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I. INTRODUCTION

This work investigates the robot state estimation problem
within a non-inertial environment. The proposed state esti-
mation approach relaxes the common assumption of static
ground in the system modeling. The process and measure-
ment models explicitly treat the movement of the non-inertial
environments without requiring knowledge of its motion in
the inertial frame or relying on GPS or sensing environmental
landmarks. Further, the proposed state estimator is formulated
as an invariant extended Kalman filter (InEKF) [1] with the
deterministic part of its process model obeying the group-
affine property, leading to log-linear error dynamics. The
observability analysis confirms the robot’s pose (i.e., position
and orientation) and velocity relative to the non-inertial
environment are observable under the proposed InEKF.

II. METHODOLOGY

This section presents the proposed process and measure-
ment models. The proposed InEKF aims to estimate the
robot’s position py, velocity vy, and orientation R relative
to the dynamic ground frame {D}, expressed in {D}. The
references frame is shown in Fig. 1a). The sensors considered
are an inertial measurement unit (IMU) attached to the robot,
another one fixed to the dynamic ground, and joint encoders.

We express the state on a matrix Lie group G C R%*? as:

R: Vi Pt
X;:= (013 1 0. ey
0,3 0 1

Let g be the associated Lie algebra. Using the IMU motion
dynamics, we obtain the process model as:

d . .
%Xi = —DUth + XtBUt + (DWz)AXt — Xt(BWt)/\7 (2)
where the isomorphism, (-)" : R4 — g maps any vector

¢ € RY™MS (o the g, and for i € {D, B}
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and *a,, '@, are the linear acceleration and angular velocity
data returned by IMUs, w, is additive white Gaussian noise,
[ |x denotes the skew-symmetric matrix of a vector, and
0,,,xn 1S an m X n zero matrix.
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The robot’s stance foot position relative to {D} is defined
as d;. When the robot’s foot has static contact with the
ground of the non-inertial environment, the foot velocity
satisfies %(dt) = 03,1 [2]. Taking the first time derivative of
the kinematics relationship associate with the leg odometry,
the measurement model can be expressed as:

—vi+ [Dd)t} P = (Rt [BGJt] T |:D(:Jt:| y Rt) s(ar) @
+ RtJ((lt)élt:

where J(q;) is the Jacobian of leg odometry s(q;) and q; is
the time derivative of the joint angle qy.
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Fig. 1. Experiment setup and results. a) Reference frames and notations
used in the filter derivation. b) Estimation results of the proposed InEKF.

III. RESULTS

To simulate the dynamic ground motion, the treadmill is
programmed to simultaneously perform a sinusoidal pitch

10° sin%t and a sway motion 0.05mcos Zt. During the

experiment, robot stands on the treadmill. "lghe experiment
results in Fig. 1b) illustrates that the proposed filter exhibits
a fast convergence rate and small estimation errors due to
the explicit treatment of the ground motion. Notably, under
the proposed filter, the robot’s relative base yaw and position
converge to the ground truth, supporting the observability
analysis results that they are observable during ground mo-
tion. In contrast, the absolute yaw and position are not
observable under the previous filter design [3].
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