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1 Introduction

We are interested in solving the following problem, where ⊗ denotes the Kronecker product:
Problem �.�. Given k ≤ � points (xi , yi) ∈ �� × ��, consider the k × � matrix Zk whose rows are x�i ⊗ y�i for
i = �, . . . , k, i.e.,

Zk = ����
x�� ⊗ y��

...
x�k ⊗ y�k���� .

Delineate the geometry of point configurations {xi} and {yi} for which rank(Zk) < k.
Note that Problem �.� can be rephrased geometrically and generalized to any algebraic variety.

Problem �.�. Given k ≤ � points (xi , yi) ∈ �� × ��, delineate the geometry of the point configurations {xi} and{yi} for which the subspace spanned by the images of these points under the Segre embedding of �� × �� in �� has
dimension less than k − �.

Problem �.� arises in the study of reconstruction problems in �D computer vision. For background on the
problem and related work we direct the reader to Part I of this work [�] where Problem �.� was solved for k ≤ �.
The results relied on the classical invariant theory of points in �� and the theory of cubic surfaces. In this paper
we complete the characterization for the remaining cases k = �, �, �. Once again, the results can be phrased in
terms of classical algebraic geometry and invariants.

Semi-genericity

Throughout this paper, we will concern ourselves with point configurations that are semi-generic; a configuration
of k point pairs (xi , yi) is semi-generic if every subset of k − � point pairs is fully generic. That is, we say that
a property holds for a semi-generic choice of (xi , yi) ∈ (�� × ��)k if there is a nonempty Zariski open set
U ⊆ (�� × ��)k−� so that the property holds whenever {(xi , yi) : i �= j} lies in U for all j = �, . . . , k. Despite the
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name, semi-genericity is actually a stronger notion than usual genericity. We use this name because often the
property of interest for points in (�� × ��)k is that two algebraic conditions coincide, whereas generic points
satisfy neither algebraic condition. As a small example of this usage, let us instead consider a semi-generic pair of
points x� , x� in the line�. Consider f(x� , x�) = x�(x� − �)(x� − x�). Then f(x� , x�) = � if and only if x� = �, x� = �,
or x� = x�. For generic (x� , x�), f(x� , x�) �= �. Semi-genericity only allows us to exclude algebraic conditions on
x� and x� individually. In this example, a semi-generic pair of points (x� , x�) satisfies f(x� , x�) = � if and only if
x� = x�. This holds whenever x� , x� ∈ U = �\{�, �}.
Summary of results and organization of the paper

In [�] we studied Problem �.� algebraically by decomposing the ideal generated by the maximal minors of Zk into
its prime components and examining only those components that did not correspond to rank drop conditions for
a submatrix of Zk with at most k − � rows, called inherited conditions, for the rank deficiency of Zk . Through
this we obtained both algebraic conditions that completely characterized rank drop, and geometric conditions
that characterized rank drop under mild genericity assumptions. This method cannot be applied to the cases
k = �, �, � due to computational limitations. Additionally, in these cases, the novel component of rank drop has a
greater dimension than all the components of inherited conditions. Previously, for k ≤ � the novel component
had a strictly lower dimension than the variety of inherited conditions, and for k = � the novel component had
dimension equal to that of the inherited conditions variety. For this reason, we largely concern ourselves only
with the geometric characterization of rank drop for semi-generic configurations with k = �, �, �, rather than an
algebraic characterization beyond the vanishing of the maximal minors of Zk .

In Section �we establish a number of facts about Cremona transformations, cubic curves, and projective
reconstructions that we will use throughout the paper. In Section �we study the problem for k = � and prove that
Zk is rank deficient exactly when there is a quadratic Cremona transformation f : �� �� �� such that f(xi) = yi
for all i (Theorem �.�). To do so, we establish a correspondence between three sets: lines in the nullspace of Zk ,
quadrics passing through a projective reconstruction of the input point pairs, and Cremona transformations
sending xi �→ yi (Theorem �.��which depends on Theorem �.�). We refer to this as the trinity correspondence
and it is the foundation for all of our results in this paper. In Section � we study the problem for k = � and
prove that Zk is rank deficient exactly when there are cubic curves in each copy of ��, passing through all seven
points, and an isomorphism between these curves that sends xi �→ yi (Theorem �.�). We further prove that this
occurs exactly when seven particular cubic curves in each copy of �� are coincident and we provide an algebraic
characterization when this occurs (Theorem �.��). In Section � we answer Problem �.� for k = �, which is largely
straight-forward (Theorem �.�). We summarize our results in Section � and state a geometric consequence about
reconstructions of semi-generic point pairs of size six, seven and eight.

2 Background and tools

2.1 Quadratic Cremona transformations and cubic curves

Definition �.�. A quadratic Cremona transformation of �� is a birational automorphism f : �� �� �� defined as
f(x) = (f�(x) : f�(x) : f�(x)) where f� , f� , f� are homogeneous quadratic polynomials in x = (x� , x� , x�).

We drop theword “quadratic” from now on as all the Cremona transformations we consider will be quadratic.
Each Cremona transformation can be obtained by blowing up three points a� , a� , a� in the domain (called base
points) at which the transformation is not defined, and collapsing three lines γ� , γ� , γ� (called exceptional
lines) which contain pairs of base points: for distinct i, j, k, the line γi contains aj , ak . Generically, the base
points and exceptional lines of a Cremona transformation will all be distinct; when they are not all distinct,
the transformation is said to be degenerate. In this paper we will consider only non-degenerate Cremona
transformations.
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The inverse of a Cremona transformation f is also a Cremona transformation with base points b� , b� , b� and
exceptional lines τ� , τ� , τ� in the codomain of f . The map f sends γi �→ bi while f −� sends τi �→ ai . For simplicity
we will often refer to both the base points in the domain and the base points in the codomain (i.e. the base points
of f −�) as the base points of f . The standard Cremona transformation is

f(x� , x� , x�) = (x�x� : x�x� : x�x�) (�)

which has base points (� : � : �), (� : � : �), (� : � : �) and exceptional lines xi = � for i = �, �, �. This
transformation is an involution since it is its own inverse, and the base points and exceptional lines of f −� are
again (� : � : �), (� : � : �, (� : � : �) and xi = � for i = �, �, �. All Cremona transformations di�er from the
standard one only by projective transformations as stated below.

Lemma �.�. Let g be a Cremona transformation and let f be the standard Cremona involution. Then there are
projective transformations H� , H� such that g = H� � f � H�.

Proof. Let a� , a� , a� ∈ �� denote the base points of g. The coordinates (g� , g� , g�) of g form a basis for the three-
dimensional vector space of quadratics vanishing on the points a� , a� , a�. Another basis is h = (���� , ���� , ����)
where �i ∈ �[x, y, z]� defines the line joining aj and ak for every labeling {i, j, k} = {�, �, �}. Therefore there is
some invertible linear transformation H� for which g = H�h. Similarly, (�� , �� , ��) is a basis for �[x, y, z]� and
so there is a linear transformation H� for which H�(x, y, z) = (�� , �� , ��). The map h is given by f � H� and so
g = H� � f � H�. 2

Throughout this paper we are interested in �� × �� and we typically denote points in the first �� by x and
those in the second �� by y. The notation ��x and ��y will help to keep this correspondence clear.
Lemma �.�. Let f : ��x �� ��y be a Cremona transformation. If f and f −� have base points ex� = ey� = (� : � : �),
ex� = ey� = (� : � : �), ex� = ey� = (� : � : �) in the domain and codomain, then f has the form

f(x� , x� , x�) = (ax�x� : bx�x� : cx�x�) (�)

where a, b, c ∈ �\{�}.
Proof. Suppose that f = (f� , f� , f�) where f� , f� , f� are quadratic polynomials. Since f is undefined at the three
base points in the domain, it follows that f� , f� , f� contain only the monomials x�x� , x�x� , x�x�. Moreover, we
know that f(x� , x� , �) = (� : � : �). It follows that f� , f� do not contain the monomial x�x�. In examining the other
two exceptional lines, we find that f� , f� , f� contain only one monomial each and that f has the desired form. 2

We note that the choice of (a, b, c) is equivalent to specifying a single point correspondence p �→ q, where
neither p nor q lie on an exceptional line. It follows that a Cremona transformation has �� degrees of freedom:
six from the base points in the domain, six from the base points in the codomain, and two from the choice of a
single point correspondence.

Next we prove some facts about Cremona transformations and isomorphisms of cubic curves.

Definition �.�. Let f be a Cremona transformation with base points B(f). For a curve C ⊂ ��, define f(C) :=
f(C\B(f)), and for a given point p, let νp(C) be the multiplicity of the curve C at the point p.
Lemma �.� (See [�]). Let C ⊂ �� be a plane curve of degree n and let f be a Cremona transformation. Then

deg(f(C)) = �n − �
p∈B(f) νp(C). (�)

In particular, if C is a smooth cubic curve then f(C) is also a cubic curve if and only if the base points of f lie on C.
In this case, f −�(f(C)) = C implies that the base points of f −� lie on f(C).

Using this, we can prove the following result.

Lemma �.�. Let C be a smooth cubic curve and let f be a Cremona transformation with base points a� , a� , a� ∈ C
in the domain and b� , b� , b� in the co-domain. Then f(C) is a smooth cubic curve and �f : C → f(C), defined by
taking the closure of f|C\B(f), is an isomorphism.
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Proof. By Lemma �.�, f(C) is a cubic curve. Moreover, since f −�(f(C)) = C is a cubic curve, it also follows that
b� , b� , b� ∈ f(C). The fact that �f is an isomorphism follows from the corollary after [�, § �.�, Theorem �] which says
that a birational map between nonsingular projective plane curves is regular at every point, and is a one-to-one
correspondence. 2

Given a smooth cubic curve C, any automorphism g : C → C is of the form u �→ au + b with a = ±�, b ∈ C,
where addition is defined via the group law on C. Theorem �.� in [�] states that given a smooth cubic curve C and
an automorphism g : C → C defined by some multiplier a = ±� and some translation b ∈ C, the automorphism g
is induced by a Cremona transformation with base points a� , a� , a� if and only if a(a� + a� + a�) = �b, where
again, addition is with respect to the group law on C. In particular, every automorphism of C is induced by
a two-parameter family of Cremona transformations, which we obtain by picking the first two base points
arbitrarily and then letting the third base point be determined by the equation a� = a(�b − a� − a�).

We can use this to prove a converse to Lemma �.�.

Lemma �.�. Let f : C → C� be an isomorphism of smooth cubic plane curves. Then there is a two-parameter family
of Cremona transformations f �σ : �� �� �� such that f �σ |C = f . The base points of these Cremona transformations
will lie on the cubic curves.

Proof. Since C and C� are isomorphic, they have the sameWeierstraß form C�. There are therefore homographies
H� , H� ∈ PGL(�) such that H�(C) = C� = H�(C�) and therefore H−�� H�(C�) = C. Then H−�� H� � f : C → C is an
automorphism of C and it follows by [�, Theorem �.�] that this is induced by some two-parameter family of
Cremona transformations gσ ; the members of this family are obtained by picking the first two base points
arbitrarily on C and then letting the third base point be determined by the equation a� = a(�b − a� − a�). Then
f �σ := H−�� H� � gσ is the desired family of Cremona transformations. By Lemma �.� the base points of each of
these Cremona transformations lie on the cubic curves. 2

2.2 Fundamental matrices and projective reconstruction

In this paper we will be concerned with pairs of linear projections π� , π� : �� �� �� with non-coincident centers
c� , c�. In the context of computer vision, these arise as projective cameras which are linear projections from��(�) �� ��(�), represented by (unique) matrices A� , A� ∈ �(��×�) of rank three, such that πi(p) ∼ Aip for
all world points p ∈ ��(�). The notation ∼ indicates equality in projective space. The centers ci are the unique
points in��(�) such that Aici = � for i = �, �. The projections we consider in this paper are slightly more general
in that they work over�; they are represented by rank three matrices Ai ∈ �(��×�) and send p ∈ �� to Aip ∈ ��.

In the vision setting, the image formation equations Aip = λiπi(p) with i = �, � and some λi ∈ � imply that
for all p ∈ ��(�) one has

� = det�A� π�(p) �
A� � π�(p)� = π�(p)�Fπ�(p) (�)

for a unique matrix F ∈ �(��×�) of rank two, determined by (A� , A�); see [�, Chapter �.�]. This matrix F is called
the fundamental matrix of the cameras/projections (A� , A�) / (π� , π�). It defines the bilinear form BF(x, y) = y�Fx
such that BF(π�(p), π�(p)) = π�(p)�Fπ�(p) = � for all p ∈ ��(�). The entries of F are certain � × �minors of the
� × �matrix obtained by stacking A� on top of A�. The points ex := π�(c�) and ey := π�(c�) are called the epipoles
of F. It is well-known, see [�, Chapter �.�], that ex and ey are the unique points in �� such that Fex = � = (ey)�F.
Conversely, for every rank-two matrix F ∈ �(��×�) there exists, up to projective transformation, a unique pair of
cameras (A� , A�) / linear projections π� , π� : ��(�) �� ��(�) with fundamental matrix F, see [�, Theorem �.��].
All of these facts extend verbatim over �, and we call a rank two matrix F ∈ �(��×�) a fundamental matrix of(π� , π�) if it satisfies (�).

Equation (�) is a constraint on the images of a world point in two cameras. Going the other way, given k point
pairs (xi , yi) ∈ ��(�)×��(�), one can ask if they admit a projective reconstruction, namely a pair of real cameras
A� , A� and real world points p� , . . . , pk such that A�pi ∼ xi and A�pi ∼ yi for i = �, . . . , k. A necessary condition
for a reconstruction is the existence of a rank-two matrix F ∈ �(��×�) such that y�i Fxi = � for i = �, . . . , k, called
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a fundamental matrix of the point pairs (xi , yi)ki=�. Note that vec(F) lies in the nullspace of Zk = (x�i ⊗ y�i )ki=�.
The necessary and su�cient conditions for the existence of a projective reconstruction of (xi , yi)ki=� are (�) the
existence of a fundamental matrix F and (�) for each i, either Fxi = � and y�i F = �, or neither xi nor yi lie in the
right and left nullspaces of F; see [�]. In this paper, we extend the above definition to � and call any rank-two
matrix F ∈ �(��×�) that lies in the nullspace of Zk a fundamental matrix of the point pairs (xi , yi)ki=�.
3 The case k = 8
In this section we characterize the rank deficiency of Z = Z� = (x�i ⊗ y�i )�i=� when the point pairs (xi , yi) are
semi-generic. When k is fixed we often write Z instead of Zk .

Theorem �.�. For eight semi-generic point pairs (xi , yi)�i=�, the matrix Z drops rank if and only if there exists a
Cremona transformation f : ��x �� ��y such that f(xi) = yi for all i.
Proof of the if-direction. Suppose that we have a Cremona transformation f : ��x �� ��y such that f(xi) = yi for
i = �, . . . , �. After homographies we can assume that f is the basic quadratic involution mapping (x� , x� , x�) to(x�x� , x�x� , x�x�). Then

Z =
���������������

x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��
x��x��x�� x���x�� x���x�� x���x�� x��x��x�� x��x��� x��x��� x��x��� x��x��x��

���������������
(�)

which one can see is rank deficient because its first, fifth and ninth columns are the same. 2

In order to prove the only-if direction of Theorem �.�, we develop a number of tools in § �.�. The proof of
Theorem �.� will then be completed in Subsection �.�.

3.1 The trinity of lines, quadrics and Cremona transformations

In order to establish the trinity correspondence, we need to introduce some genericity conditions for our main
objects of interest. We say that a line � ⊂ �(��×�) is generic if it contains exactly three rank-two matrices. These
lines are generic in the usual sense, since almost all lines in �(��×�) intersect the degree-three determinantal
varietyD := {X ∈ �(��×�) : det(X) = �} in three distinct points. Furthermore, given a pair of linear projections
π� , π� : �� �� �� with distinct centers c� , c� we say that a smooth quadric Q through c� , c� is permissible if it
does not contain the line c�c� connecting the two centers.

Theorem �.� (Trinity correspondence). Consider the following three sets:

(�) L: the set of all generic lines � in �(��×�),
(�) Q: the set (up to projective equivalence) of pairs of linear projections π� , π� : �� �� �� with non-coincident

centers c� , c�, along with a permissible quadric Q ⊂ �� through c� , c�,
(�) C: the set of (non-degenerate) Cremona transformations from �� �� ��.
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Then there is a � : � correspondence between L and C, a � : � correspondence between L and Q, and a � : �
correspondence between Q and C, such that the diagram (�) commutes:

Q

L C

� : �� : � (�)

A similar theorem holds for lines which pass through exactly two rank-two matrices; however, we do not
prove it here.

We first show that for fixed linear projections π� , π� with centers c� �= c� ∈ ��, there is a bijection between
the quadrics that contain c� , c� and lines in �(��×�) through the fundamental matrix F of (π� , π�). This result is
well-known in the context of computer vision (see [�], [�]), but we write an independent proof below.

Lemma �.�. Fix a pair of linear projections π� , π� : �� �� �� with non-coincident centers c� , c� and let F be its
fundamental matrix. There is a � : � correspondence between the quadrics Q ⊂ �� through c� , c� and the lines� ⊂ �(��×�) through F.
Proof. Applying projective transformations, we can assume that c� = (� : � : � : �), c� = (� : � : � : �),
π�(u� : u� : u� : u�) = (u� : u� : u�) and π�(u� : u� : u� : u�) = (u� : u� : u�). If F = (Fij) is the fundamental
matrix of (π� , π�), then for all u ∈ �� we have

� = π�(u)�Fπ�(u) = �F, π�(u)π�(u)�� = ��F�� F�� F��
F�� F�� F��
F�� F�� F��

� ,�u�u� u�u� u�u�
u�u� u�� u�u�
u�u� u�u� u��

��. (�)

Since the entries in position (�, �) and (�, �) of π�(u)π�(u)� are the same, F is a scalar multiple of
�� � �
� � �
� −� �

�
and BF(x, y) = x�y� − x�y�. In particular, there exists some p ∈ �� with π�(p) = x and π�(p) = y if and only if
x�y� = x�y�.

Consider the image of φ : �� �� �(��×�) where φ(u) = π�(u)π�(u)�. By (�), φ(��) is contained in the
hyperplane F⊥ ⊂ �(��×�). Any matrix in �(��×�) can be written as sF + M for some scalar s and M ∈ F⊥.
Therefore, �sF + M, π�(u)π�(u)�� = π�(u)�Mπ�(u) (�)

since π�(u)�Fπ�(u) = �, and any linear function on the image of φ can be identified with its image in F⊥. On the
other hand, a line � in �(��×�) through F is of the form {sF + tM : (s : t) ∈ ��}, where M ∈ F⊥. Therefore, lines
through F are in bijection with linear functions on φ(��), up to scaling.

The monomials u�u� , u�u� , u�u� , u�u� , u�u� , u�� , u�u� , u
�
� form a basis for the �-dimensional vector space of

homogeneous quadratic polynomials that vanish on c� , c�. Thus any quadratic polynomial in �[u� , u� , u� , u�]�
vanishing at c� and c� can be written as �M, π�(u)π�(u)�� for a unique matrix M ∈ F⊥. This gives a linear
isomorphism between linear functions on the image of φ, up to global scaling (which have been identified with
lines through F), and quadrics passing though c� and c�. 2

Corollary �.�. Let π� , π� : �� �� �� be two linear projections with centers c� �= c� and fundamental matrix F. Let�F be a line in �(��×�) through F. The correspondence �F �→ Q, where Q ⊂ �� is a quadric passing through c� , c�,
is as follows. Let M ∈ �F be any M �= F. Then Q is cut out by the bilinear form

BM(π�(p), π�(p)) = π�(p)�Mπ�(p) = �. (�)

The following result is well-known and can be proven by writing a comprehensive list of the equivalence
classes, under projective transformation, of quadrics through a pair of distinct points and then testing an example
from each class.
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Lemma �.� ([�], [�], [�, Result ��.��]). Under the � : � correspondence in Lemma �.�, the line � corresponds to a
permissible quadric Q through c� , c� if and only if � is a generic line.

Next we prove that permissible quadrics through c� , c� give rise to quadratic Cremona transformations
from �� �� ��. Recall that all Cremona transformations we consider are assumed to be non-degenerate.
Lemma �.�. Fix πi : �� �� �� to be linear projections with non-coincident centers ci for i = �, �. A permissible
quadric Q through c� , c� defines a Cremona transformation f : �� �� �� such that f(π�(p)) = π�(p) for any
point p ∈ Q. The base points of f are π�(c�) and the image under π� of the two lines contained in Q passing
through c�. Similarly, the base points of f −� are π�(c�) and the image under π� of the two lines contained in Q
passing through c�.

Proof. Since c� , c� ∈ Q, the restriction of π� (and π�) to Q is generically � : �. Therefore, π�(Q) and π�(Q) are each
birational to a ��. The map f will be π� � (π�|Q)−�. Let us check that this is a quadratic Cremona transformation.

As before, we can take π�(u) = (u� : u� : u�) and π�(u) = (u� : u� : u�). Then c� = (� : � : � : �) is the kernel
of π�, and we are given that it lies on Q. As we saw already, these assumptions imply that Q is defined by the
vanishing of a polynomial of the form q(u) = αu�u� + βu� + γu� + δ where α ∈ � is a scalar, β, γ ∈ �[u� , u�] are
of degree �, and δ ∈ �[u� , u�] is of degree �. We can then write q as

q(u) = au� + b (��)

where a = (αu� + β), b = (γu� + δ) ∈ �[u� , u� , u�]with deg(a) = �, deg(b) = �. The map (π�|Q)−� is then given by
x �→ (−b(x) : x�a(x) : x�a(x) : x�a(x)) =: (u� : u� : u� : u�). (��)

To verify this, first check that π�(u) = a(x) ⋅ x where ⋅ denotes scalar multiplication. To see that u ∈ Q we compute

q(u) = u� ⋅ a(u� , u� , u�) + b(u� , u� , u�)= u� ⋅ a(π�(u)) + b(π�(u))= −b(x) ⋅ a(a(x) ⋅ x) + b(a(x) ⋅ x)= −b(x)a(x)a(x) + a(x)�b(x) = � (��)

where the last equality comes from the homogeneity of a, b with deg(a) = �, deg(b) = �.
Composing with π� we have

π� � (π�|Q)−�(x) = (−b(x) : x�a(x) : x�a(x)), (��)

whose coordinates are indeed quadratic. Since f = π� � (π�|Q)−� is defined by quadratics and generically � : �, it
is a quadratic Cremona transformation.

To show that this transformation is non-degenerate, we must demonstrate that it has three unique base
points. To understand the base points of f , recall that on a smooth quadric surface there are two distinct (possibly
complex) lines passing through each point. The images of the two lines passing through c� under the projection
π� will each be a single point. Therefore f is not well-defined on these image points in��. Similarly, f is undefined
on π�(c�) since π�(π−�� (π�(c�))) = π�(c�) = �. Therefore these three points are exactly the base points of f in the
domain. Finally, because c�c� �⊂ Q, these base points are all distinct. The base points in the codomain can be
found symmetrically. 2

Thus far we have shown that if we fix linear projections π� , π� : �� �� �� with centers c� �= c� in ��, then
there is a bijection between permissible quadrics through c� , c� and generic lines through the fundamental
matrix F of (π� , π�). Furthermore, there is a map sending each generic line through F (permissible quadric
through c� , c�) to the Cremona transformation from �� �� �� given by π� � (π�|Q)−�. These correspondences
are summarized in (��), where LF is the set of all generic lines through F and QF is the set of all permissible
quadrics through c� , c�.

QF

LF C

(��)
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We can make the correspondence between generic lines through F and Cremona transformations even more
explicit.

Lemma �.�. Given a generic line � ⊂ �(��×�), the set of points (x, y) ∈ �� × �� satisfying yTMx = � for all
M ∈ � coincides with the closure of the graph {(x, f(x)) : x ∈ �� \ B(f)} of a unique Cremona transformation
f : �� �� ��. This gives a � : � correspondence between generic lines � ⊂ �(��×�) and Cremona transformations
f : �� �� ��. Moreover, when F ∈ � has rank two, this Cremona transformation agrees with that induced by the
maps LF → QF → C.

Proof. Since � is generic, we may assume without loss of generality that � = span{F,M}where F has rank two.
This gives a pair of linear projections π� , π� : �� �� �� with non-coincident centers c� , c� with fundamental
matrix F. In the �:� correspondence LF ↔ QF given in Corollary �.�, the line � corresponds to the permissible
quadric Q given by the zero set of q(u) = π�(u)�Mπ�(u). By Lemma �.�, the Cremona transformation f : �� �� ��
corresponding to q(u) in the correspondenceQF → C satisfies f(π�(p)) = π�(p) for all p ∈ Q \{c� , c�}. Since π�(Q)
is dense in ��, the graph of f and the set {(π�(p), π�(p)) : p ∈ Q\{c� , c�}} ⊂ �� × �� are both two-dimensional,
as is their intersection. Each is the image of an irreducible variety under a rational map and so the Zariski-
closures of these two sets are equal. By construction, this is contained in the zero sets of yTFx and yTMx, as
π�(p)TFπ�(p) = � for all p ∈ �� and π�(p)TMπ�(p) = � for all p ∈ Q. Since F,M are linearly independent, the
variety {(x, y) : yTFx = yTMx = �} in �� × �� is two-dimensional. It therefore coincides with the Zariski-closure
of the graph of f .

Conversely, suppose that f : �� �� �� is a Cremona transformation. We claim that {f(x)x� : x ∈ ��} spans a
�-dimensional linear space V ⊂ ��×�. Up to projective transformations on ��x and ��y , we can take f to be the
standard Cremona involution, giving

f(x)x� =�x�x�x� x��x� x��x�
x��x� x�x�x� x�x��
x�x�� x�x�� x�x�x�

� . (��)

One can check explicitly that seven distinct monomials appear in this matrix and so the span of all such matrices
is �-dimensional. Projectively, the orthogonal complement gives a line � = V⊥ in �(��×�). By definition, � is
exactly the set of all matrices M such that y�Mx = � for all (x, y) in the graph of f . Under the assumption
that f is the standard Cremona transformation, � is the span of the diagonal matrices F� = diag(�, −�, �) and
F� = diag(�, �, −�); in general �will be projectively equivalent to this line. We can verify that this line contains
exactly the three rank-two matrices F� , F� , F� + F�, and is therefore generic. 2

Remark �.�. Given � = span{F,M} we can solve for the coordinates of the corresponding Cremona transforma-
tion f : �� �� �� as follows. Given x ∈ ��, the corresponding point y = f(x) will be the left kernel of the � × �
matrix �Fx Mx�. The coordinates of y can be written explicitly in terms of the �× �minors of this matrix, which
are quadratic in x. Note that, up to scaling, this formula for y is independent of the choice of basis {F,M} for �.
Any point x ∈ �� for which �Fx Mx� has rank at most � will be a base point of this Cremona transformation. In
particular, if Fx = �, then x is a base point of f . As we will see below, there are three such points when ranging
over all rank-two matrices in �.

The next two results finish o� the proof of the trinity correspondence (�) and the proof of Theorem �.�.

Lemma �.�. Let � be a generic line in �(��×�), i.e., � contains three rank-two matrices F� , F� , F�.
(�) Then � gives rise to three permissible quadrics Q� , Q� , Q� ⊂ ��, each containing the centers of a pair of

linear projections with fundamental matrices F� , F� , F� respectively.
(�) The quadrics Q� , Q� , Q�, in conjunction with their distinguished linear projections, all induce the same

Cremona transformation f . The base points of f are ex� , e
x
� , e

x
� in the domain and e

y
� , e

y
� , e

y
� in the codomain,

where exi and e
y
i generate the right and left nullspaces of Fi respectively.

Proof. A generic line � ⊂ �(��×�) intersects the determinantal varietyD cut out by det X = � in three rank-two
matrices F� , F� , F�. Each Fi is the fundamental matrix of a pair of linear projections�� �� �� with non-coincident
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centers, and by Lemma �.� and Lemma �.� there is a unique permissible quadric Qi through these centers
corresponding to the line �. By Lemma �.�, each of these quadrics induces the same Cremona transformation
f : �� �� ��.

To conclude, we show that the base points of f and f −� are ex� , ex� , ex� and ey� , ey� , ey� , respectively. We show that
ex� , e

x
� , e

x
� are the base points of f and the argument for the base points of f −� follows symmetrically. First, note

that each exi is a base point of f . This follows from Remark �.�, since each Fi ∈ � has rank two. Since the Cremona
transformation f has three base points, it only remains to show that these points are distinct. If ex� = ex� , then by
linearity Fex� = � for all F ∈ � = span{F� , F�}. This would imply that rank(F) ≤ � for all F ∈ �, contradicting the
genericity of the line �. 2

Corollary �.��. The correspondence Q→ C is � : �.

Proof. Let Q = (Q, π� , π�) ∈ Q be a permissible quadric along with a pair of linear projections that correspond
to f ∈ C. If F is the fundamental matrix associated to (π� , π�), then there exists a unique generic line � through F
corresponding to Q by Lemma �.� and Lemma �.�. With the full trinity correspondence, this line � contains three
fundamentalmatrices F� , F� , F� corresponding toQ� ,Q� ,Q� ∈ Q that eachproduce the Cremona transformation f .
Moreover, by Lemma �.� this line � is the unique line in �(��×�) corresponding to f . Therefore if Q� ∈ Q is such
that Q� �→ f it follows that π�� , π�� have one of F� , F� , F� as their fundamental matrix and that the quadric Q� is
produced by the line �. We conclude that Q� is, up to projective equivalence, one of Q� ,Q� ,Q�. 2

This completes the proof of Theorem �.�. A consequence of Theorem � is the following generalization of
Problem �.�.

Theorem �.��. Given a generic codimension-two subspace V ⊂ �(��×�), the intersection of V with R�, the Segre
embedding of �� ×��, is a del Pezzo surface of degree six, and can be described explicitly via the trinity correspon-
dence. Specifically, if g : �� �� �� is the Cremona transformation corresponding to the line V⊥, then

V ∩ R� = {g(x)x� : x ∈ ��} ∪ {xg−�(x)� : x ∈ ��}.
Proof. For convenience, we denote

V� := {g(x)x� : x ∈ ��} ∪ {xg−�(x)� : x ∈ ��}.
To see that this is a degree-six del Pezzo surface, we show that V� can be obtained as the blowup of �� in three
non-collinear points, specifically, at the base points of g: ex� , e

x
� , e

x
� . Let πx : V� �� �� be the morphism defined

by πx(vu�) = u. Let the �yi be the exceptional lines of g such that g−�(�yi ) = exi . Then πx is � : � except on three
mutually skew lines {y(exi )� : y ∈ �yi } which are taken to the points {exi }. Therefore V� is the blowup of �� in
three non-collinear points and is a del Pezzo surface of degree six.

In particular, V� must be Zariski closed and it follows by Lemma �.� that V ∩ R� = V�. 2

3.2 Back to the proof of Theorem �.�

Before we can adapt the trinity correspondence to the reconstruction of point pairs, we need to address a certain
kind of degeneracy. Given a configuration of point pairs P = (xi , yi)ki=� consider the matrix Z = (x�i ⊗ y�i )ki=� and
its right nullspaceNZ .

Lemma �.��. Suppose that P = (xi , yi)ki=� admits a generic line � ⊆ NZ (passing through three rank-two matrices
F� , F� , F�). Then for all j = �, �, � there is no i such that y�i Fj = � = Fjxi .
Proof. Suppose, without loss of generality, y�� F� = � = F�x�. From the matrix F� and the line � through it we
obtain a pair of projections π� , π� with centers c� , c� and a smooth permissible quadric Q passing through them.
Then π�(c�) and π�(c�) are the left and right epipoles of F�, but since y�� F� = � = F�x�, it must be that y� ∼ π�(c�)
and x� ∼ π�(c�). On the other hand, for any point p on the line connecting c� , c�, we have

π�(p)�F�π�(p) = π�(c�)F�π�(c�) = y�� F�x� = �
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since F� ∈ NZ . Therefore, by Corollary �.�, p ∈ Q and thus c�c� ⊂ Q, which is a contradiction since Q is
permissible. 2

Even though a rank-two matrix F on a generic line inNZ cannot have y�i F = � = Fxi , it might be that one of
the equations hold. We name this type of degeneracy in the following definition.

Definition �.��. A generic line � ⊆ NZ is P-degenerate if there exists a rank-two matrix F ∈ � such that either
Fxi = � or y�i F = � for some i. We call a generic line that is not P-degenerate a P-generic line.

Any rank-two matrix F in a P-generic line will give a reconstruction c� , c� , p� , . . . , pk of the point pairs P.
That is, there will be linear projections π� , π� : �� �� �� with centers c� , c� so that π�� (p)Fπ�(p) = � for all
p ∈ �� and (xi , yi) = (π�(pi), π�(pi)) for all i = �, . . . , k. A smooth quadric Q will contain two lines through any
of its points.

Definition �.��. A quadric Q ⊂ �� passes degenerately through a reconstruction c� , c�, {pi}ki=� of P if it passes
through these k + � points and contains the line through a center point ci and a reconstructed point pj .
Definition �.��. A Cremona transformation f : �� �� �� maps xi �→ yi degenerately if xi is a base point of f
and yi lies on the corresponding exceptional line, or symmetrically, yi is a base point of f −� and xi lies on the
corresponding exceptional line.

Generically, the trinity correspondence specializes to the reconstruction of point pairs in an intuitive way.

Theorem �.��. Given a configuration of point pairs P = (xi , yi)ki=� and the matrix Z = (x�i ⊗ y�i )ki=�, define the
following subsets of L,Q, C:

(�) LP: the set of all P-generic lines � ⊆ NZ := nullspace(Z),
(�) QP: the set (up to projective equivalence) of all permissible quadrics passing non-degenerately through some

reconstruction c� , c� , p� , . . . , pk of P,
(�) CP: the set of all Cremona transformations f : �� �� �� mapping xi �→ yi non-degenerately for all i =

�, . . . , k.

Then there is a � : � correspondence between the elements of LP and CP , a � : � correspondence between the
elements of LP and QP , and a � : � correspondence between the elements of QP and CP as in the diagram

QP

LP CP

� : �� : � (��)

Proof. We need to show that the trinity correspondence (�) can be restricted to the sets LP ,QP , CP . We will
therefore examine each leg of this diagram.

(LP → QP) We begin by considering a P-generic line � = span{F,M} ⊆ NZ . Without loss of generality, we can
take F to be one of the three fundamental matrices in �with corresponding projections π� , π� : �� �� �� with
non-coincident centers c� , c� that give reconstructions p� , . . . , pk ∈ �� of the point pairs P. By Lemma �.�, the
line � corresponds to a smooth permissible quadric Q defined by the vanishing of q(u) = π�(u)TMπ�(u). For any
point pi in the reconstruction, we have

q(pi) = π�(pi)�Mπ�(pi) = y�i Mxi = � (��)

since M ∈ � ⊂ NZ . Therefore Q passes through the reconstruction c� , c� , p� , . . . , pk . It remains to show that it
does so non-degenerately. By Lemmas �.� and �.�, a reconstructed point pi lies on one of the lines through c� (or
symmetrically through c�) if and only if there exists M ∈ � such that Mxi = � (or symmetrically y�i M = �). Since� is P-generic there is no such M, implying that the quadric passes through the reconstruction non-degenerately.
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(QP → CP) Consider a permissible quadric Q passing through a reconstruction c� , c� , p� , . . . , pk of P with
linear projections π� , π�. As in Theorem �.�, the tuple (Q, π� , π�) induces a Cremona transformation f := π� �(π�|Q)−�. By Lemma �.�, the base points of f are the images of the point c� and each of the lines in Q passing
through c�. Since pi �= c� and does not belong to these lines, the point xi = π�(pi) is not a base point of f .
Similarly, the base points of f −� are the images of the point c� and the lines in Q passing through c� under π�, so a
symmetric argument shows that yi = π�(pi) is not a base point of f −�. Therefore f maps xi = π�(pi) to yi = π�(pi)
non-degenerately.

(CP → LP) Consider a Cremona transformation f : �� �� �� such that xi �→ yi non-degenerately for all i.
As in Lemma �.�, f corresponds to a unique line � ⊂ �(��×�) defined by the property that f(x)�Mx = � for all
M ∈ � and x ∈ ��. In particular, y�i Mxi = � for all M ∈ � and i = �, . . . , k, implying that � ⊆ NZ . By assumption,
no point xi is a base point of f and no point yi is a base point of f −�. By Lemma �.�, it then follows that Mxi �= �
and y�i M �= � for all M ∈ �. Therefore � is not P-degenerate. 2

Remark �.��. The assumptions of non-degeneracy can be removed from the �:� correspondence between generic
lines inNZ and Cremona transformations mapping xi �→ yi . Extending this to quadrics is more subtle, as some
rank-two matrices F ∈ � ⊂ NZ may not give full reconstructions of the point pairs P.

Proof of the only-if direction of Theorem �.�. For � semi-generic point pairs, the matrix Z = (x�i ⊗ y�i )�i=� is rank
deficient exactly whenNZ =: � is a line. This line � is generic because it is also the nullspace of any submatrix
of Z of size � × � and the corresponding seven point pairs are generic. Pick a subset of seven point pairs, say(xi , yi)�i=�, from the original eight pairs. Since these seven point pairs are generic, and � is also generic, we can
assume that Fxi �= � and y�i F �= � for any rank-two matrix F ∈ � and all i = �, . . . , �. On the other hand, if we
pick a di�erent set of seven point pairs, say (xi , yi)�i=�, then � is also the nullspace of the corresponding Z� and by
the same argument as before, Fxi �= � and y�i F �= � for any rank-two matrix F ∈ � and all i = �, . . . , �. Therefore,� is P-generic.

Since � is P-generic, by Theorem �.��, � gives rise to a Cremona transformation f : ��x �� ��y such that
f(xi) = yi for i = �, . . . , �. This finishes the proof of Theorem �.�. 2

We end this section by demonstrating the trinity correspondence for an example, beginning with a single
quadric through a reconstruction.

Example �.��. Consider the quadric Q ⊂ �� defined by the equation x� + y� − z� − w� = � and the following ��
points p� , . . . , p� , c� , c� ∈ Q:

c� = (� : � : � : �) c� = (� : � : � : �)
p� = (� : �� : �� : �) p� = (�� : � : � : ��)
p� = (�� : � : �� : �) p� = (� : � : � : �)
p� = (� : � : � : �) p� = (� : � : � : �)
p� = (� : � : � : �) p� = (� : � : � : �).

The two projections (cameras) with centers c� , c� have matrices

A� = ���
� � � −�
� � � �
� � � �

��� , A� = ���
� � � �
� � � −�
� � � �

���
and we can calculate the image points and epipoles:
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ex = (−� : � : �) ey = (� : −� : �)
x� = (� : �� : ��) y� = (� : �� : ��)
x� = (� : � : �) y� = (�� : −�� : �)
x� = (�� : � : ��) y� = (�� : � : ��)
x� = (� : � : �) y� = (� : � : �)
x� = (� : � : �) y� = (� : � : �)
x� = (−� : � : �) y� = (� : −� : �)
x� = (−� : � : �) y� = (� : −� : �)
x� = (� : � : �) y� = (� : −� : �).

The point pairs (xi , yi) give us the matrix
Z� =
���������������

�� �� �� �� ��� ��� �� ��� ���
�� −�� � � � � �� −�� ��
��� �� ��� �� �� �� ��� �� ���
� �� �� �� �� �� �� �� ��
�� �� �� �� � �� �� �� ��−� � � �� −� � � � �−� � � �� −� � � � �
�� −� � � � � �� −�� ��

���������������
which we can check is rank deficient and has nullspace spanned by the vectors

m� = (−�, �, �, −�, −�, �, �, �, �), m� = (�, �, −�, �, �, −�, �, �, �).
The reconstruction we started with has fundamental matrix

F = ���
� � �
� � �−� −� �

���
and if we take a di�erent matrix

M = ���
−� −� �
� −� �
� � �

���
in the nullspace of Z� we can verify that A��MA� yields the original quadric Q:

(x, y, z, w)A��MA�(x, y, z, w)� = (x, y, z, w)�����
−� −� � �
� −� � �
� � � �
� � � −�

����� (x, y, z, w)� = −x� − y� + z� + w� .

The other two possible choices for fundamental matrices in the nullspace of Z� are

F� = ���
−� −� �
� −� �−� −� �

��� and F� = ���
−� −� −�
� −� −�
� � �

��� ,
which have epipoles e�x = (� : � : �), e�y = (−� : � : �), e�x = (� : −� : �) and e�y = (� : � : �). Moreover, we can
verify that there is a unique Cremona transformation

f(x� , x� , x�) = (x�� − x�� + x�� , x�� + �x�x� + x�� − x�� , �x�x�)
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such that f(xi) = yi for all i. This Cremona transformation has base points exactly matching the epipoles. Finally,
we can check that each camera center lies on two real lines on the quadric Q, parameterized by (a : b) ∈ �� as��x = (a : b : b : a), ��x = (a : −b : b : a), ��y = (−b : a : b : a), and ��y = (b : a : b : a)
whose images are exactly the other two possible pairs of epipoles/base points (e�x , e�y) and (e�x , e�y).
4 The case k = 7
We now come to the case of k = � point pairs. In order to understand the case of seven point pairs, we first need
to understand six generic point pairs (xi , yi)�i=�. In this case, the nullspace NZ of the matrix Z = (x�i ⊗ y�i )�i=�
is projectively a plane and NZ ∩ D =: C is a cubic curve in �(��×�) lying in the plane NZ . By our genericity
assumption, Cmisses all rank-one matrices inD and hence every point on C is a fundamental matrix of (xi , yi)�i=�.
Let κx and κy denote the quadratic maps that take a rank-two matrixM ∈ �(��×�) to its right and left nullvectors
respectively. As a consequence of the classical theory of blowups and cubic surfaces as discussed in [�], the maps
C → κx(C) =: Cx ⊂ ��x and C → κy(C) =: Cy ⊂ ��y are isomorphisms when (xi , yi)�i=� is generic; we will go into
more detail on the nature of these isomorphism in Subsection �.�.�.

C

��x ⊃ Cx Cy ⊂ ��yκyκx (��)

By the composition κy � κ−�x , we get that Cx and Cy are isomorphic cubic curves. However, this isomorphism
is not particularly useful; for instance, it does not take xi �→ yi . By construction, the curves Cx and Cy consist
exactly of all possible epipoles of the fundamental matrices of (xi , yi)�i=� in ��x and ��y . We therefore call Cx and
Cy the right and left epipolar curves of (xi , yi)�i=�. We will see that these cubic curves are closely tied to both rank
drop and the trinity relationship established in Theorem �.��.

Example �.�. Consider the following six point pairs:

x� = (� : � : �) y� = (� : � : �) x� = (� : � : �) y� = (� : � : �)
x� = (� : � : �) y� = (� : � : �) x� = (� : � : �) y� = (� : � : �)
x� = (� : � : �) y� = (� : −� : �) x� = (−� : �� : �) y� = (� : �� : �)

Figure �: The cubic curves Cx and Cy from Example �.�, with xi and yi labeled.
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Figure � shows the curves Cx and Cy . Observe that xi ∈ Cx and yi ∈ Cy for all i = �, . . . , �, a fact we will prove in
Section �.�. The curves Cx and Cy are cut out by gx(u) = � and gy(v) = � in ��x and ��y where
gx(u) = ���u�� + ���u��u� + ���u�u�� + ���u�� − ����u��u� − ���u�u�u� − ����u��u� + ����u�u�� + ����u�u�� ,
gy(v) = ���v�� − ���v��v� − ��v�v�� + ���v�� − ����v��v� + ���v�v�v� − ����v��v� + ����v�v�� + ����v�v�� .

In Section �.� we use classical invariant theory to derive the polynomials gx and gy .

Given seven point pairs (xi , yi)�i=�, denote the epipolar curves obtained by excluding the ith point pair as
C �ix and C �iy . In the event that these curves are equal for all choices of i, we denote Cx := C ��x = ⋅ ⋅ ⋅ = C ��x and
Cy := C ��y = ⋅ ⋅ ⋅ = C ��y . We will see that this equality is necessary (Theorem �.�) and su�cient (Theorem �.��) for
Z� = (x�i ⊗ y�i )�i=� to be rank deficient.

The maps κx , κy are not the only way to derive the epipolar curves Cx , Cy; it is also possible to obtain them
via the trinity correspondence (��). This will be the subject of Subsection �.� and will allow us to prove the
following result:

Theorem �.�. For � semi-generic point pairs (xi , yi)�i=�, the matrix Z� is rank deficient if and only if there exist
cubic curves C� through x� , . . . , x� and C� through y� , . . . , y� as well as an isomorphism f : C� → C� such that
xi �→ yi . Moreover, if this holds then C� = Cx and C� = Cy .

This is the first of the twomain results in this section and it is themore geometric theorem, to be proved at the
end of Subsection �.�. In Subsection �.�.�we use the theory of cubic surfaces as in [�] to obtain explicit equations
for the epipolar curves. In Subsection �.�.� we use these explicit equations to characterize rank deficiency of Z�
using �� algebraic equations and to prove our second main result, Theorem �.��, which is the more algebraic
theorem. Finally, in Section �.� we collect some further results outside the assumption of semi-genericity.

4.1 Rank drop and cubic curves

Before addressing the cases of six generic point pairs and seven semi-generic point pairs, we establish an analogue
of Lemma �.� to show how general projective planes in �(��×�) give rise to Cremona transformations of cubic
curves.

Lemma �.�. Let P ⊂ �(��×�) be a projective plane not containing any rank-one matrix. The set of points (x, y) ∈�� × �� satisfying yTMx = � for all M ∈ P coincides with the closure of the graph {(x, f(x)) : x ∈ CPx } of the
restriction of a Cremona transformation f : �� �� �� to a cubic curve CPx . Moreover, there is a two-dimensional
family of Cremona transformations f� : �� �� ��, indexed by generic lines � ⊂ P as in Lemma �.�, with the same
restriction to CPx .

Proof. The curve CPx consists of the set of points x ∈ �� for which there exists an M ∈ P with Mx = �. When
P = NZ , this is the epipolar curve Cx described above. By choosing a basis {M� ,M� ,M�} for P we can write any
M ∈ P as aM� + bM� + cM�. Given x ∈ �� there exists (a : b : c) ∈ �� with (aM� + bM� + cM�)x = � if and only
if det �M�x M�x M�x� = �. Therefore CPx is defined by the vanishing of this determinant, which is a cubic
form in x� , x� , x�. Symmetrically the cubic curve CPy defined by the vanishing of the determinant of the matrix
with rows y�Mj coincides with Cy when P = NZ .

Let � = span{M� ,M�} ⊂ P ⊂ �(��×�) be a generic line. By Lemma �.�, there is a Cremona transformation
f� : �� �� �� whose graph is the set of points (x, y) ∈ �� ×�� satisfying yTMx = � for allM ∈ �. As in Remark �.�,
the map f� transforms x into ker �M�x M�x�. For x ∈ CPx except the three base points of f�, the left kernel of�M�x M�x� is also the left kernel of the rank-two � × �matrix �M�x M�x M�x�, which is independent of
the choice of � = span{M� ,M�} ⊂ P.

Note that the graph {(x, f�(x)) : x ∈ CPx } and the set of points (x, y) ∈ ��x × ��y satisfying yTMx = � for all
M ∈ P have the same projection onto ��x , namely CPx . For any x ∈ CPx , the corresponding point y is given by
f�(x) = ker �M�x M�x M�x�. 2
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4.1.1 Six point pairs. Let (xi , yi)�i=� be a set of six generic point pairs, Z = (xi , yi)�i=� and let F be any choice of
fundamental matrix (i.e., a rank-two matrix on the projective planeNZ). Genericity guarantees a reconstruction
p� , . . . , p� , c� , c� ∈ ��, of (xi , yi)�i=� from F. Recall that c� , c� are the centers of camera projections π� , π� and
p� , . . . , p� are world points such that π�(pj) = xj and π�(pj) = yj for all j = �, . . . , �.

SinceNZ is a two-dimensional plane, it contains a pencil of lines through F, see (��) and (��), which corre-
sponds to a pencil of quadrics Qλ , each passing through the reconstruction. The intersection of these quadrics,
also obtainable as the intersection of any two distinct quadrics in the pencil, is a quartic space curveW ⊂ ��
that must also pass through the reconstruction. Since c� , c� are onW , π�(W) ⊂ ��x and π�(W) ⊂ ��y are cubic
curves. We will see that these cubic curves are independent of the choice of F, and that they are exactly the
epipolar curves Cx and Cy . We will use this derivation to study their special properties arising from the trinity
relationship. The following lemma assumes the setup just described.

Lemma �.�. For six generic point pairs (xi , yi)�i=� we have the following.
(�) The cubic curves π�(W) and π�(W) are the right and left epipolar curves Cx , Cy , respectively; in particular,

they are independent of the choice of F.
(�) The points xi lie on Cx and the points yi lie on Cy for i = �, . . . , �.
(�) There exists a two-parameter family of Cremona transformations f� : ��x �� ��y , indexed by lines � in the

projective planeNZ , such that the following holds:� f�(xi) = yi for i = �, . . . , �,� the restriction of f� to a map Cx → Cy is independent of �, and� the base points of all the Cremona transformations f� lie in Cx , Cy .
Proof. Let F be a fundamental matrix inNZ . Since (xi , yi)�i=� is generic, F can be any element of the cubic curve
C = NZ ∩ D, and we can use F to obtain a reconstruction consisting of world points p� , . . . , p� and cameras
corresponding to linear projections π� , π� : �� �� ��.

The quartic space curve W is defined by quadrics of the form q(u) = π�(u)�Mπ�(u) where M ∈ P ∩ F⊥.
Therefore π�(W) contains the cubic plane curve Cx defined by {x ∈ �� : ∃M ∈ NZ such that Mx = �}. Since
c� ∈ W , π�(W) is a cubic plane curve and so these must be equal. A symmetric argument shows that π�(W) = Cy .
SinceW contains each point pi , this also implies that xi = π�(pi) belongs to Cx and yi = π�(pi) belongs to Cy for
i = �, . . . , �.

By Lemma �.�, for any generic line � ⊂ NZ the restriction of the Cremona transformation f� : �� �� �� to the
cubic Cx is independent of the choice of �. By Theorem �.�� we have f�(xi) = yi for all i. As in Lemma �.�, the
base points of f� are the right kernels of the three rank-two matrices F� , F� , F� ∈ � and therefore belong to Cx .
Similarly, the base points of f −�� are the left kernels of these matrices and so belong to Cy . 2

Remark �.�. Given a rank two matrix F ∈ NZ , it may be the case that Fxi = � (or y�i F = �) for some i. However,
even in this case we can still apply the trinity (�) to obtain a pencil of quadrics (and a pencil of Cremona
transformations), and from them the cubic curves Cx , Cy with the isomorphism between them. Therefore, even
if � is such that xi is a base point of f�, the restriction of f� to a map Cx → Cy , as in Lemma �.�, would still satisfy
xi �→ yi .

4.1.2 From six points to seven. The trinity correspondence has allowed us to prove a number of properties of
the epipolar curves corresponding to six generic point pairs. In particular, we know that there is an isomorphism
f : Cx → Cy that sends xi �→ yi for i = �, . . . , � which is induced by a two-parameter family of Cremona
transformations ��x �� ��y . For seven generic point pairs, the following corollary holds.
Lemma �.�. Let (xi , yi)�i=� be seven semi-generic point pairs. Then the rank of Z = (x�i ⊗ y�i )�i=� drops if and only if
there exist cubic curves C�, C� through x� , . . . , x� and y� , . . . , y� respectively, as well as a two-parameter family of
Cremona transformations f� : ��x �� ��y such that f(xi) = yi for all i and the family is well-defined on the restriction
C� → C�. Furthermore, if this holds then C� = Cx and C� = Cy .
Proof. (⇒) Under semi-genericity, Z is rank deficient if and only if the nullspace of Z and the nullspaces of each
of its � × � submatrices are identical. In particular, if Pi is the subset of � point pairs obtained by excluding the
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ith, then, using the notation from Theorem �.��, LP� = ⋅ ⋅ ⋅ = LP� . Applying Lemma �.�, we find that the pairs
of curves C �ix , C �iy are identical for all i. Accordingly, we omit the superscripts and identify them as Cx and Cy
respectively. Similarly, the family of Cremona transformations satisfies CP� = ⋅ ⋅ ⋅ = CP� , and, as in Lemma �.�,
restricting this family to the map Cx → Cy yields a well-defined isomorphism with the property xi �→ yi for all i.

(⇐) For this direction, we use Theorem �.��. In particular, the existence of such a family of Cremona
transformations implies that dim(LP) = dim(CP) = � as illustrated in (��). Since there is a two-dimensional
family of lines � in the projective nullspace of Z, we must have rank(Z) < �. We now need to verify that C� = Cx
and C� = Cy . It follows by Lemma �.� that the curves C� , C� contain all possible base points of the Cremona
transformations f�. Furthermore, by Lemma �.� the sets of all such base points in the domain and codomain is
exactly the set of all possible right and left epipoles. It follows that Cx ⊂ C� and Cy ⊂ C� and therefore the curves
are equal. 2

Proof of Theorem �.�. (⇒) This direction follows from Lemma �.�. In particular, the isomorphism is exactly that
obtained by restricting the family of Cremona transformations to the map Cx → Cy .

(⇐) Assume that such curves C� , C� exist, as well as the desired isomorphism C� → C�. By Lemma �.�
there is a two-parameter family of Cremona transformations ��x �� ��y whose restriction C� → C� yields this
isomorphism. It follows from Lemma �.� that Z is rank deficient and that C� = Cx and C� = Cy . 2

4.2 The Cremona hexahedral form of Cx and Cy

In this subsection we return to the original characterization of the cubic curves Cx and Cy as the images under
the quadratic maps κx and κy of the curve C as in (��). We will see that it is possible to derive explicit equations
for these curves using the classical theory of cubic surfaces and a special invariant-theoretic representation of
them called the Cremona hexahedral form. These ideas intersect substantially with the characterization of rank
drop of Z� in [�]; in particular, we draw on the connection between six generic points pairs (xi , yi)�i=� and cubic
surfaces. We begin by explicitly characterizing the curve C = NZ ∩D as the planar section of a cubic surface; we
will then use this characterization in conjunction with material from [�] to find explicit equations for the curves
Cx and Cy .

4.2.1 Six generic point pairs again. Suppose we have six generic point pairs (xi , yi)�i=�; in particular, Z =(x�i ⊗ y�i )�i=� has full rank. Let Z �j denote the �× �matrix obtained by deleting the jth row of Z. ThenNZ �j ≅ �� and
S �j := NZ �j ∩D is a smooth cubic surface inNZ �j by the genericity assumption, and hence all points on it have rank
two. It was shown in [�] that S �j is the blowup of ��x at ({xi}�i=� \ {xj}) ∪ { �xj} where �xj is a new point that arises
from {xi}�i=� \ {xj}, see Lemma �.� of [�] for its derivation and formula. Symmetrically, S �j is also the blowup of({yi}�i=� \ {yj}) ∪ { �yj} in ��y where �yj is a new point determined by {yi}�i=� \ {yj}. The quadratic maps κ �jx : S �j → ��x
and κ

�j
y : S �j → ��y are � : � except on the exceptional lines of the blowup. The curve C is given by

C = NZ ∩D = NZ �j ∩D ∩ (x�j ⊗ y�j )⊥ = S �j ∩ (x�j ⊗ y�j )⊥ .
Therefore, C cuts each of the exceptional lines of the blowup in one point, and therefore the restrictions of κx , κy
to C are isomorphisms.

For a set of six points u� , . . . , u� ∈ ��, set [ijk] := det[ui uj uk] and define[(ij)(kl)(rs)] := [ijr][kls] − [ijs][klr]. (��)

This is a classical invariant of u� , . . . , u� under the action of PGL(�) whose vanishing expresses that the lines
uiuj , ukul and urus meet in a point; compare [�, pp. ���]. Using these invariants, Coble [�, page ���] defines the
following six scalars:
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�a = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)]�b = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)]�c = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)]�d = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)]�e = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)]�f = [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] + [(��)(��)(��)] (��)

Coble also defines the following six cubic polynomials that vanish on u� , . . . , u�:

a(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u]
b(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u]
c(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u]
d(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u]
e(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u]
f(u) = [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] + [��u][��u][��u] (��)

These cubic polynomials are covariants of u� , . . . , u� under the action of PGL(�).
It is a well-known result in algebraic geometry that every smooth cubic surface is the blowup of six points

in ��. The blowup procedure furnishes an algorithm to find a determinantal representation of the surface.
However, these representations do not directly reflect the six points that were blown up. The Cremona hexahedral
form of a smooth cubic surface provides explicit equations for the surface in terms of the points being blown up.
It consists of the following polynomials:

z�� + z�� + z�� + z�� + z�� + z�� = �
z� + z� + z� + z� + z� + z� = ��az� + �bz� + �cz� + �dz� + �ez� + �f z� = �. (��)

Furthermore, the cubic surface can also be parameterized by{(a(u) : b(u) : c(u) : d(u) : e(u) : f(u)) : u ∈ ��}. (��)

We will now use the above facts to obtain explicit equations (that depend on (xi , yi)�i=�) of the epipolar
curves Cx and Cy . In what follows, we index �a, . . . , �f and a(u), . . . , f(u) with x (respectively y) when ui = xi
(respectively ui = yi).
Definition �.�. Given six point pairs (xi , yi)�i=� we define the following cubic polynomials:

gx(u) := �ayax(u) + �bybx(u) + �cycx(u) + �dydx(u) + �eyex(u) + �fy fx(u),
gy(v) := �axay(v) + �bxby(v) + �cxcy(v) + �dxdy(v) + �exey(v) + �fx fy(v). (��)

Given seven point pairs (xi , yi)�i=�, let g �ix and g �iy denote the above cubic polynomials obtained from the point
pairs (xj , yj)j �=i .

The polynomials gx , gy played a prominent role in the rank drop of Z� in [�].

Lemma �.�. Given generic point pairs (xi , yi)�i=�, let C = NZ ∩ D, Cx = κx(C) ⊂ ��x and Cy = κy(C) ⊂ ��y . Also
let Sx be the blowup of ��x at x� , . . . , x� and let Sy be the blowup of ��y at y� , . . . , y�, each expressed in Cremona
hexahedral form. Then the following hold true:

(�) The plane cubic curves Cx and Cy have defining equations gx(u) = � and gy(v) = � respectively.
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(�) The cubic curve C ≅ Sx ∩ Sy which has equations
z�� + z�� + z�� + z�� + z�� + z�� = �
z� + z� + z� + z� + z� + z� = ��axz� + �bxz� + �cxz� + �dxz� + �exz� + �fxz� = ��ayz� + �byz� + �cyz� + �dyz� + �eyz� + �fyz� = �. (��)

(�) The cubic curve Sx ∩ Sy is the image of Cx under the blowup of ��x at x� , . . . , x� and also the image of Cy
under the blowup of ��y at y� , . . . , y�.

Proof. We begin with the first item. By Lemma �.�, xi ∈ Cx for all i and by Definition �.�, gx(xi) = � for all i
since the cubic polynomials in (��) vanish on the xi . For fixed i = �, . . . , �, consider the � point pairs left after
excluding (xi , yi) and let (ui , vi) be the unique new point pair (cf. Lemma �.� in [�]) such that the configuration�(x� , y�), . . . , (x� , y�), (ui , vi)� \ {(xi , yi)} (��)

is rank deficient. For convenience, we assume without loss of generality that i = �. In other words, if Z �� =(xi ⊗ yi)�i=� then (u� , v�) is the unique point pair such that S �� = NZ �� ∩D can be obtained both by blowing up ��x
in the points x� , . . . , x� , u� and by blowing up ��y in the points y� , . . . , y� , v�. It follows that the curve C ⊂ S �� cuts
the exceptional lines corresponding to u� , v� exactly once each and therefore u� ∈ Cx and v� ∈ Cy; it follows
symmetrically that ui ∈ Cx and vi ∈ Cy for all i = �, . . . , �. One can check using a computer algebra package that
gx(u�) = � and gy(v�) = � after fixing points as in Lemma �.� in [�]; it follows symmetrically that gx(ui) = � and
gy(vi) = � for all i. Finally, since Cx and the curve cut out by gx share �� distinct points, they must be the same
cubic curve; similarly we can conclude that Cy is cut out by gy . This finishes the proof of the first claim.

To prove the second and third claims, recall that κx : C → Cx is an isomorphism. Let κ�x : Sx → ��x and
κ�y : Sy → ��y be the blow down morphisms. The Cremona hexahedral forms of Sx and Sy give

Sx ∩ Sy = {z ∈ Sx : �ayz� + ⋅ ⋅ ⋅ + �fyz� = �}. (��)

By (��),
Sx = {(ax(u) : bx(u) : cx(u) : dx(u) : ex(u) : fx(u)) : u ∈ ��} (��)

and since Cx is cut out by gx(u) = �, we get that
Sx ∩ Sy = {(ax(u) : . . . : fx(u)) : �ayax(u) + ⋅ ⋅ ⋅ + �fy fx(u) = �, u ∈ ��x} = {(ax(u) : . . . : fx(u)) : u ∈ Cx}. (��)

Therefore, Sx ∩ Sy is exactly the image of Cx under the blowup of ��x at x� , . . . , x�. Restricting κx to κ�x|Sx∩Sy :
Sx ∩ Sy → Cx we obtain an isomorphism, and we have Sx ∩ Sy ≅ Cx ≅ C, which proves the second claim. Finally,
we note that by a symmetric argument, Sx ∩Sy is also exactly the image of Cy under the blowup of��y at y� , . . . , y�
proving the third claim as well. 2

Example �.� (Example �.�, continued). One can verify that the polynomials (��) define the same cubic curves as
those in Example �.�. We then pick a specific point x� = (� : ���� : ���) ∈ Cx . Using a computer algebra package,
one can compute the unique point y� = (������� : ������� : ������) such that Z = (xi , yi)�i=� is rank deficient. It
is straight-forward to verify that y� ∈ Cy . Moreover, there is a two-parameter family of Cremona transformations
f� such that xi �→ yi for i = �, . . . , � and for all members of this family f�(x�) = (������� : ������� : ������),
which lines up with Lemma �.�. These points can be seen on the cubic curve in Figure �.

4.2.2 Algebraic conditions for the rank deficiency of Z7. We are now ready to present our main algebraic result
for rank drop given k = � point pairs. We begin with a basic lemma that will connect all of our results in the
main theorem.

Lemma �.��. Let (xi , yi)�i=� be seven semi-generic points. Then Z = (x�i ⊗ y�i )�i=� is rank deficient if and only if
C �� = ⋅ ⋅ ⋅ = C �� where C �i is the cubic curveNZ �i ∩D.
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Figure �: The cubic curves Cx and Cy , with x7 and y7 highlighted.

Proof. By semi-genericity, Z is rank deficient if and only ifNZ = NZ �� = ⋅ ⋅ ⋅ = NZ �� for each � × � submatrix Z �i of Z.
Since C �i = NZ �i ∩D, the matrix Z is rank deficient if and only if C = C �� = ⋅ ⋅ ⋅ = C ��. 2

The following theorem, which is the main result of this subsection, allows us to check for rank drop without
computing Cremona transformations.

Theorem �.��. For seven semi-generic point pairs (xi , yi)�i=�, the following are equivalent:
(�) Z = (x�i ⊗ y�i )�i=� is rank deficient.
(�) We have xi ∈ C �ix and yi ∈ C �iy for all i = �, . . . , �.
(�) We have g �ix(xi) = � and g �iy(yi) = � for all i = �, . . . , �.
(�) All seven cubic curves in ��x are equal: C ��x = ⋅ ⋅ ⋅ = C ��x .
(�) All seven cubic curves in ��y are equal: C ��y = ⋅ ⋅ ⋅ = C ��y .

Proof. By Lemma �.�, (�) is equivalent to (�). We next prove that (�) implies (�) and (�). If Z is rank deficient,
then C �� = ⋅ ⋅ ⋅ = C �� by Lemma �.��. Applying the quadratic maps κx and κy we obtain (�) and (�). To prove the
reverse direction we will show (�) implies (�); the proof that (�) implies (�) is symmetric. In particular, we will
show that C �ix = C �jx if and only if C �i = C �j . For ease of notation, we assume i = � and j = �. Consider the five point
pairs (xi , yi)�i=� and the matrix Z� = (x�i ⊗ y�i )�i=�. Then S = NZ� ∩ D is a cubic surface and κx : S → ��x and
κy : S → ��y are � : � except on the six exceptional lines in each case. Moreover, we can obtain the cubic curves
C �� and C �� by intersecting this surface with a plane. We can conclude that κx(C ��) = κx(C ��) only if C �� = C ��. It then
follows that (�) implies (�), and symmetrically, (�) implies (�).

We now prove that (�) implies (�). Fix i ∈ {�, . . . , �}. Then xj ∈ C �ix for all j �= i by Lemma �.�. Moreover, since
C �ix = C �jx by hypothesis it follows that xi ∈ C �ix . The other equalities follow symmetrically.

Finally, we prove that (�) implies (�). Since xj ∈ C �ix and yj ∈ C �iy for j �= i by construction, the additional
hypothesis (�) gives that x� , . . . , x� ∈ ��i=� C �ix and y� , . . . , y� ∈ ��i=� C �iy . We fix the first five point pairs (xi , yi)�i=�
and consider the � × �matrix Z� = (x�i ⊗ y�i )�i=�. Consider the cubic surface S = NZ� ∩D paired with the maps κx
and κy . The cubic curves C

�� and C �� are obtained by intersecting S with a plane. By genericity, the four matrices
κ−�x (x�), κ−�x (x�), κ−�y (y�), κ−�y (y�) are all distinct. Moreover, they are all contained in

C �� ∩ C �� = (NZ �� ∩D) ∩ (NZ �� ∩D) = NZ ∩D (��)

which can also be realized as the intersection of the cubic surface S with two planes. IfNZ were one-dimensional,
it would intersectD in at most three points. Since we have found � > � distinct points inNZ ∩D,NZ must have
projective dimension ≥ �, implying (�). 2
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4.3 Beyond semi-genericity

Given seven semi-generic point pairs (xi , yi)�i=�, we have now fully characterized the conditions under which
the matrix Z� will be rank deficient. This characterization was given geometrically (Theorem �.�) and then
algebraized using �� polynomials (Theorem �.��). We now move away from the assumptions of semi-genericity.
We will first examine how Z� becomes rank deficient without these assumptions and, to some extent, generalize
our algebraic condition (Theorem �.��) to this case. We will also consider configurations where (xi , yi)�i=� are
fully generic, and therefore Z� must have full rank; in this case, we can use the cubic curves C

�i
x , C
�i
y and their

associated polynomials to characterize the epipoles of the possible fundamental matrices in terms of classical
invariants.

We begin by presenting two relatively simple, but highly degenerate, conditions for the rank deficiency of Z�.
One of these conditions is that Z� will be rank deficient if {xi} and {yi} are equal up to a change of coordinates.
Lemma �.��. Suppose we have point pairs (xi , yi)�i=� and an invertible projective transformation H such that
Hxi = yi for all i. Then Z = (x�i ⊗ y�i )�i=� is rank deficient.
Proof. Since rank drop is a projective invariant, we can assume xi = yi for all i. Then the equations y�i Fxi =
x�i Fxi = �, i = �, . . . , � hold for all � × � skew-symmetric matrices F ∈ Skew�. Since Skew� is a three-dimensional
vector space, dim(NZ) ≥ � and rank(Z) ≤ � − � = �. 2

The second simple condition is that the rank of Z will drop if the points in either �� lie in a line.
Lemma �.��. Suppose (xi , yi)�i=� is such that either {xi} or {yi} are on a line. Then Z = (x�i ⊗ y�i )�i=� is rank deficient.
Proof. Suppose the yi ’s are on a line. Then we may assume that yi = (mi , �, �) after a change of coordinates.
Then simple column operations on Z show that it is rank deficient. 2

Remark �.��. We note that the existence of such configurations does not necessarily imply that the rank drop
variety is reducible. We suspect that these configurations are in the Zariski closure of the generic rank drop
component.

It is simple to check that in both of the above cases we have g �ix(xi) = � = g �iy(yi) for i = �, . . . , �, suggesting
a possible generalization of Theorem �.��(�). This is possible to some extent. In particular, even without any
genericity assumptions, if Z� is rank deficient then these �� polynomial equations hold.

Lemma �.��. If Z = (x�i ⊗ y�i )�i=� is rank deficient, then g �ix(xi) = � and g �iy(yi) = � for all i.
Proof. Let I be the ideal generated by the �� polynomials g �ix(xi) and g �iy(yi) for i = �, . . . , � in the polynomial ring�[xij , yij : i = �, . . . , �, j = �, �, �], treating (xi , yi)�i=� as symbolic. If Z is the appropriate symbolic � × �matrix
then it can be verified using Macaulay� that I is contained in the ideal generated by the maximal minors of Z. 2

However, the converse does not hold in general.We present two examples of highly degenerate configurations
where the �� equations hold, but Z� is not rank deficient.

Example �.��. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � � �
� � � � � � �
� � � � � � �

��� Y = ���
� � � � � � �
� � � � � � �
� � � � � � �

��� (��)

where x� , x� , x� , x� , x� are on a line and x� = x�. Similarly, y� , y� , y� , y� , y� are on a line and y� = y�. We can
verify that g �ix(xi) = � = g �iy(yi) for i = �, . . . , � and that the matrix Z is not rank deficient. In particular, NZ is
spanned by the two singular matrices ���

� � −�
� � �
� � �

��� ���
� � �
� � �
� � �

���
the latter of which has rank one.
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Example �.��. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � � �
� � � � � � �
� � � � � � �

��� Y = ���
� � � � � � �
� � � � � � �
� � � � � � �

��� (��)

where {xi}�i=� , {yi}�i=� and {xi}�i=� , {yi}�i=� are on distinct lines in each image. We can verify that g �ix(xi) = � = g �iy(yi)
for i = �, . . . , � and that the matrix Z is not rank deficient. In particular, NZ is spanned by the two rank one
matrices ���

� −� �
� � �
� � �

��� ���
−� � �
� � �
� � �

��� .
While the focus of this paper has been on the conditions under which Z drops rank, the tools we have

developed have applications beyond rank drop. In particular, for a fully generic configuration of seven point
pairs we can use the cubic curves C �ix and C �iy to find the possible epipoles of fundamental matrices. While this
has minimal practical application, it is significant in that the characterization is entirely in terms of classical
projective invariants.

Lemma �.��. Let (xi , yi)�i=� be generic point pairs. In particular, we assume that NZ is one-dimensional and
contains three rank-two matrices F� , F� , F�, two of which may be complex. Then the epipoles of these fundamental
matrices ex� , e

x
� , e

x
� and e

y
� , e

y
� , e

y
� can be obtained as the unique three points in the intersections��i=� C �ix ⊂ ��x and��i=� C �iy ⊂ ��y .

Proof. Consider the two cubic curves C ��x and C ��x . The intersection A�,� = C ��x ∩ C ��x will contain exactly nine points.
We know that x� , . . . , x� ∈ A�,�. Additionally, let (u� , v�) be the pair of rank drop points, as in Lemma �.� of [�],
associated to (xi , yi)�i=�. Then, by Lemma �.��we have u� ∈ A�,� as well. There should be three more points in the
intersection. Let f be the unique Cremona transformation f : ��x �� ��y such that xi �→ yi for i = �, . . . , �. This f is
contained in the two-parameter family of Cremona transformations ��x �� ��y such that xi �→ yi for i = �, . . . , �.
By Lemma �.� the base points of f are contained in C ��x . By a symmetric argument these base points are also
contained in C ��x and we can conclude that these three base points are the last three points in the intersection. By
Lemma �.� these base points are exactly the epipoles of the fundamental matrices, and it follows by symmetry
that e�x , e�x , e�x ∈ ��i=� C �ix . Clearly the points x� , . . . , x� , u� are not in��i=� C �ix generically, and thus these three base
points are the unique points in the intersection of all seven cubic curves. Symmetrically, ey� , e

y
� , e

y
� are the unique

points in��i=� C �iy . 2

Example �.��. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � −�� −�
� � � � � �� �
� � � � � �� �

��� Y = ���
� −�� −�� −� −� � �−� �� �� � �� � �
� � � � � � �

��� (��)

We can then construct the seven cubic curves C �ix and C �iy in each ��. See Figure �. Each set of seven cubic curves
has three common intersection points. If we compute NZ we find that there are exactly three possible real
fundamental matrices. These matrices have epipoles

e�x = (� : � : �) e�y = (� : � : �)
e�x = (−� : � : �) e�y = (−� : � : �)
e�x = (� : � : �) e�y = (� : � : �) (��)

and we can see that these are exactly the three common intersection points.
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Figure �: The cubic curves C �ix and C �iy . The intersection points are exactly the three possible epipoles associated to the fundamental
matrices.
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5 The case k = 9
We finish by characterizing the rank deficiency of Z = (x�i ⊗ y�i )�i=�, and this time we make no assumptions on
the point pairs (xi , yi)�i=�. A simple algebraic characterization of rank drop in this case is that det(Z) = �. This
is a single polynomial equation but as mentioned already, typically this equation does not shed much light on
the geometry of the points {xi} and {yi} that makes Z rank deficient. By the methods of invariant theory, it is
possible to write det(Z) as a polynomial in the brackets [ijk]x and [ijk]y constructed from {xi} and {yi}which
may or may not o�er geometric insight. Below we provide a geometric characterization of rank drop in terms of
the two point sets in ��x and ��y . The result is straight-forward.

Recall that if a, b are distinct points in ��, then a × b ∈ �� is the normal of the line containing a and b,
i.e., u ∈ Span{a, b} if and only if u�(a × b) = �. In what follows we let �ab denote the line spanned by a, b. Its
normal a × b = [a]×b where [a]× is the � × � skew symmetric matrix that expresses cross products with a as a
matrix-vector multiplication.

Theorem �.�. The matrix Z = (x�i ⊗ y�i )�i=� is rank deficient if and only if there is a projective transformation
T : ��x �� ��y such that y�i (Txi) = � for i = �, . . . , �, or equivalently, yi lies on the line with normal vector Txi for
i = �, . . . , �. This manifests in three possible ways depending on the rank of T:
(�) There exists a line � ⊂ ��x and a line �� ⊂ ��y such that for each i, we have xi ∈ � or yi ∈ �� (both may happen

for a given i).
(�) There are two points e ∈ ��x and e� ∈ ��y and a ��-homography sending the pencil of lines through e to the

pencil of lines through e� such that �exi �→ �e�yi for each i.
(�) There is some T ∈ PGL(�) such that yi lies on the line with normal vector Txi for each i.

Proof. The first statement is trivial. The matrix Z is rank deficient if and only ifNZ ⊂ �� contains at least one
point. Representing such a point by T ∈ �(��×�) we have (x�i ⊗ y�i )vec(T) = y�i (Txi) = � for i = �, . . . , �.
(�) If rank(T) = �, then T = uv� for some u, v ∈ ��. Therefore, (y�i u)(v�xi) = � for i = �, . . . , � which is

equivalent to saying that for each i, at most one of u�yi or v�xi can be non-zero. Therefore there exist
lines � (with normal v) and �� (with normal u) such that for each i, we have xi ∈ � or yi ∈ ��.

(�) Suppose that rank(T) = �. Let e ∈ ��x be the unique point in the right nullspace of T and let e� ∈ ��y be the
unique point in the left nullspace of T . The pencil of all lines through e (respectively e�) can be identified
with ��.
Pick any line � not passing through e and suppose its normal is n. Then the projective transformation
T[n]× is a ��-homography that takes �exi → �e�yi ; see [�, Result �.�]. Indeed, suppose the intersection of �
and �exi is ui . Since ui is orthogonal to both n and e × xi , we have ui ∼ n × (e × xi) = [n]×(e × xi). Since ui
lies on �exi , we have ui = λe + �xi for some scalars λ, �, and since � does not contain e, we obtain ui �= e
which implies that � �= �. Therefore

T[n]×(e × xi) = Tui = λTe + �Txi = � + �Txi ∼ Txi
which says that the normal of �exi is mapped to Txi by T[n]×. We just need to argue that Txi is the normal
of �e�yi to finish the proof. For this check that (e�)�Txi = � since (e�)�T = � and y�i Txi = � by assumption.
Therefore the line spanned by e� and yi has normal Txi .

(�) If rank(T) = � then T is a homography (an invertible projective transformation). Then y�i Txi = � for
i = �, . . . , � implies that yi lies on the line with normal Txi for each i. 2

Remark �.�. In the proof of (�), if xi = e for some i then [e]×e = � and similarly, if yj = e� for some j then[e�]×yj = �. Therefore, the ��-homography will not work for the indices i, j where xi = e or yj = e�.
Remark �.�. As we saw, if seven of the nine points on either side are on a line then the rank of Z� will drop.
Condition (�) allows for the situations where s points with � ≤ s ≤ � on one side are on a line and the � − s
complementary y points are on a line.
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Example �.�. (�) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � −� � � �
� � � −� � � � � −�
� � � � � � � � −���� Y = ���

−� � � � � � � −� �
� � −� � � � � � �
� � � � � � � � �

��� . (��)

One can check that all � × � submatrices of Z have rank �. If the coordinates of �� are u� , u� , u� then x� , . . . , x�
lie on the line u� = � and y� , . . . , y� lie on the line u� = � and Z must drop rank by Condition (�). Indeed, the
unique element in the nullspace of Z is the rank-one matrix

T = ���
� � �
� � �
� � �

��� . (��)

(�) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

��� Y = ���
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

��� . (��)

Again, Z and all its � × � submatrices have rank �. The unique element inNZ is the rank-two matrix

T = ���
� � −�
� � �−� � �

��� . (��)

The points e = e� = (�, �, �)� are generators of the right and left nullspaces of T . Note that x� = e and y� = e�.
Pick �� = (�, �, �)�. Then e� �� �= �. Now check that [e�]×Y = (T[ ��]×)[e]×X. Indeed,

[e]× = [e�]× = ���
� � �
� � −�−� � �

��� , [ ��]× = ���
� −� �
� � −�−� � �

��� ,
and [e�]×Y = ���

� � � � � � � � �
� � −� −� −� −� � −� −�−� � � � −� � � −� �

���∼ ���
� � � � � � � � �
� � −� −� � −� −� −� −�
� −� � � � � −� −� �

��� = (T[ ��]×)[e]×X (��)

except in the columns of X and Y where xi = e and yj = e�.
Here is another example where the epipoles do not appear among the xi ’s or yj ’s. Take xi to be the columns

of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � � � � �
� � � � � � � −� −�
� � � � � � � � −���� , Y = ���

� � � � � � � � �
� � � � � � � � −�
� � � � � � � −� −���� . (��)

The unique element inNZ is the rank-two matrix

T = ���
� � �−� −� �−� � �

��� . (��)
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The points e = (−�, �, −�)� and e� = (�, �, −�)� generate the right and left nullspaces of T . Pick �� = e. Then
e�e �= �. Now check that [e�]×Y = (T[e]×)[e]×X. Indeed,

[e�]×Y = ���
� � � � � � � −� −�−� −� −� −� −� −� −� � �−� −� −� −� −� � −� −� −����∼ ���
� −�� −� −�� −�� −�� −�� � ��
� �� � �� �� � �� � �
�� �� � � �� � � � ��

��� = (T[e]×)[e]×X. (��)

(�) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = ���
� � � � � � � � �
� � � � � � � � −�
� � � � � � � � �

��� Y = ���
� � � � � � � � ��
� � � � � � � � �
� � � � � � � � −���� . (��)

The unique element inNZ is the rank-three matrix

T = ���
� � −�
� � �−� � �

��� . (��)

By construction, y�i Txi = � for i = �, . . . , �.
6 Conclusion

In combination with [�], we now have a complete characterization of how rank deficiency of the matrix Z =(x�i ⊗ y�i )ki=� occurs for all values of k = �, . . . , �. We have also demonstrated a strong correspondence between
lines in �(��×�), quadric surfaces in ��, and quadratic Cremona transformations of �� under appropriate
genericity assumptions, which we have named the trinity correspondence. We conclude with a simple corollary
of our work that highlights the geometry of reconstructions of semi-generic point pairs of sizes six, seven and
eight.

Corollary �.�. Let (xi , yi)ki=� ⊂ �� × �� be semi-generic. Then we get the following:� When k = �, Z� is rank deficient exactly when a reconstruction p� , . . . , p� , c� , c� is a Cayley octad (eight points
in the intersection of three generic quadrics).� When k = �, Z� is rank deficient exactly when the points p� , . . . , p� , c� , c� of any reconstruction lie on a quartic
curve that arises as the intersection of two quadrics.� When k = �, Z� is rank deficient exactly when the points p� , . . . , p� , c� , c� of any reconstruction lie on a
quadric.

Proof. When k = �, the matrix Z� is rank deficient exactly whenNZ� is a line. By the semi-genericity of the point
pairs, this line is P-generic and does not contain any rank-one matrices. Any reconstruction of the point pairs
corresponds to a fundamental matrix F on this line, and by Lemma �.� the reconstruction lies on a quadric.
Similarly, if the point pairs have a reconstruction, given by some fundamental matrix F which lies on a quadric,
then there is a corresponding line through F inNZ� and Z� is rank deficient.

When k = �, Z� is rank deficient exactly whenNZ� is a plane. Given any reconstruction p� , . . . , p� , c� , c� of
the point pairs, let F be the corresponding fundamental matrix. By semi-genericity of the point pairs,NZ� is a
generic plane that intersectsD in a curve C of rank-two matrices. If we take any two lines through F inNZ� then
as in Lemma �.�we obtain two quadrics Q� , Q� whose intersection is a quartic curve through the reconstruction.
Similarly, if any reconstruction corresponding to a fundamental matrix F� lies on two distinct quadrics then
there are two distinct lines through F� inNZ� and Z� is rank deficient.
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For k = �, Z� is rank deficient if and only if NZ� is a �-dimensional plane. Equivalently, every rank-two
matrix F ∈ NZ� lies on a net of lines inNZ� , which corresponds to a net of quadrics containing the reconstruction
corresponding to F. It follows that if the reconstruction lies on a Cayley octad Q� ∩ Q� ∩ Q� then Z� is rank
deficient. For the other direction, suppose that Z� is rank deficient. Then the reconstruction lies on a net of
quadrics Q� ∩ Q� ∩ Q� and we need to show that this intersection contains exactly the � points {pi}�i=� , c� , c�. If
p� ∈ Q�∩Q�∩Q� is any point distinct from c� , c�, then π�(p�)�Mπ�(p�) = � for allM ∈ NZ� . Due to semi-genericity,
the hypothesis of [�, Lemma �.�] holds for any subset of � point pairs, and it follows that (π�(p�), π�(p�)) = (xi , yi)
for some i. We can conclude that p� = pi and the intersection is indeed a Cayley octad. 2
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