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1 Introduction

We are interested in solving the following problem, where ® denotes the Kronecker product:

Problem 1.1. Given k < 9 points (x;,y;) € P2 x P2, consider the k x 9 matrix Zy whose rows are xl.T ®yiT for
i=1,...,kle,
X] ®y]
Zy = :
X ® Vi
Delineate the geometry of point configurations {x;} and {y;} for which rank(Zy) < k.
Note that Problem 1.1 can be rephrased geometrically and generalized to any algebraic variety.

Problem 1.2. Given k < 9 points (x;, y;) € P? x P, delineate the geometry of the point configurations {x;} and
{yi} for which the subspace spanned by the images of these points under the Segre embedding of P> x P? in IP® has
dimension less than k — 1.

Problem 1.1 arises in the study of reconstruction problems in 3D computer vision. For background on the
problem and related work we direct the reader to Part I of this work [3] where Problem 1.1 was solved for k < 6.
The results relied on the classical invariant theory of points in IP? and the theory of cubic surfaces. In this paper
we complete the characterization for the remaining cases k = 7, 8, 9. Once again, the results can be phrased in
terms of classical algebraic geometry and invariants.

Semi-genericity

Throughout this paper, we will concern ourselves with point configurations that are semi-generic; a configuration
of k point pairs (x;, y;) is semi-generic if every subset of k — 1 point pairs is fully generic. That is, we say that
a property holds for a semi-generic choice of (x;,y;) € (P? x P*)X if there is a nonempty Zariski open set
U < (IP? x P2)k-1 5o that the property holds whenever {(x;, y;) : i # j} liesin U for allj = 1, ..., k. Despite the
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name, semi-genericity is actually a stronger notion than usual genericity. We use this name because often the
property of interest for points in (IP? x IP?)¥ is that two algebraic conditions coincide, whereas generic points
satisfy neither algebraic condition. As a small example of this usage, let us instead consider a semi-generic pair of
points x1, xz in the line R. Consider f(x1, X2) = X1(x2 — 1)(x1 — x2). Then f(x1, x2) = 0ifand only if x; = 0, x = 1,
or x1 = xy. For generic (x1, X3), f(X1, X2) # 0. Semi-genericity only allows us to exclude algebraic conditions on
x1 and x; individually. In this example, a semi-generic pair of points (x1, x3) satisfies f(xy, x2) = 0 if and only if
X1 = X2. This holds whenever x1, x, € U = R\{0, 1}.

Summary of results and organization of the paper

In [3] we studied Problem 1.1 algebraically by decomposing the ideal generated by the maximal minors of Zj into
its prime components and examining only those components that did not correspond to rank drop conditions for
a submatrix of Zx with at most k — 1 rows, called inherited conditions, for the rank deficiency of Z. Through
this we obtained both algebraic conditions that completely characterized rank drop, and geometric conditions
that characterized rank drop under mild genericity assumptions. This method cannot be applied to the cases
k =17,8,9 due to computational limitations. Additionally, in these cases, the novel component of rank drop has a
greater dimension than all the components of inherited conditions. Previously, for k < 5 the novel component
had a strictly lower dimension than the variety of inherited conditions, and for k = 6 the novel component had
dimension equal to that of the inherited conditions variety. For this reason, we largely concern ourselves only
with the geometric characterization of rank drop for semi-generic configurations with k = 7, 8, 9, rather than an
algebraic characterization beyond the vanishing of the maximal minors of Zy.

In Section 2 we establish a number of facts about Cremona transformations, cubic curves, and projective
reconstructions that we will use throughout the paper. In Section 3 we study the problem for k = 8 and prove that
Zy is rank deficient exactly when there is a quadratic Cremona transformation f: P? - P2 such that f(x;) = y;
for all i (Theorem 3.1). To do so, we establish a correspondence between three sets: lines in the nullspace of Zy,
quadrics passing through a projective reconstruction of the input point pairs, and Cremona transformations
sending x; — y; (Theorem 3.16 which depends on Theorem 3.2). We refer to this as the trinity correspondence
and it is the foundation for all of our results in this paper. In Section 4 we study the problem for k = 7 and
prove that Z is rank deficient exactly when there are cubic curves in each copy of IP?, passing through all seven
points, and an isomorphism between these curves that sends x; — y; (Theorem 4.2). We further prove that this
occurs exactly when seven particular cubic curves in each copy of IP? are coincident and we provide an algebraic
characterization when this occurs (Theorem 4.11). In Section 5 we answer Problem 1.1 for k = 9, which is largely
straight-forward (Theorem 5.1). We summarize our results in Section 6 and state a geometric consequence about
reconstructions of semi-generic point pairs of size six, seven and eight.

2 Background and tools

2.1 Quadratic Cremona transformations and cubic curves

Definition 2.1. A quadratic Cremona transformation of P? is a birational automorphism f : P? --» IP? defined as
f) = (fi(x) : fo(x) : f3(x)) where f1, f2, f3 are homogeneous quadratic polynomials in x = (x1, X2, X3).

We drop the word “quadratic” from now on as all the Cremona transformations we consider will be quadratic.
Each Cremona transformation can be obtained by blowing up three points ay, a,, as in the domain (called base
points) at which the transformation is not defined, and collapsing three lines y1, 2, y3 (called exceptional
lines) which contain pairs of base points: for distinct i, j, k, the line y; contains aj, ax. Generically, the base
points and exceptional lines of a Cremona transformation will all be distinct; when they are not all distinct,
the transformation is said to be degenerate. In this paper we will consider only non-degenerate Cremona
transformations.
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The inverse of a Cremona transformation f is also a Cremona transformation with base points b1, bz, bs and
exceptional lines 7, 73, 73 in the codomain of f. The map f sends y; — b; while f~! sends 7; — a;. For simplicity
we will often refer to both the base points in the domain and the base points in the codomain (i.e. the base points
of f~1) as the base points of f. The standard Cremona transformation is

(X1, X2, X3) = (X2X3 © X1X3 : X1X2) )]

which has base points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and exceptional lines x; = 0 for i = 1,2, 3. This
transformation is an involution since it is its own inverse, and the base points and exceptional lines of f~! are
again(1:0:0),(0:1:0,(0:0:1)andx; =0fori =1,2,3. All Cremona transformations differ from the
standard one only by projective transformations as stated below.

Lemma 2.2. Let g be a Cremona transformation and let f be the standard Cremona involution. Then there are
projective transformations H1, Hy such that g = Hy o f o Hy.

Proof. Let ay, az, as € P? denote the base points of g. The coordinates (g1, g2, g3) of g form a basis for the three-
dimensional vector space of quadratics vanishing on the points a;, az, as. Another basis is h = (£2€3, £1€3, £1£3)
where ¢; € C[x,y, z]; defines the line joining a; and ay for every labeling {i, j, k} = {1, 2, 3}. Therefore there is
some invertible linear transformation H; for which g = Hyh. Similarly, (¢1, €4, ¢3) is a basis for C[x, y, z]; and
so there is a linear transformation H, for which Hy(x, y, z) = (£1, €2, £3). The map h is given by f - H, and so
g=Hiof o Hy. O

Throughout this paper we are interested in IP? x IP? and we typically denote points in the first IP? by x and
those in the second IP? by y. The notation P2 and le, will help to keep this correspondence clear.

Lemma23. Letf: P2 -» ]P)Z, be a Cremona transformation. If f and f=! have base points e} = e{ =(1:0:0),
ef=e =(0:1:0), e =e;=(0:0:1) inthe domain and codomain, then f has the form

f(x1, X2, X3) = (ax2X3 : bX1X3 1 CX1X2) 2
where a, b, ¢ € C\{0}.

Proof. Suppose that f = (f1, f2, f3) where f1, f2, f3 are quadratic polynomials. Since f is undefined at the three
base points in the domain, it follows that fi, f>, f3 contain only the monomials x1 X, X1X3, X2X3. Moreover, we
know that f(x1, x2,0) = (0 : 0 : 1). It follows that f, f, do not contain the monomial x; x;. In examining the other
two exceptional lines, we find that fi, f2, f3 contain only one monomial each and that f has the desired form. O

We note that the choice of (a, b, ¢) is equivalent to specifying a single point correspondence p — ¢, where
neither p nor ¢ lie on an exceptional line. It follows that a Cremona transformation has 14 degrees of freedom:
six from the base points in the domain, six from the base points in the codomain, and two from the choice of a
single point correspondence.

Next we prove some facts about Cremona transformations and isomorphisms of cubic curves.

Definition 2.4. Let f be a Cremona transformation with base points B(f). For a curve C c IP?, define f(C) :=
J(C\B(f)), and for a given point p, let v,(C) be the multiplicity of the curve C at the point p.

Lemma 2.5 (See [4]). Let C c P? be a plane curve of degree n and let f be a Cremona transformation. Then
deg(f(C)) =2n— Y vy(C). ®3)
peB(f)
In particular, if C is a smooth cubic curve then f(C) is also a cubic curve if and only if the base points of f lie on C.
In this case, f~'(f(C)) = C implies that the base points of f~* lie on f(C).

Using this, we can prove the following result.

Lemma 2.6. Let C be a smooth cubic curve and let f be a Cremona transformation with base points a1, a,, as € C
in the domain and b1, b,, bs in the co-domain. Then f(C) is a smooth cubic curve and f : C — f(C), defined by
taking the closure of flc\p(y), is an isomorphism.
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Proof. By Lemma 2.5, f(C) is a cubic curve. Moreover, since f~1(f(C)) = C is a cubic curve, it also follows that
b1, b, b3 € f(C). The fact that f is an isomorphism follows from the corollary after [8, § 1.6, Theorem 2] which says
that a birational map between nonsingular projective plane curves is regular at every point, and is a one-to-one
correspondence. O

Given a smooth cubic curve C, any automorphism g : C — Cis of the form u — au + bwitha = +1,b € C,
where addition is defined via the group law on C. Theorem 1.3 in [4] states that given a smooth cubic curve C and
an automorphism g : C — C defined by some multiplier a = +1 and some translation b € C, the automorphism g
is induced by a Cremona transformation with base points a;, aq, as if and only if a(a; + ay + as) = 3b, where
again, addition is with respect to the group law on C. In particular, every automorphism of C is induced by
a two-parameter family of Cremona transformations, which we obtain by picking the first two base points
arbitrarily and then letting the third base point be determined by the equation as = a(3b — a; — ay).

We can use this to prove a converse to Lemma 2.6.

Lemma 2.7. Letf: C — C' be an isomorphism of smooth cubic plane curves. Then there is a two-parameter family
of Cremona transformations f : P? > P? such that f}|c = f. The base points of these Cremona transformations
will lie on the cubic curves.

Proof. Since Cand C' are isomorphic, they have the same Weierstrafl form Co. There are therefore homographies
Hi, Hy € PGL(3) such that H;(C) = Co = Hy(C') and therefore H;Hy(C') = C. Then H{'Hy o f : C — Cis an
automorphism of C and it follows by [4, Theorem 1.3] that this is induced by some two-parameter family of
Cremona transformations g,; the members of this family are obtained by picking the first two base points
arbitrarily on C and then letting the third base point be determined by the equation as = a(3b - a; - az). Then
fy=H, 'Hy o g4 is the desired family of Cremona transformations. By Lemma 2.5 the base points of each of
these Cremona transformations lie on the cubic curves. O

2.2 Fundamental matrices and projective reconstruction

In this paper we will be concerned with pairs of linear projections 7y, 775 : IP? -» P? with non-coincident centers
c1, C2. In the context of computer vision, these arise as projective cameras which are linear projections from
P3(R) -» P%(R), represented by (unique) matrices 41, A; € P(R>*) of rank three, such that 7r;(p) ~ A;p for
all world points p € P3(R). The notation ~ indicates equality in projective space. The centers c; are the unique
points in P3(R) such that A;c; = 0 for i = 1, 2. The projections we consider in this paper are slightly more general
in that they work over C; they are represented by rank three matrices A; € P(C>*) and send p € P? to A;p € P%.
In the vision setting, the image formation equations A;p = A;m;(p) with i = 1, 2 and some A; € R imply that
for all p € P3(R) one has
A m(p) 0
Ay 0 m(p)

for a unique matrix F € P(R**®) of rank two, determined by (41, A,); see [6, Chapter 9.2]. This matrix F is called
the fundamental matrix of the cameras/projections (A1, Az) / (711, 712). It defines the bilinear form Bg(x, y) = y" Fx
such that Br(mr1(p), ma(p)) = m2(p) " Fri(p) =0forallp € P3(R). The entries of F are certain 4 x 4 minors of the
6 x 4 matrix obtained by stacking A; on top of A;. The points e* := 711(cy) and e := 7y(c1) are called the epipoles
of F. It is well-known, see [6, Chapter 9.2], that e* and e’ are the unique points in P2 such that Fe* =0 = (¢&¥)TF.
Conversely, for every rank-two matrix F € P(IR3*®) there exists, up to projective transformation, a unique pair of
cameras (41, Ay) / linear projections 71, 73 : P3(R) -» P?(R) with fundamental matrix F, see [6, Theorem 9.10].
All of these facts extend verbatim over C, and we call a rank two matrix F € P(C**®) a fundamental matrix of
(711, 19) if it satisfies (4).

Equation (4) is a constraint on the images of a world point in two cameras. Going the other way, given k point
pairs (x;, y;) € P2(R) x P2(R), one can ask if they admit a projective reconstruction, namely a pair of real cameras
A1, Ay and real world points py, ..., px such that A;p; ~ x; and Ayp; ~ y; fori=1,..., k. A necessary condition
for a reconstruction is the existence of a rank-two matrix F € P(IR>*) such that yiTin =0fori=1,...,k, called

0 = det = 1y(p) " Fr1(p) 4
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a fundamental matrix of the point pairs (x;, yi)le. Note that vec(F) lies in the nullspace of Zy = (x] ® yiT)le.
The necessary and sufficient conditions for the existence of a projective reconstruction of (x;, yi)ff:1 are (1) the
existence of a fundamental matrix F and (2) for each i, either Fx; = 0 and yiTF = 0, or neither x; nor y; lie in the
right and left nullspaces of F; see [7]. In this paper, we extend the above definition to C and call any rank-two
matrix F € P(C3*®) that lies in the nullspace of Zx a fundamental matrix of the point pairs (x;, yi)ﬁl.

3 Thecasek =8

In this section we characterize the rank deficiency of Z = Zg = (xl.T ® yiT)?=1 when the point pairs (x;, y;) are
semi-generic. When k is fixed we often write Z instead of Zy.

Theorem 3.1. For eight semi-generic point pairs (x;, yi)§:1, the matrix Z drops rank if and only if there exists a
Cremona transformation f : P% > P} such that f(x;) = yi for all i.

Proof of the if-direction. Suppose that we have a Cremona transformation f : P2 - ]P§ such that f(x;) = y; for
i=1,...,8. After homographies we can assume that f is the basic quadratic involution mapping (x1, X2, X3) to
(X2X3, X1X3, X1X2). Then

i 2 2 2 2 2 2 7
X11X12X13 X%1X13 X%1X12 X%lez X11X12X13 X11X%2 X12X%3 X11X%3 X11X12X13
X21X22X23 X%1X23 X%1X22 X%2X23 X21X22X23 X21X%2 X22X%3 X21X%3 X21X22X23
X31X32X33  X31X33 X31X32  X39X33 X31X32X33 X31X3, X32X33 X31X33  X31X32X33

7= X41X42X43 X§1X43 X§1X4z X§2X43 X41X42X43 X41X§12 X42X§3 X41X§13 X41X42X43 )
X51X52X53  X51X53  XgqX52  X5pX53  X51X52X53  X51X5y  X52X53  X51X53  X51X52X53
X61X62X63 X§1X63 Xélxaz ngxss X61X62X63 X61X§z XGZXég X61X(2;3 X61X62X63
X71X72X73 X%1X73 X%1X72 X%2X73 X71X72X73 X71X%2 X72X%3 X71X%3 X71X72X73
| X81X82X83 X§1X83 X§1X82 X§2X83 X81X82X83 X81X§2 X82X§3 X81X§3 X81X82X83 |
which one can see is rank deficient because its first, fifth and ninth columns are the same. m]

In order to prove the only-if direction of Theorem 3.1, we develop a number of tools in § 3.1. The proof of
Theorem 3.1 will then be completed in Subsection 3.2.

3.1 The trinity of lines, quadrics and Cremona transformations

In order to establish the trinity correspondence, we need to introduce some genericity conditions for our main
objects of interest. We say that a line £ ¢ IP(C%*?) is generic if it contains exactly three rank-two matrices. These
lines are generic in the usual sense, since almost all lines in IP(C*®) intersect the degree-three determinantal
variety D := {X € P(C3*®) : det(X) = 0} in three distinct points. Furthermore, given a pair of linear projections
71, 72 ¢ P3 > P? with distinct centers ¢y, ¢, we say that a smooth quadric Q through ¢y, ¢; is permissible if it
does not contain the line ¢; ¢, connecting the two centers.

Theorem 3.2 (Trinity correspondence). Consider the following three sets:

(1) L: the set of all generic lines € in P(C>3),

(2) Q: the set (up to projective equivalence) of pairs of linear projections 1y, 75 : P* - P? with non-coincident
centers ¢, 3, along with a permissible quadric Q c P? through c1, ¢,

(3) C: the set of (non-degenerate) Cremona transformations from P? - P2,
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Then there is a1 : 1 correspondence between L and C, a1 : 3 correspondence between £ and Q, and a 3 : 1
correspondence between Q and C, such that the diagram (6) commutes:

Q
1:y\ Y‘:l (6)

L<+—C

A similar theorem holds for lines which pass through exactly two rank-two matrices; however, we do not
prove it here.

We first show that for fixed linear projections 71, 71, with centers ¢; # ¢ € P3, thereis a bijection between
the quadrics that contain ¢y, ¢; and lines in IP(C3*3) through the fundamental matrix F of (771, 172). This result is
well-known in the context of computer vision (see [1], [5]), but we write an independent proof below.

Lemma 3.3. Fix a pair of linear projections my, 1, : P2 -» P? with non-coincident centers c1, ¢, and let F be its
fundamental matrix. There is a 1 : 1 correspondence between the quadrics Q ¢ P® through ¢y, ¢, and the lines
¢ ¢ P(C>3) through F.

Proof. Applying projective transformations, we can assume thatc; = (1 : 0:0:0),¢c; = (0:1:0 :0),
(U Uzt uz i ug) = (Ug i uzcug) and mmp(ug Uzt Uz Ug) = (Ug :ouz coug). If F = (Fy) is the fundamental
matrix of (74, 779), then for all u € IP?> we have

F11 Fpip Fi3 Ul  Ugl3 Uzl
0=Hz(u)TFﬂ1(u)=<F,ﬂz(u)ﬂ1(u)T>=< Fu Fp Fu || wus w2 usug > )
F31  Fsp  Fs3 Uplls UsUs U

Since the entries in position (2, 3) and (3, 2) of 72 (u)7r1(u) ™ are the same, F is a scalar multiple of

0 0 0
0 0 1
0 -1 0

and Br(X, y) = X3Y2 — X2y3. In particular, there exists some p € IP? with 771(p) = x and 75(p) = y if and only if
X3Y2 = X2Y3.

Consider the image of ¢ : P® -» P(C*3) where ¢(u) = m(u)m(u)". By (7), (IP%) is contained in the
hyperplane F* ¢ P(C>3). Any matrix in P(C3*®) can be written as sF + M for some scalar s and M e F*.
Therefore,

(SF + M, mp(u)mry (u) ") = ma(u)" My (u) ®)

since 712 (u) " Frr1 (1) = 0, and any linear function on the image of ¢ can be identified with its image in F*. On the
other hand, a line ¢ in P(C*<3) through F is of the form {sF + tM : (s : t) € P'}, where M € F*. Therefore, lines
through F are in bijection with linear functions on ¢(IP%), up to scaling.

The monomials uj ug, ujus, Uy, UgUs, UzUs, u%, U3y, ui form a basis for the 7-dimensional vector space of
homogeneous quadratic polynomials that vanish on ¢y, ¢;. Thus any quadratic polynomial in C[u, ug, us, us]
vanishing at ¢; and ¢, can be written as (M, 7o (u)mr1(u) ") for a unique matrix M € F*. This gives a linear
isomorphism between linear functions on the image of ¢, up to global scaling (which have been identified with
lines through F), and quadrics passing though c¢; and c;. O

Corollary 3.4. Let 1, my : P® > P2 be two linear projections with centers ¢, # c; and fundamental matrix F. Let
¢r be a line in P(C*3) through F. The correspondence £r — Q, where Q c P2 is a quadric passing through c1, ¢,
is as follows. Let M € €r be any M # F. Then Q is cut out by the bilinear form

Bu(m1(p), ma(p)) = m2(p) "Mm1(p) = 0. 9

The following result is well-known and can be proven by writing a comprehensive list of the equivalence
classes, under projective transformation, of quadrics through a pair of distinct points and then testing an example
from each class.
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Lemma 3.5 ([1], [5], [6, Result 22.11]). Under the 1 : 1 correspondence in Lemma 3.3, the line ¢ corresponds to a
permissible quadric Q through c1, c; if and only if € is a generic line.

Next we prove that permissible quadrics through c1, ¢, give rise to quadratic Cremona transformations
from P? --» P2, Recall that all Cremona transformations we consider are assumed to be non-degenerate.

Lemma 3.6. Fix 7; : P -» P? to be linear projections with non-coincident centers c; for i = 1, 2. A permissible
quadric Q through c1, ¢, defines a Cremona transformation f : P> -» P2 such that f(;r1(p)) = m2(p) for any
point p € Q. The base points of f are m(cz) and the image under 1, of the two lines contained in Q passing
through cy. Similarly, the base points of f~! are my(c1) and the image under 7, of the two lines contained in Q
passing through c,.

Proof. Since ¢y, ¢; € Q, the restriction of 71 (and 775) to Q is generically 1 : 1. Therefore, 771 (Q) and 7, (Q) are each
birational to a IP?. The map f will be 75 o (7T1|Q)_1. Let us check that this is a quadratic Cremona transformation.

As before, we can take 71 (u) = (uy : usz : ug) and ;o (u) = (uq : usg : ug). Thency = (1:0:0: 0) is the kernel
of 711, and we are given that it lies on Q. As we saw already, these assumptions imply that Q is defined by the
vanishing of a polynomial of the form q(u) = aujuy + fuy + yuy + § where a € Cis ascalar, B,y € Clus, us] are
of degree 1, and § € C[us, u4] is of degree 2. We can then write q as

q(u) =auy +b (10)
where a = (auz + B), b = (yuz + 8) € Cluz, us, us] with deg(a) = 1, deg(b) = 2. The map (711/¢)~* is then given by
X = (=b(X) : xya(x) : xga(x) : xza(x)) =: (ug : Uy : U3 : Uyg). 11)
To verify this, first check that 71 (u) = a(x) - x where - denotes scalar multiplication. To see that u € Q we compute
q(u) = uy - auy, us, ug) + b(uy, us, ug)
= U - a(my(w)) + b(ma ()
=-b(x)-a(a(x)-x) + b(a(x) - x)
= -b(x)a(x)a(x) + a(x)*b(x) = 0 12)

where the last equality comes from the homogeneity of a, b with deg(a) = 1, deg(b) = 2.
Composing with m; we have

73 0 (M119) ™ (X) = (=b(X) : x2a(x) : X3a(x)), (13)

whose coordinates are indeed quadratic. Since f = 73 o (71]¢) ! is defined by quadratics and generically 1 : 1, it
is a quadratic Cremona transformation.

To show that this transformation is non-degenerate, we must demonstrate that it has three unique base
points. To understand the base points of f, recall that on a smooth quadric surface there are two distinct (possibly
complex) lines passing through each point. The images of the two lines passing through c; under the projection
7r1 will each be a single point. Therefore f is not well-defined on these image points in P2, Similarly, f is undefined
on 1 (cz) since 11y (n{l(nl(cz))) = my(cz) = 0. Therefore these three points are exactly the base points of f in the
domain. Finally, because c¢1¢; ¢ Q, these base points are all distinct. The base points in the codomain can be
found symmetrically. O

Thus far we have shown that if we fix linear projections 1, 73 : P? -» P with centers ¢; # ¢y in P, then
there is a bijection between permissible quadrics through c1, ¢, and generic lines through the fundamental
matrix F of (711, 773). Furthermore, there is a map sending each generic line through F (permissible quadric
through c1, ¢;) to the Cremona transformation from P? .» P2 given by 15 o (719 |Q)‘1. These correspondences
are summarized in (14), where L is the set of all generic lines through F and QO is the set of all permissible
quadrics through c1, ¢;.

/ \ (14)
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We can make the correspondence between generic lines through F and Cremona transformations even more
explicit.

Lemma 3.7. Given a generic line £ ¢ P(C>?), the set of points (x,y) € P? x P? satisfying yTMx = 0 for all
M e ¢ coincides with the closure of the graph {(x, f(x)) : x € P>\ B(f)} of a unique Cremona transformation
f:1P? > P2 This gives a 1 : 1 correspondence between generic lines ¢ ¢ P(C3*®) and Cremona transformations
f:P? -» P2 Moreover, when F € ¢ has rank two, this Cremona transformation agrees with that induced by the
maps Lr — Qf — C.

Proof. Since ¢ is generic, we may assume without loss of generality that ¢ = span{F, M} where F has rank two.
This gives a pair of linear projections 71, 7, : P> -» P? with non-coincident centers c;, ¢, with fundamental
matrix F. In the 1:1 correspondence £r < Qf given in Corollary 3.4, the line ¢ corresponds to the permissible
quadric Q given by the zero set of q(u) = m2(u) " M1 (u). By Lemma 3.6, the Cremona transformation f : P? --» P?
corresponding to q(u) in the correspondence Qr — € satisfies f(ir1(p)) = ma(p) for all p € Q\ {c1, c2}. Since m1(Q)
is dense in IP?, the graph of f and the set {(711(p), m2(p)) : p € Q\{c1, c2}} < IP? x IP? are both two-dimensional,
as is their intersection. Each is the image of an irreducible variety under a rational map and so the Zariski-
closures of these two sets are equal. By construction, this is contained in the zero sets of y” Fx and y” Mx, as
72(p)TFrry(p) = 0forall p € P3 and 72(p)TMm1(p) = 0 for all p € Q. Since F, M are linearly independent, the
variety {(x, y) : yYTFx = yTMx = 0} in IP? x IP? is two-dimensional. It therefore coincides with the Zariski-closure
of the graph of f.

Conversely, suppose that f: P> -» P? is a Cremona transformation. We claim that {f(x)x" : x € C3} spans a
7-dimensional linear space V ¢ C3*3. Up to projective transformations on P2 and IP)%, we can take f to be the
standard Cremona involution, giving

XixoXs  Xx3  xXx
fooxT =1 xixs  xioxs  xixd . (15)
X2 xaxg xixexs
One can check explicitly that seven distinct monomials appear in this matrix and so the span of all such matrices
is 7-dimensional. Projectively, the orthogonal complement gives a line £ = V* in P(C3*®). By definition, ¢ is
exactly the set of all matrices M such that y"Mx = 0 for all (x, y) in the graph of f. Under the assumption
that f is the standard Cremona transformation, ¢ is the span of the diagonal matrices F; = diag(1, -1,0) and
F, = diag(0, 1, —1); in general ¢ will be projectively equivalent to this line. We can verify that this line contains
exactly the three rank-two matrices Fi, Fy, F1 + F, and is therefore generic. m|

Remark 3.8. Given ¢ = span{F, M} we can solve for the coordinates of the corresponding Cremona transforma-
tion f: P> > IP? as follows. Given x € IP?, the corresponding point y = f(x) will be the left kernel of the 3 x 2
matrix (Fx Mx). The coordinates of y can be written explicitly in terms of the 2 x 2 minors of this matrix, which
are quadratic in x. Note that, up to scaling, this formula for y is independent of the choice of basis {F, M} for ¢.
Any point x € IP? for which (Fx Mx) has rank at most 1 will be a base point of this Cremona transformation. In
particular, if Fx = 0, then x is a base point of f. As we will see below, there are three such points when ranging
over all rank-two matrices in €.

The next two results finish off the proof of the trinity correspondence (6) and the proof of Theorem 3.2.

Lemma 3.9. Let ¢ be a generic line in P(C¥?), i.e., £ contains three rank-two matrices F1, Fy, Fs.

(1) Then ¢ gives rise to three permissible quadrics Q1, Q2, Q3 c IP3, each containing the centers of a pair of
linear projections with fundamental matrices Fi, Fy, F5 respectively.

(2) The quadrics Q1, Q2, Qs, in conjunction with their distinguished linear projections, all induce the same
Cremona transformation f. The base points of f are e}, e}, e3 in the domain and ejl’ , e§ , eé' in the codomain,
where e and ely generate the right and left nullspaces of F; respectively.

Proof. A generic line £ ¢ P(C**®) intersects the determinantal variety D cut out by det X = 0 in three rank-two
matrices Fi, Fy, F3. Each F; is the fundamental matrix of a pair of linear projections P? --» P2 with non-coincident
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centers, and by Lemma 3.3 and Lemma 3.5 there is a unique permissible quadric Q; through these centers
corresponding to the line ¢. By Lemma 3.7, each of these quadrics induces the same Cremona transformation
f: P2 > P2,

To conclude, we show that the base points of f and f -1 are e’l‘ ) e’z‘ , e’3‘ and e{ , e’z’ e§ respectively. We show that
e}, e5, ex are the base points of f and the argument for the base points of f~! follows symmetrically. First, note
that each e] is a base point of f. This follows from Remark 3.8, since each F; € € has rank two. Since the Cremona
transformation f has three base points, it only remains to show that these points are distinct. If e = €3, then by
linearity Fe{ = 0 for all F € ¢ = span{Fy, F}. This would imply that rank(F) < 2 for all F € ¢, contradicting the
genericity of the line ¢. O

Corollary 3.10. The correspondence Q — Cis3: 1.

Proof. Let Q = (Q, 1, m2) € Q be a permissible quadric along with a pair of linear projections that correspond
to f € C.If F is the fundamental matrix associated to (71, 772), then there exists a unique generic line ¢ through F
corresponding to Q by Lemma 3.3 and Lemma 3.5. With the full trinity correspondence, this line ¢ contains three
fundamental matrices Fq, F, F3 corresponding to Q1, Q2, Qs € Q that each produce the Cremona transformation f.
Moreover, by Lemma 3.7 this line € is the unique line in P(C**®) corresponding to f. Therefore if Q' € Q is such
that Q' — f it follows that n;, n; have one of Fy, Fy, F3 as their fundamental matrix and that the quadric Q' is
produced by the line £. We conclude that Q' is, up to projective equivalence, one of Q1, Qz, Qs. O

This completes the proof of Theorem 3.2. A consequence of Theorem 6 is the following generalization of
Problem 1.2.

Theorem 3.11. Given a generic codimension-two subspace V c P(C*®), the intersection of V with Ry, the Segre
embedding of P? x P?, is a del Pezzo surface of degree six, and can be described explicitly via the trinity correspon-
dence. Specifically, if g : P?> -» P? is the Cremona transformation corresponding to the line V*, then

VAR ={gx)x" :x e P2luixg ()T : x e P?.
Proof. For convenience, we denote
Vi={g)xT i x e PPlu{xgl(x)7 : x € P?}.

To see that this is a degree-six del Pezzo surface, we show that V; can be obtained as the blowup of P? in three
non-collinear points, specifically, at the base points of g: €], e}, e}. Let 71, : V4 ~» P? be the morphism defined
by mx(vu") = u. Let the Ef be the exceptional lines of g such that g‘l(fly ) = e]. Then 7 is 1 : 1 except on three
mutually skew lines {y(e})" : y € e{ } which are taken to the points {e}}. Therefore V; is the blowup of P? in
three non-collinear points and is a del Pezzo surface of degree six.

In particular, V7 must be Zariski closed and it follows by Lemma 3.7 that V n Ry = V;. m]

3.2 Back to the proof of Theorem 3.1

Before we can adapt the trinity correspondence to the reconstruction of point pairs, we need to address a certain
kind of degeneracy. Given a configuration of point pairs P = (x;, yi)ﬁ‘:1 consider the matrix Z = (x{ ® yiT)ﬁ‘:1 and

its right nullspace Nz.

Lemma 3.12. Suppose that P = (x;, y,-)i.‘:1 admits a generic line ¢ < Nz (passing through three rank-two matrices
Fq, Fy, F3). Then for all j = 1, 2, 3 there is no i such thatyiTFj = 0= Fjx;.

Proof. Suppose, without loss of generality, y; F1 = 0 = F1x;. From the matrix F; and the line ¢ through it we
obtain a pair of projections 71, 7, with centers ¢, ¢; and a smooth permissible quadric Q passing through them.
Then 75(c1) and 71 (cy) are the left and right epipoles of Fq, but since leFl =0 = F1xyq, it must be that y; ~ m2(c1)
and x1 ~ m1(cz). On the other hand, for any point p on the line connecting c1, ¢z, we have

712(p) T Fam1(p) = m2(c1)Fami(cz) = y1 Fax1 =0
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since F, € Nz. Therefore, by Corollary 3.4, p € Q and thus ¢i¢; ¢ Q, which is a contradiction since Q is
permissible. =

Even though a rank-two matrix F on a generic line in Nz cannot have y F = 0 = Fx;, it might be that one of
the equations hold. We name this type of degeneracy in the following definition.

Definition 3.13. A generic line ¢ < N is P-degenerate if there exists a rank-two matrix F € ¢ such that either
Fx; =0ory/F =0 for some i. We call a generic line that is not P-degenerate a P-generic line.

Any rank-two matrix F in a P-generic line will give a reconstruction c1, ¢z, p1, . . ., Pk of the point pairs P.
That is, there will be linear projections 1, 773 : P3 -» P2 with centers ¢y, ¢y so that nzT(p)Fnl(p) = 0 for all
pe P3 and (x;, yi) = (m(pi), ma(py)) foralli =1, ..., k. A smooth quadric Q will contain two lines through any
of its points.

Definition 3.14. A quadric Q c P passes degenerately through a reconstruction cy, ¢3, {pi}ﬁ‘:1 of P if it passes
through these k + 2 points and contains the line through a center point ¢; and a reconstructed point p;.

Definition 3.15. A Cremona transformation f : P> -» P? maps x; — y; degenerately if x; is a base point of f
and y; lies on the corresponding exceptional line, or symmetrically, y; is a base point of f~! and x; lies on the
corresponding exceptional line.

Generically, the trinity correspondence specializes to the reconstruction of point pairs in an intuitive way.

Theorem 3.16. Given a configuration of point pairs P = (x;, yi)f‘:1 and the matrix Z = (x] ® y?)ﬁ‘zl, define the
following subsets of £, Q, C:

(1) Lp:the set of all P-generic lines £ < Nz := nullspace(Z),

(2) Qp: the set (up to projective equivalence) of all permissible quadrics passing non-degenerately through some
reconstruction ci, €2, p1, - - -, Pk Of P,

(3) Cp: the set of all Cremona transformations f : P> -» P?> mapping x; — y; non-degenerately for all i =
1,...,k

Then there is a1l : 1 correspondence between the elements of Lp and Cp, a 1 : 3 correspondence between the
elements of Lp and Qp, and a 3 : 1 correspondence between the elements of Qp and Cp as in the diagram

Qp
1:y‘ x 1 (16)

Lp <— Cp

Proof. We need to show that the trinity correspondence (6) can be restricted to the sets £p, Qp, Cp. We will
therefore examine each leg of this diagram.

(Lp — Qp) We begin by considering a P-generic line ¢ = span{F, M} ¢ Nz. Without loss of generality, we can
take F to be one of the three fundamental matrices in £ with corresponding projections 7y, 77 : P* -» P? with
non-coincident centers ci, ¢, that give reconstructions py, . .., px € IP? of the point pairs P. By Lemma 3.3, the
line ¢ corresponds to a smooth permissible quadric Q defined by the vanishing of q(u) = 7r5(u)” My (u). For any
point p; in the reconstruction, we have

q(pi) = m2(pi) My (pi) = y{ Mx; = 0 17

since M € ¢ c Nz. Therefore Q passes through the reconstruction ¢y, ¢z, p1, . . ., px. It remains to show that it
does so non-degenerately. By Lemmas 3.6 and 3.9, a reconstructed point p; lies on one of the lines through c; (or
symmetrically through c;) if and only if there exists M € ¢ such that Mx; = 0 (or symmetrically y[ M = 0). Since
¢ is P-generic there is no such M, implying that the quadric passes through the reconstruction non-degenerately.
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(Qp — Cp) Consider a permissible quadric Q passing through a reconstruction c1, ¢y, p1, . . ., px of P with
linear projections 71, 2. As in Theorem 3.2, the tuple (Q, 71, 772) induces a Cremona transformation f := 75 o
(m1l9)~!. By Lemma 3.6, the base points of f are the images of the point ¢, and each of the lines in Q passing
through c;. Since p; # ¢, and does not belong to these lines, the point x; = m1(p;) is not a base point of f.
Similarly, the base points of f~! are the images of the point ¢; and the lines in Q passing through ¢, under 73, so a
symmetric argument shows that y; = 3 (p;) is not a base point of f~1. Therefore f maps x; = m1(p;) to y; = m2(p;)
non-degenerately.

(Cp — Lp) Consider a Cremona transformation f : P> -» P2 such that x; — y; non-degenerately for all i.
Asin Lemma 3.7, f corresponds to a unique line ¢ ¢ P(C*>*3) defined by the property that f{x)™ Mx = 0 for all
M € ¢ and x € P2, In particular, Y/ Mx;=0forallM € ¢andi=1,...,k implying that £ € Nz. By assumption,
no point x; is a base point of f and no point y; is a base point of f~!. By Lemma 3.9, it then follows that Mx; # 0
andyM # 0 for all M € €. Therefore ¢ is not P-degenerate. O

Remark 3.17. The assumptions of non-degeneracy can be removed from the 1:1 correspondence between generic
lines in Nz and Cremona transformations mapping x; — y;. Extending this to quadrics is more subtle, as some
rank-two matrices F € £ ¢ Nz may not give full reconstructions of the point pairs P.

Proof of the only-if direction of Theorem 3.1. For 8 semi-generic point pairs, the matrix Z = (x] ® y[)} , is rank
deficient exactly when Nz =: ¢ is a line. This line ¢ is generic because it is also the nullspace of any submatrix
of Z of size 7 x 9 and the corresponding seven point pairs are generic. Pick a subset of seven point pairs, say
(xi, yi)zzl, from the original eight pairs. Since these seven point pairs are generic, and ¢ is also generic, we can
assume that Fx; # 0 and yiTF # 0 for any rank-two matrix F € £and alli = 1, ..., 7. On the other hand, if we
pick a different set of seven point pairs, say (x;, y,-)?zz, then ¢ is also the nullspace of the corresponding Z7 and by
the same argument as before, Fx; # 0 and yiTF # 0 for any rank-two matrix F € and alli = 2,.. ., 8. Therefore,
¢ is P-generic.

Since ¢ is P-generic, by Theorem 3.16, ¢ gives rise to a Cremona transformation f : P2 -» IP§ such that
fix;)) =y;fori=1,...,8. This finishes the proof of Theorem 3.1. O

We end this section by demonstrating the trinity correspondence for an example, beginning with a single
quadric through a reconstruction.

Example 3.18. Consider the quadric Q c IP? defined by the equation x? + y? — z> - w? = 0 and the following 10
points p1, ..., ps, €1, C2 € Q:

c1=(1:0:0:1) c;=(0:1:0:1)
p1=(5:12:13:0) p2=(13:0:5:12)
p3=(12:5:13:0) pa=3:4:5:0)
ps=(4:3:5:0) Pe=(3:4:0:5)
p7=4:3:0:5) ps=(5:0:4:3).

The two projections (cameras) with centers c1, ¢; have matrices

10 0 -1 1 0 0 O
A1=|0 1 0 0], Ay=10 1 0 -1
0 01 0 0 01 0

and we can calculate the image points and epipoles:



406 — Connelly et al., The geometry of rank drop in a class of face-splitting matrix products: Part IT DE GRUYTER

ex=(-1:1:0) ey=(1:-1:0)
x1=(5:12:13) y1=(5:12:13)
Xy=(1:0:5) Y2 =(13:-12:5)
x3=(12:5:13) y3=(12:5:13)
X4 =(3:4:5) y4=(3:4:5)
Xs=(4:3:5) Y5=(4:3:5)
Xe=(-2:4:0) Ye=(3:-1:0)
x7=(-1:3:0) y7=04:-2:0)
xg=(2:0:4) ys=(5:-3:4).

The point pairs (x;, y;) give us the matrix

25 60 65 60 144 156 65 156 169
13 -12 5 0 0 0 65 -60 25
144 60 156 60 25 65 156 65 169

9 12 15 12 16 20 15 20 25

Z5=116 12 20 12 9 15 20 15 25
6 2 0 12 -4 0 0 0 0
4 2 0 12 6 0 0 0 0
0 -6 8 0 0 0 2 -12 16

which we can check is rank deficient and has nullspace spanned by the vectors
mp = (_1: 1: 0: _1) _1) 0) 0) 0) 1)1 mp = (01 01 _1; 0) 01 _ly 1: 1) 0)

The reconstruction we started with has fundamental matrix

0 0 1
F=10 0 1
-1 -1 0
and if we take a different matrix
-1 -1 0
M=]1 -1 0
0 0 1

in the nullspace of Zg we can verify that A; MA, yields the original quadric Q:

-1 -1 0 1
(X’y’ Z’ W)A;—MAl(ny) Zy W)T = (ny’ Z! W) 0 _01 2 3-) (ny, Z} W)T = _Xz _yz + Zz + Wz-
1 1 0 -1

The other two possible choices for fundamental matrices in the nullspace of Zg are

-1 -1 1 -1 -1 -1
F;=1 -1 1 and F3=|1 -1 -1},
-1 -1 1 1 1 1

which have epipoles e = (0:1:1),ej = (-1:0:1),e} = (0:-1:1)and ej = (1: 0 : 1). Moreover, we can
verify that there is a unique Cremona transformation

22,2 2 22
fx1, X2, X3) = (X] = X5 + X5, X] + 2X1X2 + X3 — X3, 2X1X3)
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such that f(x;) = y; for all i. This Cremona transformation has base points exactly matching the epipoles. Finally,
we can check that each camera center lies on two real lines on the quadric Q, parameterized by (a : b) € P! as

€y=(a:b:b:a), € =(a:-b:b:a), €=(-b:a:b:a), and € =(b:a:b:a)

whose images are exactly the other two possible pairs of epipoles/base points (e%, e) and (e3, €3).

4 Thecasek =7

We now come to the case of k = 7 point pairs. In order to understand the case of seven point pairs, we first need
to understand six generic point pairs (x;, yl-)le. In this case, the nullspace Nz of the matrix Z = (xl.T ® yiT)?:1
is projectively a plane and Nz n D =: C is a cubic curve in P(C>?) lying in the plane N. By our genericity
assumption, C misses all rank-one matrices in D and hence every point on C is a fundamental matrix of (x;, yl-)le.
Let k and ky denote the quadratic maps that take a rank-two matrix M € P(C>?) to its right and left nullvectors
respectively. As a consequence of the classical theory of blowups and cubic surfaces as discussed in [3], the maps
C — Kx(C) =: Cx ¢ ]P)Z( and C — ky(C) =: Cy C ]P§ are isomorphisms when (x;, yl-)?=1 is generic; we will go into
more detail on the nature of these isomorphism in Subsection 4.2.1.

C
VN (18)

P2 > Cy CycPl

By the composition k, o k;!, we get that Cx and C, are isomorphic cubic curves. However, this isomorphism
is not particularly useful; for instance, it does not take x; — y;. By construction, the curves Cy and Cy consist
exactly of all possible epipoles of the fundamental matrices of (x;, yi)?:1 in P2 and IP§. We therefore call Cx and
Cy the right and left epipolar curves of (x;, yi)le. We will see that these cubic curves are closely tied to both rank
drop and the trinity relationship established in Theorem 3.16.

Example 4.1. Consider the following six point pairs:

x1=00:0:1) y1=(0:0:1) X2=(1:0:1) y,=(1:0:1)
x3=(0:1:1) y3=(0:1:1) x4=(1:1:1) ya=(1:1:1)
X5 =(3:5:1) ys=(7:-2:1) Xg=(-7:11:1) yg=(3:13:1)

\xa\\ /

Figure 1: The cubic curves Cy and C, from Example 4.1, with x; and y; labeled.
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Figure 1 shows the curves Cy and Cy. Observe that x; € Cy and y; € Cy foralli=1,...,6, a fact we will prove in
Section 4.1. The curves Cy and Cy are cut out by gx(u) = 0 and gy(v) = 0in IP)Z( and IP§ where

gx(w) = 447u3 + 775ufuy + 113uquj + 118u3 — 4083u?us — 888ujuzus — 1521u5us + 3636u; uj + 1403uzus,
gy(v) = 447v] - 136vv, — 12v1V5 + 1183 — 3608v2v3 + 148v1vyv3 — 1478V5v3 + 3161v1v3 + 1360v,v3.

In Section 4.2 we use classical invariant theory to derive the polynomials gx and g,.

Given seven point pairs (x;, yi)lll, denote the epipolar curves obtained by excluding the ith point pair as
Ct and C)i,. In the event that these curves are equal for all choices of i, we denote Cy := C = --- = C] and

Cy = C} == C;. We will see that this equality is necessary (Theorem 4.2) and sufficient (Theorem 4.11) for
Z7 = (x] ®y])]_, to be rank deficient.

The maps ky, Ky are not the only way to derive the epipolar curves Cy, Cy; it is also possible to obtain them
via the trinity correspondence (16). This will be the subject of Subsection 4.1 and will allow us to prove the
following result:

Theorem 4.2. For 7 semi-generic point pairs (x;, yi)zzl, the matrix Z; is rank deficient if and only if there exist
cubic curves Cq through x1, . .., x7 and C, through y1, ..., y7 as well as an isomorphism f: C; — C, such that
Xi = Yi. Moreover; if this holds then C1 = Cy and C; = Cy.

This is the first of the two main results in this section and it is the more geometric theorem, to be proved at the
end of Subsection 4.1. In Subsection 4.2.1 we use the theory of cubic surfaces as in [3] to obtain explicit equations
for the epipolar curves. In Subsection 4.2.2 we use these explicit equations to characterize rank deficiency of Z;
using 14 algebraic equations and to prove our second main result, Theorem 4.11, which is the more algebraic
theorem. Finally, in Section 4.3 we collect some further results outside the assumption of semi-genericity.

4.1 Rank drop and cubic curves

Before addressing the cases of six generic point pairs and seven semi-generic point pairs, we establish an analogue
of Lemma 3.7 to show how general projective planes in IP(C3*®) give rise to Cremona transformations of cubic
curves.

Lemma 4.3. Let P c P(C**®) be a projective plane not containing any rank-one matrix. The set of points (X, y) €
P? x P? satisfying y'Mx = 0 for all M € P coincides with the closure of the graph {(x, f(x)) : x € C}} of the
restriction of a Cremona transformation f : P - P? to a cubic curve C;. Moreover, there is a two-dimensional
family of Cremona transformations f, : P> > P2, indexed by generic lines € c P as in Lemma 3.7, with the same
restriction to Cy .

Proof. The curve Cy consists of the set of points x € P? for which there exists an M € P with Mx = 0. When
P = Ny, this is the epipolar curve Cy described above. By choosing a basis {M7, M, M3} for P we can write any
M e P as aMy + bM; + cM3. Given x € IP? there exists (a : b : ¢) € IP? with (aM; + bM; + cM3)x = 0 if and only
if det (Mlx Myx ng) = 0. Therefore CY is defined by the vanishing of this determinant, which is a cubic
form in x1, x2, x3. Symmetrically the cubic curve C;’ defined by the vanishing of the determinant of the matrix
with rows y™ M; coincides with C, when P = N.

Let € = span{M1, M2} c P ¢ P(C*>3) bea generic line. By Lemma 3.7, there is a Cremona transformation
fe : P2 -» P2 whose graph is the set of points (x, y) € P? x IP? satisfying y” Mx = 0 for all M ¢ ¢. As in Remark 3.8,
the map f, transforms x into ker (Mlx sz). For x € C except the three base points of f;, the left kernel of
(Mlx sz) is also the left kernel of the rank-two 3 x 3 matrix (Mlx M;x ng), which is independent of
the choice of ¢ = span{My, My} c P.

Note that the graph {(x, fz(x)) : x € C} and the set of points (x,y) € P4 x IP3 satisfying y” Mx = 0 for all
M e P have the same projection onto P2, namely Cy. For any x € CY, the corresponding point y is given by
fe(x) = ker (Mlx M, x ng). ad



DE GRUYTER Connelly et al., The geometry of rank drop in a class of face-splitting matrix products: Part Il = 409

4.1.1 Six point pairs. Let (xl-,yi)?:1 be a set of six generic point pairs, Z = (xl-,yi)‘l?‘:1 and let F be any choice of
fundamental matrix (i.e., a rank-two matrix on the projective plane Nz). Genericity guarantees a reconstruction
Pis---,D6,C1,C2 € P3, of (x;, yi)?zl from F. Recall that ¢y, ¢, are the centers of camera projections 71, 775 and
P1, ..., pe are world points such that 771 (p;) = xj and 712(p;) = y; forallj=1,...,6.

Since N7 is a two-dimensional plane, it contains a pencil of lines through F, see (14) and (16), which corre-
sponds to a pencil of quadrics Q;, each passing through the reconstruction. The intersection of these quadrics,
also obtainable as the intersection of any two distinct quadrics in the pencil, is a quartic space curve W ¢ P?
that must also pass through the reconstruction. Since c1, ¢ are on W, 1 (W) c ]P,Z( and (W) ¢ IPJZ, are cubic
curves. We will see that these cubic curves are independent of the choice of F, and that they are exactly the
epipolar curves Cy and C,. We will use this derivation to study their special properties arising from the trinity
relationship. The following lemma assumes the setup just described.

Lemma 4.4. For six generic point pairs (x;, yi)?:l we have the following.

(1) The cubic curves 1 (W) and 12(W) are the right and left epipolar curves Cy, Cy, respectively; in particular,
they are independent of the choice of F.
(2) The points x; lie on Cy and the points y; lieon Cy fori=1,...,6.
(3) There exists a two-parameter family of Cremona transformations f, : P% - IP)Z,, indexed by lines ¢ in the
projective plane Nz, such that the following holds:
o fo(xi)=yifori=1,...,6,
« the restriction of fp to a map Cx — Cy is independent of ¢, and
« the base points of all the Cremona transformations f, lie in Cy, Cy.

Proof. Let F be a fundamental matrix in Nz. Since (x;, yi)f:l is generic, F can be any element of the cubic curve
C = Nz n D, and we can use F to obtain a reconstruction consisting of world points py, ..., ps and cameras
corresponding to linear projections 71, 7t : P3 ~» P2,

The quartic space curve W is defined by quadrics of the form q(u) = m5(u)" M1 (u) where M € P n F*-.
Therefore 771 (W) contains the cubic plane curve Cy defined by {x € P2 : 3M € Ny such that Mx = 0}. Since
¢1 € W, m(W) is a cubic plane curve and so these must be equal. A symmetric argument shows that 772(W) = C,.
Since W contains each point p;, this also implies that x; = 771(p;) belongs to Cy and y; = m2(p;) belongs to Cy for
i=1,...,6.

By Lemma 4.3, for any generic line £ ¢ Nz the restriction of the Cremona transformation f, : P? - P? to the
cubic Cy is independent of the choice of £. By Theorem 3.16 we have f;(x;) = y; for all i. As in Lemma 3.9, the
base points of f; are the right kernels of the three rank-two matrices Fi, Fy, F3 € £ and therefore belong to Cy.
Similarly, the base points of f, ! are the left kernels of these matrices and so belong to Cy. O

Remark 4.5. Given a rank two matrix F € Ny, it may be the case that Fx; = 0 (or yiTF = 0) for some i. However,
even in this case we can still apply the trinity (6) to obtain a pencil of quadrics (and a pencil of Cremona
transformations), and from them the cubic curves Cy, C, with the isomorphism between them. Therefore, even
if £ is such that x; is a base point of fp, the restriction of fp to amap Cy — Cy, as in Lemma 2.6, would still satisfy
Xi — Y.

4.1.2 From six points to seven. The trinity correspondence has allowed us to prove a number of properties of
the epipolar curves corresponding to six generic point pairs. In particular, we know that there is an isomorphism
f: Cx — Cythatsends x; — y; fori = 1,...,6 which is induced by a two-parameter family of Cremona
transformations P2 -» IP)%. For seven generic point pairs, the following corollary holds.

Lemma 4.6. Let (x;, yl-)l7=1 be seven semi-generic point pairs. Then the rank of Z = (x] ® yl.T)Z=1 drops if and only if
there exist cubic curves Cy, Co through x1, ..., x7 and y1, . . ., y7 respectively, as well as a two-parameter family of
Cremona transformations f, : P2 - le2, such that f(x;) = y; for all i and the family is well-defined on the restriction
C1 — Cy. Furthermore, if this holds then C1 = Cyx and C; = Cy,.

Proof. (=) Under semi-genericity, Z is rank deficient if and only if the nullspace of Z and the nullspaces of each
of its 6 x 9 submatrices are identical. In particular, if P; is the subset of 6 point pairs obtained by excluding the
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ith, then, using the notation from Theorem 3.16, £p, = --- = Lp,. Applying Lemma 4.4, we find that the pairs
of curves Ci, C)", are identical for all i. Accordingly, we omit the superscripts and identify them as Cy and Cy
respectively. Similarly, the family of Cremona transformations satisfies Cp, = - -- = Cp,, and, as in Lemma 4.4,
restricting this family to the map Cx — C, yields a well-defined isomorphism with the property x; — y; for all i.

(<) For this direction, we use Theorem 3.16. In particular, the existence of such a family of Cremona
transformations implies that dim(Lp) = dim(Cp) = 2 as illustrated in (16). Since there is a two-dimensional
family of lines ¢ in the projective nullspace of Z, we must have rank(Z) < 7. We now need to verify that C; = Cy
and C, = Cy. It follows by Lemma 2.5 that the curves Cy, C; contain all possible base points of the Cremona
transformations fp. Furthermore, by Lemma 3.9 the sets of all such base points in the domain and codomain is
exactly the set of all possible right and left epipoles. It follows that Cy ¢ C; and Cy ¢ C; and therefore the curves
are equal. O

Proof of Theorem 4.2. (=) This direction follows from Lemma 4.6. In particular, the isomorphism is exactly that
obtained by restricting the family of Cremona transformations to the map Cy — Cy.

(&) Assume that such curves Cq, C; exist, as well as the desired isomorphism C; — C;. By Lemma 2.7
there is a two-parameter family of Cremona transformations P? - IP)Z, whose restriction C; — C; yields this
isomorphism. It follows from Lemma 4.6 that Z is rank deficient and that C; = Cx and C; = Cy. a

4.2 The Cremona hexahedral form of C, and C,

In this subsection we return to the original characterization of the cubic curves Cy and Cy as the images under
the quadratic maps x and ky of the curve C as in (18). We will see that it is possible to derive explicit equations
for these curves using the classical theory of cubic surfaces and a special invariant-theoretic representation of
them called the Cremona hexahedral form. These ideas intersect substantially with the characterization of rank
drop of Zg in [3]; in particular, we draw on the connection between six generic points pairs (x;, yi)?zl and cubic
surfaces. We begin by explicitly characterizing the curve C = Nz n D as the planar section of a cubic surface; we
will then use this characterization in conjunction with material from [3] to find explicit equations for the curves
Cy and Cy.

4.2.1 Six generic point pairs again. Suppose we have six generic point pairs (x;, yl-)‘?:1 ; in particular, Z =
(x] ®y])?_, has full rank. Let Z; denote the 5 x 9 matrix obtained by deleting the jth row of Z. Then Nz, = P3 and
Sj = NZ}_ N D is a smooth cubic surface in sz by the genericity assumption, and hence all points on it have rank
two. It was shown in [3] that Sj is the blowup of P2 at ({xi}?:1 \ {x;}) U {X;} where X; is a new point that arises

from {xi}?=1 \ {xj}, see Lemma 6.1 of [3] for its derivation and formula. Symmetrically, Sj is also the blowup of
({yi}?:1 \ {yjh U yjtin IP)Z, where y; is a new point determined by {yi}‘f:1 \ {y;}. The quadratic maps Kﬁ( 1S - P2

and K§, 1S - ]Pf, are 1: 1 except on the exceptional lines of the blowup. The curve C is given by
C=NznD =Nz nDn(ij®ij)L :Sjn(ij®ij)L.

Therefore, C cuts each of the exceptional lines of the blowup in one point, and therefore the restrictions of ky, ky
to C are isomorphisms.

For a set of six points uj, ..., us € P2, set [ijk] := det[u; uj ux] and define
(@) (kD(rs)] = [ijr][kis] - [ijs][kIr]. (19)
This is a classical invariant of uy, ..., ug under the action of PGL(3) whose vanishing expresses that the lines

u;uj, uru; and urus meet in a point; compare [2, pp. 169]. Using these invariants, Coble [2, page 170] defines the
following six scalars:
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a = [(25)(13)(46)] + [(51)(42)(36)] + [(14)(35)(26)] + [(43)(21)(56)] + [(32)(54)(16)]
b = [(53)(12)(46)] + [(14)(23)(56)] + [(25)(34)(16)] + [(31)(45)(26)] + [(42)(51)(36)]
¢ = [(53)(41)(26)] + [(34)(25)(16)] + [(42)(13)(56)] + [(21)(54)(36)] + [(15)(32)(46)]
d = [(45)(31)(26)] + [(53)(24)(16)] + [(41)(25)(36)] + [(32)(15)(46)] + [(21)(43)(56)]
e = [(31)(24)(56)] + [(12)(53)(46)] + [(25)(41)(36)] + [(54)(32)(16)] + [(43)(15)(26)]
f = [(42)(35)(16)] + [(23)(14)(56)] + [(31)(52)(46)] + [(15)(43)(26)] + [(54)(21)(36)] (20)
Coble also defines the following six cubic polynomials that vanish on uy, . .., us:
a(u) = [25u][13u][46u] + [51u][42u][36u] + [14u][35u][26u] + [43u][21u][56u] + [32u][54u][16u]
b(w) = [53u][12u][46u] + [14u][23u][56u] + [25u][34u][16u] + [31u][45u][26u] + [42u][51u][36u]
c(u) = [53u][41u][26u] + [34u][25u][16u] + [42u][13u][56u] + [21u][54u][36u] + [15u][32u][46u]
d(u) = [45u][31u][26u] + [53u][24u][16u] + [41u][25u][36u] + [32u][15u][46u] + [21u][43u][56u]
e(u) = [31u][24u][56u] + [12u][53u][46u] + [25u][41u][36u] + [54u][32u][16u] + [43u][15u][26u]
flu) = [42u][35u][16u] + [23u][14u][56u] + [31u][52u][46u] + [15u][43u][26u] + [54u][21u][36u] 21

These cubic polynomials are covariants of us, . . ., ug under the action of PGL(3).

It is a well-known result in algebraic geometry that every smooth cubic surface is the blowup of six points
in P2, The blowup procedure furnishes an algorithm to find a determinantal representation of the surface.
However, these representations do not directly reflect the six points that were blown up. The Cremona hexahedral
form of a smooth cubic surface provides explicit equations for the surface in terms of the points being blown up.
It consists of the following polynomials:

B4+ vz +23+23=0
Z1+Zy+23+2Z4+25+26=0
azq +BZ2+(_.'Z3+aZ4+éZ5 +fZ6 =0. (22)

Furthermore, the cubic surface can also be parameterized by

{(a(u) : b(u) : c(u) : d(u) : e(u) : flu)) : u e P2}. (23)

We will now use the above facts to obtain explicit equations (that depend on (x;, yi)?:l) of the epipolar
curves Cy and Cy. In what follows, we index a, . ... f and a(u), ..., f(u) with x (respectively y) when u; = x;
(respectively u; = y;).

Definition 4.7. Given six point pairs (x;, yi)?zl we define the following cubic polynomials:

gx() = ayax(u) + byby(u) + cycx(u) + dydy(u) + eyex(u) + fy f (),

gy(V) = Axay(v) + byby (V) + TxCy(V) + dxdy (V) + exey (V) + fify (V). (24)
Given seven point pairs (x;, yi)lll, let gz( and g; denote the above cubic polynomials obtained from the point
pairs (Xj, yj)jxi-
The polynomials gy, gy played a prominent role in the rank drop of Zs in [3].

Lemma 4.8. Given generic point pairs (xi,yi)?zl, letC=NznD, Cy =ky(C) C IP§ and Cy = ky(C) IP)Z,. Also
let Sy be the blowup of P% at x4, ..., x¢ and let S, be the blowup of IP)Z, atyi,...,Ys each expressed in Cremona
hexahedral form. Then the following hold true:

(1) The plane cubic curves Cy and Cy have defining equations gx(u) = 0 and gy(v) = 0 respectively.
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(2) The cubic curve C = Sx N Sy, which has equations

3,,3,.,3,. .3, .3, .3_
Zi+Zy+Z3+Zy+2Z5+25=0

Z1+2Zy+23+24+2Z5+2g =0
QxZ1 +I_)XZZ + CxZ3 + Eixz4+ exZs +]?XZ5 =0

ayll + I_)yZZ + (_.’ylg + Eiyz4 + ést +]§,Z5 =0. (25)

(3) The cubic curve Sy n Sy is the image of Cy under the blowup of P2 at x, . .., Xg and also the image of Cy
under the blowup of P2 at y1, ..., Ye.

Proof. We begin with the first item. By Lemma 4.4, x; € C, for all i and by Definition 4.7, gx(x;) = 0 for all i
since the cubic polynomials in (21) vanish on the x;. For fixed i = 1, ..., 6, consider the 5 point pairs left after
excluding (x;, y;) and let (u;, v;) be the unique new point pair (cf. Lemma 6.1 in [3]) such that the configuration

{1, 1), - .., (X6, Y6), (Wi, v} \ {(xi, y0)} (26)

is rank deficient. For convenience, we assume without loss of generality that i = 6. In other words, if Z; =
x;i® yi)?:1 then (ug, ve) is the unique point pair such that Sz = Nz, n D can be obtained both by blowing up P2
in the points x1, . . ., X3, ug and by blowing up IP)Z, in the points y1, ..., ys, ve. It follows that the curve C c S; cuts
the exceptional lines corresponding to ug, ve exactly once each and therefore ug € Cy and ve € Cy; it follows
symmetrically that u; € Cyand v; € Cy foralli =1,...,6. One can check using a computer algebra package that
&x(ug) = 0 and gy(ve) = 0 after fixing points as in Lemma 6.1 in [3]; it follows symmetrically that gx(u;) = 0 and
gy(vy) = 0 for all i. Finally, since Cy and the curve cut out by gy share 12 distinct points, they must be the same
cubic curve; similarly we can conclude that Cy is cut out by gy. This finishes the proof of the first claim.

To prove the second and third claims, recall that kx : C — Cy is an isomorphism. Let K} : Sy — IP§ and
Ky : Sy — P be the blow down morphisms. The Cremona hexahedral forms of Sy and Sy give

SxNSy={z €Sy : ayzy+-+fyzg = 0} 27

By (23),

Sx = {(ax() : bx(u) : cx(u) : dy(u) : ex(u) : fr(w) : u e P} (28)

and since Cy is cut out by gx(u) = 0, we get that

Sx NSy ={(ax(w) :...: fx(w) : ayax(u) +~~+]_’yfx(u) =0,u Py ={(ay(u):...: fr(w):ue Cyl. (29)

Therefore, Sy N Sy is exactly the image of Cy under the blowup of ]P)Z( at xi, ..., Xg. Restricting ky to x}| 508, -
Sx NSy — Cx we obtain an isomorphism, and we have Sy N Sy, = Cy = C, which proves the second claim. Finally,
we note that by a symmetric argument, Sy NSy is also exactly the image of Cy under the blowup of ]P§ atys,..., Vs
proving the third claim as well. O

Example 4.9 (Example 4.1, continued). One can verify that the polynomials (24) define the same cubic curves as
those in Example 4.1. We then pick a specific point x7 = (0 : 1403 : 118) € Cy. Using a computer algebra package,
one can compute the unique point y; = (1802855 : 1562942 : 171287) such that Z = (x;, yi)l7:1 is rank deficient. It
is straight-forward to verify that y; € C,. Moreover, there is a two-parameter family of Cremona transformations
fe such that x; — y; fori=1,...,6 and for all members of this family f,(x7) = (1802855 : 1562942 : 171287),
which lines up with Lemma 4.6. These points can be seen on the cubic curve in Figure 2.

4.2.2 Algebraic conditions for the rank deficiency of Z;. We are now ready to present our main algebraic result
for rank drop given k = 7 point pairs. We begin with a basic lemma that will connect all of our results in the
main theorem.

Lemma 4.10. Let (x;, yl-)z:1 be seven semi-generic points. Then Z = (x] ® yl.T)Z:1 is rank deficient if and only if
¢l =... = ¢7 where Cl is the cubic curve Nz nD.
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Figure 2: The cubic curves Cy and Cy, with x7 and y7 highlighted.

Proof. By semi-genericity, Z is rank deficient if and only if Nz = Nz, = --- = Nz, for each 6 x 9 submatrix Z; of Z.
Since C! = Nz. N D, the matrix Z is rank deficient if and only if C= C' = ... = (. m|

The following theorem, which is the main result of this subsection, allows us to check for rank drop without
computing Cremona transformations.

Theorem 4.11. For seven semi-generic point pairs (X;, yi)llp the following are equivalent:
) Z=(x] ®y])L_, is rank deficient.
(2) We have x; € C, and y; € C)l,forall i=1,...,7.
(3) We have gi(xi) =0and g;(yi) =0foralli=1,...,7.
(4) All seven cubic curves in P2 are equal: CZ == C,i(.
(5) All seven cubic curves in IP)Z, are equal: CZ =...= C)i,.

Proof. ABy Lemmg 4.8, (2) is equivalent to (3). We next prove that (1) implies (4) and (5). If Z is rank deficient,
then C! = - = ¢7 by Lemma 4.10. Applying the quadratic maps k and ky, we obtain (4) and (5). To prove the
reverse directionAwe will show (4) implies (1); the proof that (5) implies (1) is symmetric. In particular, we will

show that Ci = () if and only if Ct = CJ. For ease of notation, we assume i = 6 and j = 7. Consider the five point
pairs (Xi,yi)?zl and the matrix Zs = (xl-T ®yiT)15:l. Then § = Nz, n D is a cubic surface and kx : $ — ]P,Z( and
Ky:S— IP)% are 1: 1 except on the six exceptional lines in each case. Moreover, we can obtain the cubic curves
b and €7 by intersecting this surface with a plane. We can conclude that K‘X(Cé) = KX(C7) only if 6 = ¢7. 1t then
follows that (4) implies (1), and symmetrically, (5) implies (1).

We now prove that (1) implies (2). Fix i € {1,...,7}. Then x; € Ci for allj + i by Lemma 4.4. Moreover, since
Ci = C by hypothesis it follows that x; € C; The other equalities follow symmetrically.

Finally, we prove that (2) implies (1). Since x; € C} and y; € C}, for j # i by construction, the additional
hypothesis (2) gives that x1,...,X7 € ﬂl?:l CE( and yp,...,y7 € 017:1 C)l, We fix the first five point pairs (xl-,yl-)f‘:1
and consider the 5 x 9 matrix Zs = (x{ ® yl.T)?:l. Consider the cubic surface S = Nz, n D paired with the maps ky
and ky. The cubic curves 6 and ¢7 are obtained by intersecting S with a plane. By genericity, the four matrices
K31 (X6), K (x7), K3, (¥6), K, (y7) are all distinct. Moreover, they are all contained in

nc’=NisnD)Nn(NyND)=NznD (30)

which can also be realized as the intersection of the cubic surface S with two planes. If Nz were one-dimensional,
it would intersect D in at most three points. Since we have found 4 > 3 distinct points in Nz n D, Nz must have
projective dimension > 2, implying (1). O
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4.3 Beyond semi-genericity

Given seven semi-generic point pairs (x;, yi)zzl, we have now fully characterized the conditions under which

the matrix Z; will be rank deficient. This characterization was given geometrically (Theorem 4.2) and then
algebraized using 14 polynomials (Theorem 4.11). We now move away from the assumptions of semi-genericity.
We will first examine how Z7 becomes rank deficient without these assumptions and, to some extent, generalize
our algebraic condition (Theorem 4.11) to this case. We will also consider configurations where (x;, yi)l?:1 are
fully generic, and therefore Z; must have full rank; in this case, we can use the cubic curves C; Cj, and their
associated polynomials to characterize the epipoles of the possible fundamental matrices in terms of classical
invariants.

We begin by presenting two relatively simple, but highly degenerate, conditions for the rank deficiency of Z.
One of these conditions is that Z7 will be rank deficient if {x;} and {y;} are equal up to a change of coordinates.

Lemma 4.12. Suppose we have point pairs (x;, yi)l?:1 and an invertible projective transformation H such that
Hx; =y foralli. Then Z = (x] ® y])]_, is rank deficient.

Proof. Since rank drop is a projective invariant, we can assume x; = y; for all i. Then the equations y; Fx; =
xl.Tin =0,i=1,...,7hold for all 3 x 3 skew-symmetric matrices F € Skews. Since Skews is a three-dimensional
vector space, dim(Nz) > 3 and rank(Z) <9-3 =6. O

The second simple condition is that the rank of Z will drop if the points in either IP? lie in a line.
Lemma 4.13. Suppose (x;, yi)Z:1 is such that either {x;} or {y;} areon aline. Then Z = (x{ ® yiT)l?:1 is rank deficient.

Proof. Suppose the y;’s are on a line. Then we may assume that y; = (m;, 0, 1) after a change of coordinates.
Then simple column operations on Z show that it is rank deficient. O

Remark 4.14. We note that the existence of such configurations does not necessarily imply that the rank drop
variety is reducible. We suspect that these configurations are in the Zariski closure of the generic rank drop
component.

It is simple to check that in both of the above cases we have gi(xi) =0= g;(yi) fori=1,...,7, suggesting
a possible generalization of Theorem 4.11(3). This is possible to some extent. In particular, even without any
genericity assumptions, if Z; is rank deficient then these 14 polynomial equations hold.

Lemma4.15. IfZ = (x; ® y])]_, is rank deficient, then gL(x) = 0and gj,(yi) =0 foralli.

Proof. Let I be the ideal generated by the 14 polynomials gf((xi) and g;(yi) fori=1,...,7inthe polynomial ring
Clxy,yj:i=1,...,7,j=1,2,3], treating (x,-,y,»)z=1 as symbolic. If Z is the appropriate symbolic 7 x 9 matrix
then it can be verified using Macaulay2 that I is contained in the ideal generated by the maximal minors of Z. O

However, the converse does not hold in general. We present two examples of highly degenerate configurations
where the 14 equations hold, but Z7 is not rank deficient.

Example 4.16. Take x; to be the columns of the matrix X and y; to be the columns of the matrix ¥ with

01 3 40 0 7 01 40910
X=10 0 0 01 10 Y=(0 0 01 0 01 (31)
1 01 10 0 1 1 01 0110

where xq, X2, X3, X4, X7 are on a line and x5 = xg. Similarly, y1, y2, V3, Vs, Y6 are on a line and y4 = y;. We can
verify that gl (x;) = 0 = g;(yi) fori=1,...,7 and that the matrix Z is not rank deficient. In particular, Nz is
spanned by the two singular matrices

0 0 -3 0 0 0
0 0 O 010
4 0 0 0 0 O

the latter of which has rank one.
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Example 4.17. Take x; to be the columns of the matrix X and y; to be the columns of the matrix ¥ with

1 251 2 37 0 00 0 1 3 4
X=|10 0 0 01 2 6 Y=(1 51 0 2 6 8 (32)
1110111 1101111

where {xl}l 1 Wi }4 , and {xl}l 5 {yi}zzs are on distinct lines in each image. We can verify that gi(xi) =0= g;(yi)

fori =1,...,7 and that the matrix Z is not rank deficient. In particular, N is spanned by the two rank one
matrices

0 -2 0 -1 1 1

0 1 0 0 0 O

0 0 O 0 0O

While the focus of this paper has been on the conditions under which Z drops rank, the tools we have
developed have applications beyond rank drop. In particular, for a fully generic configuration of seven point
pairs we can use the cubic curves C\ and C)i, to find the possible epipoles of fundamental matrices. While this
has minimal practical application, it is significant in that the characterization is entirely in terms of classical
projective invariants.

Lemma 4.18. Let (x;, yl-)l7=1 be generic point pairs. In particular, we assume that Ny is one-dimensional and
contains three rank-two matrices Fy, F3, Fs, two of which may be complex. Then the epipoles of these fundamental
matrices el, ez, eg‘ and e{ , e§ s e§ can be obtained as the unique three points in the intersections ﬂzzl Cf( C IP§ and

ﬂllC)l,cle

Proof. Consider the two cubic curves CZ and Cﬁ. The intersection Ag 7 = CZ N Cﬁ will contain exactly nine points.
We know that x1, ..., x5 € Ag 7. Additionally, let (ug, v¢) be the pair of rank drop points, as in Lemma 5.1 of [3],
associated to (x;, yi)?zl. Then, by Lemma 4.15 we have ug € Ag 7 as well. There should be three more points in the
intersection. Let f be the unique Cremona transformation f : P2 - IP)Z, such that x; — y;fori=1,...,7. This f is
contained in the two-parameter family of Cremona transformations P2 - ]P)Z, such that x; —» y;fori=1,...,6.
By Lemma 4.4 the base points of f are contained in CZ. By a symmetric argument these base points are also
contained in Cfi and we can conclude that these three base points are the last three points in the intersection. By
Lemma 3.9 these base points are exactly the epipoles of the fundamental matrices, and it follows by symmetry

that e}, €2, €3 € I, Cﬁ( Clearly the points xi, . . ., Xs, Ug are not in ()_, Ci generically, and thus these three base
points are the unique points in the intersection of all seven cubic curves. Symmetrically, e’{, eﬁ e’é are the unique
points in (7_, Cy. ]

Example 4.19. Take x; to be the columns of the matrix X and y; to be the columns of the matrix ¥ with

3 25 0 4 -20 -4 0 -49 -15 -3 -5 5 7
X=|10 7 3 3 2 25 7 Y=(-1 14 25 0 10 4 4 (33)
11 2 1 5 12 2 1 9 4 1 6 2 1

We can then construct the seven cubic curves Ci and C}, in each IP?. See Figure 3. Each set of seven cubic curves
has three common intersection points. If we compute Nz we find that there are exactly three possible real
fundamental matrices. These matrices have epipoles

ey=(0:0:1) e;=(0:0:1)
i—(z 3:1) e =(-3:4:1)
5=(4:3:4) 3 =(3:2:2) (34)

and we can see that these are exactly the three common intersection points.
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Figure 3: The cubic curves CZ( and C}’, The intersection points are exactly the three possible epipoles associated to the fundamental
matrices.
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5 Thecasek =9

We finish by characterizing the rank deficiency of Z = (x| ® yiT)?Zl, and this time we make no assumptions on

the point pairs (x;, yl-)?zl. A simple algebraic characterization of rank drop in this case is that det(Z) = 0. This
is a single polynomial equation but as mentioned already, typically this equation does not shed much light on
the geometry of the points {x;} and {y;} that makes Z rank deficient. By the methods of invariant theory, it is
possible to write det(Z) as a polynomial in the brackets [ijk]y and [ijk]y, constructed from {x;} and {y;} which
may or may not offer geometric insight. Below we provide a geometric characterization of rank drop in terms of
the two point sets in PZ and IP}. The result is straight-forward.

Recall that if a, b are distinct points in P2, then a x b € P? is the normal of the line containing a and b,
i.e, u € Span{a, b} if and only if u" (a x b) = 0. In what follows we let €45 denote the line spanned by a, b. Its
normal a x b = [a]«xb where [a] is the 3 x 3 skew symmetric matrix that expresses cross products with a as a
matrix-vector multiplication.

Theorem 5.1. The matrix Z = (x] ® yiT)?:1 is rank deficient if and only if there is a projective transformation
T:P% - 1P§ suchthaty[ (Tx;) =0fori=1,...,9, or equivalently, y; lies on the line with normal vector Tx; for
i=1,...,9. This manifests in three possible ways depending on the rank of T:

(1) There exists a line ¢ c P2 and a line €' ¢ ]P)Z, such that for each i, we have x; € € or y; € €' (both may happen
for a given i).

(2) There are two points e € P2 and e’ ¢ IPf, and a P'-homography sending the pencil of lines through e to the
pencil of lines through e’ such that €., > ey, for each i.

(3) Thereis some T € PGL(3) such that y; lies on the line with normal vector Tx; for each i.

Proof. The first statement is trivial. The matrix Z is rank deficient if and only if N; ¢ IP® contains at least one
point. Representing such a point by T € P(C*3) we have (x; ® y)vec(T) =y (Tx;) =0fori=1,...,9.

(1) Ifrank(7) = 1, then T = uv™ for some u,v € C3. Therefore, W] wETx) =0fori=1,...,9which is
equivalent to saying that for each i, at most one of u"y; or v x; can be non-zero. Therefore there exist
lines ¢ (with normal v) and ¢’ (with normal u) such that for each i, we have x; € £or y; € £'.

2

~

Suppose that rank(T) = 2. Let e € P2 be the unique point in the right nullspace of T and let e’ € IP§ be the
unique point in the left nullspace of T. The pencil of all lines through e (respectively e') can be identified
with P,

Pick any line ¢ not passing through e and suppose its normal is n. Then the projective transformation
T[n] is a P*-homography that takes Lex; — Lery;; see [6, Result 9.5]. Indeed, suppose the intersection of £
and €.y, is u;. Since u; is orthogonal to both n and e x x;, we have u; ~ n x (e x x;) = [n]x(e x ;). Since u;
lies on €.x,, we have u; = Ae + ux; for some scalars 4, u, and since ¢ does not contain e, we obtain u; # e
which implies that u # 0. Therefore

T[n]x(e x x;) = Tu; = ATe + uTx; =0+ uTx; ~ Tx;

which says that the normal of €.y, is mapped to Tx; by T[n]x. We just need to argue that Tx; is the normal
of £y, to finish the proof. For this check that (e’)" Tx; = 0 since (¢')" T = 0 and y; Tx; = 0 by assumption.
Therefore the line spanned by e’ and y; has normal Tx;.

(3) If rank(T) = 3 then T is a homography (an invertible projective transformation). Then y; Tx; = 0 for
i=1,...,9implies that y; lies on the line with normal Tx; for each i. 0O

Remark 5.2. In the proof of (2), if x; = e for some i then [e]xe = 0 and similarly, if y; = e’ for some j then
[e']xy; = 0. Therefore, the P!-homography will not work for the indices i, j where x; = e oryj=e'.

Remark 5.3. As we saw, if seven of the nine points on either side are on a line then the rank of Zy will drop.
Condition (1) allows for the situations where s points with 3 < s < 6 on one side are on a line and the 9 — s
complementary y points are on a line.
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Example 5.4. (1) Take x; to be the columns of the matrix X and y; to be the columns of the matrix Y with

000 0 1 -1 11 1 -11 0 0111 -1 1
X=(111 -1 1 1 0 1 -1 Y={0 1 -1 1.0 0 0 0 0]. (35)
012 1 0 1 11 -1 21 1 1 01 2 1 3
One can check that all 8 x 9 submatrices of Z have rank 8. If the coordinates of P? are uy, us, us then xq, . .., Xa

lie on the line u; = 0 and ys, ..., yg lie on the line u; = 0 and Z must drop rank by Condition (1). Indeed, the
unique element in the nullspace of Z is the rank-one matrix

0 0O
T=11 0 0 (36)
[0 0 0]
(2) Take x; to be the columns of the matrix X and y; to be the columns of the matrix Y with
1001110 1 2] (1 0 01 101 2 1
X=|/0 1 0 1 1 0 1 2 1 Y=/0 1. 01 0 1 1 1 4 37)
001 10111 1] 10 011110 1 3
Again, Z and all its 8 x 9 submatrices have rank 8. The unique element in Ny is the rank-two matrix
0 0 -1
T=10 0 1]. (38)
-1 1 0

The points e = ¢’ = (1,1,0)" are generators of the right and left nullspaces of T. Note that x5 = e and y; = e'.
Pick € = (1,2,3)". Then e" ¢ # 0. Now check that [e']Y = (T[€]x)[e]xX. Indeed,

0 0 1 0 -3 2
lelx=[e'lx=|0 0 -1, Plx=3 0o -1],
11 0 2 1 0

and [e'l«¥={0 0 -1 -1 -1 -1 0 -1 -3

~10 0 -3 -3 0 -3 -3 -3 -3|=(T[flx)lelxX (39)
3 3 0 0 O 3 -3 -3 3

except in the columns of X and Y where x; = e and y; = €’
Here is another example where the epipoles do not appear among the x;’s or y;’s. Take x; to be the columns
of the matrix X and y; to be the columns of the matrix Y with

1111111 1 1 1111111 1 1
X=/01 0120 2 -1 -1}, Y=o 1010 2 1 1 -2f. (40)
0011021 1 -1 0011212 -1 -1
The unique element in N is the rank-two matrix
0 2 1
T=|-1 -1 0]. 41)



DE GRUYTER Connelly et al., The geometry of rank drop in a class of face-splitting matrix products: PartII = 419

The points e = (-1,1,-2)T and e’ = (1,2,-1)7 generate the right and left nullspaces of T. Pick £ = e. Then
eTe + 0. Now check that [e']xY = (T[e]x)[e]«X. Indeed,

0 1 2 3 4 4 5 -1 -4

[eY=(-1 -1 -2 -2 -3 -2 -3 0 0

-2 -1 -2 -1 -2 0 -1 -1 -4

0 -12 -6 -18 -24 -12 -30 6 18

~16 12 6 12 18 6 18 0 0 |=(Tlel elX. (42)
12 12 6 6 12 0 6 6 18

(3) Take x; to be the columns of the matrix X and y; to be the columns of the matrix ¥ with

100 1 1 101 2 1 00 1 1 0 1 2 15
X=|/0 1 01 1 0 1 2 -3 Y=({0 1 0 1 0 1 1 1 4 (43)
00110111 1 00111100 -5
The unique element in N7 is the rank-three matrix
0 1 -4
T=(1 0 3. (44)
-4 3 0

By construction, yiT Txij=0fori=1,...,9.

6 Conclusion

In combination with [3], we now have a complete characterization of how rank deficiency of the matrix Z =
(xiT ® yiT)f.(:1 occurs for all values of k = 2,...,9. We have also demonstrated a strong correspondence between
lines in P(C3*®), quadric surfaces in IP?, and quadratic Cremona transformations of IP?> under appropriate
genericity assumptions, which we have named the trinity correspondence. We conclude with a simple corollary
of our work that highlights the geometry of reconstructions of semi-generic point pairs of sizes six, seven and

eight.

Corollary 6.1. Let (x;, yi)f:1 c P? x P? be semi-generic. Then we get the following:

o When k = 6, Zg is rank deficient exactly when a reconstruction p1, . . ., ps, C1, C2 IS a Cayley octad (eight points
in the intersection of three generic quadrics).

o When k =17, Z7 is rank deficient exactly when the points p1, . . ., p7, €1, C2 of any reconstruction lie on a quartic
curve that arises as the intersection of two quadrics.

o When k = 8, Zg is rank deficient exactly when the points p1, ..., ps, C1, C2 of any reconstruction lie on a
quadric.

Proof. When k = 8, the matrix Zg is rank deficient exactly when Ny, is a line. By the semi-genericity of the point
pairs, this line is P-generic and does not contain any rank-one matrices. Any reconstruction of the point pairs
corresponds to a fundamental matrix F on this line, and by Lemma 3.3 the reconstruction lies on a quadric.
Similarly, if the point pairs have a reconstruction, given by some fundamental matrix F which lies on a quadric,
then there is a corresponding line through F in Nz, and Zs is rank deficient.

When k =7, Z7 is rank deficient exactly when N, is a plane. Given any reconstruction p1, ..., p7, €1, ¢z of
the point pairs, let F be the corresponding fundamental matrix. By semi-genericity of the point pairs, Nz, is a
generic plane that intersects D in a curve C of rank-two matrices. If we take any two lines through F in Nz, then
as in Lemma 3.3 we obtain two quadrics Q1, Q2 whose intersection is a quartic curve through the reconstruction.
Similarly, if any reconstruction corresponding to a fundamental matrix F’ lies on two distinct quadrics then
there are two distinct lines through F’ in Nz, and Z7 is rank deficient.
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For k = 6, Zs is rank deficient if and only if Nz, is a 3-dimensional plane. Equivalently, every rank-two
matrix F € Ny, lies on a net of lines in Nz, which corresponds to a net of quadrics containing the reconstruction
corresponding to F. It follows that if the reconstruction lies on a Cayley octad Q1 N Q2 N Q3 then Zg is rank
deficient. For the other direction, suppose that Zs is rank deficient. Then the reconstruction lies on a net of
quadrics Q1 N Q2 N Q3 and we need to show that this intersection contains exactly the 8 points {pi}le, cy, Co. If
p' € Q1NQ2N Qs is any point distinct from cy, ¢y, then m2(p’) " M1 (p') = 0 for all M € Nz,. Due to semi-genericity,
the hypothesis of [3, Lemma 6.1] holds for any subset of 5 point pairs, and it follows that (771(p"), 772(p")) = (Xi, yi)
for some i. We can conclude that p’ = p; and the intersection is indeed a Cayley octad. O
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