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Abstract 
We study the algebra A generated by the Hardy operator H and the operator Mx of 

multiplication by x on L2[0,1]. We call A the Hardy-Weyl algebra. We show that its 
quotient by the compact operators is isomorphic to the algebra of functions that are 
continuous on Λ and analytic on the interior of Λ for a planar set Λ = [−1,0]∪D(1,1), which 
we call the lollipop. We �ind a Toeplitz-like short exact sequence for the C∗algebra 
generated by A. 

We study the operator Z = H−Mx, show that its point spectrum is (−1,0]∪D(1,1), and 
that the eigenvalues grow in multiplicity as the points move to 0 from the left. 

1 Introduction 
The classical Weyl algebra is generated by the operators of multiplication by x, denoted Mx, 
and differentiation, denoted by D. These operators satisfy the commutator relation 

 DMx − MxD = 1. (1.1) 

The algebra generated by these relations has been studied extensively in both algebra and 
operator theory—see e.g. the books [17, 15, 22, 10]. In operator theory, the study is 
complicated by the fact that no bounded operators satisfy (1.1). In this note, we shall study 
the associated algebras that arise when one replaces the differentiation operator D by a 
bounded integration operator. 

The Hardy operator H is the bounded operator de�ined on L2[0,1] by 

 

Let V = MxH denote the Volterra operator 

 
which is a right inverse of D. These operators give rise to a new set of relations instead of 
(1.1), namely 
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V Mx − MxV = −V 2 (1.2) 
HMx − MxH = −HMxH = −HV. (1.3) 

We shall use L2 to mean L2[0,1] throughout. 

De�inition 1.4. Let A denote the closure of the unital algebra generated by H and Mx in the 
norm topology of B(L2). We call A the Hardy-Weyl algebra. 

When is an operator in A? Can all the elements be described? Since the commutator of H 
and Mx is compact, we �irst describe the quotient of A by the compact operators. De�ine 
Λ, a subset of the plane, by 

Λ = [−1,0] ∪ D(1,1). 

We call Λ the lollipop. The lollipop algebra A(Λ) is the Banach algebra of functions that are 
continuous on Λ and analytic on int(Λ), equipped with the maximum modulus norm. Let K 
denote the compact operators on L2, and let KA = K ∩ A. 

Theorem 1.5. There is a Banach algebra isomorphism γ from A(Λ) onto A/KA. It is given by 

γ(f) = f|[−1,0](−Mx) + f|D(1,1)(H) − f(0). 

Let θ : A → A(Λ) be de�ined by θ(T) = γ−1([T]), where [T] is the projection of T onto A/KA. 
As a corollary to Theorem 1.5 we obtain that every element T of A can be written uniquely as 
 T = Mφ + g(H) + K, (1.6) 

where φ ∈ C([0,1]), g is in A(D(1,1)), φ(0) = g(0), and K ∈ KA. 

If we look at C∗(A), the C∗-algebra generated by A, we get something similar to the Toeplitz 
algebra short exact sequence. See [4, 9, 21] for some recent results on the Toeplitz algebra, 
and [3, 12, 18, 19] for some applications. The lollipop algebra is replaced by the functions 
that are continuous on the boundary. 

Theorem 1.7. There is a short exact sequence of C∗-algebras 

0 → K → C∗(A) → C(∂Λ) → 0. 

In addition to studying the algebra generated by H and Mx, one may also study the smaller 
algebra generated by V and Mx. 

De�inition 1.8. The algebra A0 is the norm-closed unital algebra generated by V and Mx. 

One can see that A0 is a proper subalgebra of A by noting that its quotient by the compact 
operators is isomorphic to C([0,1]). 

The lattice of closed invariant subspaces of the Volterra operator V was shown 
independently by Brodskii and Donoghue [5, 7] to be 

Lat(V ) = n{f ∈ L2 : f = 0 on [0,s]} : s ∈ [0,1]o. 



3 

We let AlgLat(V ) denote the set of bounded operators on L2 that leave invariant every 
element of LatV. This is a large algebra—it includes all right translation operators for 
example. It is described by the following theorem of Radjavi and Rosenthal [20, Example 
9.26]. 

Theorem 1.9. The algebra AlgLat(V ) is the weak operator topology closure of the algebra 
generated by V and Mx. 

It follows from Theorem 1.9 that H is in the WOT closure of A0, and hence A and A0 have 
the same WOT closure. However, no extra compact operators are added in the WOT closure. 

Theorem 1.10. 
AlgLat(V ) ∩ K ⊂ A0. 

In Section 6 we consider the operator Z = H − Mx. It follows from Theorem 1.5 that [Z] 
generates A/KA. We show Z has a surprisingly rich collection of eigenvectors. 

Theorem 1.11. Let Z = H − Mx. Then 

σp(Z) = (−1,0] ∪ D(1,1). 

The algebraic multiplicity of the eigenvalues of Z on the stick (−1,0] increases as λ → 0−, 
and hence operators X in the closed algebra generated by Z have the property that θ(X) is not 
just in A(Λ), but is smoother. We prove: 

Theorem 1.12. Let X be in the norm-closed algebra generated by Z. Then θ(X) is Cm on 
 

2 Preliminaries 
De�inition 2.1. A monomial operator is a bounded linear operator T : L2[0,1] → L2[0,1] with 
the property that there exist constants cn and pn so that 

 T : xn 7→ cn xpn ∀n ∈ N. (2.2) 

We call it a �lat monomial operator if there exists some τ so that pn = n + τ for all n. 

In [2] we showed that every �lat monomial operator is in AlgLat(V ), and hence by 
Theorem 1.9 in the weak closure of A0. The Volterra operator V is Hilbert-Schmidt, and 
hence compact. See e.g. [14] for a proof. Hardy proved that the Hardy operator is bounded 
[11]. 

Lemma 2.3. Equalities (1.2) and (1.3) hold. 

Proof: As all the operators are bounded, it suf�ices to check on monomials. We get 
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. 

 

Let H2 denote the Hardy space of the unit disk, and  the Szeg˝o kernel. We 
shall let S : f(z) 7→ zf(z) denote the unilateral shift on H2. Let 

, 

and let Cβ : f 7→ f ◦ β denote the composition operator of composing with β. 
There is a unitary U : L2 → H2 that is de�ined on monomials by 

 , (2.4) 

and extended by linearity and continuity to the whole space. If T ∈ B(L2), we shall let Tb 
denote UTU∗. It is easy to see that U is unitary, as it preserves inner products. In [1] we prove 
that U is given by the formula 

  (2.5) 

and show that 
 =  

Vb =  

Hb = 1 − S∗. 

The fact that 1 − H is unitarily equivalent to the backward shift was proved in [6]; see also 
[13]. 

If X is a compact subset of C, we shall let C(X) denote the Banach algebra of functions that 
are continuous on X, with the maximum modulus norm. We shall let A(X) denote the 
subalgebra of functions that are continuous on X and analytic on the interior of X, and P(X) 
denote the closure of the polynomials in C(X). A theorem of Mergelyan [16] says that if the 
complement of X is connected, then A(X) = P(X). 

3 The Calkin Hardy-Weyl Algebra 
We let K denote the ideal of compact operators acting on L2 and set 

K0 = A ∩ K. 
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Evidently, K0 is a 2-sided ideal in A. Consequently, we may de�ine an algebra C, the Calkin 
Hardy-Weyl algebra, by 

C = A/K0 

If T ∈ A we let [T] denote the coset of T in C, i.e., 

[T] = {T + K |K ∈ K0}. 

Proposition 3.1. C is an abelian Banach algebra. 

Proof. That C is a Banach algebra follows from the fact that K0 is closed in A. To see that C is 
abelian, observe that as Mx and H generate A, [Mx] and [H] generate C. Furthermore, 

as MxH = V ∈ K0,  

[Mx][H] = 0. 

Likewise, as HMx = (1 − H)V ∈ K0, 

(3.2) 

[H][Mx] = 0, (3.3) 
so that in particular we have that 

[Mx][H] = [H][Mx]. 

As [Mx] and [H] commute and generate C, C is abelian.  

3.1 A Uniform Algebra Homeomorphically Isomorphic to C 
We begin by de�ining an algebra by gluing together two simpler algebras whose maximal 
ideal spaces overlap at a single point. Let 

P = { f = (f−,f+) : f− ∈ C([−1,0]), f+ ∈ A(D(1,1)) and f−(0) = f+(0) } where we view P 

as an algebra with the operations cf = (cf−,cf+), f + g = (f− + g−,f+ + g+),and fg = (f−g−,f+g+), 

and the norm 

. 
We abuse notation by letting 

f(0) = f−(0) 

when f ∈ P. 
We note that if f ∈ C([−1,0]), then as −Mx is self-adjoint and has spectrum equal to [−1,0], 

we may form the operator f(−Mx). Likewise, as H is cosubnormal and has spectrum 
equal to D(1,1), if g ∈ A(D(1,1)), then we may form the operator g(H). Concretely, 
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f(−Mx) = Mf(−x) and , 
 

where h(z) = g(1 − z¯), and Mh denotes multiplication by h. 

Lemma 3.4. If f ∈ C([−1,0]) and g ∈ A(D(1,1)), then 

[f(−Mx)][g(H)] = g(0)[f(−Mx)] + f(0)[g(H)] − f(0)g(0). 
Proof. Since [−1,0] is a spectral set for −Mx and D(1,1) is a spectral set for H it suf�ices to prove 
the lemma in the special case when f and g are polynomials. Let f(x) = f(0)+xf1(x) and g(x) = 
g(0) + xg1(x). Using (3.2) and (3.3) we see that 

 

= f(0)g(0) + g(0)[−Mx][f1(−Mx)] + f(0)[H][g1(H)] = 

f(0)g(0) + g(0)[f(−Mx) − f(0)] + f(0)[g(H) − g(0)] = 

g(0)[f(−Mx)] + f(0)[g(H)] − f(0)g(0). 

 

If f ∈ P we de�ine γ(f) ∈ A by the formula 

γ(f) = f−(−Mx) + f+(H) − f(0). We also 

de�ine Γ : P → C by the formula 

Γ(f) = [γ(f)] 

Proposition 3.5. Γ is a continuous unital homomorphism. 

Proof. γ is linear and γ(1) = 1. Therefore, Γ is linear and Γ(1) = 1. Also, 

 

so Γ is continuous. 
Finally, to see that Γ preserves products, �ix f,g ∈ P. 
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Γ(f)Γ(g) = [γ(f)] [γ(g)] 

= [f−(−Mx) + f+(H) − f(0)] [g−(−Mx) + g+(H) − g(0)] 

 

+ f(0)g(0) 

 = A + B − C + f(0)g(0). 

But 

 

and using Lemma 3.4, we see that 

 

Therefore, 

Γ(f)Γ(g) = A + B − C + f(0)g(0) 
= (Γ(fg) + f(0)g(0)) + (C − 2f(0)g(0)) − C + f(0)g(0) = Γ(fg). 

 

Lemma 3.6. If p is a polynomial in two variables and we de�ine f ∈ P by letting 

 f−(t) = p(t,0), t ∈ [−1,0] and f+(z) = p(0,z), z ∈ D(1,1), 

then p([−Mx],[H]) = Γ(f). 
Proof. If p = p(x,y) is a polynomial in two variables and we let 

q(x,y) = p(x,y) − p(x,0) − p(0,y) + p(0,0), 
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then p(x,y) = p(x,0) + p(0,y) − p(0,0) + q(x,y) 

and 
q([−Mx],[H]) = 0. 

Therefore, 

p([−Mx],[H]) = p([−Mx],0) + p(0,[H]) − p(0,0) 

= f−([Mx]) + f+([h]) − f(0) 
= [γ(f)] = 
Γ(f). 

 

Corollary 3.7. The range of Γ is dense in C. 

Proof. This follows immediately from Lemma 3.6 by recalling that [−Mx] and [H] generate C 
(cf. proof of Proposition 3.1).  

Lemma 3.6 suggests that we consider the subset P0 of P de�ined by 

P0 = {f ∈ P |f− and f+ are polynomials}. 

We note that it follows from the facts that the polynomials are dense in both C([−1,0]) and 
A(D(1,1)) that P0 is dense in P. 

Lemma 3.8. If s ∈ [−1,0], then 
|f−(s)| ≤ kΓ(f)k 

for all f ∈ P. 

(3.9) 

Proof. As f is continuous, it suf�ices to prove the lemma under the assumption that s ∈ (−1,0). 
For n satisfying 1/n < min{s,1−s} we de�ine a unit vector χn ∈ L2 by the formula 

 

We observe that the mean value theorem for integrals implies that 

lim hg χn,χni = g(s) n→∞ 

whenever g ∈ C([0,1]). Also, as χn → 0 weakly, 

lim kKχnk = 0 n→∞ 
whenever K is a compact operator acting on L2. In particular, as V is compact and V χn(t) = 0 
when t ∈ [0,s − 1/n), 

lim kHχnk = lim kM1/xV χnk = 0. n→∞ n→∞ 
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More generally, if q is a polynomial and q(0) = 0, write q(z) = zr(z), and we get 

lim kq(H)χnk = lim kr(H) Hχnk = 0. n→∞
 n→∞ 

Now �ix f ∈ P0 and a compact operator K acting on L2. Using the observations in the 
previous paragraph we have that 

h(γ(f) + K) χn,χni = h(f−(−Mx) + f+(H) − f(0) + K) χn,χni 
 = hf−(−x)χn,χni + h(f+ − f+(0))(H) χn,χni + hK χn,χni 

 →  f−(s) + 0 + 0 

Therefore, as kχnk = 1, 

= f−(s). 

|f−(s)| ≤ kγ(f) + Kk 
for all f ∈ P0 and K any compact operator acting on L2. Hence, 

|f−(s)| ≤ inf kγ(f) + Kk = kΓ(f)k 
K∈K0 

for all f ∈ P0. As Γ is continuous and P0 is dense in P, it follows that (3.9) holds for all f ∈ P.
  

Lemma 3.10. If z ∈ D(1,1), then 

 |f+(z)| ≤ kΓ(f)k (3.11) 

for all f ∈ P. 

Proof. We �irst observe that as f+ ∈ A(D(1,1)), by the Maximum Modulus Theorem it suf�ices 
to prove the lemma under the assumption that z = 1 + τ where τ ∈ T \ {−1}. For α ∈ D, let 

, 
where U is as in (2.4). Clearly, as k−α¯/kk−α¯k is a unit vector and U∗ is unitary, Υα is a unit vector. 
Also, as 

, 
it follows that HΥα = (1 + α)Υα, and more generally, 

 f+(H)Υα = f+(1 + α)Υα (3.12) 

for all f ∈ P. 
Now notice that (2.4) implies that 

. 
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Claim 3.13. If ρ > 0 and τ ∈ T \ {−1}, then 

limhxρΥα,Υαi = 0. (3.14) α→τ 

Proof. First note that 

, 

so that 

. 
Hence, 

 

Therefore, if ρ > 0 and τ ∈ T \ {−1}, (3.14) holds.  

Observe that if q is a polynomial and τ ∈ T \ {−1}, then Claim 3.13 implies that hqΥα,Υαi → 
q(0) as α → τ. In particular, 

limhq(−Mx)Υα,Υαi = 0 (3.15) α→τ 

whenever τ ∈ T \ {−1} and q is a polynomial satisfying q(0) = 0. 
We now conclude the proof of the lemma. We need to show that if f ∈ P and τ ∈ T\{−1} 

then (3.11) holds with z = 1 + τ. First assume that f ∈ P0 and �ix K ∈ K0. Since Υα → 0 weakly as 
α → τ, using (3.12) and (3.14) we have 

 h(γ(f) + K)Υα,Υαi = h(f− − f−(0))(−Mx)Υα,Υαi + hf+(H)Υα,Υαi + hKΥα,Υαi 

 → 0 + f+(1 + τ) + 0 

 = f+(1 + τ). 

as α → τ. Therefore, if f ∈ P0 and τ ∈ T \ {−1}, 

|f+(1 + τ)| ≤ kγ(f) + Kk. 

Hence, if f ∈ P0, 
|f+(1 + τ)| ≤ inf kγ(f) + Kk = kΓ(f)k. 
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K∈K0 

As Γ is continuous and P0 is dense in P, it follows that (3.11) holds with z = 1 + τ for all f ∈ P.
  
Lemma 3.16. Γ is a homeomorphism. 

Proof. In the proof of Proposition 3.5 we showed that 

kΓ(f)k ≤ 3kfk 

for all f ∈ P. On the other hand, Lemma 3.8 implies that 

 

for all f ∈ P and Lemma 3.10 implies that 

 

for all f ∈ P. Therefore, 

 

for all f ∈ P.  

Putting together the results of Subsection 3.1 we get the following theorem. 

Theorem 3.17. The map Γ is a homeomorphic unital isomorphism from P onto C. 

3.2 Some Observations on the Gelfand Theory of C 
If Λ = [−1,0] ∪ D(1,1), then there is an isometric isomorphism from P onto the lollipop algebra 
A(Λ) given by 

. 
So one could just as well state Theorem 3.17 with P replaced by A(Λ) and Γ replaced with the 
map Γ∼ : A(Λ) → C de�ined by 

. 

De�inition 3.18. De�ine θ : A → A(Λ) by 

θ(X) = (Γ∼)−1([X]). 

Then Theorem 3.17 says that there is a short exact sequence 

0 → KA → A →θ A(Λ) → 0. 
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Remark 3.19. By Mergelyan’s theorem, A(Λ) = P(Λ), and since z generates P(Λ), it follows 
that 

Γ∼(z) = [H − Mx] 

generates C. We shall examine H − Mx in Section 6. 

4 C∗(A) 
We shall let B = C∗(A) denote the C∗-algebra generated by A. Since it is irreducible, B contains 
all the compact operators. 

The Toeplitz C∗-algebra T is the C∗ algebra generated by the shift S. There is a short exact 
sequence 
 0 → K → T →α A(D) → 0. 

(See e.g. [8, 7.23]). A cross-section of α is the map that sends a function m to the Toeplitz 
operator  with symbol m. 

Since H = S∗ + 1, the C∗-algebra generated by H is unitarily equivalent to T . We wish 
to think of it as living on D(1,1), so we must shift things over. Let τ(z) = z + 1. For any 

 
function f de�ined on some domain in C, let f∪(z) = f(¯z) be its re�lection in the real axis. 

De�inition 4.1. Let ψ ∈ C(∂D(1,1)). Let Hψ ∈ B(L2) be de�ined by 
 

The map ψ 7→ Hψ is unital and linear, but not multiplicative. One checks that if ψ(z) = zn, 
then Hzn = Hn, and if ψ(z) = ¯zn, then Hz¯n = (H∗)n. 

Theorem 4.2. There is a short exact sequence 

 0 → K → B →π C(∂Λ) → 0. (4.3) 

For every X in B, its coset in B/K can be written uniquely as 

 [X] = [g(−Mx) + Hψ − g(0)] (4.4) 

where g ∈ C[−1,0], ψ ∈ C(∂D(1,1)), and g(0) = ψ(0). The essential spectrum of X as in (4.4) is 
g([0,1])∪ψ(∂D(1,1)). If λ /∈ σe(X), then the Fredhom index is given by the winding number of 
ψ about λ: ind(X − λ) = indψ(λ). 

Proof: For X ∈ B, we shall let [X] denote its equivalence class in B/K. We have 

 [HMx] = [MxH] = 0, (4.5) 

since MxH = V which is compact, and (1.3) shows HMx is also compact. Moreover 
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 [HH∗] = [H∗H] = [H + H∗], (4.6) 

which can be seen by noting that all three of HH∗,H∗H and H + H∗ take xk to a constant minus 

1. So B/K is abelian. Moreover, for any polynomial q in 3 variables, 
there are polynomials p1,p2,p3 in one variable so that 

 [q(Mx,H,H∗)] = [p1(Mx) + p2(H) + p3(H∗)]. (4.7) 

Indeed, by (4.5), any term that has both Mx and either H or H∗ in it can be removed. An 
induction argument on the total degree using (4.6) shows that any term that has factors of 

both H and H∗ can be reduced to a linear combination of terms in just powers of H and 
powers of H∗. Therefore operators of the form (4.7) are dense in B/K. 

We wish to prove that B/K is isomorphic to the abelian C∗-algebra C(∂Λ). We will use a 
similar strategy to the proof of Theorem 3.17. Let 

Q = {f = (f−,f+) : f− ∈ C([−1,0]),f+ ∈ C(∂D(1,1)),f−(0) = f+(0)}. The algebra Q is just 

C(∂Λ), but it is easier to de�ine the functional calculus on it. De�ine 

δ : Q → B f 7→ f−(−Mx) + Hf+ − f(0). 

 
Let ∆(f) = [δ(f)]. The following lemma is straightforward to prove. 

Lemma 4.8. (i) Let ψ,φ ∈ C(∂D(1,1)). Then [HψHφ] = [Hψφ]. 
(ii) Let g ∈ C([−1,0]) and ψ ∈ C(∂D(1,1)). Then 

[g(−Mx)][Hψ] = [Hψ][g(−Mx)] = [g(0)Hψ + ψ(0)g(−Mx) − g(0)ψ(0)]. 

Using Lemma 4.8, one can check that ∆ is a unital *-homomorphism from Q into B/K. Its 
range is dense, so if we can show it has no kernel, then it is a C*-isomorphism. 

Lemma 4.9. If s ∈ [−1,0], then 

 |f−(s)| ≤ k∆(f)k (4.10) 

for all f ∈ Q. 

Proof. As f is continuous, it suf�ices to prove the lemma under the assumption that s ∈ (−1,0), 
and as ∆ is continuous, we can assume that f− is a polynomial, and that f+(z) = 

 
f(0) + zp2(z) + zp3(z) where p2 and p3 are polynomials. 

As in Lemma 3.8, for n satisfying 1/n < min{s,1 − s} we de�ine a unit vector χn ∈ L2 by the 
formula 
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Let K be compact.   

h(δ(f) + K) χn,χni = h(f−(−Mx) + Hzp2 + Hz¯p¯3 + K) χn,χni 
 = hf−(−x)χn,χni + hp2(H)H χn,χni + hχn,p3(H)H χni + hK χn,χni 

 →  f−(s) + 0 + 0 + 0 

Therefore, 

= f−(s). 

|f−(s)| ≤ inf kδ(f) + Kk = k∆(f)k. K∈K 
 

If ∆(f) = 0, by Lemma 4.9 we must have f− = 0. So δ(f) = Hf+ must be compact. 
But Hf+ is unitarily equivalent to a Toeplitz operator, and there are no non-zero compact 
Toeplitz operators. Therefore ∆ has a trivial kernel, and hence is a ∗-isomorphism. 

The claim about the spectrum of [x] now follows from the fact that the spectrum of a 
function in C(∂Λ) equals its range. Finally, the claim about the Fredholm index follows from 
the fact that the Fredholm index at λ will be unchanged under any homotopy of f that keeps 
λ outside its range. Then f can be homotoped to (f−,f+) where f+(z) = (z −1−λ)n and f−(x) = (−1 
− λ)n for some integer n, and the Fredholm index of δ(f) is n.  

5 Compact operators in the little algebra A0 
Recall from De�inition 1.8 that A0 is the norm-closed algebra generated by Mx and V . We shall 
prove that every compact operator in AlgLat(V ) lies not just in A but in A0. 

For I an interval in [0,1], let us write L2(I) for the subspace of L2 that vanishes a.e. off I, and 
let PI denote projection onto L2(I). For φ,ψ ∈ L2 we write φ⊗ψ to denote the rank one operator 

φ ⊗ ψ : f 7→ hf,ψiφ. 

The key observation is the following: 

Lemma 5.1. Suppose φ ∈ L2[t,1] and ψ ∈ L2[0,t]. Then φ ⊗ ψ = MφV Mψ∗. 

Proof: We have 

 
The right-hand side is 0 if x < t, and φ(x)hf,ψi if x > t.  

Lemma 5.2. Every �inite rank operator on L2[0,1] can be written as an integral operator 
whose kernel is in L2([0,1] × [0,1]). 
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Proof: Let . De�ine 

. 

Then , and k is in L2([0,1] × [0,1]).  

Lemma 5.3. Let k be in L2([0,1] × [0,1]), and let  . Then T is in 
AlgLat(V ) if and only if k(s,x) = 0 for s > x. 

Proof: Suf�iciency is clear. To prove necessity, assume that for some 0 < t < 1, the kernel 
k(s,x)χ[0,t](x)χ[t,1](s) 

is not 0 a.e. As an integral operator is zero if and only if the kernel is 0 a.e., this means that 
the corresponding integral operator is non-zero, and hence T maps a function in L2(t,1) to a 
function that is not 0 a.e. on [0,t].  Lemma 5.4. Let T = φ ⊗ ψ be a rank-one operator. Then 
T is in AlgLat(V ) if and only if for some 0 < t < 1, the support of φ is in [t,1] (i.e. φ = 0 a.e. on 
[0,t]) and the support of ψ is in [0,t]. In this case, T ∈ A0. 

Proof: The �irst part follows from Lemma 5.3. For the second part, observe that if the 
supports of φ,ψ are in [t,1] and [0,t] respectively, then φ ⊗ ψ = MφV Mψ∗. If φ and ψ are both 
in C([0,1]), this proves that φ ⊗ ψ ∈ A0. 

For the general case, choose continuous functions fn and gn that converge to φ and ψ 
respectively in L2. It follows from Lemma 5.1 that  converges to norm 
as n → ∞, and that  converges to MφV Mψ∗. Therefore  

Theorem 5.5. Let K be a compact operator in AlgLat(V ). Then K ∈ A0, and can be 
approximated in norm by �inite rank operators in A0. 

Proof: Note that K ∈ AlgLat(V ) means that for all 0 < s < 1, we have P[0,s]KP[s,1] = 0. Let ε > 
0. First, consider P[1/2,1]KP[0,1/2]. This can be approximated within ε/2 by a �inite rank operator 
that is a sum of rank one operators that map L2(0,1/2) to L2(1/2,1). By Lemma 5.4, this means 
that this �inite rank operator is in A0. 

A similar argument shows that P[1/4,1/2]KP[0,1/4] and P[3/4,1]KP[1/2,3/4] can both be 
approximated by �inite rank operators in A0 within ε/8. Iterating, we get that if n is a power 
of 2, we can approximate 

 

within ε by a �inite rank operator in A0. 
Finally we observe that 

 . (5.6) 
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Since K is compact, 

, 

so (5.6) tends to 0.  

6 The operator H−Mx 
Let us write Z for the operator H−Mx. We know that [Z] generates the Calkin Hardy-Weyl 
algebra C. By Theorem 3.17 we know that the spectrum of [Z] in A/K0 is Λ. It is not surprising 
that D(1,1) are eigenvalues of Z, since they are eigenvalues of H. It is perhaps surprising that 
every point in the stick, except −1, is also an eigenvalue. Moreover as we move up the stick to 
the bulb of the lollipop, the eigenvalues increase in multiplicity. 

Theorem 6.1. (i) σp(Z) = D(1,1) ∪ (−1,0]. 
(ii) The point spectrum of Z∗ is empty. 
(iii) The spectrum of Z is Λ. 



 

Proof: (i) Suppose (Z − λ)f = 0. Let . Then we have 

. 

As F 0(x) = f(x), we get the equation 

 , (6.2) 
with the boundary condition  

F(0) = 0. (6.3) 
The function F is continuous. Let Ω denote the relatively open subset of [0,1] on which it is 
non-zero. 

We get that the solution of (6.2), with λ 6= 0, is 

  , (6.4) 

where the constant c can a priori be different on different components of Ω (though we show 
below that Ω is actually connected). Hence 
 1 1 

f(x) = cxλ−1(x + λ)−1−λχΩ(x). 

Case: Ω = [0,1]. 
For f to be in L2 with c 6= 0, we need 

(6.5) 

, 
which is the same as λ ∈ D(1,1). For λ ∈ D(1,1), we get the eigenfunctions  

f(x) = xλ1−1(x + λ)−1−λ1. 

When λ = 0, we get 
F(x) = ce−1/x, 

and 

(6.6) 

 . (6.7) 
Now suppose that Ω is not all of [0,1]. Decompose Ω as a union of disjoint non-empty 

intervals. On each interval, we have that f is given by (6.5), with some constant c that can 
depend on the interval. Choose such an interval, I. Then 0 cannot be an end-point of I, or we 
would have that F is given by (6.4), and this is discontinuous at the right-hand end-point of I. 

So assume that the left-hand end-point of I is t > 0. Then the boundary condition (6.3) is 
replaced by F(t) = 0. On I, we have 
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, 

so to have F(t) = 0 we need λ = −t. By continuity, F cannot vanish again, so we conclude that I 
= (t,1] and that for λ ∈ (−1,0) the function 
 1 1 

f(x) = xλ−1(x + λ)−1−λχ[−λ,1](x) 

is an eigenvector of Z with eigenvalue λ. 

(6.8) 

(ii) As , the eigenvalue equation becomes 

As  ), we get the 
differential 

equation 

G(x) = −x(x + λ)G0(x), G(1) = 0. (6.9) 
Solving for G, we get 

G(x) = cx−λ1(x + λ)λ1 χ{G6=0}. 

The only solution on an interval that vanishes on the right end-point is the zero solution. (iii) 
We know 

 
σe(Z) = ∂Λ ⊆ Λ = σp(Z) ⊆ σ(Z). 

If λ is a point in C \ Λ, it must be a Fredholm point. By (i), it is not an eigenvalue of Z, and by 
(ii) it is not an eigenvalue of Z∗. Therefore Z − λ has trivial kernel and cokernel, and closed 
range. Therefore it is invertible, and λ is in the resolvent of Z.  

Not only are points on the stick of the lollipop eigenvalues, there is some additional 
smoothness. By a generalized eigenvector of order n we mean a vector f that satis�ies (Z − 
λ)n+1f = 0 but (Z − λ)nf 6= 0. 

We shall prove the case λ = 0 �irst. 

Lemma 6.10. At 0, the operator Z has generalized eigenvectors of all orders. 

Proof: We want to show that if we let  from (6.7), then for every n ∈ N there 
exists f ∈ L2 so that 
 Zfn+1 = fn. (6.11) 

Claim 6.12. For every n ∈ N there exists a polynomial pn of degree 2n + 2, with lowest order 
term of degree n + 2, so that the functions 

where 

G(x) = (x + λ)f(x), 
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satisfy (6.11). 
We prove this by induction on n. It is true when n = 0. Assume we have proved it up to 

level n, and we want to prove it for n + 1. So we wish to solve the equation 

  (6.13) 
and show that the solution is of the form 

 . (6.14) 

Writing Fn+1 for V fn+1, equation (6.13) is 

 

This gives us the linear differential equation 

. 

Multiply by the integrating factor  to get 

 

Therefore 

, 
where qn is a polynomial of degree 2n + 2 that may have a constant term, and whose next 
lowest order term is of degree n + 2. This gives 

 

Let 
. 

The degree of pn+1 is two higher than qn, so it is 2(n+1)+2. There may be a term of order 2; the 
next lowest order term is n + 3 = (n + 1) + 2. But as Zf0 = 0, one can subtract a multiple of f0 

from fn+1 without changing (6.13), so we can assume that pn+1 has no term of order 2. So we 
have proved Claim 6.12. As any function of the form (6.14) is in L2, we are done. 
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For points in the stick, a similar method works, but there are restrictions when requiring 

the generalized eigenvectors to be in L2. Here is one result. 
Lemma 6.15. Let λ ∈ (−1,0). Then Z has a generalized eigenvalue of order 1 at λ if and only if 

 

Proof: Let s = −λ. 

 . (6.16) 

All the functions below are supported on [s,1]. We wish to �ind a function f1 that satis�ies 
(Z + s)f1 = f0. (6.17) 

Writing , this becomes 

. 
or 

 . (6.18) 

. This yields An integrating factor for (6.18) is 

 

Integrating, we get 

 
Dividing through by the integrating factor and differentiating, we get 

 

We can choose c = 0, since it is the coef�icient of f0. This gives 
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  . (6.19) 

Examining this expression, we see that f1 is smooth on (s,1], and the �irst term 

 

vanishes at s for every s < 1. However the second term 

 

has a singularity that grows like (  . This is integrable for every s < 1, but it is only in 
L2[s,1] for . So we have shown that (6.17) has a solution f1 in L2 if and only if 

.  
One can repeat the argument of Lemma 6.15 to get higher order generalized eigenvectors, 

as λ gets closer to 0. 

Lemma 6.20. Let m ≥ 1. Let λ lie in the interval (  0). Then Z has generalized 
eigenvectors up to order m at λ. 

Proof: We shall inductively �ind functions fn satisfying (Z − λ)fn+1 = fn, with f0 as in (6.16). 
Let s = −λ, and write 

. 

Then we have 

 . 

Writing , we want to solve 

 . (6.21) 

After multiplying by the integrating factor 1/Φ, we have 

 . (6.22) 
Claim 6.23. There are constants Mn such that the functions fn satisfy  

 |fn(x)| ≤ Mn(x − s)1s−n−1 ∀x ∈ (s,1]. (6.24) 
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Proof of Claim 6.23: By induction on n. It is true when n = 0. Assume it is true up to n. From 
(6.22) we get for x ∈ (s,1]: 

 . (6.25) 

By the inductive hypothesis, the integrand in (6.25) is O(t − s)−n−2, so the integral is O(x − 
s)−n−1. So Fn+1 satis�ies 

1 
Fn+1(x) = cnΦ(x) + O(x − s)s−n−1. 

From (6.21) we have 

(6.26) 

 . (6.27) 

When we use (6.26) for Fn+1, we get 

. 
Now the claim follows from the inductive hypothesis on fn.  

It follows from (6.27) that that fm is continuous on (s,1], and Claim 6.23 shows that its 
singularity at s is of order (x−s)1s−m−1. This means fm is in L2 provided , which 
is the same as .  

For later use, let us note that if you track the constants Mn in Claim 6.23, you can show: 

Lemma 6.28. In Claim 6.23 one can take  and the consants Mn satisfy 

 . 

Lemma 6.29. Let m ≥ 1. On the interval (   0) one can choose the generalized 
eigenvectors of order n of Z − λ continuously in λ, for every n ≤ m, and satisfying (Z − λ)fλ,n = 
fλ,n−1, for every 1 ≤ n ≤ m. 

Proof: Let us write fλ,n for the choice of generalized eigenvector of order n at λ. Write 

. 

We have 

. 

On every compact subset K, of (−1,0) the functions {fλ,0 : λ ∈ K} are uniformly bounded, and 
limλ0→λ fλ0,0(x) = fλ,0(x) a.e., so the map λ 7→ fλ,0 is continuous as a map from 0) into L2. 
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For higher n, we �ind fn+1 as in Lemma 6.20. At each stage, we take the constant cn in 
(6.26) to be 0. (We can do this because cnfλ,0 will be in the kernel of Z − λ.) This gives us 

. 

Moreover we have fλ,n(x) = 0 if x < −λ and 

 |fλ,n(x)| ≤ Mn,λ(x + λ)−λ1−n−1, x > −λ. 

By Lemma 6.28, we have that each Mn,λ can be chosen uniformly in λ for λ in (  
For any interval I of length δ, we get 

. 

Therefore, as λ ranges over any compact subset of (   0), the functions |fλ,n(x)|2 are 
uniformly integrable in x. So, by the Vitali convergence theorem, the map 

 

is continuous.  

These lemmas say that operators in the closed algebra generated by Z have certain 
smoothness properties when mapped by σ into A(Λ). The functions get smoother as we get 
closer to 0. 

Theorem 6.30. Let X be in the norm-closed algebra generated by Z. Then θ(X) is Cm on 
 

Proof: Let θ(X) = φ ∈ A(Λ). Let pj be a sequence of polynomials so that kpj(Z) − Xk → 0. It 
follows from Theorem 3.17 that pj converges to φ uniformly on Λ. 

Case: m = 1. Let fλ,n be as in Lemma 6.29. For any polynomial p, we have 

hp(Z)fλ,0,fλ,0i = kfλ,0k2p(λ). 

Moreover, p(Z)fλ,1 = p(λ)fλ,1 + p0(λ)fλ,0. 

Let gλ1 be the linear combination of fλ,0 and fλ,1 that satis�ies hfλ,0,gλ1i = 1 and hfλ,1,gλ1i = 0. Then 
hp(Z)fλ,1,gλ1i = p0(λ). 

So as functions on (  0), we get that ) converges to some function ψ(λ) = hXfλ,1,gλ1i. 
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Claim 6.31. For all x in ( 0), we have φ0(x) = ψ(x), and ψ is continuous. 
We have gλ1 = aλ,0fλ,0+aλ,1fλ,1, where the coef�icients aλ,0 and aλ,1 solve the linear system 

. 

By Lemma 6.29, since fλ,0 and fλ,1 are continuous in λ, so as they are linearly independent, we 
have that gλ1 is also continuous in λ. Therefore ψ is continuous, and p0j converges to ψ locally 

uniformly on (   0). As  ) converges to   , we get that 
φ0(x) = ψ(x). 3  

We have shown that 0). A similar argument with higher derivatives proves 
that   

Of course one can also �ind generalized eigenvectors for Z of all orders at points in D(1,1), 
but we already know that θ(X) is analytic on D(1,1) for every X ∈ A. 

7 Open Questions 
Question 7.1. Is there a good description of KA, the compact operators in A? 

Question 7.2. Is C∗(Z) = C∗(A)? To prove this, it is suf�icient to show that C∗(Z) is irreducible, 
since then it would contain all the compacts, and its quotient by the compacts would be all of 
C(∂Λ). 

Question 7.3. Do the eigenvectors of Z span L2? 
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