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Towards Resource-Efficient Edge Al: From Federated
Learning to Semi-Supervised Model Personalization

Zhaofeng Zhang ', Sheng Yue

Abstract—A central question in edge intelligence is “how can an
edge device learn its local model with limited data and constrained
computing capacity?” In this study, we explore the approach where
a global model initialization is first obtained by running federated
learning (FL) across multiple edge devices, based on which a semi-
supervised algorithm is devised for a single edge device to carry
out quick adaptation with its local data. Specifically, to account for
device heterogeneity and resource constraints, a global model is first
trained via FL, where each device conducts multiple local updates
only for its customized subnet. A subset of devices can be selected
to upload updates for aggregation during each training round.
Further, device scheduling is optimized to minimize the training
loss of FL, subject to resource constraints, based on the carefully
crafted reward function defined as the one-round progress of FL
each device can provide. We examine the convergence behavior of
FL for the general non-convex case. For semi-supervised model per-
sonalization, we use the FL-based model initialization as a teacher
network to impute soft labels on unlabeled data, thereby addressing
the insufficiency of labeled data. Experiments are conducted to
evaluate the performance of the proposed algorithms.

Index Terms—Device heterogeneity, edge intelligence, federated
learning, semi-supervised learning.

I. INTRODUCTION

ITH the proliferation of mobile computing and Artificial

Intelligence of Things (AloT), billions of IoT devices
are deployed at the Internet edge, generating zillions of bytes
of data. That is to say, Big Data have recently gone through
a radical shift of data sources from the megascale cloud data
centers to the increasingly widespread end devices, e.g., mobile
devices and Internet-of-Things (IoT) devices. Historically, Big
Data, comprising data streams such as online shopping records,

Manuscript received 2 March 2023; revised 12 September 2023; accepted
12 September 2023. Date of publication 18 September 2023; date of current
version 4 April 2024. This work was supported in part by the NSF under
Grants CNS-2203239, CNS-2203412, RINGS-2148253, and CCSS-2203238,
in part by the NSFC under Grant 62302260, and in part by the CPSF under
Grant 2023M731956. Recommended for acceptance by L. Guo. (Corresponding
author: Sheng Yue.)

Zhaofeng Zhang is with the School of Electrical, Computer and En-
ergy Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
zzhan199 @asu.edu).

Sheng Yue is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100190, China, and also with the School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe,
AZ 85281 USA (e-mail: shaun.yue @hotmail.com).

Junshan Zhang is with the College of Engineering, University of California,
Davis, CA 95616 USA, and also with the School of Electrical, Computer and
Energy Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
jazh@ucdavis.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3316189, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3316189

, and Junshan Zhang

, Fellow, IEEE

social media content, and business informatics, primarily resided
within mega-scale data centers. However, the landscape is wit-
nessing a shift in this trend owing to the widespread adoption
of mobile computing and IoT technologies. Indeed, the new
mobile computing ecosystem will present many novel appli-
cation scenarios for Al and fuel the continuous booming of
Al Pushing the Al frontier to the edge mobile computing
ecosystem at the last mile of the Internet, however, is still highly
nontrivial due to the concerns on performance, cost, and privacy.
Toward this goal, the conventional wisdom is to transport the
data bulks from the IoT devices to the cloud data centers for
analytics. Nevertheless, such data transfer across the wide area
network (WAN) can lead to exorbitant monetary expenses and
transmission delays, posing significant hindrances. Moreover,
a critical concern exists about potential privacy breaches in
this data transportation process. On-device analytics has been
proposed as an alternative approach, wherein Al applications
are executed directly on the IoT device, facilitating localized
processing of the loT-generated data [1], [2], [3]. However, this
alternative approach also faces limitations, primarily revolving
around inadequate performance and energy efficiency issues.
This stems from numerous Al applications demanding substan-
tial computational capabilities, far surpassing the capacity of
resource-constrained and energy-limited IoT devices. Moreover,
in many AloT applications, a single-edge device has limited
data samples only, part of which could be unlabeled, making
the learning process more challenging. For instance, the newly
captured images for face identification could be unlabeled or
generated from a different data distribution on a mobile phone.
In a nutshell, it is challenging for a single resource-constrained
edge device to accomplish model training with limited data.
Thus motivated, this paper seeks to answer the following impor-
tant question: “How can an edge mobile device under resource
constraints carry out edge learning with limited (labeled and
unlabeled) data?”

Inspired by the tremendous success of the warm-start model
training method [4], [5], we believe that the first essential step
to answering the above question is to obtain a global model
initialization, which can then be used for fine-tuning by using
the limited data at the edge device. To better illustrate this
motivation, consider the scenario wherein self-driving cars need
to be aware of their surroundings and traffic to cruise through
the traffic safely and arrive at their destinations. To this end, a
self-driving car must learn about traffic, make predictions, and
take actions in a real-time manner, which would be infeasible
to use conventional methods such as cloud computing due to

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 17,2025 at 22:44:28 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: TOWARDS RESOURCE-EFFICIENT EDGE Al: FROM FEDERATED LEARNING TO SEMI-SUPERVISED MODEL PERSONALIZATION

FL-based Global Model
Initialization

Semi-supervised Model
Personalization

;:>‘

o

el
e §><¢,1§;‘,o§0 Subnet
pSW) o

Devicel.. M

X P X
Ao X 7o
of Jodhe o (\o{\*‘ o AL NO
03%%% O\Ulé"’axb Subnets \<>«fx X5

1

Device 0 with unlabeled data
and limited labeled data

Edge Learning with Limited Resources

Fig. 1. Illustration of Resource-Efficient Edge Learning.

large amounts of delays in communication between the car and
the cloud. Moreover, it is impractical for this self-driving car to
train an Al model since general Al applications require much
more computational resources and labeled training samples than
a single self-driving car. Fortunately, many edge-learning tasks
share similarities. For instance, in the above scenario, many
self-driving cars connected via V2V and V2X communications
can perform similar coordination behaviors according to en-
vironmental changes. Based on this observation, we advocate
learning a model initialization by running federated learning
(FL) [6] over the data samples across many edge devices to
extract global structural information for knowledge transfer.
Since edge devices often have limited labeled samples, inspired
by knowledge distillation (KD), we propose to use the FL-based
model initialization as a teacher neural network to assign soft
labels on unlabeled data for the single edge device so that we
can explore both limited labeled data and unlabeled data while
leveraging the transferred knowledge from the global model
initialization. This is akin to learning a meta-model via meta-
learning [7], with the following advantage: the main objective of
FL is to train a global model and is hence less computationally
demanding than meta-learning which is designed to learn the
model for each task.

We caution that to obtain the model initialization, running FL
hinges heavily upon collaborative learning across edge devices
with heterogeneous resource constraints in terms of computing
capability, memory, power, limited communication bandwidth,
and dataset sizes. Notably, FL under device heterogeneity and
resource constraints are not well understood [8], [9], [10], [11],
and this is one key challenge we will tackle in this study. In
particular, some devices could experience severe resource con-
straints, e.g., they may overheat and stop working temporarily or
experience poor wireless transmissions, which may significantly
delay the parameter aggregation at the server. As a result, it
is of great interest to devise a ‘resource-efficient FL’ that can
consider resource constraints at heterogeneous devices with
different computing and communication capabilities. Building
on the model initialization trained via resource-efficient FL,
we propose a semi-supervised learning algorithm to train a
personalized model at a single edge device with limited data.

As illustrated in Fig. 1, a global backbone model initialization
is first trained across many devices via FL, which is then adapted
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to learn a personalized model at the device with limited data. At
the outset, each device is assigned a device-customized subnet,
which is generated to meet the local computing constraints at
individual devices via a single-shot fast neural network pruning
method. We note that a ‘subnet’ here is a compressed model of
the backbone one. During each training round, based on the latest
aggregated model, each device carries out multiple local updates
only for its assigned subnet, thereby improving the computation
efficiency. Moreover, due to the bandwidth constraints, only a
subset of devices can be selected in each round to upload their
locally updated subnets and pruning profiles for aggregation
at the server. Based on each device’s carefully crafted reward
function, we formulate the device scheduling problem to mini-
mize the training loss, subject to resource constraints. Given the
model initialization learned from FL, a semi-supervised learning
algorithm is devised to train a personalized model for a new edge
learning task with limited labeled/unlabeled data.

Inspired by knowledge distillation [12], [13] in deep learning,
we use the global model learned from FL as a teacher network
to impute soft labels on the unlabeled data so that the transferred
knowledge and the intrinsic structure of unlabeled data can be
leveraged simultaneously.

The main contributions of this work are summarized as fol-
lows.

e We study semi-supervised edge learning, facilitated by

the model initialization via resource-efficient FL, where
a global backbone model is first trained across many edge
devices via FL, which is then adapted to learn a personal-
ized model for an edge device with limited data. Notably,
for model personalization, the learned model initialization
from FL is used as a teacher network to generate soft labels
on unlabeled data so that the transferred knowledge and
the intrinsic structure of unlabeled data can be leveraged
simultaneously.

e To account for device heterogeneity and resource con-
straints, we focus on resource-efficient FL, for which we
define the reward function of each device as the resulting
descent of the global objective function that the device
can provide in terms of the one-round progress of FL.
Inspired by the Upper Confidence Bound (UCB) algorithm
for the Multi-armed Bandit (MAB) problem, we develop
an adaptive design of rewards, in the sense that the server
makes a more aggressive selection of devices in the initial
phase of the training process, by taking a more optimistic
view of the resulting descent in the training loss; and then
selects devices more conservatively to mitigate the impact
of uncertainty (variance) at later rounds.

® Aiming to minimize the training loss of resource-efficient
FL, we formulate a device scheduling problem subject
to resource constraints and develop a fixed-priority pre-
emptive scheduling algorithm accordingly. Moreover, we
characterize the performance of FL by examining its con-
vergence behavior for the general non-convex case.

® We evaluate the performance of the proposed edge learning
algorithm on various datasets and deep neural network
(DNN) architectures. The experimental results clearly il-
lustrate the improvement of the proposed algorithm over
the existing baselines in terms of accuracy and efficiency,
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corroborating that the proposed edge learning algorithms
can successfully address the insufficiency of labeled data
and device heterogeneity.

In the remainder of the paper, we introduce the problem
formulation of edge learning and the designing details of the
resource-efficient FL algorithm in Section II. In Section III,
we design the reward function of each device and provide the
convergence analysis of the proposed FL algorithm. The semi-
supervised model personalization algorithm via knowledge dis-
tillation is discussed in Section IV. Extensive experimental
results are presented in Section V. We provide a brief review of
related work in Section VI. Finally, the conclusions and future
work are discussed in Section VIL

II. RESOURCE-EFFICIENT EDGE LEARNING
A. Semi-Supervised Edge Learning

We consider a semi-supervised learning setting where edge
device 0 has a small labeled dataset D; = {(x;, yl)}| ll‘ with
total | D;| samples and an unlabeled dataset D,, = {x;},_ D“‘ with
|D.,| samples, and |D;| < |D,,|. For amodel parameter 6 6 RY,
the empirical loss on D is defined as

v2

A
L(6,D;) & wZz

where [ : R™Y — R is the loss function for a single data sample.
We introduce an additional term R(60,w,D,,) for simultane-
ously exploring the unlabeled dataset and extracting the valuable
knowledge from other edge devices, aggregated in a global
model w by FL, and strike a balance therein. We have the
semi-supervised edge learning problem as follows:

meinL(B,Dl) +AR(0,w,D,), 2

(xi,yi)) ey

where A is a penalty parameter striking the trade-off between
R(0,w,D,,) and the loss L(0, D;) on labeled data. The ultimate
goal is to learn a personalized model for device 0 by fully
using limited (labeled and unlabeled) data and the knowledge
transferred from other edge devices.

B. Learning Global Model Initialization Via
Resource-Efficient FL

For training the model initialization w across edge devices
within the set M, we consider the following standard FL prob-
lem:

mln flw

M > fmlw 3)

meM

where f,,(w) is the expected loss of device m, defined as
fm(w) & Ee,, P, l(w, &m), “

with w € RY being the model parameter, &,,, being one labeled
data sample, and P,,, being the underlying data distribution of
device m. The training data samples are assumed to be non-IID
across edge devices. Before the training process, a portion of
model parameters, i.e., a device-specific subnet, is determined
from the backbone model by each device via a single-shot neural
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network pruning method. At the beginning of each round, the
server broadcasts the latest parameters of the backbone network
to all devices. After receiving the parameters, each device only
updates the weights of its corresponding subnet using its local
data and then transmits the local updates to the server. Moreover,
due to the limited communication bandwidth, only a subset of
devices can be selected to upload their local updates and pruning
profiles in each training round for updating the global model
based on each device’s carefully crafted reward function. Once
the devices obtain the scheduling information, the local updates
and pruning profiles can be uploaded from selected devices to
the server, where the local updates are aggregated to obtain a
new backbone network model. This finishes one round. The
next round starts when the server broadcasts the new model
to all devices. In the following, we detail the local updating
rule at individual devices, the communication model, the device
scheduling problem formulation, and the global backbone model
updating rule for resource-efficient FL.

1) Computation-Efficient Local Updates of Subnets At Indi-
vidual Devices: The computing capability of individual devices,
which is in terms of its floating point operations per second
(FLOPS), impacts the size of its device-specific subnet [14].
Specifically, essential connections are discovered based on their
influence on the loss function based on a small batch of training
samples. Given the desired sparsity level, redundant connections
are pruned once before training (i.e., single-shot), and then the
sparse pruned network is trained in the standard way. During the
computing process at each device, only weights belonging to its
subnet need to be updated [15]. Thus, the device with higher
computing capability will employ a denser subnet.

We apply SNIP [16], a single-shot pruning method based on
connection sensitivity without pre-training, to quickly obtain
a sparse subnet for each device. Sizes of these device-specific
subnets { N, }menm are set to be propositional to the devices’
computational abilities so that they can be compatible with local
computing hardware of individual devices. For convenience, let
a N x | M| matrix I denote the pruning profile over all devices,
where the entry I,,,,, = 1 indicates that the m-th device’s subnet
contains the n-th weight, and I,,,, = 0 otherwise. Then the
network pruning problem at device m can be formulated as

min [, (L, © w,,), 5

m,Wm

st. wy, €RY L, €{0,1}Y, |Tnllo < N, (6)

where © denotes the Hadamard product. Instead of directly
optimizing the above pruning problem, which is difficult, we
follow the idea from [16] to determine the importance of each
connection by measuring its effect on the loss function f,,. By
relaxing the binary constraint on the indicator variables I,,,, the
effect can be approximated based on a small batch of samples
Dy, by the derivation of f,, with respect to I,,,,,, which is denoted
as g, (w,,) and can be written as

8fm(Im O Wp; Db)
oI, nm
This can be computed efficiently in one forward-backward pass

using automatic differentiation for all n simultaneously. We then
define connection sensitivity as the normalized magnitude of the

)

gn(wm) = .
I,,=1
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derivatives:

_ ‘gn(wm” -
> [k (wm)]

Once the sensitivity is computed, only the top-V,,, connections
are retained. Formally, the indicator variables I,,, are set as

®)

anm

Lum = 1 [y — G > 0], Vne{l...N}, (9

where @, is the NV,,-th largest element in the vector o, and
1 is the indicator function. Compared to other existing pruning
methods, the above one is more computationally efficient for
resource-constrained edge devices since it only uses a small
batch of training samples in one forward-backward.

Given the pruning profile, the m-th device will compute its
local stochastic gradient of the n-th weight with I,,,,, = 1 and
update it 7 times in each training round. On the contrary, it
will skip calculating the stochastic gradient of the n’-th weight
if I,y = 0. The coordinate-wise local model updating rule is
given by

wt+1 _ {’U) - 772;;10 gn(wzhav’Dm) ifInm - ]-7

n,m

(10)

t
n
+ .
w, if Inm = 07

where 7 > 0 is learning rate and g, (w!®; D,,) is the m-th
device’s local stochastic gradient of the n-th weight at step «
within the ¢-th training round with w’? = w?.

2) Communication Model: As alluded to earlier, due to the
communication constraints, the server needs to decide the
scheduler st = {sfn}wz‘l to select a subset of devices, where
st €{0,1}. st, = 1 indicates that the m-th device is selected
to upload its model parameters and pruning profiles at round
t and s!, =0 otherwise. We assume all devices share the
same wireless link to the aggregation server. Due to the in-
terference among these wireless devices, they must share the
communication bandwidth B in time or frequency to avoid
mutual interference. We next investigate the performance of
two fundamental communication scheduling schemes, namely
time-sharing versus bandwidth-sharing-based communication
scheduling, in terms of reducing communication delay. We
note that “bandwidth-sharing” is the scheme where each de-
vice is allocated a fixed proportion of the total bandwidth for
communication. The “time-sharing” scheme is where the total
bandwidth is always fully allocated to one single device when
scheduled. The following result indicates that it suffices to focus
on time-sharing-based communication scheduling.

Proposition 1 (Communication scheduling scheme): For any
bandwidth-sharing-based scheduler, there exists a time-sharing-
based scheduler such that the number of transmission-completed
devices is no less than that of bandwidth-sharing-based sched-
ulers within the training time budget.

Proof: Due to the limited space, we outline only a few main
steps for the proof. We prove Proposition 1 by induction. Given
any bandwidth-sharing-based communication schedule, we first
show that for any pair of two devices in the set M, we can
construct a new feasible time-sharing schedule for this pair of
two devices such that the required total communication time
would not increase. Next, we can use the above reasoning
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iteratively to find a new time-sharing schedule for all the devices
in set M. The full-version proof is provided in the Appendix,
available online. O

Proposition 1 reveals that, in general, the scheduler based on
time-sharing is more efficient than the one based on bandwidth-
sharing because the time-sharing-based approach reduces the
communication time of each device by using all the bandwidth.
Thus, when the m-th device is scheduled and the up-link signal-
to-noise ratio (SNR) of the device m is ,,,, the uploading latency
of device m is T, 1 = %.

3) Adaptive Device Scheduling for Model Aggregation.:
Aiming to minimize the training loss, we formulate a device
scheduling problem to maximize rewards across devices via
selecting devices within each training round. Let 7%, denote the
reward function of the device m in round ¢. Given the budget of
training time 7};4 within one round, the reward maximization
problem of the ¢-th round is given as

mé}x Z anrfn,? (11)

s meM
s.t.sh, € {0,1},Vm € M, (12)
\%4 (St) < Taa- (13)

where V (s') is the training time of the ¢-th round. (12) is the
feasibility condition on the device selection. (13) requires that
the training time of one round does not exceed 7;4;. We note
that obtaining an analytic formulation of V'(s') is challenging
since it not only depends on the selection of devices but also
hinges on the scheduling order and devices’ computing time. To
determine the optimal scheduling policy, a naive approach is to
use an exhaustive search by calculating the total rewards (that
can be completed at the server based on the most recent rewards
from the past training rounds before the communication starts)
for all possible scheduling policies and then find the optimal
one. However, the computational complexity of the exhaustive
search is O(]M|!), which is prohibitively high [17]. There-
fore, it necessitates a computationally efficient approximation
scheduling algorithm for solving the problem (11). Inspired
by the fixed-priority preemptive scheduling commonly used in
real-time systems [18], we propose sub-optimal scheduling to
achieve efficient dynamic device selection. More specifically, we
assign the priorities of devices based on the descending order
of the corresponding devices’ reward earning rates, which are
defined by v}, = T:t” Once finishing computing, device m
will preempt the ongbing communication process of another
device m/ if and only if v, > v! ,. Device m’ can continue its
communication if v}, < v’ ,. The pursuit here is that the device
with a larger reward earning rate is always scheduled first, which
is optimal for the linear relaxation of problem (11). The proposed
scheduling algorithm is outlined as Algorithm 1. We note that
the scheduled devices upload their rewards to the server after
updating their subnets. (In other words, the scheduled devices do
not need to upload their rewards simultaneously.) Hence, there
is no interference in uploading reward values in Algorithm 1.
Moreover, the value of the reward function is a scalar so that its
transmission latency can be ignored.
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Algorithm 1: Priority-Based Preemptive Scheduling Algo-
rithm for Resource-Efficient FL.

Inputs: {T')rfn}t:/lz‘l and {Tcm,m}lrﬁ/lzll
Outputs: The scheduling policy 7’
form=1,....|M|do
Device m uploads its reward to the server after finishing
updating its local model;
if vf, > v’ , holds then
All the bandwidth is reallocated to device m;
else
Device m waits;
end if
end for
return 7!

Algorithm 2: Learning Model Initialization via Resource-
Efficient FL.
Each device generates the subnet of size [V,,, based on the
single-shot network pruning method;
fort=0,1,...,T do
The server broadcasts w? to all the devices;
form=1,...,|M|do
Device m updates its local model 7 times using

wt+1 — w% -n Zz;% gn (w%qaa Dm) if Imn - ]-a
nm = if Ty = 0;

n

Device m uploads w’ ! and I,,, if it is scheduled by
the server according to 7t;
end for
The server calculates the global model using
Zrn J I"L”lstn,wﬁj-,}lﬂ : t

meM

w, if ZmEM Inms?n = 0;

end for

4) Global Updates of Backbone Network: After receiving all
local updates from the selected devices, the server calculates the
n-th weight (i.e., coordinate) of the global model as

S ant Inmstywith .
{m if 3 e Inmsiy > 1,

w? if > e Inmst, =0,

t+1

" Lnmst,

w (14)

where Y\, I st, is the number of scheduled devices whose
subnets contain the n-th coordinate in the ¢-th round. The full
algorithm of learning model initialization via resource-efficient
FL is summarized in Algorithm 2.

III. REWARD FUNCTION DESIGN AND CONVERGENCE
ANALYSIS

In this section, we first characterize the one-round progress of
FL to present the descent of the global objective function each
device can provide and design the reward function of each device
accordingly. We then provide the convergence analysis of the FL
algorithm for general non-convex objectives. We assume that NV
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coordinates of the global backbone model are grouped into | M|
blocks by U ... U by, where these blocks can be overlapping
in terms of coordinates. For the m-th block, it contains NV,
coordinates, i.e., |by,| = N,,,. Before the discussion, We make
the following standard assumptions.

Assumption 1 (Coordinate-wise Lipschitz gradient conti-
nuity): The global objective function f and the local ones
{fm }M_, are coordinate-wise L,,-smooth, i.e., for each coordi-
nate n, it has

[Vaf (@) = Vaf(@)l < Lollzn —yall,
VoS () = Vo fm ()| < L |20 =y, ||, Voo, y € RY,

where Vm € M and L,, < Ly, forn=0,1,...,N.

Assumption 2 (Bounded gradient): For any coordinate n €
{1,..., N}, the gradient is bounded by a non-negative constant
A ie.,

gn (w52 D) || < A, ||gn (wh560) ||
<A, ||vn.f (wt)H <A,

where g, (wh%; £,,) is the n-th coordinate’s gradient based on
one training sample &, .

Assumption 3 (Bounded variance): For any coordinate n €
{1,..., N}, the variance of its gradient is bounded above, i.e.,

E[(gn(Wf;f*; m) — E [gn(wh; m)])2] < o2,
forn=1,...,N, Vm.

Assumption 4 (Polyak-Lojasiewicz inequality [19]): The
global objective function f satisfies the Polyak-Lojasiewicz (PL)
inequality, i.e., for all  we have for some p > 0 that

SUVI@I) > uli() — 1),

where || - ||« can be any norm and f* is the optimal function
value.

Assumption 5 (Device task similarity [20], [21], [22]): There
exists a positive constant €, > 0 such that for any m € M, the
following holds:

IV f(w) =V, fm(w)] <€, forn=1,...,N.

Assumption 1 is critical for analyzing the one-step progress in
coordinate descent studies [23], [24]. Assumptions 2—3 provide
upper bounds on the norm and variance of the gradient, which are
standard and ‘match’ the gradient clipping method in practical
implementations [25]. Assumption 4 is a sufficient condition
for gradient descent to achieve a linear convergence rate, which
is weaker than the strongly convex condition [26]. Assump-
tion 5 indicates that the variation of the gradients between the
global function f(w) and the local one f,,(w) is bounded
by some constant, which captures the similarity of the tasks
corresponding to non-IID data across devices [20], [22], [27].
Based on Assumption 1, we have the following lemma, which is
used for characterizing the one-round progress of the proposed

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 17,2025 at 22:44:28 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: TOWARDS RESOURCE-EFFICIENT EDGE Al: FROM FEDERATED LEARNING TO SEMI-SUPERVISED MODEL PERSONALIZATION

FL algorithm. The proof of Lemma 1 is omitted due to space
limitations.

Lemma 1: If the global objective function f is coordinate-
wise L,,-smooth, we have that

fwh) < f (wt) +Vf(w

4= ZL |wt+1 t|

t)T (wt+1 o wt)
15)

A. Reward Function Design

We have the following result on the one-round progress of the
proposed resource-efficient FL algorithm.

Proposition 2 (One-round progress of resource-efficient FL):
Suppose that Assumption 1, 2, and 5 hold. Then, for n < ,
we have that e

f(w') = f (w")
Zg{%sfn[ <Vb Jm (w Zgb w; m)>

2

T—1
- Z 9o, (wf—ha§ D)
a=0

—QTii lz Jnmsﬁn(u%)—l

a=0n=1 LmeM

A2}.
(16)

Proof: Due to the limited space, we outline a
few main steps for the proof. We first define ¢ =
Pmemt Inm Sty 30— ogn(’wm iDrm) . Recall that wt+1 Z: g;

Inmst,
> 0. According to Lemma 1, it can be

2mem

when )\, Imnsm
easily seen that

N
t+1 t n
St < swh =52,
x [2vn £ (w') g, ]
For the n-th coordinate, we define its contribution to
the global objective descent as (DE), = 2[2V,, f(w")g}, —
N Lmax|| 9% ||%]. Using the coordinate updating rule in the pro-

posed algorithm and the Cauchy-Schwarz inequality, we can
establish a lower bound on (DE),, as

Z Inmsngn wy, ’ m

meM
2
- anax Z Inmsin <Z gn m a m >
—27 Lymst, — 1| A?
Z nmom

meM
meM

- anax | J

(DE), > 5 2Vaf (w

a7

Then, (16) can be obtained after some further algebraic ma-
nipulation. The full-version proof is provided in the Appendix,
available online. ]
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Based on the above result, it is clear that the one-round
progress is stochastic. We note that the last term at the right-hand
side of (16) does not influence the one-round descent of the
global objective function if the number of overlapping coordi-
nates over blocks is small, which is often the case in practice.
Thus, we focus on maximizing the first term at the right-hand
side of (16) to design the reward function for each device. For
convenience, define

LB:2<mef Zgb )>

2
) (18)

m ’" v )

and we need to quantify LB while V,,_ f(w?) is never acces-
sible. One naive approach is directly estimating V, f(w") as
the stochastic gradient gbm( w'; D,,), which would not work
well only based on limited data. Here, we derive a confidence
interval of LB to provide insights into each device’s adaptive

reward function design. We define

—2<gb (&m) Zgb wh; m)>

a=0
2
W' D) (19)
That LB = E(U,,) is easy to obtain. We further define

o -1
7 =2 (D). 5o (D)

—1 e

> ob,, (wh: Dy (20)

a=0

According to Assumption 2, we have —(27 + 72)N,, A% <
U, < 27N,,A%. Given the confidence level 1 — ¢, we can
obtain the following inequality by directly utilizing Hoeffding’s
inequality:

= P ([Un — LB| > k)

<2 ( 2D K7 )
<2exp| — 5 52 )
| Dy | [(72 + 47) N,y A?]

Solving the above inequality for LB gives us the following
confidence interval of LB:

N AQ\/—(T2+4T)1og(g) s
m m —

21

2[Dp|

— —(724+47)log(2)
< m N/ITLAQ 2
=t \/ Dl

(22)

Moreover, we have the following results on the training error.
Proposition 3 (Characterizing training error of resource-
efficient FL): Suppose that Assumption 1 and 3-5 hold, and
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C = p(r — 1+ 9). Then, for
L12nax772(7— + 1)(T B 2)
2
with some constant 0 < § < 1, we have that

E[f (w™)] = f <@ =Cn)" [f (w°) = f]

t
nT _y
EONTIEEIED W

t'=0 meM

N Npo? (T+ (21 — 1()5(7— 1))} }

Do
Proof: We outline a few main steps for the proof due to the
limited space. Here, we slightly abuse the notation ‘E’. In the
following, ‘E’ always means taking the overall expectation. By
taking the summation (we ignore the effects of the overlapping
coordinates over blocks) and then taking the overall expectation
of (17), we have

+ LaxnT < land LfnaXUQ <1-6

(23)

Ef (w'™) - f (')
71
< Z S:n [_nZE<vbmf(wt)avbmfm(w$ﬁa)>
meM a=0
I T—1 2
muxn
+=E azogbm ' Dm) 4)

Using the properties of the iterates in the proposed algorithm
and the smoothness of f and {f,,}*_,, we can further obtain

an upper bound on Ef (w!*1) — f(w?) in terms of f*, 02, and
2

€2, as
Ef (w™) - f (w')
<_ Tfl+577 Z st mef )H
meM
N, 2r —1)(r -1
N O AR

(25)

Subtracting f* on both sides of the above inequality and using
the properties of the iterates in the proposed algorithm completes
the proof. The full-version proof is provided in the Appendix,
available online. 0

Remark 1: The second term at the right-hand side of (23)
captures the impact of variance ‘g::‘ o2 on the training perfor-
t—t'

mance. We note that the weight (1 — Cn)*" increases with ¢’
increasing as 1 — Cn < 1. In other words, the variance in a later
round has a larger impact on the error (the second term at the
right-hand side of (23)) than in an earlier round. The observation
has an important implication: the devices with larger subnet size
should be selected since the objective function needs to descend
quicker in the initial phase of the training process; the devices
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with more data should be selected to mitigate the effects of the
variance at later rounds.
Inspired by the remark above, we propose the following

adaptive reward function design.
2t
<1 — ) (26)

rto=Upn +NmA2\/_

where . is the final training round index. It is obvious that the
reward function value is close to the upper bound of L B when ¢
is small so that the server makes a more aggressive selection of
devices, using a more optimistic descent of the global objective
function at the beginning of the training; the reward function
value is closed to the lower bound of LB when t is large so that
the server has a more conservative selection of devices to reduce
the variance as much as possible.

(72 +47)log(%)
2| D

B. Convergence Analysis of FL

Based on Assumption 1 and 3-5, we can have the following
result about the convergence of the resource-efficient FL algo-
rithm for the general non-convex case.

Theorem 1 (Convergence of resource-efficient FL): Suppose
that Assumption 1 and 3-5 hold, and the learning rate 7 satisfy-
ing

L?naxn2 (T + 1)(7— _ 2)
2

with some constant 0 < § < 1. Then, the expected average
squared gradient norms of scheduled devices satisfy the fol-
lowing bound:
£\ |12
|
2

5| Y s 9t
+(T+1)(T71+5 z;z;w {lel(

t=0 meM
(27‘—1)(7‘—1)) +€2].

4+ Lpaxnm < 1and L2 7] <1-¢

max

“(T+1)(r—=1+0)n

+

2(f (w’) - 1)
: m

Proof: By taking the summation of (25) and noting that f* —
f(w?) < f(wT) — f(w"), we obtain

EY > s [ Vo f (w)|°

t=0 meM
2(f (") — /1) |
= (r—1+06)n 1—&-5228"‘]\7

t=0 meM

[ (=) 4.

Dividing the above inequality by 7"+ 1 completes the proof. [
Remark 2: Theorem 1 shows that scheduled gradients’ ex-
pected average squared norms converge to a nonzero constant
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as T' — oo. The first term % represents the gap
from the initial model to the optimal solution and eventually
goes to zero as the number of rounds goes to infinity. The
second term is scaled by the dataset sizes and local computing
steps, which indicates that larger dataset sizes and more frequent

communication lead to better performance.

IV. SEMI-SUPERVISED MODEL PERSONALIZATION VIA
KNOWLEDGE DISTILLATION

Given the model initialization w obtained via FL, device 0
aims to learn a new model 6 based on its scarce labeled dataset
Dy and unlabeled dataset D,,. Inspired by the recent successes of
knowledge distillation (KD), we propose a computing-efficient
semi-supervised learning algorithm to explore both limited la-
beled data and unlabeled data while leveraging the transferred
knowledge from the global model initialization. Similar to FL,
a sparse subnet with size Ny is first quickly obtained by the
single-shot network pruning method so that the subnet can be
compatible with the computing hardware of device 0. We then
use the global model w as a teacher network to assign soft
labels on unlabeled data. The original semi-supervised learning
problem (2) can be recast as the following minimization one:

1
min — —— Z log p(y;|x;;0,1))
g |Dz\(
x;,Y:)ED)

A
D] > > p(ylzsw, Tkp) log p(ylzi; 6, Tk p)

“xeD, y

27

S.t. ||9||0 = Np, (28)

e*(@iy,w) /T p
>y ex(®i v\ w) /T p?

value, and Tk p is the distillation temperature. Notably, in (28),
the new device only needs to update a subnet of the local model,
hence significantly reducing the computational cost. Though we
focus on using labeled and unlabeled data in this work, one can
only use the second term (the distillation loss) in (27) for training
6 when the number of labeled samples is extremely small. We
also note that the proposed algorithm can be implemented on the
device either with the same model architecture as w or a more
compact one. Algorithm 3 outlines the main steps of learning
6 via semi-supervised model personalization. As the theoretical
foundation for KD remains open in deep learning, providing
theoretical performance guarantees for Algorithm 3 is highly
nontrivial. However, the results using real-world benchmarks
demonstrate that it can indeed improve over the existing base-
lines in terms of accuracy and efficiency.

where p(y|z;; w, Tkp) = z(+) is the logit

V. EXPERIMENTS

In this section, we study the image classification problem and
evaluate the performance of the proposed resource-efficient edge
learning framework.
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Algorithm 3: Learning 6 via Semi-Supervised Model Per-
sonalization.
Inputs: Dl, Du, )\, TKD’ Ng and w
Outputs: The personalized model 0
1: Sample a mini-batch Dy, from D;
2: Use D to generate the subnet of size Ny based on the
single-shot network pruning method;
: Use w to generate soft labels on D,,;
: Train the subnet based on the loss £;
5: return 6

B~ W

A. Datasets, Models and Evaluation

We examine the performance of the proposed edge learning
algorithms on various datasets, including Caltech 101 [28],
MNIST [29], and CIFAR-10 [30], where the data for training
w via FL are distributed among 50 devices. We use two CNN
architectures, including Lenet and VGG-16, the choice of which
varies among datasets due to the differences in image sizes
and feature diversities. We first compare the performance of
the proposed algorithms training FL-based initialization with
three baselines, namely FedAvg [6] algorithm, Helios [10], and
Oort [31]. Helios is the FL baseline considering devices’ compu-
tational heterogeneity but not communication constraints. Oort
is an FL scheduling framework that considers device hetero-
geneity but without analyzing convergence. We then compare
the proposed semi-supervised model personalization algorithm
with the following approaches: Two global models are trained
respectively by FedAvg and Helios and used as the teacher
networks for obtaining personalized models; Three personalized
FL approaches KT-pFL [32], pFedHN [33], and FedPCL [34]
that realize personalized model training in a federated manner.
In all experiments, we set bandwidth B = 0.5 MHz. Each
device has samples from only two random classes. We use
the cross-entropy loss function to calculate the training loss.
All experiments are repeated ten times to obtain the average
performance, and the comparison is shown with 95% confidence
intervals. The experiments are implemented using Python 3.6
and PyTorch 1.8.1 with CUDA 11 on a server with one Intel Core
19-10900K CPU and one Nvidia GeForce RTX 3090 24 G GPU.
Details on the settings of datasets, wireless channel conditions,
computation capabilities, and CNN architectures are relegated
to the Appendix, available online.

B. FL-Based Model Initialization

We first examine the performance of our proposed algorithm
in the limited data regime, where less than 15% of training
data of the Caltech 101 dataset are distributed to devices. We
assume the server first broadcasts a VGG-16 model, which
contains three fully connected and 13 convolution layers and
is trained on the Imagenet dataset [35]. Once all devices receive
the model, they only prune and retrain the last two layers instead
of the entire VGG-16 model. For convenience, we refer to the
reward design based on (26) as ‘RE-FL design 1’ and the reward
design based on directly estimating V,, , f(w?) as the stochastic
gradient gj (w"; Dy,) as ‘RE-FL design 2’. From Fig. 2(a) and
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Fig. 2.  Training Performance of FL-based Model Initialization.
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(c) Training Loss over CIFAR-10: Abundant Data
Regime.

TABLE I

TESTING ACCURACY COMPARISON OF FL-BASED MODEL INITIALIZATION

Dataset RE-FL Helios FedAvg Oort
86.33%=+0.48% (design 1) o o o o o o
Caltech 101 85.48%£0.62% (design 2) 76.28% +0.43% | 69.18% +3.34% | 86.08% +0.53%
MNIST 96.26% +0.67% 93.55% +1.85% | 72.82% 4+2.21% | 95.83% +0.45%
CIFAR-10 61.14% +0.94% 58.24% +0.99% | 51.84% +2.52% | 60.03% £0.95%
TABLE II
TESTING ACCURACY COMPARISON OF SEMI-SUPERVISED MODEL PERSONALIZATION
Dataset RE-SSMP Helios-based EL | FedAvg-based EL | PKT-based EL | PFL-based EL CL-based EL
Caltech 101 | 72.78%+2.07% 67.09%+1.15% 65.74%42.24% 68.14%+1.25% | 65.86%+2.07% | 70.10%+1.89%
MNIST 88.38%+1.57% 87.74%+2.87% 79.58%43.13% 86.13%10.60% | 85.26%+2.34% | 88.28%+1.11%
CIFAR-10 63.67%+1.93% 57.21%+1.07% 55.13%45.04% 57.92%+2.45% | 58.58%+1.74% | 59.40%+2.01%

Table I, we can observe that our proposed algorithm outperforms
the baselines regarding the accuracy and the convergence speed
for different device settings. Note that the design 1 of reward
function consistently outperforms the design 2 in the limited data
regime thanks to its adaptive characteristics. We then evaluate
the performance of our proposed algorithm on training a CNN
model in the abundant data regime. Specifically, we explore
two different datasets, MNIST and CIFAR-10, to train a LeNet
model, which contains three fully connected layers and two
convolution layers; the whole training dataset is distributed to
devices so that each device owns abundant training samples.
As illustrated in Fig. 2(b), (c) and Table I, our proposed FL
algorithm outperforms the counterparts in terms of convergence
speed and testing accuracy for different settings.

C. Semi-Supervised Model Personalization

We evaluate the proposed semi-supervised edge learning
algorithm with limited labeled data and the FL-based model
initialization. Specifically, we conduct this experiment on three
different datasets, where |D;| = 100, |D,,| = 900 for Caltech
101, |D;| = 50, |D,| = 500 for MNIST and | D;| = 100, | D, | =
800 for CIFAR-10. For the sake of fairness, we compare it
with the following approaches: Two global models are trained
respectively by FedAvg and Helios and used as the teacher

networks for obtaining personalized models. We refer to the
proposed semi-supervised model personalization algorithm as
‘RE-SSMP’ for convenience. It can be seen from Table II and
Fig. 3(a)—(c) that the proposed algorithm clearly outperforms the
counterparts’ convergence speed and testing accuracy. It corrob-
orates that the proposed algorithm can successfully address the
insufficiency of labeled data and deliver model personalization at
the network edge. To quantify the impact of knowledge transfer
on the performance, we train the model for device 0 with the

same global initialization but different “gl“‘l, in the sense that
device 0 relies more on the transferred knowledge when ‘I%LL\‘ is
Dy |

larger. As shown in Fig. 3(d), the performance improves as D]
increases from 2 to 10. The reason is that more information is
provided by the model initialization as more unlabeled samples
are assigned with soft labels. The performance drops as ‘I%\‘
increases further. In other words, the transferred knowledge
will in turn hurt the learning performance due to the sample

distribution shift between device 0 and devices in M.

VI. RELATED WORK

Resource-Efficient FL: [10] recently proposed to dynamically
mask different sets of neurons for different devices depending
on their computing resources profiles, and these neurons are
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Fig. 3. Performance of Semi-supervised Model Personalization.

recovered and updated during the aggregation. In the work
proposed by [11], each device is assigned a DNN with a topology
that fits its computing capability, where part of the DNNs is
shared and jointly learned. We note that the above works and
their related algorithms [36], [37], [38] propose FL algorithms
where the workloads fit the computing capabilities at individual
devices. Still, it is not guaranteed that each device can work
synchronously due to the unpredictable behaviors of stragglers
in practice. Moreover, they do not consider the communication
overhead, which can become a significant bottleneck, especially
for training a large-scale DNN. Along a different line, some
recent works develop device scheduling algorithms under lim-
ited bandwidth but do not consider devices’ computing abilities.
Specifically, [39] aims to optimize the learning performance,
which depends on how devices are selected in each round from
a long-term perspective. [40] develop a probabilistic scheduling
framework based on the gradient divergence at the devices. A
recent FL work proposed by [31] prioritizes the use of those de-
vices that have both data with greater utility in improving model
accuracy and the capability to run training quickly, and [31] did
not provide convergence analysis. Personalized FL focuses on
realizing personalized model training. Notably, [32] formulates
the aggregation procedure in the original personalized FL into
a personalized group knowledge transfer training algorithm,
which enables each client to maintain a personalized soft pre-
diction on the server side to guide the others’ local training.
In [33], a central hypernetwork model is trained to generate a
set of models for each client, which provides effective parameter
sharing across clients while maintaining the capacity to generate
unique and diverse personal models. [34] proposes a personal-
ized FL approach that shares knowledge across clients through
their class prototypes and builds client-specific representations
in a prototype-wise contrastive manner. Nevertheless, the above
approaches do not simultaneously consider computing capabili-
ties and communication constraints among heterogeneous edge
devices. To our knowledge, our work is the first attempt to de-
velop aresource-efficient edge learning framework that accounts
for device heterogeneity and communication constraints, where
a semi-supervised algorithm enables edge learning with limited
labeled data based on a global model initialization by running
FL across multiple edge devices.

FROM FEDERATED LEARNING TO SEMI-SUPERVISED MODEL PERSONALIZATION
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Semi-supervised Learning for DNNs: Semi-supervised learn-
ing [41] is a powerful tool for exploring unlabeled data with
DNNs. Recent works indicate that semi-supervised learning is
theoretically [42] and empirically [43] effective on unlabeled
data. These methods either require fitting the unlabeled data on
its outputs generated by a self-trained model with limited labeled
data [13], [44] or stability of DNN outputs under various data
augmentations [43], [45] (also known as consistency regulariza-
tion). However, without a deeply pre-trained model to provide an
unbiased regularization, semi-supervised learning from scratch
could be easily misled by inaccurate pseudo-labels, especially
when labeled data is extremely insufficient [46].

Neural Network Pruning: Recently, the neural network prun-
ing method has emerged as a powerful tool to significantly
increase the computing efficiency for large-scale neural network
training. The rationale behind the network pruning is that neural
networks are usually overparameterized, and comparable per-
formance can be obtained by a much smaller one obtained with
careful pruning. Notably, [47] is one of the pioneering works on
network pruning, and sparsity enforcing penalty terms [48] and
saliency criteria [49] (e.g., weight sensitivity) are widely used
in recent studies on network pruning. Recent work SNIP [16]
proposes a single-shot pruning method based on connection
sensitivity without pretraining to quickly obtain the optimized
sparse subnets.

VII. CONCLUSION AND FUTURE WORK

In this study, we advocate first obtaining a global model
initialization by running FL across multiple edge devices, based
on which a semi-supervised algorithm is developed to enable
edge learning with limited data. Specifically, to account for
device heterogeneity and resource constraints, a global back-
bone model is first trained via FL, where each device carries
out multiple local updates only for its customized subnet and
only a fraction of devices can be selected to upload locally
updated subnets and pruning profiles for aggregation during
each training round. Moreover, device scheduling is optimized to
minimize the training loss of FL, subject to resource constraints,
based on the carefully crafted reward function. We provide a
rigorous convergence analysis of FL for the general non-convex
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case. For semi-supervised model personalization, we use the
FL-based initial model as a teacher network to assign soft
labels on unlabeled data, aiming to address the insufficiency
of labeled data and to learn a personalized model efficiently.
Experiments are conducted to evaluate the performance of the
proposed algorithm.

There are several interesting questions and directions for
future work. First, it is interesting to adopt the proposed method
to a more practical setting where the target edge device only
contains unlabeled data samples (i.e., the unsupervised case).
Second, although FL can be directly applied to reinforcement
learning with policy gradient [50], it may lead to poor sample ef-
ficiency. It remains largely open to developing resource-efficient
FL-based reinforcement learning over edge devices. Another
possible extension is to consider multi-task learning over a
fully decentralized edge network based on the same rationale
provided by the proposed algorithm, and it is expected that
a resource-efficient fully decentralized learning algorithm will
significantly decrease the computing and communication cost
over the edge network.
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