,r

∥∥∥2

2

=
√ ∑
h∈[H],r∈[m]

∥ℓr∥2
2

≤ r2
√
H/d. (111)

By Lemma 5 and eq. (78), we have the followings hold with
probability at least 1−N−2H−4

∥Φ(τ,Θ0)∥2 ≤ Cϕ
√
H, (112)∣∣∣Rh(xτh)− R̃h(xτh)
∣∣∣

≤ 2(Lσa2 + C2
σa

2
2)
√

logN2H5

√
m

. (113)

Substituting eq. (111), eq. (112) and eq. (113)
into eq. (110) and using the fact that br,h(x,Θ0) =∥∥Φh(x,Θ0)⊤Σ(Θ0)−1/2

∥∥
2
, we have∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩
∣∣∣ (114)

≤

(
a2

√
λ1H

d

+
2(Lσa2 + C2

σa
2
2)CϕNH

3/2
√
logHN√

λ1m

+

∥∥∥∥∥∑
τ∈D

Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
Σ(Θ0)−1

)
br,h(x,Θ0).

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6501

Given that the events in eq. (112) and eq. (113) occur, applying
eq. (235) in Lemma 8, we have the following holds with
probability at least 1−N−2H−4∥∥∥∥∥∑

τ∈D
Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
2

Σ(Θ0)−1

≤ H2 log det(I +Kr
N/λ1)

+H2N(λ1 − 1) + 4H2 log(NH2), (115)

where Kr
N ∈ RN×N is the Gram matrix defined as

Kr
N = [KH(τi, τj)]i,j∈[N] ∈ RN×N .

Combining eq. (114) and eq. (115) and letting λ1 = 1+N−1

and m be sufficiently large such that

2(Lσa2 + C2
σa

2
2)CϕNH

3/2
√
logHN√

λ1m

≤ a2

√
λ1H

d
,

we have the following holds with probability at least 1 −
N−2H−2∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩

∣∣∣
≤

(
2a2

√
λ1H

d

+

√
H2 log det

(
I +

Kr
N

λ1

)
+
√
H2 + 4H2 log(NH2)

)
br,h(x,Θ0)

≤ H

(
4a2

2λ1

d
+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

br,h(x,Θ0), (116)

where in the last inequality we use the fact that a + b ≤√
2(a2 + b2). Substituting eq. (116) into eq. (105), we have

the following holds with probability at least 1−N−2H−4∣∣∣Rh(x)− R̃h(x)
∣∣∣ ≤ β1 · br,h(x,Θ0), (117)

where

β1 = H

(
4a2

2λ1

d
+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

.

Next, we proceed to bound the reward estimation error∣∣∣Rh(x)− R̂h(x)
∣∣∣. By the triangle inequality, we have∣∣∣Rh(x)− R̂h(x)

∣∣∣
= |Rh(x)− R̃h(x) + R̃h(x)−Rh(x)

+Rh(x)− R̂h(x)|

≤
∣∣∣Rh(x)− R̃h(x)

∣∣∣+ ∣∣∣R̃h(x)−Rh(x)
∣∣∣

+
∣∣∣Rh(x)− R̂h(x)

∣∣∣
(i)

≤
2(Lσa2 + C2

σa
2
2)
√

log(HN)√
m

+O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
+ β1 · br,h(x,Θ0)

(ii)

≤ O

(
H17/6N5/3

√
log(m)

m1/6

)
+ β1 · br,h(x,Θ0). (118)

where (i) follows from eq. (78) and eq. (96) and (ii) follows
from the fact that λ1 = 1+ 1/N and Lσ, Cσ, a2, Cϕ = O(1).

B. Uncertainty of Estimated Transition Value
Function (P̂hV̂h+1)(·)

In this subsection, we aim to bound the estimation error of
the transition value function

∣∣∣(P̂hV̂)(·)− (PhV̂)(·)
∣∣∣. For each

h ∈ [H], since ŵh is the global minimizer of the loss function
Lhv (wh) defined in eq. (24), we have

Lhv (ŵh)

=
∑
τ∈D

(
V̂h+1(sτh+1)− f(xτh, ŵh)

)2

+ λ2 · ∥ŵh − w0∥2
2

≤ Lhv (ŵ0)

=
∑
τ∈D

(
V̂h+1(sτh+1)− f(xτh, w0)

)2

(i)
=
∑
τ∈D

(
V̂h+1(sτh+1)

)2

(ii)

≤ NH2, (119)

where (i) follows from the fact that f(x,w0) = 0 for all
x ∈ X and (ii) follows from the fact that V̂h(s) ≤ H for any
h ∈ [H], s ∈ S , and |D| = N . Note that eq. (119) implies

∥ŵh − w0∥2
2 ≤ NH2/λ2, ∀h ∈ [H]. (120)

Hence, each ŵh belongs to the Euclidean ball Bw = {w ∈
R2md : ∥w − w0∥2 ≤ H

√
N/λ2}, where λ2 does not depend

on the network width m. Since the radius of Bw does not
depend on m, when m is sufficient large, it can be shown that
f(·, w) is close to its linearization at w0, i.e.,

f(·, w) ≈ ⟨ϕ(·, w0), w − w0⟩, ∀w ∈ Bθ,

where ϕ(·, w) = ∇wf(·, w). Furthermore, according to
Assumbtion 3, there exists a function ℓA1,A2 : Rd → Rd such
that (PhV̂h+1)(·) satisfies

(PhV̂h+1)(x) =
∫

Rd

σ′(θ⊤x) · x⊤ℓv(w)dp(w), (121)

where supw ∥ℓv(w)∥2 ≤ A1, supw(∥ℓv(w)∥2 /p(w)) ≤
A2 and p is the density of N(0, Id/d). We then proceed to
bound the difference between (P̂hV̂)(·) and (PhV̂)(·).

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

Step I: In the first step, we show that the transition value
function (PhV̂h+1)(·) can be well-approximated by a linear
function with the feature vector ϕ(·, θ0). Lemma 4 in Section I
implies that with probability at least 1 − N−2H−4 over the
randomness of initialization w0, for all h ∈ [H], there exists
a function (P̃hV̂h+1)(·) : X → R satisfying

sup
x∈X

∣∣∣(P̃hV̂h+1)(x)− (PhV̂h+1)(x)
∣∣∣

≤
2(LσA2 + C2

σA
2
2)
√
log(N2H5)√

m
, (122)

where (P̃hV̂h+1)(·) is a finite-width neural network which can
be written as

(P̃hV̂h+1)(x) =
1√
m

m∑
r=1

σ′(w⊤
0,rx) · x⊤ℓvr ,

where ∥ℓvr∥2 ≤ A2/
√
dm for all r ∈ [m] and w0 =

[w0,1, · · · , w0,m] is generated via the symmetric initialization
scheme. Following steps similar to those in eq. (79), we can
show that there exists a vector w̃h ∈ R2md such that

(P̃hV̂h+1)(·) = ⟨ϕ(·, w0), w̃h − w0⟩,

where w̃h = [w̃⊤
h,1, · · · .w̃⊤

h,2m]⊤, in which w̃⊤
h,r = w0,r +

b0,r · ℓvr/
√
2 for all r ∈ {1, · · · ,m} and w̃⊤

h,r = w0,r +
b0,r · ℓvr−m/

√
2 for all r ∈ {m+1, · · · , 2m}. Moreover, since

w̃h,r − w0,r = b0,r · ℓvr/
√
2 or b0,r · ℓvr−m/

√
2, we have

∥w̃h − w0∥2 ≤ A2

√
2dm.

Step II: In the second step, we show that with high probabil-
ity, the estimation of the transition value function (P̂hV̂h+1)(·)
in Algorithm 2 can be well-approximated by its counterpart
learned with a linear function with the feature ϕ(·, θ0).

Consider the following least-square loss function

L̄hv (wh)

=
∑
τ∈D

(
V̂h+1(sτh+1)− ⟨ϕ(xτh, w0), wh − w0⟩

)2

+ λ2 · ∥wh − w0∥2
2 . (123)

The global minimizer of L̄hv (wh) is defined as

wh = argmin
w∈R2dm

L̄hv (w). (124)

We define (PhV̂h+1)(·) = ⟨ϕ(·, w0), wh − w0⟩ for all h ∈
[H]. Then, in a manner similar to the construction of Q̂h(·)
in Algorithm 2, we combine Rh(·) in eq. (80), br,h(·,Θ0),
PhV̂h+1(·) and bv,h(·, w0) to construct Qh(·) : X → R as

Qh(·) (125)

= min{Rh(·) + (PhV̂h+1)(·)
− β1 · br,h(·,Θ0)− β2 · bv,h(·, w0), H}+.

Moreover, we define the estimated optimal state value function
as

V h(·) = max
a∈A

Qh(·, a). (126)

We then proceed to bound the estimation error∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)
∣∣∣ as follows∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)

∣∣∣
=
∣∣f(x, ŵh)− ⟨ϕ(x,w0), wh − w0⟩

∣∣
=
∣∣(x, ŵh)− ⟨ϕ(x,w0), ŵh − w0⟩
− ⟨ϕ(·, w0), ŵh − wh⟩

∣∣
≤ |f(x, ŵh)− ⟨ϕ(x,w0), ŵh − w0⟩|
+ |⟨ϕ(·, w0), ŵh − wh⟩|

≤ |f(x, ŵh)− ⟨ϕ(·, w0), ŵh − w0⟩|︸ ︷︷ ︸
(i)

+ ∥ϕ(x,w0)∥2 ∥ŵh − wh∥2︸ ︷︷ ︸
(ii)

.

We then bound the term (i) and term (ii) in the above inequal-
ity. According to Lemma 5 and the fact that ∥ŵh − w0∥2 ≤
H
√
N/λ2, we have the followings hold with probability at

least 1−N−2H−4

(i) ≤ O

(
Cϕ

(
N2H4

λ2
2

√
m

)1/3√
logm

)
, (127)

(ii) ≤ Cϕ ∥ŵh − wh∥2 . (128)

We then proceed to bound ∥ŵh − wh∥2. Consider the mini-
mization problem defined in eq. (31) and eq. (80). By the first
order optimality condition, we have

λ2 (ŵh − w0)

=
∑
τ∈D

(
V̂h+1(sτh+1)− f(xτh, ŵh)

)
ϕ(xτh, ŵh) (129)

λ2 (wh − w0)

=
∑
τ∈D

(
V̂h+1(sτh+1)− ⟨ϕ(xτh, w0), wh − w0⟩

)
· ϕ(xτh, w0). (130)

Note that eq. (130) implies

Λh(w0) (wh − w0) =
∑
τ∈D

V̂h+1(sτh+1)ϕ(x
τ
h, w0). (131)

Adding the term
∑
τ∈D⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0) on

both sides of eq. (129) yields

Λh(w0) (ŵh − w0)

=
∑
τ∈D

V̂h+1(sτh+1)ϕ(x
τ
h, ŵh)

+
∑
τ∈D

[
⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)

− f(xτh, ŵh)ϕ(x
τ
h, ŵh)

]
. (132)

Then, by subtracting eq. (131) from eq. (132), we have

Λh(w0)(ŵh − wh)

=
∑
τ∈D

V̂h+1(sτh+1) (ϕ(x
τ
h, ŵh)− ϕ(xτh, w0))

+
∑
τ∈D

[
⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)

− f(xτh, ŵh)ϕ(x
τ
h, ŵh)

]
, (133)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6503

which implies

∥Λh(w0)(ŵh − wh)∥2

=
∑
τ∈D

V̂h+1(sτh+1) ∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2

+
∑
τ∈D

∥∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)

− f(xτh, ŵh)ϕ(x
τ
h, ŵh)

∥∥. (134)

To bound the term ∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0) −
f(xτh, ŵh)ϕ(x

τ
h, ŵh)∥, we proceed as follows

⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)

= ⟨ϕ(xτh, w0), ŵh − w0⟩(ϕ(xτh, w0)− ϕ(xτh, ŵh))
− (⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh))ϕ(x

τ
h, ŵh)

which implies

∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)∥2

≤ ∥ϕ(xτh, w0)∥2 ∥ŵh − w0∥2

· ∥ϕ(xτh, w0)− ϕ(xτh, ŵh)∥2

+ |⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh)|
· ∥ϕ(xτh, ŵh)∥2 . (135)

According to Lemma 5 and the fact that ∥ŵh − w0∥2 ≤
H
√
N/λ2, we have the followings hold for all h ∈ [H] and

τ ∈ D with probability at least 1−N−2H−4

∥ϕ(xτh, w0)∥2 ≤ Cϕ, (136)
∥ϕ(xτh, ŵh)∥2 ≤ Cϕ, (137)
∥ϕ(xτh, w0)− ϕ(xτh, ŵh)∥2

≤ O

Cϕ(H√N/λ2√
m

)1/3√
logm

 , (138)

|⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh)|

≤ O

(
Cϕ

(
H4N2/λ2

2√
m

)1/3√
logm

)
. (139)

Substituting eq. (137), eq. (138) and eq. (139) into eq. (135),
we can obtain

∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)
− f(xτh, ŵh)ϕ(x

τ
h, ŵh)∥

≤ (H
√
N/λ2)

· O

C2
ϕ

(
H
√
N/λ2√
m

)1/3√
logm


+O

(
C2
ϕ

(
H4N2/λ2

2√
m

)1/3√
logm

)

≤ O

(
C2
ϕH

4/3N2/3
√
log(m)

m1/6λ
2/3
2

)
. (140)

Substituting eq. (140) into eq. (134), we have the following
holds with probability at least 1−N−2H−4

∥Λh(w0)(ŵh − wh)∥2

≤ NH · O

Cϕ(H√N/λ2√
m

)1/3√
logm


+N · O

(
C2
ϕH

4/3N2/3
√
log(m)

m1/6λ
2/3
2

)

≤ O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
2/3
2

)
(141)

where we use the fact that V̂h+1(s) ≤ H for any s ∈ S .
We then proceed to bound ∥ŵh − wh∥2 as follows

∥ŵh − wh∥2

=
∥∥Λ−1(w0)Λ(w0)(ŵh − wh)

∥∥
2

≤
∥∥Λ−1(w0)

∥∥
2
∥Λ(w0)(ŵh − wh)∥2

≤ 1
λ2

· O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
2/3
2

)

≤ O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
. (142)

Substituting eq. (142) into eq. (128) yields

(ii) ≤ O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
. (143)

Taking summation of the upper bounds of (i) in eq. (127) and
(ii) in eq. (143), respectively, we have the following holds for
all x ∈ X with probability at least 1−N−2H−4∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)

∣∣∣
≤ (i) + (ii)

≤ O

(
Cϕ

(
N2H4

λ2
2

√
m

)1/3√
logm

)

+O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)

≤ O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
. (144)

Step III: In this step, we show that the bonus term
bv,h(·, ŵh) in Algorithm 2 can be well approximated by
bv,h(·, w0). By the definition of bv,h(·, w), we have

|bv,h(x, ŵh)− bv,h(x,w0)|

=
∣∣ [ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

]1/2
−
[
ϕh(x,w0)⊤Λ−1(w0)ϕh(x,w0)

]1/2 ∣∣
≤
∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

− ϕh(x,w0)⊤Λ−1(w0)ϕh(x,w0)
∣∣1/2, (145)

where the last inequality follows from the fact that∣∣√x−√
y
∣∣ ≤ √

|x− y|. Following steps similar to those in
eq. (98), we can obtain

|ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

− ϕh(x,w0)⊤Λ−1(w0)ϕh(x,w0)|
≤ ∥ϕ(x, ŵh)− ϕ(x,w0)∥2

∥∥Λ−1(ŵh)
∥∥

2

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

· ∥ϕ(x, ŵh)∥2

+ ∥ϕ(x,w0)∥2

∥∥Λ−1(ŵh)
∥∥

2
∥Λ(ŵh)− Λ(w0)∥2

·
∥∥Λ−1(w0)

∥∥
2
∥ϕ(x, ŵh)∥2

+ ∥ϕ(x,w0)∥2

∥∥Λ−1(w0)
∥∥

2

· ∥ϕ(x, ŵh)− ϕ(x,w0)∥2

≤ 1
λ2

∥ϕ(x, ŵh)− ϕ(x,w0)∥2 ∥ϕ(x, ŵh)∥2

+
∥ϕ(x, ŵh)∥2

λ2
2

∥ϕ(x,w0)∥2 ∥Λ(ŵh)− Λ(w0)∥2

+
1
λ2

∥ϕ(x,w0)∥2 ∥ϕ(x, ŵh)− ϕ(x,w0)∥2 , (146)

where the last inequality follows from the fact that ∥Λ(w)∥2 ≥
λ2 for any w ∈ R2md. For Λ(ŵ)−Λ(w0), by following steps
similar to those in eq. (99), we can obtain

∥Λ(ŵh)− Λ(w0)∥2

≤
∑
τ∈D

[
∥ϕ(xτh, ŵh)∥2 ∥ϕ(x

τ
h, ŵh)− ϕ(xτh, w0)∥2

+ ∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2 ∥ϕ(x
τ
h, w0)∥2

]
. (147)

Applying Lemma 5 to eq. (147), we have the followings hold
with probability at least 1−N−2H−4

∥ϕ(xτh, ŵh)∥2 ≤ Cϕ,

∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2

≤ O

(
CϕH

1/3N1/6
√
logm

m1/6λ
1/6
2

)
.

Substituting the above two inequalities into eq. (99) yields

∥Λ(ŵh)− Λ(w0)∥2

≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
1/6
2

)
. (148)

Finally, combining eq. (148) and eq. (214) and eq. (215) in
Lemma 5, the right hand side of eq. (146) can be bounded by∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

− ϕh(x,w0)⊤Λ−1(w0)ϕh(x,w0)
∣∣

≤ 1
λ2

∥ϕ(x, ŵh)− ϕ(x,w0)∥2 ∥ϕ(x, ŵh)∥2

+
1
λ2

2

∥ϕ(x,w0)∥2 ∥Λ(ŵh)− Λ(w0)∥2 ∥ϕ(x, ŵh)∥2

+
1
λ2

∥ϕ(x,w0)∥2 ∥ϕ(x, ŵh)− ϕ(x,w0)∥2

≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
7/6
2

)

+O

(
C4
ϕH

1/3N1/6
√
logm

m1/6λ
13/6
2

)
.

By eq. (145), we have the following holds with probability at
least 1−N−2H−4

|bv,h(x, ŵh)− bv,h(x,w0)|
≤
∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

− ϕh(x,w0)⊤Λ−1(w0)ϕh(x,w0)
∣∣1/2

≤ O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
. (149)

Step IV: In Steps I and II, we show that (PhV̂h+1)(·) can be
well approximated by a linear function (P̃hV̂h+1)(·) with the
feature ϕ(·, θ0), and (P̂hV̂h+1)(·) can be well approximated by
a linear function (PhV̂h+1)(·) with the feature ϕ(·, θ0). In this
step, we want to show that the difference between (PhV̂h+1)(·)
and (P̂hV̂h+1)(·) is approximately β2 · bv.h(x,Θ0) with an
approximately chosen β2.

Recall that (P̃hV̂h+1)(·) = ⟨ϕ(·, w0), w̃h − w0⟩ and
(PhV̂h+1)(·) = ⟨ϕ(·, w0), w̄h − w0⟩. Consider the difference
between (PhV̂h+1)(·) and (P̃hV̂h+1)(·). We have

(PhV̂h+1)(x)− (P̃hV̂h+1)(x)
= ⟨ϕ(x,w0), w̄h − w̃h⟩, (150)

By eq. (130), we have

w − w0

= Λ(w0)−1
∑
τ∈D

V̂h+1(sτh+1)ϕ(x
τ
h, w0). (151)

By the definition of Λ(w), we have

w̃ − w0 (152)

= Λ(w0)−1

[
λ2 (w̃ − w0)

+

(∑
τ∈D

ϕ(xτh, w0)ϕ(xτh, w0)⊤
)
(w̃ − w0)

]
.

Subtracting eq. (152) from eq. (151), we have

w − w̃ (153)

= −λ2Λ(w0)−1 (w̃ − w0)

+ Λ(w0)−1
∑
τ∈D

ϕ(xτh, w0)

·
[
V̂h+1(sτh+1)− ⟨ϕ(xτh, w0), w̃ − w0⟩

]
.

Taking inter product of both sides of eq. (153) with vec-

tor ϕ(xτh, w0) and using the fact that (P̃hV̂h+1)(sτh+1) =
⟨ϕ(xτh, w0), w̃h − w0⟩, we have

⟨ϕh(xτh, w0), w − w̃⟩
= −λ2ϕh(xτh, w0)⊤Λ(w0)−1/2Λ(w0)−1/2 (w̃ − w0)

+ ϕh(xτh, w0)⊤Λ(w0)−1/2Λ(w0)−1/2(∑
τ∈D

ϕ(xτh, w0)(
V̂h+1(sτh+1)− (PhV̂h+1)(xτh)

))
+ ϕh(x,w0)⊤Λ(w0)−1/2Λ(w0)−1/2(∑
τ∈D

ϕ(xτh, w0)(
(PhV̂h+1)(sτh+1)− ⟨ϕ(xτh, w0), w̃h − w0⟩

))
Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6505

= −λ2ϕh(xτh, w0)⊤Λ(w0)−1/2Λ(w0)−1/2

(w̃ − w0)

+ ϕh(xτh, w0)⊤Λ(w0)−1/2Λ(w0)−1/2(∑
τ∈D

ϕ(xτh, w0)
(
V h+1(sτh+1)− (PhV h+1)(xτh)

))
+ ϕh(xτh, w0)⊤Λ(w0)−1/2Λ(w0)−1/2(∑
τ∈D

ϕ(xτh, w0)
(
∆Vh+1(sτh+1)− (Ph∆Vh+1)(xτh)

))
+ ϕh(x,w0)⊤Λ(w0)−1/2Λ(w0)−1/2(∑
τ∈D

ϕ(xτh, w0)
(
(PhV̂h+1)(xτh)− (P̃hV̂h+1)(xτh)

))
,

(154)

where in the last equality we denote ∆Vh(s) := V̂h(s)−V h(s).
By the definition of V̂h(·) in Algorithm 2 and V h(·) in
eq. (126), we have∣∣∣V̂h(x)− V h(x)

∣∣∣
≤ sup
x∈X

∣∣∣Q̂h(x)−Qh(x)
∣∣∣

≤
∣∣∣f(x, θ̂h)− ⟨ϕ(x, θ0), θ̄h − θ0⟩

∣∣∣
+ |f(x, ŵh)− ⟨ϕ(x,w0), wh − w0⟩|

+ β1

∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)
∣∣∣

+ β2 |bv,h(x, ŵ)− bv,h(x,w0)|
(i)

≤ O

(
Cϕ

(
H4N2/λ2

1√
m

)1/3√
logm

)

+O

(
Cϕ

(
H4N2/λ2

2√
m

)1/3√
logm

)

+ β1 · O

(
C2
ϕN

1/12(logm)1/4

m1/12λ
13/12
1

)

+ β2 · O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
(ii)

≤ O

(
Cϕ

(
H4N2

√
m

)1/3√
logm

)
+max{H2/3β1, H

1/6β2}

· O

(
C2
ϕN

1/12(logm)1/4

m1/12

)
, (155)

where (i) follows from eq. (216) in Lemma 5, eq. (104) and
eq. (149), and (ii) follows from the fact that λ1, λ2 > 1.
Denoting

εv

= O

(
Cϕ

(
H4N2

√
m

)1/3√
logm

)
+max{H2/3β1, H

1/6β2}

· O

(
C2
ϕN

1/12(logm)1/4

m1/12

)
,

we then have the following holds for all h ∈ [H] and s ∈ S

|∆Vh(s)| ≤ εv.

eq. (154) together with eq. (155) imply

|⟨ϕh(xτh, w0), w − w̃⟩|

≤
√
λ2

∥∥∥ϕh(xτh, w0)⊤Λ(w0)−1/2
∥∥∥

2
∥w̃ − w0∥2

+
∥∥∥ϕh(xτh, w0)⊤Λ(w0)−1/2

∥∥∥
2∥∥∥∥∥∑

τ∈D
ϕ(xτh, w0)εv(xτh)

∥∥∥∥∥
Λ(w0)−1

+
2εv√
λ2

∥∥∥ϕh(xτh, w0)⊤Λ(w0)−1/2
∥∥∥

2∑
τ∈D

∥ϕ(xτh, w0)∥2

+
1√
λ2

∥∥∥ϕh(xτh, w0)⊤Λ(w0)−1/2
∥∥∥

2(∑
τ∈D

∥ϕ(xτh, w0)∥2∣∣∣(PhV̂h+1)(xτh)− (P̃hV̂h+1)(xτh)
∣∣∣), (156)

where we denote εv(xτh) := V h+1(sτh+1)−(PhV h+1)(xτh) and
use the fact that

∥∥Λ(w)−1/2
∥∥

2
≤ 1/

√
λ2 for any w ∈ R2md.

By the definition of w̃ in Step I, we have

∥w̃ − w0∥2 = ∥ℓv∥2 ≤ A2

√
H/d. (157)

By Lemma 5 and eq. (78), we have the followings hold with
probability at least 1 − N−2H−4 over the randomness of
initialization w0

∥ϕ(xτh, w0)∥2 ≤ Cϕ, (158)∣∣∣(PhV̂h+1)(xτh)− (P̃hV̂h+1)(xτh)
∣∣∣

≤ 2(LσA2 + C2
σA

2
2)
√
logN2H5

√
m

. (159)

Substituting eq. (157), eq. (158) and eq. (159)
into eq. (156) and using the fact that bv,h(x,w0) =∥∥ϕh(x,w0)⊤Λ(w0)−1/2

∥∥
2
, we have

|⟨ϕh(xτh, w0), w − w̃⟩|

≤ bv,h(xτh, w0)

(
A2

√
λ2H

d

+
2(LσA2 + C2

σA
2
2)CϕNH

3/2
√
logHN√

λ2m

+

∥∥∥∥∥∑
τ∈D

ϕ(xτh, w0)εv(xτh)

∥∥∥∥∥
Λ(w0)−1

)
. (160)

Given that the events in eq. (158) and eq. (159) occur, applying
eq. (234) in Lemma 8, we have the following holds with

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

probability at least 1−N−2H−4∥∥∥∥∥∑
τ∈D

ϕ(xτh, w0)εv(xτh)

∥∥∥∥∥
2

Λ(w0)−1

≤ 2H2 log det(I +Kv
N,h/λ2) + 2H2N(λ2 − 1)

+ 4H2 log(N v
ϵ,h/δ) + 8N2C2

ϕϵ
2/λ2, (161)

where Kv
N,h ∈ RN×N is the Gram matrix defined as

Kv
N,h = [K(xτi

h , x
τj

h)]i,j∈[N] ∈ RN×N ,

and N v
ϵ,h is the cardinality of the following function class

Vh(x,Rθ, Rw, Rβ1 , Rβ2 , λ1, λ2)

= {max
a∈A

{Qh(s, a)} : S → [0, H]

∥θ∥2 ≤ Rθ, ∥w∥2 ≤ Rw, β1 ∈ [0, Rβ1], β2 ∈ [0, Rβ2],
∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2},

where Rθ = H
√
N/λ1, Rw = H

√
N/λ2 and

Qh(x)
= min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w−w0⟩

− β1 ·
√

Φh(x, θ0)⊤Σ−1Φh(x, θ0)

− β2 ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+.

Combining eq. (160) and eq. (161), defining N v
ϵ =

maxh∈[H]{N v
ϵ,h} and letting

ϵ =
√
λ2CϵH/(2NCϕ), (162)

Cϵ ≥ 1, (163)

λ2 = 1 +N−1, (164)

and m be sufficiently large such that

2(LσA2 + C2
σA

2
2)CϕNH

3/2
√
logHN√

λ2m

≤ A2

√
λ2H

d
,

we have the following holds with probability at least 1 −
N−2H−4

|⟨ϕh(xτh, w0), w − w̃⟩|

≤
(
2A2

√
λ2H

d

+

√
2H2 log det

(
I +

Kv
N,h

λ2

)
+ 3CϵH2

+
√
8H2 log(NH2N v

ϵ)
)
bv,h(x,w0)

≤ H

(
8A2

2λ2

d
+ 4 max

h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ)
)1/2

bv,h(x,w0), (165)

where in the last inequality we use the fact that a + b ≤√
2(a2 + b2). Substituting eq. (165) into eq. (150), we con-

clude that the following holds with probability at least 1 −
N−2H−4∣∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x)

∣∣∣ ≤ β2 · bv,h(x,w0), (166)

where

β2

= H

(
8A2

2λ2

d
+ 4 max

h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 22 log(NH2N v

ϵ)
)1/2

.

Next, we proceed to bound the term∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)
∣∣∣. By the triangle inequality,

we have ∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)
∣∣∣

=
∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x)

+ (P̃hV̂h+1)(x)− (PhV̂h+1)(x)

+ (PhV̂h+1)(x)− (P̂hV̂h+1)(x)
∣∣

≤
∣∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x)

∣∣∣
+
∣∣∣(P̃hV̂h+1)(x)− (PhV̂h+1)(x)

∣∣∣
+
∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

∣∣∣
(i)

≤
2(LσA2 + C2

σA
2
2)
√
log(N2H5)√

m

+ β2 · bv,h(x,w0)

+O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
(ii)

≤ O

(
H4/3N5/3

√
log(N2H5m)

m1/6

)
+ β2 · bv,h(x,w0), (167)

where (i) follows from eq. (122), eq. (144) and eq. (166)
and (ii) follows from the fact that λ2 = 1 + 1/N and
Lσ, Cσ, A2, Cϕ = O(1).

C. Upper and Lower Bounds on Evaluate Error δh(·)
By definition, we have the following holds with probability

1− 2N−2H−4∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)
∣∣∣

=
∣∣∣R̂h(x) + (P̂hV̂h+1)(x)−Rh(x)− (PhV̂h+1)(x)

∣∣∣
≤
∣∣∣R̂h(x)−Rh(x)

∣∣∣+ ∣∣∣(P̂hV̂h+1)(x)− (PhV̂h+1)(x)
∣∣∣

(i)

≤ β1 · br,h(x,Θ0) + β2 · bv,h(x,w0)

+O

(
H4/3N5/3

√
log(N2H5m)

m1/6

)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6507

+O

(
H17/6N5/3

√
log(m)

m1/6

)
≤ β1 · br,h(x,Θ0) + β2 · bv,h(x,w0)

+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
, (168)

where (i) follows from eq. (118) and eq. (168). Moreover,
by the triangle inequality, eq. (104) and eq. (149), we have
the following holds with probability 1− 2N−2H−4

β1 · br,h(x,Θ0) + β2 · bv,h(x,w0)

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵ)

+ β1 ·
∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)

∣∣∣
+ β2 · |br,h(x, ŵ)− br,h(x,w0)|

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh)

+ β1 · O

(
C2
ϕH

2/3N1/12(logm)1/4

m1/12λ
13/12
1

)

+ β2 · O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
(i)

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh)

+ max{β1H
2/3, β2H

1/6}

O
(
N1/12(logm)1/4

m1/12

)
, (169)

where (i) follows from the fact that λ1 = λ2 = 1 + 1/N
and Cϕ = O(1). Substituting eq. (169) into eq. (168), we can
obtain ∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)

∣∣∣
≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh)
+ max{β1H

2/3, β2H
1/6}

O
(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
.

Denoting

εb = max{β1H
2/3, β2H

1/6}O
(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
,

we have∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)
∣∣∣

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb. (170)

Up to this point, we characterize the uncertainty of

(B̂hV̂h+1)(·). Next, we proceed to bound the suboptimality

of Algorithm 2. Recalling the construction of Q̂h(x) in
Algorithm 2, we have

Q̂h(·)
= min{(B̂hV̂h+1)(·)− β1 · br,h(·, Θ̂)
− β2 · bv,h(·, ŵh), H}+.

If (B̂hV̂h+1)(x) < β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh), we have

Q̂h(·) = 0.

Note that V̂h+1(·) is nonnegative. Recalling the definition of
δh(x) in eq. (38), we have

δh(x) = (BhV̂h+1)(x)− Q̂h(x) = (BhV̂h+1)(x) > 0.

Otherwise, if (B̂hV̂h+1)(x) > β1 ·br,h(x, Θ̂)+β2 ·bv,h(x, ŵh),
we have

Q̂h(x)

= min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)
− β2 · bv,h(x, ŵh), H}+

≤ (B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh),

which implies that

δh(x)

≥ (BhV̂h+1)(x)−
[
(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)

− β2 · bv,h(x, ŵh)
]

=
[
(BhV̂h+1)(x)− (B̂hV̂h+1)(x)

]
+ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh).

Note that eq. (170) implies the followings hold with probabil-
ity 1− 2N−2H−4

(BhV̂h+1)(x)− (B̂hV̂h+1)(x)

≥ −β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)− εb. (171)

(BhV̂h+1)(x)− (B̂hV̂h+1)(x)

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb. (172)

As a result, we have the following holds with probability
1− 2N−2H−4

δh(x) ≥ −εb. (173)

It remains to establish the upper bound of δh(x). Consider-
ing the event in eq. (172) occurs, we have

(B̂hV̂h+1)(·)− β1 · br,h(·, Θ̂)− β2 · bv,h(·, ŵh)

≤
[
(BhV̂h+1)(x) + β1 · br,h(x, Θ̂)

+ β2 · bv,h(x, ŵh) + εb

]
− β1 · br,h(·, Θ̂)

− β2 · bv,h(·, ŵh)
= (BhV̂h+1)(x) + εb ≤ H + εb,

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

where the last inequality follows from the fact that Rh(x) ≤
1 and V̂h+1(s) ≤ H for all x ∈ X and s ∈ S . Hence, we have

Q̂h(x)

= min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)
− β2 · bv,h(x, ŵh), H}+

≥ min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)
− β2 · bv,h(x, ŵh)− εb, H}+

= max{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)
− β2 · bv,h(x, ŵh)− εb, 0}

≥ (B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)
− β2 · bv,h(x, ŵh)− εb, (174)

which by definition of δh(x) implies

δh(x)

= (BhV̂h+1)(x)− Q̂h(x)

≤ (BhV̂h+1)(x)− (B̂hV̂h+1)(x) + β1 · br,h(x, Θ̂)
+ β2 · bv,h(x, ŵh) + εb

≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
, (175)

where the last inequality follows from eq. (172). Combining
eq. (173) and eq. (175), with probability 1 − 2N−2H−4,
we have

− εb

≤ δh(x)

≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
,

which completes the proof.

APPENDIX G
PROOF OF LEMMA 2

For
∑H
h=1 br,h(x, Θ̂), we have the following holds with

probability 1−N−2H−4

H∑
h=1

br,h(x, Θ̂)

≤
H∑
h=1

br,h(x,Θ0)

+
H∑
h=1

∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)
∣∣∣

(i)

≤
H∑
h=1

br,h(x,Θ0)

+O
(
H5/3N1/12(logm)1/4

m1/12

)
, (176)

where (i) follows from eq. (104). We next proceed to bound
the term

∑H
h=1 br,h(x,Θ0). Recall that in Assumbtion 4 we

define M(Θ0) = Eµ
[
Φ(τ,Θ0)Φ(τ,Θ0)⊤

]
. For all τ ∈ D,

we define the following random matrix M̂(Θ0)

M̂(Θ0) =
∑
τ∈D

Aτ (Θ0), (177)

Aτ (Θ0) = Φ(τ,Θ0)Φ(τ,Θ0)⊤ −M(Θ0). (178)

Note that eq. (90) implies ∥Φ(τ,Θ0)∥2 ≤ Cϕ
√
H . By Jensen’s

inequality, we have∥∥M(Θ0)
∥∥

2

≤ Eµ
[∥∥Φ(τ,Θ0)Φ(τ,Θ0)⊤

∥∥
2

]
≤ C2

ϕH. (179)

For any vector v ∈ R2mdH with ∥v∥2 = 1, we have

∥Aτ (Θ0)v∥2

≤
∥∥Φ(τ,Θ0)Φ(τ,Θ0)⊤v

∥∥
2
+
∥∥M(Θ0)v

∥∥
2

≤
∥∥Φ(τ,Θ0)Φ(τ,Θ0)⊤

∥∥
2
∥v∥2

+
∥∥M(Θ0)

∥∥
2
∥v∥2

≤ 2C2
ϕH ∥v∥2

= 2C2
ϕH,

which implies

∥Aτ (Θ0)∥2 ≤ 2C2
ϕH, (180)∥∥Aτ (Θ0)Aτ (Θ0)⊤
∥∥

2

≤ ∥Aτ (Θ0)∥2

∥∥Aτ (Θ0)⊤
∥∥

2

≤ 4C4
ϕH

2. (181)

Since {Aτ (Θ0)}τ∈D are i.i.d. and E[Aτ (Θ0)] = 0 for all τ ,
we have ∥∥∥Eµ[M̂(Θ0)M̂(Θ0)⊤]

∥∥∥
2

=

∥∥∥∥∥∑
τ∈D

Eµ
[
Aτ (Θ0)Aτ (Θ0)⊤

]∥∥∥∥∥
2

= N ·
∥∥Eµ [Aτ1(Θ0)Aτ1(Θ0)⊤

]∥∥
2

(i)

≤ N · Eµ
[∥∥Aτ1(Θ0)Aτ1(Θ0)⊤

∥∥
2

]
≤ 4C4

ϕH
2 N,

where (i) follows from Jensen’s inequality. Similarly, we can
also obtain∥∥∥Eµ[M̂(Θ0)⊤M̂(Θ0)]

∥∥∥
2
≤ 4C4

ϕH
2 N.

Applying Lemma 10 to M̂(Θ0), for any fixed h ∈ [H] and
any ξ1 > 0, we have

P
(∥∥∥M̂(Θ0)

∥∥∥
2
≥ ξ1

)
≤ 4mdH · exp

(
− ξ21/2
4C4

ϕH
2N + 2C2

ϕH/3 · ξ1

)
.

For any δ1 ∈ (0, 1), let

ξ1 = C2
ϕH

√
10N log

(
4mdH
δ1

)
,

N ≥ 40
9

log
(
4mdH
δ1

)
.

Then, we have

P
(∥∥∥M̂(Θ0)

∥∥∥
2
≥ ξ1

)
Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6509

≤ 4mdH · exp

(
− ξ21/2
4C4

ϕH
2N + 2C2

ϕH/3 · ξ1

)

≤ 4mdH · exp

(
− ξ21
10C4

ϕH
2N

)
= δ1,

which implies that the following holds with probability at least
1− δ1 taken with respect to the randomness of D∥∥∥M̂(Θ0)/N

∥∥∥
2

=

∥∥∥∥∥ 1
N

∑
τ∈D

Φ(τ,Θ0)Φ(τ,Θ0)⊤ −M(Θ0)

∥∥∥∥∥
2

≤ C2
ϕH

√
10
N

log
(
4mdH
δ1

)
. (182)

By the definition of Σ(Θ0), we have

M̂(Θ0) = (Σ(Θ0)− λ1 · I2mdH)−N ·M(Θ0). (183)

By Assumbtion 4, there exists an absolute constant Cσ >
0 such that λmin(M(Θ0)) ≥ Cσ , which implies that∥∥M(Θ0)−1

∥∥
2
≤ 1/Cσ . Letting N be sufficiently large such

that

N ≥ max

{
40C4

ϕH
2

C2
σ

,
40
9

}
log
(
4mdH
δ1

)
and combining eq. (182) and eq. (183), we have

λmin(Σ(Θ0)/N)

= λmin(M(Θ0) + M̂(Θ0)/N + λ1/N · I2mdH)

≥ λmin(M(Θ0))−
∥∥∥M̂(Θ0)/N

∥∥∥
2

≥ Cσ − C2
ϕH

√
10
N

log
(
4mdH
δ

)
≥ Cσ/2.

Hence, the following holds with probability 1−δ1 with respect
to randomness of D∥∥Σ(Θ0)−1

∥∥
2

≤ (N · λmin(Σ(Θ0)/N))−1 ≤ 2
NCσ

,

which implies the following holds for all x ∈ X and h ∈ [H]

br,h(x,Θ0)

=
√

Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)

≤ ∥Φh(x,Θ0)∥2 ·
∥∥Σ−1(Θ0)

∥∥1/2

2

≤
√
2Cϕ√
Cσ

√
N
, (184)

where we use the fact that ∥Φh(x,Θ0)∥2 = ∥ϕ(xτh, θ0)∥2 ≤
Cϕ. Substituting eq. (184) into eq. (176), we have

H∑
h=1

br,h(x, Θ̂)

≤
√
2HCϕ√
Cσ

√
N

+O
(
H5/3N1/12(logm)1/4

m1/12

)
. (185)

Next, we proceed to bound the term
∑H
h=1 bv,h(x, ŵh).

According to eq. (149), we have the following holds with
probability at least 1−N−2H−4

H∑
h=1

bv,h(x, ŵh)

≤
H∑
h=1

bv,h(x,w0)

+
H∑
h=1

|bv,h(x, ŵh)− bv,h(x,w0)|

(i)

≤
H∑
h=1

bv,h(x,w0)

+O
(
H7/6N1/12(logm)1/4

m1/12

)
. (186)

We then proceed to bound the summation of the penalty
terms

∑H
h=1 bv,h(x,w0). Recall that in Assumbtion 4 we

define mh(w0) = Eµ
[
ϕ(xτh, w0)ϕ(xτh, w0)⊤

]
. For all h ∈ [H]

and τ ∈ D, we define the following random matrix m̂(w0)

m̂h(w0) =
∑
τ∈D

Bτh(w0), (187)

Bτh(w0) = ϕ(xτh, w0)ϕ(xτh, w0)⊤ −mh(w0). (188)

Note that eq. (90) implies ∥ϕ(xτh, w0)∥2 ≤ Cϕ. By Jensen’s
inequality, we have

∥mh(w0)∥2

≤ Eµ
[∥∥ϕ(xτh, w0)ϕ(xτh, w0)⊤

∥∥
2

]
≤ C2

ϕ. (189)

For any vector v ∈ R2md with ∥v∥2 = 1, we have

∥Bτh(w0)v∥2

≤
∥∥ϕ(xτh, w0)ϕ(xτh, w0)⊤v

∥∥
2
+ ∥mh(w0)v∥2

≤
∥∥ϕ(xτh, w0)ϕ(xτh, w0)⊤

∥∥
2
∥v∥2 + ∥mh(w0)∥2 ∥v∥2

≤ 2C2
ϕ ∥v∥2 = 2C2

ϕ,

which implies

∥Bτh(w0)∥2 ≤ 2C2
ϕ, (190)∥∥Bτh(w0)Bτh(w0)⊤
∥∥

2

≤ ∥Bτh(w0)∥2

∥∥Bτh(w0)⊤
∥∥

2
≤ 4C4

ϕ. (191)

Since {Bτh(w0)}τ∈D are i.i.d. and E[Bτh(w0)] = 0 for all τ ,
we have ∥∥Eµ[mh(w0)mh(w0)⊤]

∥∥
2

=

∥∥∥∥∥∑
τ∈D

Eµ
[
Bτh(w0)Bτh(w0)⊤

]∥∥∥∥∥
2

= N ·
∥∥Eµ [Bτ1h (w0)Bτ1h (w0)⊤

]∥∥
2

(i)

≤ N · Eµ
[∥∥Bτ1h (w0)Bτ1h (w0)⊤

∥∥
2

]
≤ 4C4

ϕN,

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

where (i) follows from Jensen’s inequality. Similarly, we can
also obtain ∥∥Eµ[mh(w0)⊤mh(w0)]

∥∥
2
≤ 4C4

ϕN.

Applying Lemma 10 to m̂h(w0), for any fixed h ∈ [H] and
any ξ2 > 0, we have

P (∥m̂h(w0)∥2 ≥ ξ2)

≤ 4md · exp

(
− ξ22/2
4C4

ϕN + 2C2
ϕ/3 · ξ2

)
.

For any δ2 ∈ (0, 1), let

ξ2 = C2
ϕ

√
10N log

(
4mdH
δ2

)
,

N ≥ 40
9

log
(
4mdH
δ2

)
.

Then, we have

P (∥m̂h(w0)∥2 ≥ ξ2)

≤ 4md · exp

(
− ξ22/2
4C4

ϕN + 2C2
ϕ/3 · ξ2

)

≤ 4md · exp

(
− ξ22
10C4

ϕN

)
=
δ2
H
,

which implies that we have the following holds with proba-
bility at least 1− δ2/H taken with respect to the randomness
of D

∥m̂h(w0)/N∥2

=

∥∥∥∥∥ 1
N

∑
τ∈D

ϕ(xτh, w0)ϕ(xτh, w0)⊤ −mh(w0)

∥∥∥∥∥
2

≤ C2
ϕ

√
10
N

log
(
4mdH
δ2

)
. (192)

By the definition of Λh(w0), we have

m̂h(w0) = (Λh(w0)− λ2 · I2md)−N ·mh(w0). (193)

By Assumbtion 4, there exists an absolute constant Cς >
0 such that λmin(mh(Θ0)) ≥ Cς , which implies that∥∥m(w0)−1

∥∥
2
≤ 1/Cς . Letting N be sufficiently large such

that

N ≥ max

{
40C4

ϕ

C2
ς

,
40
9

}
log
(
4mdH
δ2

)
and combining eq. (192) and eq. (193), we have

λmin(Λh(w0)/N)
= λmin(m(w0) + m̂(w0)/N + λ1/N · I2md)
≥ λmin(m(w0))− ∥m̂(w0)/N∥2

≥ Cς − C2
ϕH

√
10
N

log
(
4mdH
δ2

)
≥ Cς/2.

Hence, the following holds with probability 1 − δ2/H with
respect to randomness of D∥∥Λh(w0)−1

∥∥
2
≤ (N · λmin(Λh(w0)/N))−1

≤ 2
NCς

. (194)

Taking union bound of eq. (194) over [H], we have the
following holds for all x ∈ X and h ∈ [H] with probability
1− δ2

bv,h(x,w0) =
√
ϕh(x,w0)⊤Λ−1

h (w0)ϕh(x,w0)

≤ ∥ϕh(x,w0)∥2 ·
∥∥Λh(w0)−1

∥∥1/2

2

≤
√
2Cϕ√
Cς

√
N
, (195)

where we use the fact that ∥ϕ(xτh, θ0)∥2 ≤ Cϕ. Substituting
eq. (195) into eq. (186), we have

H∑
h=1

bv,h(x, ŵ) (196)

≤
√
2HCϕ√
Cς

√
N

+O
(
H7/6N1/12(logm)1/4

m1/12

)
.

Finally, letting δ1 = N−2H−4/2 and δ2 = N−2H−4/2 and
combining eq. (185) and eq. (196), we have the following
holds with probability 1−N−2H−4

β1 ·
H∑
h=1

br,h(x, Θ̂) + β2 ·
H∑
h=1

bv,h(x, ŵ)

≤
(

β1√
Cσ

+
β2√
Cς

) √
2HCϕ√
N

+max{β1H
5/3, β2H

7/6} · O
(
N1/12(logm)1/4

m1/12

)
,

which completes the proof.

APPENDIX H
PROOF OF LEMMA 3

Similarly to the proof of Lemma 1, we first bound the
uncertainty of the estimated reward R̂h(·) in eq. (67) and
then bound the uncertainty of the estimated transition value
function (P̂hV̂h+1)(·) in eq. (69).

A. Uncertainty of Estimated Reward R̂h(·)

Following steps similar to those in the proof of Lemma B.1
in [26], we can obtain

∥Θ∗∥2 ≤ H
√
dH and

∥∥∥Θ̂∥∥∥
2
≤ H

√
dHN/λ1. (197)

For simplicity, we denote r(τ) =
∑
h∈[H] r(x

τ
h), R(τ) =∑

h∈[H]R(x
τ
h) and ε(τ) = R(τ) − r(τ). Consider the esti-

mation error Rh(·)− R̂h(·). We have

Rh(x)− R̂h(x)

= ⟨ϕ(x), θ∗h − θ̂h⟩
= ⟨Φh(x),Θ∗ − Θ̂⟩

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6511

= ⟨Φh(x),Θ∗⟩ − Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)r(τ)

)
= ⟨Φh(x),Θ∗⟩

− Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)Φ(τ)⊤Θ∗

)

+Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)
= ⟨Φh(x),Θ∗⟩
− Φh(x)⊤Σ−1 (Σ− λ1 · IdH)Θ∗

+Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)
= −λ1 · Φh(x)⊤Σ−1Θ∗

+Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)
. (198)

Applying the triangle inequality to eq. (198), we have∣∣∣Rh(x)− R̂h(x)
∣∣∣

≤ λ1 ·
∣∣Φh(x)⊤Σ−1Θ∗∣∣︸ ︷︷ ︸

(i)

+

∣∣∣∣∣Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (199)

We then proceed to bound (i) and (ii) separately. For (i),
we have

(i) = λ1 ·
∣∣∣Φh(x)⊤Σ−1/2Σ−1/2Θ∗

∣∣∣
≤ λ1 ∥Φh(x)∥Σ−1 ∥Θ∗∥Σ−1

(i.1)

≤ H
√
dHλ1 ∥Φh(x)∥Σ−1 , (200)

where (i.1) follows from eq. (197) and the following
inequality

∥Θ∗∥Σ−1

=
√
Θ∗⊤Σ−1Θ∗

≤
∥∥Σ−1

∥∥1/2

2
∥Θ∗∥2

≤ H
√
dH/λ1.

For (ii), we have

(ii) =

∣∣∣∣∣Φh(x)⊤Σ−1/2Σ−1/2

(∑
τ∈D

Φ(τ)ε(τ)

)∣∣∣∣∣
≤

∥∥∥∥∥∑
τ∈D

Φ(τ)ε(τ)

∥∥∥∥∥
Σ−1︸ ︷︷ ︸

(iii)

· ∥Φh(x)∥Σ−1 . (201)

Following steps similar to those in eq. (116) and Lemma B.2
in [26], we have the following holds with probability at least
1− δ

(iii) ≤ H ·
√

2 log(1/δ) + dH · log(1 +N/λ1),

which implies

(ii) ≤ H
√
2 log(1/δ) + dH · log(1 +N/λ1)

· ∥Φh(x)∥Σ−1 . (202)

Recalling that br,h(x) = ∥Φh(x)∥Σ−1 and substituting eq.
(202) and eq. (200) into eq. (199), we can obtain∣∣∣Rh(x)− R̂h(x)

∣∣∣ ≤ Rβ1 · br,h(x), (203)

where Rβ1 is an absolute constant satisfying

Rβ1

≥ H
(√

dHλ1+√
2 log(1/δ) + dH · log(1 +N/λ1)

)
.

Letting λ1 = 1 and Cβ1 > 0 be a sufficiently large constant,
we can verify that Rβ1 = Cβ1H

√
dH log(N/δ) satisfies the

above inequality.

B. Uncertainty of Estimated Transition Value Function
(P̂hV̂h+1)(·)

Following steps similar to those in the proof of Lemma B.1
in [26], we can obtain

∥w∗∥2 ≤ H
√
d and ∥ŵ∥2 ≤ H

√
dN/λ2. (204)

Consider the estimation error (PhV̂h+1)(·)− (P̂hV̂h+1)(·). For

simplicity, we define εv(x) = (PhV̂h+1)(x) − (P̂hV̂h+1)(x)
for all x ∈ X . Following steps similar to those in eq. (198),
we can obtain

(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

≤ −λ2 · ϕ(x)⊤Λ−1
h w∗

h

+ ϕ(x)⊤Λ−1
h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)
. (205)

Applying the triangle inequality to eq. (205), we have∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)
∣∣∣

≤ λ2 ·
∣∣ϕ(x)⊤Λ−1

h w∗
h

∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ϕ(x)⊤Λ−1
h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (206)

Following steps similar to those in eq. (199), we can obtain

(i) ≤ H
√
dλ2 ∥ϕ(x)∥Λ−1

h
. (207)

For (ii), we have

(ii) =

∣∣∣∣∣ϕ(x)⊤Λ−1/2
h Λ−1/2

h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)∣∣∣∣∣
≤

∥∥∥∥∥∑
τ∈D

ϕ(xτh)εv(x
τ
h)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(iii)

∥ϕ(x)∥Λ−1
h
. (208)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

We then proceed to upper bound the term (iii). Following
steps similar to those in eq. (161) and Lemma B.2 in [26],
we have the following holds with probability at least 1− δ

(iii) ≤ Rβ2 ∥ϕ(x)∥Λ−1
h

(209)

where Rβ2 is an absolute constant satisfying

Rβ2 ≥ 2H

·
√
log(H · N v

ϵ,h/δ) + d · log(1 +N/λ2) + 8ϵ2N2/λ2,

(210)

and N v
ϵ,h is the cardinality of the following function class

Vh(x,Rθ, Rw, Rβ1 , Rβ2 , λ1, λ2)

= {max
a∈A

{Qh(s, a)} : S → [0, H]

with ∥Θ∥2 ≤ Rθ, ∥w∥2 ≤ Rw, β1 ∈ [0, Rβ1], β2 ∈ [0, Rβ2],
∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2},

where Rθ = H
√
dHN/λ1, Rw = H

√
dN/λ2, and

Qh(x) = min{⟨Φh(x),Θ⟩+ ⟨ϕ(x), w⟩

− β1 ·
√
Φh(x)⊤Σ−1Φh(x)

− β2 ·
√
ϕ(x)⊤Λ−1ϕ(x), H − h+ 1}+.

Then, following steps similar to those in Section D, we have∣∣max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)}

−max
a∈A

{Qh(s, a, θ′, w′, β′
1, β

′
2,Σ

′,Λ′)}
∣∣

≤ max
a∈A

|⟨Φh(x),Θ−Θ′⟩|

+max
a∈A

|⟨ϕ(x), w−w′⟩|+ 1√
λ1

|β1 − β′
1|

+
1√
λ2

|β2 − β′
2|

+Rβ1 max
a∈A

|∥Φh(x)∥Σ−1 − ∥Φh(x)∥Σ′−1 |

+Rβ2 max
a∈A

|∥ϕ(x)∥Λ−1 − ∥ϕ(x)∥Λ′−1 |

(i)

≤ ∥Θ−Θ′∥2 + ∥w − w′∥2 + |β1 − β′
1|

+ |β2 − β′
2|

+Rβ1

√
∥Σ−1 − Σ′−1∥F

+Rβ2

√
∥Λ−1 − Λ′−1∥F , (211)

where (i) follows from the fact that ∥ϕ(x)∥2 ≤ 1 and λ1, λ2 ≥
1. Following arguments similar to those used to obtain eq. (60)
and applying Lemma 8.6 in [55], we have

logN v
ϵ,h

(i)

≤ N (ϵ/6,RdH , Rθ) +N (ϵ/6,Rd, Rw)
+N (ϵ/6, Rβ1) +N (ϵ/6, Rβ2)

+N (ϵ2/(36R2
β1
),F ,

√
dH/λ1)

+N (ϵ2/(36R2
β2
),F ,

√
d/λ2)

(ii)

≤ dH log(1 + 12Rθ/ϵ) + d log(1 + 12Rw/ϵ)

+ log(1 + 12Rβ1/ϵ) + log(1 + 12Rβ2/ϵ)

+ d2H2 log(1 + 36R2
β1

√
dH/ϵ2)

+ d2 log(1 + 36R2
β2

√
d/ϵ2)

(iii)

≤ dH log(1 + 12H
√
dHN/ϵ)

+ d log(1 + 12H
√
dN/ϵ)

+ log(1 + 12Cβ1H
√
dH log(N/δ)/ϵ)

+ log(1 + 12Rβ2/ϵ)

+ d2H2 log(1 + 36C2
β1
dH3

√
dH log(N/δ)/ϵ2)

+ d2 log(1 + 36R2
β2

√
d/ϵ2)

(iv)

≲ C1d
2H2 log(d3/2H7/2N1/2/ϵ2)

+ C2d
2 log(R2

β2

√
d/ϵ2), (212)

where in (i) we use N (ϵ,Rd, B) to denote the ϵ-covering of
ball with radius B in the space Rd, N (ϵ, B) to denote the
ϵ-covering of interval [0, B], and N (ϵ,F , B) to denote the
ϵ-covering of the function class F = {M : ∥M∥F ≤ B},
(ii) follows from Lemma. 8.6 in [55], (iii) follows from the
definition of Rθ, Rw and Rβ1 , and in (iv) we let C1 and C2 be
sufficiently large and waive the log(log(·)) term.

Substituting eq. (212) into eq. (209), we can obtain

2H ·
√

log(H · N v
ϵ,h/δ) + d · log(1 +N/λ2) + 8ϵ2N/λ2

≤ 2H ·
(√

log(H/δ) +
√
logN v

ϵ,h

+
√
d · log(1 +N) +

√
8ϵ2N2

)
≤ 2H ·

(√
log(H/δ)

+
√
C1d2H2 log(d3/2H7/2N1/2/ϵ2)

+
√
C2d2 log(R2

β2

√
d/ϵ2)

+
√
d · log(1 +N) +

√
8ϵ2N2

)
. (213)

Letting ϵ = (dH)1/4/N , we can see that when Rβ2 =

Cβ2dH
2
√
log(dH3N5/2/δ), where Cβ2 is a sufficiently large

constant, we have

Rβ2 ≥ R.H.S of eq. (213),

which satisfies the inequality in eq. (210).

C. Upper and Lower Bounds on Evaluation Error δh(·)

Using the properties that we obtained from Section H-A &
H-B and following steps similar to those in Section F-C,
we can obtain

0 ≤ δh(x) ≤ 2 [β1 · br,h(x) + β2 · bv,h(x)] ,

where β1 = Rβ1 = Cβ1H
√
dH log(N/δ) and Rβ2 =

Cβ2dH
2
√
log(dH3N5/2/δ).

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6513

APPENDIX I
SUPPORTING LEMMAS FOR OVERPARAMETERIZED

NEURAL NETWORKS

The following lemma shows that an infinite-width neural
network can be well-approximated by a finite-width neural
network.

Lemma 4 (Approximation by Finite Sum): Let g(x) =∫
Rd σ

′(w⊤x)x⊤ℓ(w)dp(w) ∈ Fg1,g2 . Then for any ϵ > 0,
with probability at least 1 − ϵ over w1, · · · , wm drawn i.i.d.
from N(0, Id/d), there exist ℓ1, · · · , ℓm where ℓi ∈ Rd and
∥ℓi∥2 ≤ g2/

√
dm for all i ∈ [m] such that the function

ĝ(x) = (1/
√
m)
∑m
i=1 σ

′(w⊤
i x)x

⊤ℓi satisfies

sup
x

|g(x)− ĝ(x)|

≤ 2Lσg2√
m

+
√
2C2

σg
2
2√

m

√
log
(
1
δ

)
with probability at least 1− δ.

Proof: The proof of Lemma 4 follows from the proof of
Proposition C.1 in [68] with some modifications. In Lemma 4
we consider a different distribution of wi and upper bound
on ∥ℓi∥2 from those in [68]. First, we define the following
random variable

a(w1, · · · , wm) = sup
x

|g(x)− ĝ(x)| .

Then, we proceed to show that a(·) is robust to the perturbation
of one of its arguments. Let ℓi = ℓ(wi)/(

√
dmp(wi)). For

w1, · · · , wm and w̃i (1 ≤ i ≤ m), we have

|a(w1, · · · , wm)− a(w1, · · · , w̃i, · · · , wm)|

=
1√
dm∣∣σ′(w⊤

i x)x
⊤ℓi − σ′(w̃⊤

i x)x
⊤ℓi
∣∣

=
1√
dm∣∣∣∣σ′(w⊤

i x)x
⊤ℓ(wi)

p(wi)
− σ′(w̃⊤

i x)x
⊤ℓ(w̃i)

p(w̃i)

∣∣∣∣
≤ 1√

dm

sup
x∈X

∣∣∣∣σ′(w⊤
i x)x

⊤ℓ(wi)
p(wi)

− σ′(w̃⊤
i x)x

⊤ℓ(w̃i)
p(w̃i)

∣∣∣∣
≤ 1√

dm

sup
x∈X

(∣∣∣∣σ′(w⊤
i x)x

⊤ℓ(wi)
p(wi)

∣∣∣∣+ ∣∣∣∣σ′(w̃⊤
i x)x

⊤ℓ(w̃i)
p(w̃i)

∣∣∣∣)
≤ 1√

dm
sup
x∈X

(∥∥σ′(w⊤
i x)x

∥∥ ∥∥∥∥ ℓ(wi)p(wi)

∥∥∥∥
2

+
∥∥σ′(w̃⊤

i x)x
∥∥

2

∥∥∥∥ ℓ(w̃i)p(w̃i)

∥∥∥∥
2

)
≤ 2Cσg2√

dm
= ζ,

where the last inequality follows from the facts that ∥x∥2 = 1,
|σ′(·)| ≤ Cσ and supx ∥ℓ(w)/p(w)∥2 ≤ g2. Then, we proceed
to bound the expectation of a(·). Note that our choice of ℓi

ensures that
√
d · Ew1,··· ,wm

ĝh(·) = g(·). By symmetrization,
we have

Ea =
√
d · E sup

x∈X
|ĝ(x)− Eĝ(x)|

≤ 2
√
d√
m

· Ew,ε sup
x∈X

∣∣∣∣∣
m∑
i=1

εiσ
′(w⊤

i x)x
⊤ℓi

∣∣∣∣∣ ,
where {εi}i∈[m] are a sequence of Rademacher random
variables. Since

∣∣x⊤ℓi∣∣ ≤ ∥ℓi∥2 ≤ g2/
√
m and σ′(·) is

Lσ-Lipschitz, we have that the function b(·) = σ′(·)x⊤ℓi is
(Lσg2/

√
m)-Lipschitz. We then proceed as follows

Ea ≤ 2
√
d√
m

· Ew,ε sup
x∈X

∣∣∣∣∣
m∑
i=1

εiσ
′(w⊤

i x)x
⊤ℓi

∣∣∣∣∣
(i)

≤ 2
√
dLσg2
m

· Ew,ε sup
x∈X

∣∣∣∣∣∣
(

m∑
i=1

εiwi

)⊤

x

∣∣∣∣∣∣
(ii)

≤ 2
√
dLσg2
m

· Ew

∥∥∥∥∥
m∑
i=1

εiwi

∥∥∥∥∥
2

(iii)

≤ 2
√
dLσg2√
m

·
√

Ew∼N(0,Id/d) ∥w∥
2
2

=
2Lσg2√
m

,

where (i) follows from Talagrand’s Lemma (Lemma 5.7)
in [78], (ii) follows from the fact that ∥x∥2 = 1 for all
x ∈ X and Cauchy-Schwartz inequality and (iii) follows from
Jensen’s inequality. Then, applying McDiarmid’s inequality,
we can obtain

P
(
a ≥ 2Lσg2√

m
+ ϵ

)
≤ P(a ≥ Ea+ ϵ)

≤ exp
(
− 2ϵ2

mζ2

)
= exp

(
− mϵ2

2C2
σg

2
2

)
.

Letting ϵ =
√

2C2
σg

2
2√

m

√
log
(

1
δ

)
, we have

P

(
a ≥ 2Lσg2√

m
+

√
2C2

σg
2
2√

m

√
log
(
1
δ

))
≤ δ,

which completes the proof. □
The following lemma bounds the perturbed gradient and

value of local linearization of overparameterized neural
networks around the initialization, which is provided as
Lemma C.2 in [71].

Lemma 5: Consider the overparameterized neural network.
Consider any fixed input x ∈ X . Let R ≤ c

√
m/(logm)3 for

some sufficiently small constant c. Then, with probability at
least 1−m−2 over the random initialization, we have for any
w ∈ B(w0, R), where B(w0, R) denotes the Euclidean ball
centred at w0 with radius R, the followings hold

∥ϕ(x,w)∥2 ≤ Cϕ, (214)
∥ϕ(x,w)− ϕ(x,w0)∥2

≤ O

(
Cϕ

(
R√
m

)1/3√
logm

)
, (215)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

∣∣f(x,w)− ⟨ϕ(x,w0)⊤(w − w0)⟩
∣∣

≤ O

(
Cϕ

(
R4

√
m

)1/3√
logm

)
, (216)

where Cϕ = O(1) is a constant independent from m and d.
Proof: Please see Lemma C.2 in [71] for a detailed proof,

which is based on Lemma F.1, F.2 in [72], Lemma A.5, A.6
in [68] and Theorem 1 in [79]. □

APPENDIX J
SUPPORTING LEMMAS FOR RKHS

In this section, we provide some useful lemmas for general
RKHS. Consider a variable space X . Given a mapping ϕ(·) :
X → Rd, we can assign a feature vector ϕ(x) ∈ Rd for
each x ∈ X . We further define a kernel function K(·, ·) :
X × X → R as K(x, x′) = ϕ(x)⊤ϕ(x′) for any x, x′ ∈ X .
Let H be a RKHS defined on X with the kernel function
K(·, ·). Let ⟨·, ·⟩H : H ×H → R and ∥·∥H : H → R denote
the inner product and RKHS norm on H, respectively. Since
H is a RKHS, there exists a feature mapping ψ(·) : X →
H, such that f(x) = ⟨f(·), ψ(x)⟩H for all f ∈ H and all
x ∈ X . Moreover, for any x, x′ ∈ X we have K(x, x′) =
⟨ψ(x), ψ(x′)⟩H. Without loss of generality, we further assume
∥ϕ(x)∥2 ≤ Cϕ and ∥ψ(x)∥H ≤ Cψ for all x ∈ X .

Let L2(X) be the space of square-integrable functions on
X with respect to the Lebesgue measure and let ⟨·, ·⟩L2 be the
inner product on L2(X). The kernel function K(·, ·) induces
an integral operator TK : L2(X) → L2(X) defined as

TKf(z) =
∫
X
K(x, x′) · f(x′)dx′, ∀f ∈ L2(X). (217)

Consider the kernel function K(·, ·) of the RHKS H. Let
{xi}∞i=1 ⊂ X be a discrete time stochastic process that is
adapted to a filtration {Ft}∞i=0, i.e., xi is Fi−1 measurable
for all i ≥ 1. We define the Gram matrix KN ∈ RN×N and
function kN (·) : X → RN as

KN = [K(xi, xj)]i,j∈[N] ∈ RN×N , (218)

kN (x) = [K(x1, x), · · · ,K(xN , x)]⊤ ∈ RN . (219)

Note that KN and kN (x) can also be expressed as

KN = ΦΦ⊤ = ΨΨ⊤ ∈ RN×N ,

kN (x) = Φϕ(x) = Ψψ(x) ∈ RN×1,

where Φ = [ϕ(x1), · · · , ϕ(xN)]⊤ ∈ RN×d and Ψ =
[ψ(x1), · · · , ψ(xN)]⊤ ∈ RN×∞. Given a regularization
parameter λ > 1, we define the matrix ΩN based on Φ and
an operator ΥN in RKHS H based on Ψ as

ΩN = Φ⊤Φ+ λ · Id, (220)

ΥN = Ψ⊤Ψ+ λ · IH. (221)

We next provide some fundamental properties for the RKHS
H.

Lemma 6: For any x ∈ X , considering KN , kN (·), ΩN and
ΥN defined in eq. (219) and eq. (221), we have the followings
hold

Φ⊤(KN + IN)−1 = Ω−1
N Φ⊤, (222)

Ψ⊤(KN + IN)−1 = Υ−1
N Ψ⊤, (223)

ϕ(x)⊤Ω−1
N ϕ(x)

(i)
=

1
λ

[
K(x, x)

− kN (x)⊤(KN + λ · IN)−1kN (x)
]

(ii)
= ψ(x)⊤Υ−1

N ψ(x). (224)

Proof: The result in Lemma 6 can be obtained from
steps spread out in [71]. We provide a detailed proof here for
completeness.

We first proceed to prove eq. (222) and (i) in eq. (224).
According to the definition of ΣN , we have

ΩNΦ⊤

= Φ⊤ΦΦ⊤ + λΦ⊤

= Φ⊤(ΦΦ⊤ + λIN)

= Φ⊤(KN + IN).

Multiplying Ω−1
N on both sides of the above equality yields

Φ⊤ = Ω−1
N Φ⊤(KN + IN),

which implies eq. (222) as follows

Φ⊤(KN + IN)−1 = Ω−1
N Φ⊤. (225)

We next proceed as follows

ϕ(x) = Ω−1
N ΩNϕ(x)

= Ω−1
N (Φ⊤Φ+ λ · Id)ϕ(x)

= (Ω−1
N Φ⊤)Φϕ(x) + λΩ−1

N ϕ(x)
(i)
= Φ⊤(KN + IN)−1Φϕ(x)

+ λΩ−1
N ϕ(x), (226)

where (i) follows from eq. (225). Taking inter product with
ϕ(x) on both sides of eq. (226) yields

K(x, x)

= ϕ(x)⊤ϕ(x)

= ϕ(x)⊤Φ⊤(KN + IN)−1Φϕ(x) + λϕ(x)⊤Ω−1
N ϕ(x)

= kN (x)⊤(KN + IN)−1kN (x) + λϕ(x)⊤Ω−1
N ϕ(x),

which implies

ϕ(x)⊤Ω−1
N ϕ(x) =

1
λ

[
K(x, x)

− kN (x)⊤(KN + IN)−1kN (x)
]
. (227)

We next proceed to prove eq. (223) and (ii) in eq. (224).
According to the definition of ΥN , we have

ΥNΨ⊤

= Ψ⊤ΨΨ⊤ + λΨ⊤

= Ψ⊤(ΨΨ⊤ + IN)

= Ψ⊤(KN + IN). (228)

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6515

Multiplying Υ−1
N on both sides of the above equality yields

Ψ⊤ = Υ−1
N Ψ⊤(KN + IN),

which further implies eq. (223) as follows

Ψ⊤(KN + IN)−1 = Υ−1
N Ψ⊤. (229)

We next proceed as follows

ψ(x) = Υ−1
N ΥNψ(x)

= Υ−1
N (Ψ⊤Ψ+ λ · IH)ψ(x)

= (Υ−1
N Ψ⊤)Ψψ(x) + λΥ−1

N ψ(x)
(i)
= Ψ⊤(KN + IN)−1Ψψ(x) + λΥ−1

N ψ(x), (230)

where (i) follows from eq. (229). Taking inter product with
ψ(x) on both sides of eq. (230) yields

K(x, x)
= ⟨ψ(x), ψ(x)⟩H
= ψ(x)⊤Ψ⊤(KN + IN)−1Ψψ(x)

+ λψ(x)⊤Υ−1
N ψ(x)

= kN (x)⊤(KN + IN)−1kN (x)

+ λψ(x)⊤Υ−1
N ψ(x),

which implies

ψ(x)⊤Υ−1
N ψ(x)

=
1
λ

[
K(x, x)

− kN (x)⊤(KN + IN)−1kN (x)
]
. (231)

Combining eq. (228) and eq. (231) completes the proof. □
The following two lemmas characterize the concentration

property of self-normalized processes.
Lemma 7 (Concentration of Self-Normalized Process in

RKHS [80]):
Let {εi}∞i=1 be a real-valued stochastic process such that

(i) ϵi ∈ Ft and (ii) ϵi is zero-mean and σ-sub-Gaussian
conditioned on Fi−1 satisfying ∀κ ∈ R

E [εi|Fi−1] = 0, (232)

E
[
eκεi ≤ eκ

2σ2/2|Fi−1

]
. (233)

Moreover, for any t ≥ 2, let EN = [ε1, · · · , εN−1]⊤ ∈ RN−1.
For any η > 0 and any δ ∈ (0, 1), with probability at

least 1−δ, we have the following holds simultaneously for all
N ≥ 1:

E⊤
N

[
(KN + η · IN−1)−1 + IN−1

]−1
EN

≤ σ2 · log det[(1 + η) · IN+1 +KN]

+ 2σ2 · log(1/δ).

Moreover, if KN is positive definite for all N ≥ 2 with
probability one, then the above inequality also holds with
η = 0.

Lemma 8: Let G ⊂ {G : X → [0, Cg]} be a class of
bounded functions on X . Let Gϵ ⊂ G be the minimal ϵ-cover

of G such that Nϵ = |Gϵ|. Then for any δ ∈ (0, 1), with
probability at least 1− δ, we have

sup
G∈G

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ 2C2
g log det(I +KN/λ)

+ 2C2
gN(λ− 1) + 4C2

g log(Nϵ/δ)

+ 8N2C2
ϕϵ

2/λ. (234)

Moreover, if G(·) does not depend on {xi}i∈[N], we have∥∥∥∥∥
N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ C2
g log det(I +KN/λ)

+ C2
gN(λ− 1) + 2C2

g log(1/δ). (235)

Proof: The proof is adapted but different from the proof
of Lemma E.2 in [71]. We first proceed to prove eq. (234) and
will show that eq. (235) can be obtained as a by-product of
proving eq. (234). For any G ∈ G, there exists a function G′

in Gϵ such that supx∈X |G(x)−G′(x)| ≤ ϵ. Denote ∆G(x) =
G(x)−G′(x). We have the following holds∥∥∥∥∥

N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ 2

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

+ 2

∥∥∥∥∥
N∑
i=1

ϕ(xi)(∆G(xi)

− E [∆G(xi)|Fi−1])

∥∥∥∥∥
2

. (236)

For the second term on the right hand side of eq. (236),
we have∥∥∥∥∥

N∑
i=1

ϕ(xi) (∆G(xi)− E [∆G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ N2C2
ϕ · (2ϵ)2/λ = 4N2C2

ϕϵ
2/λ. (237)

To bound the first term on the right hand side of eq. (236),
we apply Lemma 5 to G′(xi) − E [G′(xi)|Fi−1]. We fix
G′ ∈ G and let εi = G′(xi) − E [G′(xi)|Fi−1] and EN =
[ε1, · · · , εN−1]⊤ ∈ RN−1. Using this notation, we have∥∥∥∥∥

N∑
i=1

ϕ(xi) (G′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

=

∥∥∥∥∥
N∑
i=1

ϕ(xi)εi

∥∥∥∥∥
2

Ω−1
N

=
∥∥Φ⊤EN

∥∥
Ω−1

N

= E⊤
NΦΩ−1

N Φ⊤EN
(i)
= E⊤

NΦΦ⊤(KN + λIN)−1EN =
E⊤
NKN (KN + λIN)−1EN

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

(ii)

≤ E⊤
N (KN + (λ− 1)IN)(KN + λIN)−1EN

= E⊤
N (KN + (λ− 1)IN)

[IN + (KN + (λ− 1)IN)]−1EN

= E⊤
N [(KN + (λ− 1)IN)−1 + IN]EN , (238)

where (i) follows from eq. (222) in Lemma 6 and (ii) follows
from the fact that λ > 1 and KN + λIN is positive definite.
Note that each entry of EN is bounded by Cg in absolute
value. Applying Lemma 7 to eq. (238) and taking a union
bound over Gϵ, for any 0 < δ < 1, we have the following
holds with probability at least 1− δ

sup
G′∈Gϵ

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ C2
g log det[(1 + η)I +KN]

+ 2C2
g log(Nϵ/δ). (239)

Moreover, note that (1+η)I+KN = [I+(1+η)−1KN][(1+
η)I], which implies

log det[(1 + η)I +KN]

= log det[I + (1 + η)−1KN] +N log(1 + η)

≤ log det[I + (1 + η)−1KN] +Nη. (240)

Combining eq. (236), eq. (237), eq. (238), eq. (239) and
eq. (240) and letting η = λ− 1, we have the following holds
with probability 1− δ∥∥∥∥∥

N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ 2C2
g log det(I +KN/λ) + 2C2

gN(λ− 1)

+ 4C2
g log(Nϵ/δ) + 8N2C2

ϕϵ
2/λ,

which completes the proof of eq. (234). To prove eq. (235) we
do not need to go through the “ϵ-cover” argument since G(·)
is independent from {xi}i∈N . We can directly apply Lemma 7
and then follow steps similar to those in eq. (240) to obtain
eq. (235). □

For any integer N and λ > 0, we define the maximal
information gain associated with the RKHS H as

ΓK(N,λ) = sup
D⊂X

{1/2 · log det(Id + λ−1 ·KN)},

where the supremum is taken over all discrete subset D of X
with the cardinality no more than N .

Lemma 9 (Finite Spectrum/Effective Dimension Property):
Let {σj}j≥1 be the eigenvalues of TK defined in eq. (217) in
the descending order. Let λ ∈ [c1, c2] with c1 and c2 being
absolute constants. If σj = 0 for all j ≥ D+1, where D is a
positive integer. Then, we have ΓK(N,λ) = CK ·D · logN ,
where CK is an absolute constant that depends on C1, C2,
c1, c2 and Cϕ.

Proof: See the proof of Lemma D.5 in [71] for a detailed
proof. □

APPENDIX K
OTHER USEFUL LEMMAS

Lemma 10 (Matrix Bernstein Inequality [81]): Suppose
that {Ai}Ni=1 are independent and centered random matrices
in Rd1×d2 , that is, E[Ai] = 0 for all i ∈ [N]. Also, suppose
∥Ai∥2 ≤ CA for all i ∈ [n]. Let Z =

∑N
i=1Ai and

v(Z) = max
{∥∥E [ZZ⊤]∥∥

2
,
∥∥E [Z⊤Z

]∥∥
2

}
.

For all ξ ≥ 0, we have

P(∥Z∥2 ≥ ξ)

≤ (d1 + d2) · exp
(
− ξ2/2
v(Z) + CA/3 · ξ

)
.

Proof: See Theorem 1.6.2 in [81] for a detailed proof.
□

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[2] V. Mnih, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1334–1373, 2016.

[4] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[5] A. W. Senior et al., “Improved protein structure prediction using
potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710,
7792.

[6] H. R. Maei, “Gradient temporal-difference learning algorithms,”
Ph.D. thesis, Dept. Comput. Sci., Univ. Alberta, Edmonton, AB, Canada,
2011.

[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” 2016,
arXiv:1610.03295.

[8] N. Chatterji, A. Pacchiano, P. Bartlett, and M. Jordan, “On the theory of
reinforcement learning with once-per-episode feedback,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 34, 2021, pp. 3401–3412.

[9] Y. Gong, M. Abdel-Aty, Q. Cai, and M. S. Rahman, “Decentralized
network level adaptive signal control by multi-agent deep reinforce-
ment learning,” Transp. Res. Interdiscipl. Perspect., vol. 1, Jun. 2019,
Art. no. 100020.

[10] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular de-
novo design through deep reinforcement learning,” J. Cheminformatics,
vol. 9, no. 1, pp. 1–14, Dec. 2017.

[11] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 1774–1783.

[12] D. Hein et al., “A benchmark environment motivated by industrial
control problems,” in Proc. IEEE Symp. Ser. Computat. Intell. (SSCI),
Nov. 2017, pp. 1–8.

[13] H. Rahmandad, N. Repenning, and J. Sterman, “Effects of feedback
delay on learning,” Syst. Dyn. Rev., vol. 25, no. 4, pp. 309–338,
Oct. 2009.

[14] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner,
J. Brandstetter, and S. Hochreiter, “Rudder: Return decomposition for
delayed rewards,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 32,
2019, pp. 1–12.

[15] A. Pacchiano, A. Saha, and J. Lee, “Dueling RL: Reinforcement learning
with trajectory preferences,” 2021, arXiv:2111.04850.

[16] Y. Liu, Y. Luo, Y. Zhong, X. Chen, Q. Liu, and J. Peng, “Sequence
modeling of temporal credit assignment for episodic reinforcement
learning,” 2019, arXiv:1905.13420.

[17] T. Gangwani, Y. Zhou, and J. Peng, “Learning guidance rewards with
trajectory-space smoothing,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 33, 2020, pp. 822–832.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

XU et al.: PROVABLY EFFICIENT OFFLINE REINFORCEMENT LEARNING WITH TRAJECTORY-WISE REWARD 6517

[18] Z. Ren, R. Guo, Y. Zhou, and J. Peng, “Learning long-term
reward redistribution via randomized return decomposition,” 2021,
arXiv:2111.13485.

[19] Y. Efroni, N. Merlis, and S. Mannor, “Reinforcement learning
with trajectory feedback,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 7288–7295.

[20] O. Gottesman et al., “Guidelines for reinforcement learning in health-
care,” Nature Med., vol. 25, no. 1, pp. 16–18, Jan. 2019.

[21] R. Wang, D. P. Foster, and S. M. Kakade, “What are the statisti-
cal limits of offline RL with linear function approximation?” 2020,
arXiv:2010.11895.

[22] B. Han, Z. Ren, Z. Wu, Y. Zhou, and J. Peng, “Off-policy reinforcement
learning with delayed rewards,” 2021, arXiv:2106.11854.

[23] Z. Zheng, J. Oh, and S. Singh, “On learning intrinsic rewards for policy
gradient methods,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 31, 2018, pp. 1–11.

[24] M. Klissarov and D. Precup, “Reward propagation using graph convolu-
tional networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33,
2020, pp. 12895–12908.

[25] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-imitation learning,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 3878–3887.

[26] Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably efficient for offline
RL?” in Proc. Int. Conf. Mach. Learn. (ICML), 2021, pp. 5084–5096.

[27] M. Yin, Y. Bai, and Y.-X. Wang, “Near-optimal offline reinforcement
learning via double variance reduction,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 34, 2021, pp. 7677–7688.

[28] M. Yin, Y. Bai, and Y.-X. Wang, “Near-optimal provable uniform
convergence in offline policy evaluation for reinforcement learning,”
2020, arXiv:2007.03760.

[29] M. Yin, Y. Duan, M. Wang, and Y.-X. Wang, “Near-optimal offline
reinforcement learning with linear representation: Leveraging variance
information with pessimism,” 2022, arXiv:2203.05804.

[30] M. Yin and Y.-X. Wang, “Towards instance-optimal offline reinforce-
ment learning with pessimism,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 34, 2021, pp. 4065–4078.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[32] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 30, 2017, pp. 1–11.

[33] A. Cohen, H. Kaplan, T. Koren, and Y. Mansour, “Online Markov
decision processes with aggregate bandit feedback,” in Proc. Conf.
Learn. Theory (COLT), 2021, pp. 1301–1329.

[34] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Provably
good batch reinforcement learning without great exploration,” 2020,
arXiv:2007.08202.

[35] R. Dadashi, S. Rezaeifar, N. Vieillard, L. Hussenot, O. Pietquin, and
M. Geist, “Offline reinforcement learning with pseudometric learning,”
in Proc. Int. Conf. Mach. Learn., 2021, pp. 2307–2318.

[36] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in Proc. 36th Int. Conf. Mach. Learn.,
vol. 97, 2019, pp. 2052–2062.

[37] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Benchmarking
batch deep reinforcement learning algorithms,” 2019, arXiv:1910.01708.

[38] Z. Wang et al., “Critic regularized regression,” in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 7768–7778.

[39] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 34,
2021, pp. 20132–20145.

[40] J. Buckman, C. Gelada, and M. G. Bellemare, “The importance of pes-
simism in fixed-dataset policy optimization,” 2020, arXiv:2009.06799.

[41] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-learning
for offline reinforcement learning,” in Proc. Int. Conf. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 1179–1191.

[42] L. Shi, G. Li, Y. Wei, Y. Chen, and Y. Chi, “Pessimistic Q-learning
for offline reinforcement learning: Towards optimal sample complexity,”
2022, arXiv:2202.13890.

[43] Y. Yan, G. Li, Y. Chen, and J. Fan, “The efficacy of pessimism in
asynchronous Q-learning,” 2022, arXiv:2203.07368.

[44] G. Li, L. Shi, Y. Chen, Y. Chi, and Y. Wei, “Settling the sam-
ple complexity of model-based offline reinforcement learning,” 2022,
arXiv:2204.05275.

[45] M. Yin and Y.-X. Wang, “Optimal uniform ope and model-based
offline reinforcement learning in time-homogeneous, reward-free and
task-agnostic settings,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 34, 2021.

[46] T. Ren, J. Li, B. Dai, S. S. Du, and S. Sanghavi, “Nearly horizon-free
offline reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 34, 2021, pp. 15621–15634.

[47] T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai, “Policy finetuning:
Bridging sample-efficient offline and online reinforcement learning,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 34, 2021,
pp. 27395–27407.

[48] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell, “Bridging
offline reinforcement learning and imitation learning: A tale of pes-
simism,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 34, 2021,
pp. 11702–11716.

[49] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal, “Bellman-
consistent pessimism for offline reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 34, 2021, pp. 6683–6694.

[50] A. Zanette, M. J. Wainwright, and E. Brunskill, “Provable benefits of
actor-critic methods for offline reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 34, 2021, pp. 13626–13640.

[51] A. Zanette, “Exponential lower bounds for batch reinforcement learning:
Batch RL can be exponentially harder than online RL,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2021, pp. 12287–12297.

[52] D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu, “Offline
reinforcement learning: Fundamental barriers for value function approx-
imation,” 2021, arXiv:2111.10919.

[53] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient
reinforcement learning with linear function approximation,” in Proc.
Conf. Learn. Theory, 2020, pp. 2137–2143.

[54] L. F. Yang and M. Wang, “Sample-optimal parametric Q-learning using
linearly additive features,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 6995–7004.

[55] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun, “Reinforcement
learning: Theory and algorithms,” Dept. CS, UW Seattle, Seattle, WA,
USA, Tech. Rep., 2019, vol. 32, p. 96.

[56] B. Scherrer, “Approximate policy iteration schemes: A comparison,” in
Proc. Int. Conf. Mach. Learn. (ICML), 2014, pp. 1314–1322.

[57] J. Chen and N. Jiang, “Information-theoretic considerations in batch
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 1042–1051.

[58] N. Jiang, “On value functions and the agent-environment boundary,”
2019, arXiv:1905.13341.

[59] L. Wang, Q. Cai, Z. Yang, and Z. Wang, “Neural policy gradi-
ent methods: Global optimality and rates of convergence,” 2019,
arXiv:1909.01150.

[60] P. Liao, Z. Qi, R. Wan, P. Klasnja, and S. Murphy, “Batch policy learning
in average reward Markov decision processes,” 2020, arXiv:2007.11771.

[61] B. Liu, Q. Cai, Z. Yang, and Z. Wang, “Neural trust region/proximal
policy optimization attains globally optimal policy,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2019, pp. 1–12.

[62] Y. Duan, Z. Jia, and M. Wang, “Minimax-optimal off-policy evaluation
with linear function approximation,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 2701–2709.

[63] T. Xie and N. Jiang, “Batch value-function approximation with only
realizability,” 2020, arXiv:2008.04990.

[64] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020,
arXiv:2005.01643.

[65] A. M. Farahmand, R. Munos, and C. Szepesvári, “Error propagation
for approximate policy and value iteration,” in Proc. Adv. Neural Inf.
Process. Syst., 2010, pp. 1–9.

[66] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “MOReL:
Model-based offline reinforcement learning,” in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 21810–21823.

[67] T. Yu et al., “MOPO: Model-based offline policy optimization,” in
Proc. Int. Conf. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 14129–14142.

[68] R. Gao, T. Cai, H. Li, C.-J. Hsieh, L. Wang, and J. D. Lee, “Convergence
of adversarial training in overparametrized neural networks,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), vol. 32, 2019, pp. 1–12.

[69] Y. Bai and J. D. Lee, “Beyond linearization: On quadratic and higher-
order approximation of wide neural networks,” 2019, arXiv:1910.01619.

[70] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 31, 2018, pp. 1–10.

[71] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan, “On function
approximation in reinforcement learning: Optimism in the face of large
state spaces,” 2020, arXiv:2011.04622.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

6518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 9, SEPTEMBER 2024

[72] Q. Cai, Z. Yang, J. D. Lee, and Z. Wang, “Neural temporal-
difference and Q-learning provably converge to global optima,” 2019,
arXiv:1905.10027.

[73] T. Xu, Y. Liang, and G. Lan, “CRPO: A new approach for safe
reinforcement learning with convergence guarantee,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2021, pp. 11480–11491.

[74] S. Qiu, J. Ye, Z. Wang, and Z. Yang, “On reward-free RL with kernel and
neural function approximations: Single-agent MDP and Markov game,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2021, pp. 8737–8747.

[75] D. Zhou, L. Li, and Q. Gu, “Neural contextual bandits with UCB-based
exploration,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 11492–11502.

[76] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini, “Finite-
time analysis of kernelised contextual bandits,” 2013, arXiv:1309.6869.

[77] R. Vershynin, High-Dimensional Probability: An Introduction With
Applications in Data Science, vol. 47. Cambridge, U.K.: Cambridge
Univ. Press, 2018.

[78] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Cambridge, MA, USA: MIT Press, 2018.

[79] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 242–252.

[80] S. R. Chowdhury and A. Gopalan, “On kernelized multi-armed bandits,”
in Proc. Int. Conf. Mach. Learn., 2017, pp. 844–853.

[81] J. A. Tropp, “An introduction to matrix concentration inequalities,” 2015,
arXiv:1501.01571.

Tengyu Xu received the B.E. degree from Xi’an Jiaotong University, Xi’an,
China, in 2015, and the Ph.D. degree in electrical and computer engineering
from The Ohio State University, Columbus, OH, USA, in 2022. Since 2022,
he has been a member of the GenAI Meta AI Team, Meta Platforms, Menlo
Park. His research interests include reinforcement learning, large language
model post-tuning, optimization, and statistical learning theory.

Yue Wang received the B.S. degree from Nanjing University, Nanjing, China,
in 2019, and the Ph.D. degree in electrical engineering from SUNY at
Buffalo, Buffalo, NY, USA, in 2023. He is currently an Assistant Professor
with the Department of Electrical and Computer Engineering, University of
Central Florida. His research interests include reinforcement learning, machine
learning, and generative models. He received the 2023 AAAI Distinguished
Paper Award.

Shaofeng Zou (Member, IEEE) received the B.E. degree (Hons.) from
Shanghai Jiao Tong University, Shanghai, China, in 2011, and the Ph.D.
degree in electrical and computer engineering from Syracuse University,
Syracuse, NY, USA, in 2016. From 2016 to 2018, he was a Post-Doctoral
Research Associate with the Coordinated Science Laboratory, University
of Illinois at Urbana–Champaign. He is currently an Assistant Professor
with the Department of Electrical Engineering, University at Buffalo, The
State University of New York. His research interests include reinforcement
learning, machine learning, statistical signal processing, and information
theory. He received the National Science Foundation CAREER Award in 2024,
the National Science Foundation CRII Award in 2019, and the 2023 AAAI
Distinguished Paper Award. He has been serving as an Associate Editor for
IEEE TRANSACTIONS ON SIGNAL PROCESSING since 2023.

Yingbin Liang (Fellow, IEEE) received the Ph.D. degree in electrical
engineering from the University of Illinois at Urbana–Champaign in 2005.
She is currently a Professor with the Department of Electrical and Computer
Engineering, The Ohio State University (OSU), and a Core Faculty Member
of Ohio State Translational Data Analytics Institute (TDAI). She is also the
Deputy Director of the AI-EDGE Institute, OSU. She was a Faculty Member
of the University of Hawai’i and Syracuse University before she joined OSU.
Her research interests include machine learning, optimization, information
theory, and statistical signal processing. She received the National Science
Foundation CAREER Award and the State of Hawaii Governor Innovation
Award in 2009. She received the EURASIP Best Paper Award in 2014.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 06,2025 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.

