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Towards Resource-Efficient Edge AI: From Federated

Learning to Semi-Supervised Model Personalization
Zhaofeng Zhang , Sheng Yue , and Junshan Zhang , Fellow, IEEE

Abstract—A central question in edge intelligence is “how can an
edge device learn its local model with limited data and constrained
computing capacity?” In this study, we explore the approach where
a global model initialization is first obtained by running federated
learning (FL) across multiple edge devices, based on which a semi-
supervised algorithm is devised for a single edge device to carry
out quick adaptation with its local data. Specifically, to account for
device heterogeneity and resource constraints, a global model is first
trained via FL, where each device conducts multiple local updates
only for its customized subnet. A subset of devices can be selected
to upload updates for aggregation during each training round.
Further, device scheduling is optimized to minimize the training
loss of FL, subject to resource constraints, based on the carefully
crafted reward function defined as the one-round progress of FL
each device can provide. We examine the convergence behavior of
FL for the general non-convex case. For semi-supervised model per-
sonalization, we use the FL-based model initialization as a teacher
network to impute soft labels on unlabeled data, thereby addressing
the insufficiency of labeled data. Experiments are conducted to
evaluate the performance of the proposed algorithms.

Index Terms—Device heterogeneity, edge intelligence, federated
learning, semi-supervised learning.

I. INTRODUCTION

W
ITH the proliferation of mobile computing and Artificial

Intelligence of Things (AIoT), billions of IoT devices

are deployed at the Internet edge, generating zillions of bytes

of data. That is to say, Big Data have recently gone through

a radical shift of data sources from the megascale cloud data

centers to the increasingly widespread end devices, e.g., mobile

devices and Internet-of-Things (IoT) devices. Historically, Big

Data, comprising data streams such as online shopping records,
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social media content, and business informatics, primarily resided

within mega-scale data centers. However, the landscape is wit-

nessing a shift in this trend owing to the widespread adoption

of mobile computing and IoT technologies. Indeed, the new

mobile computing ecosystem will present many novel appli-

cation scenarios for AI and fuel the continuous booming of

AI. Pushing the AI frontier to the edge mobile computing

ecosystem at the last mile of the Internet, however, is still highly

nontrivial due to the concerns on performance, cost, and privacy.

Toward this goal, the conventional wisdom is to transport the

data bulks from the IoT devices to the cloud data centers for

analytics. Nevertheless, such data transfer across the wide area

network (WAN) can lead to exorbitant monetary expenses and

transmission delays, posing significant hindrances. Moreover,

a critical concern exists about potential privacy breaches in

this data transportation process. On-device analytics has been

proposed as an alternative approach, wherein AI applications

are executed directly on the IoT device, facilitating localized

processing of the IoT-generated data [1], [2], [3]. However, this

alternative approach also faces limitations, primarily revolving

around inadequate performance and energy efficiency issues.

This stems from numerous AI applications demanding substan-

tial computational capabilities, far surpassing the capacity of

resource-constrained and energy-limited IoT devices. Moreover,

in many AIoT applications, a single-edge device has limited

data samples only, part of which could be unlabeled, making

the learning process more challenging. For instance, the newly

captured images for face identification could be unlabeled or

generated from a different data distribution on a mobile phone.

In a nutshell, it is challenging for a single resource-constrained

edge device to accomplish model training with limited data.

Thus motivated, this paper seeks to answer the following impor-

tant question: “How can an edge mobile device under resource

constraints carry out edge learning with limited (labeled and

unlabeled) data?”

Inspired by the tremendous success of the warm-start model

training method [4], [5], we believe that the first essential step

to answering the above question is to obtain a global model

initialization, which can then be used for fine-tuning by using

the limited data at the edge device. To better illustrate this

motivation, consider the scenario wherein self-driving cars need

to be aware of their surroundings and traffic to cruise through

the traffic safely and arrive at their destinations. To this end, a

self-driving car must learn about traffic, make predictions, and

take actions in a real-time manner, which would be infeasible

to use conventional methods such as cloud computing due to
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Fig. 1. Illustration of Resource-Efficient Edge Learning.

large amounts of delays in communication between the car and

the cloud. Moreover, it is impractical for this self-driving car to

train an AI model since general AI applications require much

more computational resources and labeled training samples than

a single self-driving car. Fortunately, many edge-learning tasks

share similarities. For instance, in the above scenario, many

self-driving cars connected via V2V and V2X communications

can perform similar coordination behaviors according to en-

vironmental changes. Based on this observation, we advocate

learning a model initialization by running federated learning

(FL) [6] over the data samples across many edge devices to

extract global structural information for knowledge transfer.

Since edge devices often have limited labeled samples, inspired

by knowledge distillation (KD), we propose to use the FL-based

model initialization as a teacher neural network to assign soft

labels on unlabeled data for the single edge device so that we

can explore both limited labeled data and unlabeled data while

leveraging the transferred knowledge from the global model

initialization. This is akin to learning a meta-model via meta-

learning [7], with the following advantage: the main objective of

FL is to train a global model and is hence less computationally

demanding than meta-learning which is designed to learn the

model for each task.

We caution that to obtain the model initialization, running FL

hinges heavily upon collaborative learning across edge devices

with heterogeneous resource constraints in terms of computing

capability, memory, power, limited communication bandwidth,

and dataset sizes. Notably, FL under device heterogeneity and

resource constraints are not well understood [8], [9], [10], [11],

and this is one key challenge we will tackle in this study. In

particular, some devices could experience severe resource con-

straints, e.g., they may overheat and stop working temporarily or

experience poor wireless transmissions, which may significantly

delay the parameter aggregation at the server. As a result, it

is of great interest to devise a ‘resource-efficient FL’ that can

consider resource constraints at heterogeneous devices with

different computing and communication capabilities. Building

on the model initialization trained via resource-efficient FL,

we propose a semi-supervised learning algorithm to train a

personalized model at a single edge device with limited data.

As illustrated in Fig. 1, a global backbone model initialization

is first trained across many devices via FL, which is then adapted

to learn a personalized model at the device with limited data. At

the outset, each device is assigned a device-customized subnet,

which is generated to meet the local computing constraints at

individual devices via a single-shot fast neural network pruning

method. We note that a ‘subnet’ here is a compressed model of

the backbone one. During each training round, based on the latest

aggregated model, each device carries out multiple local updates

only for its assigned subnet, thereby improving the computation

efficiency. Moreover, due to the bandwidth constraints, only a

subset of devices can be selected in each round to upload their

locally updated subnets and pruning profiles for aggregation

at the server. Based on each device’s carefully crafted reward

function, we formulate the device scheduling problem to mini-

mize the training loss, subject to resource constraints. Given the

model initialization learned from FL, a semi-supervised learning

algorithm is devised to train a personalized model for a new edge

learning task with limited labeled/unlabeled data.

Inspired by knowledge distillation [12], [13] in deep learning,

we use the global model learned from FL as a teacher network

to impute soft labels on the unlabeled data so that the transferred

knowledge and the intrinsic structure of unlabeled data can be

leveraged simultaneously.

The main contributions of this work are summarized as fol-

lows.
� We study semi-supervised edge learning, facilitated by

the model initialization via resource-efficient FL, where

a global backbone model is first trained across many edge

devices via FL, which is then adapted to learn a personal-

ized model for an edge device with limited data. Notably,

for model personalization, the learned model initialization

from FL is used as a teacher network to generate soft labels

on unlabeled data so that the transferred knowledge and

the intrinsic structure of unlabeled data can be leveraged

simultaneously.
� To account for device heterogeneity and resource con-

straints, we focus on resource-efficient FL, for which we

define the reward function of each device as the resulting

descent of the global objective function that the device

can provide in terms of the one-round progress of FL.

Inspired by the Upper Confidence Bound (UCB) algorithm

for the Multi-armed Bandit (MAB) problem, we develop

an adaptive design of rewards, in the sense that the server

makes a more aggressive selection of devices in the initial

phase of the training process, by taking a more optimistic

view of the resulting descent in the training loss; and then

selects devices more conservatively to mitigate the impact

of uncertainty (variance) at later rounds.
� Aiming to minimize the training loss of resource-efficient

FL, we formulate a device scheduling problem subject

to resource constraints and develop a fixed-priority pre-

emptive scheduling algorithm accordingly. Moreover, we

characterize the performance of FL by examining its con-

vergence behavior for the general non-convex case.
� We evaluate the performance of the proposed edge learning

algorithm on various datasets and deep neural network

(DNN) architectures. The experimental results clearly il-

lustrate the improvement of the proposed algorithm over

the existing baselines in terms of accuracy and efficiency,
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corroborating that the proposed edge learning algorithms

can successfully address the insufficiency of labeled data

and device heterogeneity.

In the remainder of the paper, we introduce the problem

formulation of edge learning and the designing details of the

resource-efficient FL algorithm in Section II. In Section III,

we design the reward function of each device and provide the

convergence analysis of the proposed FL algorithm. The semi-

supervised model personalization algorithm via knowledge dis-

tillation is discussed in Section IV. Extensive experimental

results are presented in Section V. We provide a brief review of

related work in Section VI. Finally, the conclusions and future

work are discussed in Section VII.

II. RESOURCE-EFFICIENT EDGE LEARNING

A. Semi-Supervised Edge Learning

We consider a semi-supervised learning setting where edge

device 0 has a small labeled dataset Dl = {(xi,yi)}
|Dl|
i=1 with

total |Dl| samples and an unlabeled dataset Du = {xi}
|Du|
i=1 with

|Du| samples, and |Dl| � |Du|. For a model parameterθ ∈ R
N ,

the empirical loss on Dl is defined as

L(θ,Dl) �
1

|Dl|

|Dl|
∑

i=1

l(θ, (xi,yi)), (1)

where l : RN → R is the loss function for a single data sample.

We introduce an additional term R(θ,w,Du) for simultane-

ously exploring the unlabeled dataset and extracting the valuable

knowledge from other edge devices, aggregated in a global

model w by FL, and strike a balance therein. We have the

semi-supervised edge learning problem as follows:

min
θ

L(θ,Dl) + λR(θ,w,Du), (2)

where λ is a penalty parameter striking the trade-off between

R(θ,w,Du) and the lossL(θ,Dl) on labeled data. The ultimate

goal is to learn a personalized model for device 0 by fully

using limited (labeled and unlabeled) data and the knowledge

transferred from other edge devices.

B. Learning Global Model Initialization Via

Resource-Efficient FL

For training the model initialization w across edge devices

within the set M, we consider the following standard FL prob-

lem:

min
w

f(w) �
1

|M|

∑

m∈M

fm(w), (3)

where fm(w) is the expected loss of device m, defined as

fm(w) � Eξm∼Pm
l(w, ξm), (4)

with w ∈ R
N being the model parameter, ξm being one labeled

data sample, and Pm being the underlying data distribution of

device m. The training data samples are assumed to be non-IID

across edge devices. Before the training process, a portion of

model parameters, i.e., a device-specific subnet, is determined

from the backbone model by each device via a single-shot neural

network pruning method. At the beginning of each round, the

server broadcasts the latest parameters of the backbone network

to all devices. After receiving the parameters, each device only

updates the weights of its corresponding subnet using its local

data and then transmits the local updates to the server. Moreover,

due to the limited communication bandwidth, only a subset of

devices can be selected to upload their local updates and pruning

profiles in each training round for updating the global model

based on each device’s carefully crafted reward function. Once

the devices obtain the scheduling information, the local updates

and pruning profiles can be uploaded from selected devices to

the server, where the local updates are aggregated to obtain a

new backbone network model. This finishes one round. The

next round starts when the server broadcasts the new model

to all devices. In the following, we detail the local updating

rule at individual devices, the communication model, the device

scheduling problem formulation, and the global backbone model

updating rule for resource-efficient FL.

1) Computation-Efficient Local Updates of Subnets At Indi-

vidual Devices: The computing capability of individual devices,

which is in terms of its floating point operations per second

(FLOPS), impacts the size of its device-specific subnet [14].

Specifically, essential connections are discovered based on their

influence on the loss function based on a small batch of training

samples. Given the desired sparsity level, redundant connections

are pruned once before training (i.e., single-shot), and then the

sparse pruned network is trained in the standard way. During the

computing process at each device, only weights belonging to its

subnet need to be updated [15]. Thus, the device with higher

computing capability will employ a denser subnet.

We apply SNIP [16], a single-shot pruning method based on

connection sensitivity without pre-training, to quickly obtain

a sparse subnet for each device. Sizes of these device-specific

subnets {Nm}m∈M are set to be propositional to the devices’

computational abilities so that they can be compatible with local

computing hardware of individual devices. For convenience, let

a N × |M| matrix I denote the pruning profile over all devices,

where the entry Inm = 1 indicates that the m-th device’s subnet

contains the n-th weight, and Inm = 0 otherwise. Then the

network pruning problem at device m can be formulated as

min
Im,wm

fm(Im �wm), (5)

s.t. wm ∈ R
N , Im ∈ {0, 1}N , ‖Im‖0 f Nm, (6)

where � denotes the Hadamard product. Instead of directly

optimizing the above pruning problem, which is difficult, we

follow the idea from [16] to determine the importance of each

connection by measuring its effect on the loss function fm. By

relaxing the binary constraint on the indicator variables Im, the

effect can be approximated based on a small batch of samples

Db by the derivation of fm with respect to Inm, which is denoted

as gn(wm) and can be written as

gn(wm) =
∂fm(Im �wm;Db)

∂Inm

∣

∣

∣

∣

Im=1

. (7)

This can be computed efficiently in one forward-backward pass

using automatic differentiation for alln simultaneously. We then

define connection sensitivity as the normalized magnitude of the
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derivatives:

αnm =
|gn(wm)|

∑N
k=1 |gk(wm)|

. (8)

Once the sensitivity is computed, only the top-Nm connections

are retained. Formally, the indicator variables Im are set as

Inm = 11 [αnm − α̃m g 0] , ∀n ∈ {1 . . . N}, (9)

where α̃m is the Nm-th largest element in the vector αm and

11 is the indicator function. Compared to other existing pruning

methods, the above one is more computationally efficient for

resource-constrained edge devices since it only uses a small

batch of training samples in one forward-backward.

Given the pruning profile, the m-th device will compute its

local stochastic gradient of the n-th weight with Inm = 1 and

update it τ times in each training round. On the contrary, it

will skip calculating the stochastic gradient of the n′-th weight

if In′m = 0. The coordinate-wise local model updating rule is

given by

wt+1
n,m =

{

wt
n − η

∑τ−1
α=0 gn(w

t,α
m ;Dm) if Inm = 1,

wt
n if Inm = 0,

(10)

where η > 0 is learning rate and gn(w
t,α
m ;Dm) is the m-th

device’s local stochastic gradient of the n-th weight at step α

within the t-th training round with wt,0
m = wt.

2) Communication Model: As alluded to earlier, due to the

communication constraints, the server needs to decide the

scheduler st = {stm}
|M|
m=1 to select a subset of devices, where

stm ∈ {0, 1}. stm = 1 indicates that the m-th device is selected

to upload its model parameters and pruning profiles at round

t and stm = 0 otherwise. We assume all devices share the

same wireless link to the aggregation server. Due to the in-

terference among these wireless devices, they must share the

communication bandwidth B in time or frequency to avoid

mutual interference. We next investigate the performance of

two fundamental communication scheduling schemes, namely

time-sharing versus bandwidth-sharing-based communication

scheduling, in terms of reducing communication delay. We

note that “bandwidth-sharing” is the scheme where each de-

vice is allocated a fixed proportion of the total bandwidth for

communication. The “time-sharing” scheme is where the total

bandwidth is always fully allocated to one single device when

scheduled. The following result indicates that it suffices to focus

on time-sharing-based communication scheduling.

Proposition 1 (Communication scheduling scheme): For any

bandwidth-sharing-based scheduler, there exists a time-sharing-

based scheduler such that the number of transmission-completed

devices is no less than that of bandwidth-sharing-based sched-

ulers within the training time budget.

Proof: Due to the limited space, we outline only a few main

steps for the proof. We prove Proposition 1 by induction. Given

any bandwidth-sharing-based communication schedule, we first

show that for any pair of two devices in the set M, we can

construct a new feasible time-sharing schedule for this pair of

two devices such that the required total communication time

would not increase. Next, we can use the above reasoning

iteratively to find a new time-sharing schedule for all the devices

in set M. The full-version proof is provided in the Appendix,

available online. �

Proposition 1 reveals that, in general, the scheduler based on

time-sharing is more efficient than the one based on bandwidth-

sharing because the time-sharing-based approach reduces the

communication time of each device by using all the bandwidth.

Thus, when the m-th device is scheduled and the up-link signal-

to-noise ratio (SNR) of the devicem is γm, the uploading latency

of device m is Tcm,m = Nm

B log2(1+γm) .

3) Adaptive Device Scheduling for Model Aggregation.:

Aiming to minimize the training loss, we formulate a device

scheduling problem to maximize rewards across devices via

selecting devices within each training round. Let rtm denote the

reward function of the device m in round t. Given the budget of

training time Tddl within one round, the reward maximization

problem of the t-th round is given as

max
st

∑

m∈M

stmrtm, (11)

s.t. stm ∈ {0, 1}, ∀m ∈ M, (12)

V
(

st
)

f Tddl. (13)

where V (st) is the training time of the t-th round. (12) is the

feasibility condition on the device selection. (13) requires that

the training time of one round does not exceed Tddl. We note

that obtaining an analytic formulation of V (st) is challenging

since it not only depends on the selection of devices but also

hinges on the scheduling order and devices’ computing time. To

determine the optimal scheduling policy, a naive approach is to

use an exhaustive search by calculating the total rewards (that

can be completed at the server based on the most recent rewards

from the past training rounds before the communication starts)

for all possible scheduling policies and then find the optimal

one. However, the computational complexity of the exhaustive

search is O(|M|!), which is prohibitively high [17]. There-

fore, it necessitates a computationally efficient approximation

scheduling algorithm for solving the problem (11). Inspired

by the fixed-priority preemptive scheduling commonly used in

real-time systems [18], we propose sub-optimal scheduling to

achieve efficient dynamic device selection. More specifically, we

assign the priorities of devices based on the descending order

of the corresponding devices’ reward earning rates, which are

defined by vtm = rtm
Tcm,m

. Once finishing computing, device m

will preempt the ongoing communication process of another

device m′ if and only if vtm > vtm′ . Device m′ can continue its

communication if vtm f vtm′ . The pursuit here is that the device

with a larger reward earning rate is always scheduled first, which

is optimal for the linear relaxation of problem (11). The proposed

scheduling algorithm is outlined as Algorithm 1. We note that

the scheduled devices upload their rewards to the server after

updating their subnets. (In other words, the scheduled devices do

not need to upload their rewards simultaneously.) Hence, there

is no interference in uploading reward values in Algorithm 1.

Moreover, the value of the reward function is a scalar so that its

transmission latency can be ignored.
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Algorithm 1: Priority-Based Preemptive Scheduling Algo-

rithm for Resource-Efficient FL.

Inputs: {rtm}
|M|
m=1 and {Tcm,m}

|M|
m=1

Outputs: The scheduling policy πt

for m = 1, . . ., |M| do

Device m uploads its reward to the server after finishing

updating its local model;

if vtm > vtm′ holds then

All the bandwidth is reallocated to device m;

else

Device m waits;

end if

end for

return πt

Algorithm 2: Learning Model Initialization via Resource-

Efficient FL.

Each device generates the subnet of size Nm based on the

single-shot network pruning method;

for t = 0, 1, . . ., T do

The server broadcasts wt to all the devices;

for m = 1, . . ., |M| do

Device m updates its local model τ times using

wt+1
n,m =

{

wt
n − η

∑τ−1
α=0 gn(w

t,α
m ;Dm) if Inm = 1,

wt
n if Inm = 0;

Device m uploads wt+1
m and Im if it is scheduled by

the server according to πt;

end for

The server calculates the global model using

wt+1
n =

{∑
m∈M Inmstmw

t+1
n,m∑

m∈M Inmstm
if

∑

m∈M Inms
t
m g 1,

wt
n if

∑

m∈M Inms
t
m = 0;

end for

4) Global Updates of Backbone Network: After receiving all

local updates from the selected devices, the server calculates the

n-th weight (i.e., coordinate) of the global model as

wt+1
n =

{∑
m∈M Inmstmw

t+1
n,m∑

m∈M Inmstm
if
∑

m∈M Inms
t
m g 1,

wt
n if

∑

m∈M Inms
t
m = 0,

(14)

where
∑

m∈M Inmstm is the number of scheduled devices whose

subnets contain the n-th coordinate in the t-th round. The full

algorithm of learning model initialization via resource-efficient

FL is summarized in Algorithm 2.

III. REWARD FUNCTION DESIGN AND CONVERGENCE

ANALYSIS

In this section, we first characterize the one-round progress of

FL to present the descent of the global objective function each

device can provide and design the reward function of each device

accordingly. We then provide the convergence analysis of the FL

algorithm for general non-convex objectives. We assume that N

coordinates of the global backbone model are grouped into |M|
blocks b1 ∪ . . . ∪ b|M|, where these blocks can be overlapping

in terms of coordinates. For the m-th block, it contains Nm

coordinates, i.e., |bm| = Nm. Before the discussion, We make

the following standard assumptions.

Assumption 1 (Coordinate-wise Lipschitz gradient conti-

nuity): The global objective function f and the local ones

{fm}Mm=1 are coordinate-wise Ln-smooth, i.e., for each coordi-

nate n, it has

‖∇nf (x)−∇nf(y)‖ f Ln ‖xn − yn‖ ,

‖∇nfm (x)−∇nfm(y)‖ f Ln ‖xn − yn‖ , ∀x,y ∈ R
d,

where ∀m ∈ M and Ln f Lmax for n = 0, 1, . . ., N .

Assumption 2 (Bounded gradient): For any coordinate n ∈
{1, . . ., N}, the gradient is bounded by a non-negative constant

A, i.e.,

∥

∥gn
(

wt,α
m ;Dm

)∥

∥ f A,
∥

∥gn
(

wt,α
m ; ξm

)∥

∥

f A,
∥

∥∇nf
(

wt
)∥

∥ f A,

where gn(w
t,α
m ; ξm) is the n-th coordinate’s gradient based on

one training sample ξm.

Assumption 3 (Bounded variance): For any coordinate n ∈
{1, . . ., N}, the variance of its gradient is bounded above, i.e.,

E

[

(

gn(w
t,α
m ; ξm)− E

[

gn(w
t,α
m ; ξm)

])2
]

f σ2,

for n = 1, . . .,N, ∀m.

Assumption 4 (Polyak-Lojasiewicz inequality [19]): The

global objective functionf satisfies the Polyak-Lojasiewicz (PL)

inequality, i.e., for all x we have for some μ > 0 that

1

2
(||∇f(x)||∗)

2 g μ[f(x)− f ∗],

where || · ||∗ can be any norm and f ∗ is the optimal function

value.

Assumption 5 (Device task similarity [20], [21], [22]): There

exists a positive constant εm > 0 such that for any m ∈ M, the

following holds:

‖∇nf(w)−∇nfm(w)‖ f εm, forn = 1, . . ., N.

Assumption 1 is critical for analyzing the one-step progress in

coordinate descent studies [23], [24]. Assumptions 2–3 provide

upper bounds on the norm and variance of the gradient, which are

standard and ‘match’ the gradient clipping method in practical

implementations [25]. Assumption 4 is a sufficient condition

for gradient descent to achieve a linear convergence rate, which

is weaker than the strongly convex condition [26]. Assump-

tion 5 indicates that the variation of the gradients between the

global function f(w) and the local one fm(w) is bounded

by some constant, which captures the similarity of the tasks

corresponding to non-IID data across devices [20], [22], [27].

Based on Assumption 1, we have the following lemma, which is

used for characterizing the one-round progress of the proposed

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 17,2025 at 22:44:28 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: TOWARDS RESOURCE-EFFICIENT EDGE AI: FROM FEDERATED LEARNING TO SEMI-SUPERVISED MODEL PERSONALIZATION 6109

FL algorithm. The proof of Lemma 1 is omitted due to space

limitations.

Lemma 1: If the global objective function f is coordinate-

wise Ln-smooth, we have that

f
(

wt+1
)

f f
(

wt
)

+∇f
(

wt
)T (

wt+1 −wt
)

+
1

2

N
∑

n=1

Ln|w
t+1
n −wt

n|
2. (15)

A. Reward Function Design

We have the following result on the one-round progress of the

proposed resource-efficient FL algorithm.

Proposition 2 (One-round progress of resource-efficient FL):

Suppose that Assumption 1, 2, and 5 hold. Then, for η f 1
Lmax

,

we have that

f
(

wt
)

− f
(

wt+1
)

g
η

2

{

∑

m∈M

stm

[

2

〈

∇bmfm(wt),
τ−1
∑

α=0

gbm(wt,α
m ;Dm)

〉

−

∥

∥

∥

∥

∥

τ−1
∑

α=0

gbm(wt,α
m ;Dm)

∥

∥

∥

∥

∥

2
⎤

⎦

−2

τ−1
∑

α=0

N
∑

n=1

[

∑

m∈M

Inmstm

(

1 +
εm

A

)

− 1

]

A2

}

.

(16)

Proof: Due to the limited space, we outline a

few main steps for the proof. We first define ĝtn =
∑

m∈M Inmstm
∑τ−1

α=0 gn(w
t,α
m ;Dm)∑

m∈M Inmstm
. Recall that wt+1

n −wt
n = ĝtn

when
∑

m∈M Inmstm g 0. According to Lemma 1, it can be

easily seen that

f
(

wt+1
)

f f
(

wt
)

−
η

2

N
∑

n=1

×
[

2∇nf
(

wt
)

ĝtn − ηLmax

∥

∥ĝtn
∥

∥

2
]

.

For the n-th coordinate, we define its contribution to

the global objective descent as (DE)n = η
2 [2∇nf(w

t)ĝtn −
ηLmax‖ĝ

t
n‖

2]. Using the coordinate updating rule in the pro-

posed algorithm and the Cauchy-Schwarz inequality, we can

establish a lower bound on (DE)n as

(DE)n g
η

2

[

2∇nf
(

wt
)

∑

m∈M

Inmstm

τ−1
∑

α=0

gn
(

wt,α
m ;Dm

)

− ηLmax

∑

m∈M

Inmstm

(

τ−1
∑

α=0

gn
(

wt,α
m ;Dm

)

)2

− 2τ

(

∑

m∈M

Inmstm − 1

)

A2

]

. (17)

Then, (16) can be obtained after some further algebraic ma-

nipulation. The full-version proof is provided in the Appendix,

available online. �

Based on the above result, it is clear that the one-round

progress is stochastic. We note that the last term at the right-hand

side of (16) does not influence the one-round descent of the

global objective function if the number of overlapping coordi-

nates over blocks is small, which is often the case in practice.

Thus, we focus on maximizing the first term at the right-hand

side of (16) to design the reward function for each device. For

convenience, define

LB = 2

〈

∇bmf(wt),

τ−1
∑

α=0

gbm(wt,α
m ;Dm)

〉

−

∥

∥

∥

∥

∥

τ−1
∑

α=0

gbm(wt,α
m ;Dm)

∥

∥

∥

∥

∥

2

, (18)

and we need to quantify LB while ∇bmf(wt) is never acces-

sible. One naive approach is directly estimating ∇bmf(wt) as

the stochastic gradient gtbm(wt;Dm), which would not work

well only based on limited data. Here, we derive a confidence

interval of LB to provide insights into each device’s adaptive

reward function design. We define

Um = 2

〈

gtbm(ξm),

τ−1
∑

α=0

gbm
(

wt,α
m ;Dm

)

〉

−

∥

∥

∥

∥

∥

τ−1
∑

α=0

gbm
(

wt,α
m ;Dm

)

∥

∥

∥

∥

∥

2

. (19)

That LB = E(Um) is easy to obtain. We further define

Um = 2

〈

gbm(wt
m;Dm),

τ−1
∑

α=0

gbm
(

wt,α
m ;Dm

)

〉

−

∥

∥

∥

∥

∥

τ−1
∑

α=0

gbm
(

wt,α
m ;Dm

)

∥

∥

∥

∥

∥

2

(20)

According to Assumption 2, we have −(2τ + τ2)NmA2 f
Um f 2τNmA2. Given the confidence level 1− q, we can

obtain the following inequality by directly utilizing Hoeffding’s

inequality:

q = P
(

|Um − LB| g κ
)

f 2 exp

(

−
2|Dm|2κ2

|Dm| [(τ2 + 4τ)NmA2]2

)

. (21)

Solving the above inequality for LB gives us the following

confidence interval of LB:

Um −NmA2

√

−(τ2 + 4τ) log( q2 )

2|Dm|
f LB

f Um +NmA2

√

−(τ2 + 4τ) log( q2 )

2|Dm|
, (22)

Moreover, we have the following results on the training error.

Proposition 3 (Characterizing training error of resource-

efficient FL): Suppose that Assumption 1 and 3–5 hold, and
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C = μ(τ − 1 + δ). Then, for

L2
maxη

2(τ + 1)(τ − 2)

2
+ Lmaxητ f 1 andL2

maxη
2 f 1− δ

with some constant 0 < δ < 1, we have that

Et

[

f
(

wt+1
)]

− f ∗ f (1− Cη)t
[

f
(

w0
)

− f ∗
]

+
ητ

2

t
∑

t′=0

{

(1− Cη)t−t′
∑

m∈M

stm
[

Nmε2m

+
Nmσ2

|Dm|

(

τ +
(2τ − 1)(τ − 1)

6

)]}

. (23)

Proof: We outline a few main steps for the proof due to the

limited space. Here, we slightly abuse the notation ‘E’. In the

following, ‘E’ always means taking the overall expectation. By

taking the summation (we ignore the effects of the overlapping

coordinates over blocks) and then taking the overall expectation

of (17), we have

Ef
(

wt+1
)

− f
(

wt
)

f
∑

m∈M

stm

[

−η

τ−1
∑

α=0

E
〈

∇bmf(wt),∇bmfm(wt,α
m )

〉

+
Lmaxη

2

2
E

∥

∥

∥

∥

∥

τ−1
∑

α=0

gbm(wt,α
m ;Dm)

∥

∥

∥

∥

∥

2
⎤

⎦ . (24)

Using the properties of the iterates in the proposed algorithm

and the smoothness of f and {fm}Mm=1, we can further obtain

an upper bound on Ef(wt+1)− f(wt) in terms of f ∗, σ2, and

ε2m as

Ef
(

wt+1
)

− f
(

wt
)

f −
(τ − 1 + δ)η

2

∑

m∈M

stm
∥

∥∇bmf(wt)
∥

∥

2

+
ητ

2

∑

m∈M

stm

[

Nmσ2

|Dm|

(

τ +
(2τ − 1)(τ − 1)

6

)

+Nmε2m

]

f −(τ − 1 + δ)ημ
[

f
(

wt
)

− f ∗
]

+
ητ

2

∑

m∈M

stm

[

Nmσ2

|Dm|

(

τ+
(2τ − 1)(τ − 1)

6

)

+Nmε2m

]

.

(25)

Subtracting f ∗ on both sides of the above inequality and using

the properties of the iterates in the proposed algorithm completes

the proof. The full-version proof is provided in the Appendix,

available online. �

Remark 1: The second term at the right-hand side of (23)

captures the impact of variance Nm

|Dm|σ
2 on the training perfor-

mance. We note that the weight (1− Cη)t−t′ increases with t′

increasing as 1− Cη < 1. In other words, the variance in a later

round has a larger impact on the error (the second term at the

right-hand side of (23)) than in an earlier round. The observation

has an important implication: the devices with larger subnet size

should be selected since the objective function needs to descend

quicker in the initial phase of the training process; the devices

with more data should be selected to mitigate the effects of the

variance at later rounds.

Inspired by the remark above, we propose the following

adaptive reward function design.

rtm = Um +NmA2

√

−(τ2 + 4τ) log( q2 )

2|Dm|

(

1−
2t

tmax

)

(26)

where tmax is the final training round index. It is obvious that the

reward function value is close to the upper bound of LB when t

is small so that the server makes a more aggressive selection of

devices, using a more optimistic descent of the global objective

function at the beginning of the training; the reward function

value is closed to the lower bound of LB when t is large so that

the server has a more conservative selection of devices to reduce

the variance as much as possible.

B. Convergence Analysis of FL

Based on Assumption 1 and 3–5, we can have the following

result about the convergence of the resource-efficient FL algo-

rithm for the general non-convex case.

Theorem 1 (Convergence of resource-efficient FL): Suppose

that Assumption 1 and 3–5 hold, and the learning rate η satisfy-

ing

L2
maxη

2(τ + 1)(τ − 2)

2
+ Lmaxητ f 1 andL2

maxη
2 f 1− δ

with some constant 0 < δ < 1. Then, the expected average

squared gradient norms of scheduled devices satisfy the fol-

lowing bound:

1

T + 1
E

[

T
∑
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∑

m∈M

stm
∥

∥∇bmf
(

wt
)∥

∥

2

]

f
2
(

f
(

w0
)

− f ∗
)

(T + 1)(τ − 1 + δ)η

+
τ

(T + 1)(τ − 1 + δ)

T
∑

t=0

∑

m∈M

stmNm

[

σ2

|Dm|
(τ

+
(2τ − 1)(τ − 1)

6

)

+ ε2m

]

.

Proof: By taking the summation of (25) and noting that f ∗ −
f(w0) f f(wT )− f(w0), we obtain

E

T
∑

t=0

∑

m∈M

stm
∥

∥∇bmf
(

wt
)∥

∥

2

f
2
(

f
(

w0
)

− f ∗
)

(τ − 1 + δ)η
+

τ

τ − 1 + δ

T
∑

t=0

∑

m∈M

stmNm

×

[

σ2

|Dm|

(

τ +
(2τ − 1)(τ − 1)

6

)

+ ε2m

]

.

Dividing the above inequality by T + 1 completes the proof.�

Remark 2: Theorem 1 shows that scheduled gradients’ ex-

pected average squared norms converge to a nonzero constant
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as T → ∞. The first term
2(f(w0)−f ∗)

(T+1)(τ−1+δ)η represents the gap

from the initial model to the optimal solution and eventually

goes to zero as the number of rounds goes to infinity. The

second term is scaled by the dataset sizes and local computing

steps, which indicates that larger dataset sizes and more frequent

communication lead to better performance.

IV. SEMI-SUPERVISED MODEL PERSONALIZATION VIA

KNOWLEDGE DISTILLATION

Given the model initialization w obtained via FL, device 0

aims to learn a new model θ based on its scarce labeled dataset

Dl and unlabeled dataset Du. Inspired by the recent successes of

knowledge distillation (KD), we propose a computing-efficient

semi-supervised learning algorithm to explore both limited la-

beled data and unlabeled data while leveraging the transferred

knowledge from the global model initialization. Similar to FL,

a sparse subnet with size Nθ is first quickly obtained by the

single-shot network pruning method so that the subnet can be

compatible with the computing hardware of device 0. We then

use the global model w as a teacher network to assign soft

labels on unlabeled data. The original semi-supervised learning

problem (2) can be recast as the following minimization one:

min
θ

−
1

|Dl|

∑

(xi,yi)∈Dl

log p(yi|xi;θ, 1))

−
λ

|Du|

∑

xi∈Du

∑

y

p(y|xi;w, TKD) log p(y|xi;θ, TKD)

(27)

s.t. ‖θ‖0 = Nθ, (28)

where p(y|xi;w, TKD) = ez(xi,y,w)/TKD
∑

y′ ez(xi,y
′,w)/TKD

, z(·) is the logit

value, and TKD is the distillation temperature. Notably, in (28),

the new device only needs to update a subnet of the local model,

hence significantly reducing the computational cost. Though we

focus on using labeled and unlabeled data in this work, one can

only use the second term (the distillation loss) in (27) for training

θ when the number of labeled samples is extremely small. We

also note that the proposed algorithm can be implemented on the

device either with the same model architecture as w or a more

compact one. Algorithm 3 outlines the main steps of learning

θ via semi-supervised model personalization. As the theoretical

foundation for KD remains open in deep learning, providing

theoretical performance guarantees for Algorithm 3 is highly

nontrivial. However, the results using real-world benchmarks

demonstrate that it can indeed improve over the existing base-

lines in terms of accuracy and efficiency.

V. EXPERIMENTS

In this section, we study the image classification problem and

evaluate the performance of the proposed resource-efficient edge

learning framework.

Algorithm 3: Learning θ via Semi-Supervised Model Per-

sonalization.

Inputs: Dl, Du, λ, TKD, Nθ and w

Outputs: The personalized model θ

1: Sample a mini-batch Db from Dl;

2: Use Db to generate the subnet of size Nθ based on the

single-shot network pruning method;

3: Use w to generate soft labels on Du;

4: Train the subnet based on the loss L;

5: return θ

A. Datasets, Models and Evaluation

We examine the performance of the proposed edge learning

algorithms on various datasets, including Caltech 101 [28],

MNIST [29], and CIFAR-10 [30], where the data for training

w via FL are distributed among 50 devices. We use two CNN

architectures, including Lenet and VGG-16, the choice of which

varies among datasets due to the differences in image sizes

and feature diversities. We first compare the performance of

the proposed algorithms training FL-based initialization with

three baselines, namely FedAvg [6] algorithm, Helios [10], and

Oort [31]. Helios is the FL baseline considering devices’ compu-

tational heterogeneity but not communication constraints. Oort

is an FL scheduling framework that considers device hetero-

geneity but without analyzing convergence. We then compare

the proposed semi-supervised model personalization algorithm

with the following approaches: Two global models are trained

respectively by FedAvg and Helios and used as the teacher

networks for obtaining personalized models; Three personalized

FL approaches KT-pFL [32], pFedHN [33], and FedPCL [34]

that realize personalized model training in a federated manner.

In all experiments, we set bandwidth B = 0.5 MHz. Each

device has samples from only two random classes. We use

the cross-entropy loss function to calculate the training loss.

All experiments are repeated ten times to obtain the average

performance, and the comparison is shown with 95% confidence

intervals. The experiments are implemented using Python 3.6

and PyTorch 1.8.1 with CUDA 11 on a server with one Intel Core

i9-10900K CPU and one Nvidia GeForce RTX 3090 24 G GPU.

Details on the settings of datasets, wireless channel conditions,

computation capabilities, and CNN architectures are relegated

to the Appendix, available online.

B. FL-Based Model Initialization

We first examine the performance of our proposed algorithm

in the limited data regime, where less than 15% of training

data of the Caltech 101 dataset are distributed to devices. We

assume the server first broadcasts a VGG-16 model, which

contains three fully connected and 13 convolution layers and

is trained on the Imagenet dataset [35]. Once all devices receive

the model, they only prune and retrain the last two layers instead

of the entire VGG-16 model. For convenience, we refer to the

reward design based on (26) as ‘RE-FL design 1’ and the reward

design based on directly estimating ∇bmf(wt) as the stochastic

gradient gtbm(wt;Dm) as ‘RE-FL design 2’. From Fig. 2(a) and
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Fig. 2. Training Performance of FL-based Model Initialization.

TABLE I
TESTING ACCURACY COMPARISON OF FL-BASED MODEL INITIALIZATION

TABLE II
TESTING ACCURACY COMPARISON OF SEMI-SUPERVISED MODEL PERSONALIZATION

Table I, we can observe that our proposed algorithm outperforms

the baselines regarding the accuracy and the convergence speed

for different device settings. Note that the design 1 of reward

function consistently outperforms the design 2 in the limited data

regime thanks to its adaptive characteristics. We then evaluate

the performance of our proposed algorithm on training a CNN

model in the abundant data regime. Specifically, we explore

two different datasets, MNIST and CIFAR-10, to train a LeNet

model, which contains three fully connected layers and two

convolution layers; the whole training dataset is distributed to

devices so that each device owns abundant training samples.

As illustrated in Fig. 2(b), (c) and Table I, our proposed FL

algorithm outperforms the counterparts in terms of convergence

speed and testing accuracy for different settings.

C. Semi-Supervised Model Personalization

We evaluate the proposed semi-supervised edge learning

algorithm with limited labeled data and the FL-based model

initialization. Specifically, we conduct this experiment on three

different datasets, where |Dl| = 100, |Du| = 900 for Caltech

101, |Dl| = 50, |Du| = 500 for MNIST and |Dl| = 100, |Du| =
800 for CIFAR-10. For the sake of fairness, we compare it

with the following approaches: Two global models are trained

respectively by FedAvg and Helios and used as the teacher

networks for obtaining personalized models. We refer to the

proposed semi-supervised model personalization algorithm as

‘RE-SSMP’ for convenience. It can be seen from Table II and

Fig. 3(a)–(c) that the proposed algorithm clearly outperforms the

counterparts’ convergence speed and testing accuracy. It corrob-

orates that the proposed algorithm can successfully address the

insufficiency of labeled data and deliver model personalization at

the network edge. To quantify the impact of knowledge transfer

on the performance, we train the model for device 0 with the

same global initialization but different
|Du|
|Dl|

, in the sense that

device 0 relies more on the transferred knowledge when
|Du|
|Dl|

is

larger. As shown in Fig. 3(d), the performance improves as
|Du|
|Dl|

increases from 2 to 10. The reason is that more information is

provided by the model initialization as more unlabeled samples

are assigned with soft labels. The performance drops as
|Du|
|Dl|

increases further. In other words, the transferred knowledge

will in turn hurt the learning performance due to the sample

distribution shift between device 0 and devices in M.

VI. RELATED WORK

Resource-Efficient FL: [10] recently proposed to dynamically

mask different sets of neurons for different devices depending

on their computing resources profiles, and these neurons are
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Fig. 3. Performance of Semi-supervised Model Personalization.

recovered and updated during the aggregation. In the work

proposed by [11], each device is assigned a DNN with a topology

that fits its computing capability, where part of the DNNs is

shared and jointly learned. We note that the above works and

their related algorithms [36], [37], [38] propose FL algorithms

where the workloads fit the computing capabilities at individual

devices. Still, it is not guaranteed that each device can work

synchronously due to the unpredictable behaviors of stragglers

in practice. Moreover, they do not consider the communication

overhead, which can become a significant bottleneck, especially

for training a large-scale DNN. Along a different line, some

recent works develop device scheduling algorithms under lim-

ited bandwidth but do not consider devices’ computing abilities.

Specifically, [39] aims to optimize the learning performance,

which depends on how devices are selected in each round from

a long-term perspective. [40] develop a probabilistic scheduling

framework based on the gradient divergence at the devices. A

recent FL work proposed by [31] prioritizes the use of those de-

vices that have both data with greater utility in improving model

accuracy and the capability to run training quickly, and [31] did

not provide convergence analysis. Personalized FL focuses on

realizing personalized model training. Notably, [32] formulates

the aggregation procedure in the original personalized FL into

a personalized group knowledge transfer training algorithm,

which enables each client to maintain a personalized soft pre-

diction on the server side to guide the others’ local training.

In [33], a central hypernetwork model is trained to generate a

set of models for each client, which provides effective parameter

sharing across clients while maintaining the capacity to generate

unique and diverse personal models. [34] proposes a personal-

ized FL approach that shares knowledge across clients through

their class prototypes and builds client-specific representations

in a prototype-wise contrastive manner. Nevertheless, the above

approaches do not simultaneously consider computing capabili-

ties and communication constraints among heterogeneous edge

devices. To our knowledge, our work is the first attempt to de-

velop a resource-efficient edge learning framework that accounts

for device heterogeneity and communication constraints, where

a semi-supervised algorithm enables edge learning with limited

labeled data based on a global model initialization by running

FL across multiple edge devices.

Semi-supervised Learning for DNNs: Semi-supervised learn-

ing [41] is a powerful tool for exploring unlabeled data with

DNNs. Recent works indicate that semi-supervised learning is

theoretically [42] and empirically [43] effective on unlabeled

data. These methods either require fitting the unlabeled data on

its outputs generated by a self-trained model with limited labeled

data [13], [44] or stability of DNN outputs under various data

augmentations [43], [45] (also known as consistency regulariza-

tion). However, without a deeply pre-trained model to provide an

unbiased regularization, semi-supervised learning from scratch

could be easily misled by inaccurate pseudo-labels, especially

when labeled data is extremely insufficient [46].

Neural Network Pruning: Recently, the neural network prun-

ing method has emerged as a powerful tool to significantly

increase the computing efficiency for large-scale neural network

training. The rationale behind the network pruning is that neural

networks are usually overparameterized, and comparable per-

formance can be obtained by a much smaller one obtained with

careful pruning. Notably, [47] is one of the pioneering works on

network pruning, and sparsity enforcing penalty terms [48] and

saliency criteria [49] (e.g., weight sensitivity) are widely used

in recent studies on network pruning. Recent work SNIP [16]

proposes a single-shot pruning method based on connection

sensitivity without pretraining to quickly obtain the optimized

sparse subnets.

VII. CONCLUSION AND FUTURE WORK

In this study, we advocate first obtaining a global model

initialization by running FL across multiple edge devices, based

on which a semi-supervised algorithm is developed to enable

edge learning with limited data. Specifically, to account for

device heterogeneity and resource constraints, a global back-

bone model is first trained via FL, where each device carries

out multiple local updates only for its customized subnet and

only a fraction of devices can be selected to upload locally

updated subnets and pruning profiles for aggregation during

each training round. Moreover, device scheduling is optimized to

minimize the training loss of FL, subject to resource constraints,

based on the carefully crafted reward function. We provide a

rigorous convergence analysis of FL for the general non-convex
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case. For semi-supervised model personalization, we use the

FL-based initial model as a teacher network to assign soft

labels on unlabeled data, aiming to address the insufficiency

of labeled data and to learn a personalized model efficiently.

Experiments are conducted to evaluate the performance of the

proposed algorithm.

There are several interesting questions and directions for

future work. First, it is interesting to adopt the proposed method

to a more practical setting where the target edge device only

contains unlabeled data samples (i.e., the unsupervised case).

Second, although FL can be directly applied to reinforcement

learning with policy gradient [50], it may lead to poor sample ef-

ficiency. It remains largely open to developing resource-efficient

FL-based reinforcement learning over edge devices. Another

possible extension is to consider multi-task learning over a

fully decentralized edge network based on the same rationale

provided by the proposed algorithm, and it is expected that

a resource-efficient fully decentralized learning algorithm will

significantly decrease the computing and communication cost

over the edge network.
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