The Hardy-Weyl algebra
Jim Agler and John E. McCarthy 1

August 18, 2022

Abstract

We study the algebra A generated by the Hardy operator H and the operator M, of
multiplication by x on L2[0,1]. We call A the Hardy-Weyl algebra. We show that its
quotient by the compact operators is isomorphic to the algebra of functions that are

continuous on A and analytic on the interior of A for a planar set A = [-1,0]UD(1,1), which
we call the lollipop. We find a Toeplitz-like short exact sequence for the C+algebra
generated by A.

We study the operator Z = H-M,, show that its point spectrum is (-1,0]JuD(1,1), and
that the eigenvalues grow in multiplicity as the points move to 0 from the left.

1 Introduction

The classical Weyl algebra is generated by the operators of multiplication by x, denoted Mx,
and differentiation, denoted by D. These operators satisfy the commutator relation

DMx - MxD = 1 (11)

The algebra generated by these relations has been studied extensively in both algebra and
operator theory—see e.g. the books [17, 15, 22, 10]. In operator theory, the study is
complicated by the fact that no bounded operators satisfy (1.1). In this note, we shall study
the associated algebras that arise when one replaces the differentiation operator D by a
bounded integration operator.

The Hardy operator H is the bounded operator defined on L2[0,1] by

Hiw = ¢ [ s

Let VV = MxH denote the Volterra operator
Vife / f(t)dt,
0

which is a right inverse of D. These operators give rise to a new set of relations instead of
(1.1), namely
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VMX_ MXV = —V2 (12)
HMX - MXH = _HMXH =-HV. (13)
We shall use L2to mean L2[0,1] throughout.

Definition 1.4. Let A denote the closure of the unital algebra generated by H and Mxin the
norm topology of B(L%). We call A the Hardy-Weyl algebra.

When is an operator in A? Can all the elements be described? Since the commutator of H
and Myis compact, we first describe the quotient of A by the compact operators. Define
A, a subset of the plane, by

A=[-1,0] UD(1,1).

We call A the Iollipop. The lollipop algebra A(A) is the Banach algebra of functions that are
continuous on A and analytic on int(A), equipped with the maximum modulus norm. Let K
denote the compact operators on L2, and let Ka= K N A.

Theorem 1.5. There is a Banach algebra isomorphism y from A(A) onto A/Ka. It is given by
V() = Airna (=M + flo.n(H) - f0).

Let 8: A — A(A) be defined by 6(T) = y-1([T]), where [T] is the projection of T onto A/Ka.
As a corollary to Theorem 1.5 we obtain that every element T of A can be written uniquely as
T=My+g(H)+K (1.6)

where @ € C([0,1]), g isin A(D(1,1)), ¢(0) = g(0), and K € Ka.

If we look at C*(A), the C*-algebra generated by A, we get something similar to the Toeplitz
algebra short exact sequence. See [4, 9, 21] for some recent results on the Toeplitz algebra,
and [3, 12, 18, 19] for some applications. The lollipop algebra is replaced by the functions
that are continuous on the boundary.

Theorem 1.7. There is a short exact sequence of C*-algebras
0-> K- C*(A) - C(0A) — 0.
In addition to studying the algebra generated by H and Mx, one may also study the smaller
algebra generated by Vand Mx.
Definition 1.8. The algebra Ao is the norm-closed unital algebra generated by VVand Mx.

One can see that Ao is a proper subalgebra of A by noting that its quotient by the compact
operators is isomorphic to C([0,1]).

The lattice of closed invariant subspaces of the Volterra operator V was shown
independently by Brodskii and Donoghue [5, 7] to be

Lat(V) =n{f€ L2: f=0o0n [0,s]} : s € [0,1]°.



We let AlgLat(V ) denote the set of bounded operators on L2 that leave invariant every
element of LatV. This is a large algebra—it includes all right translation operators for
example. It is described by the following theorem of Radjavi and Rosenthal [20, Example
9.26].

Theorem 1.9. The algebra AlgLat(V ) is the weak operator topology closure of the algebra
generated by Vand Mx.

It follows from Theorem 1.9 that H is in the WOT closure of Ao, and hence A and Ao have
the same WOT closure. However, no extra compact operators are added in the WOT closure.

Theorem 1.10.
AlgLat(V) n K c Ao.

In Section 6 we consider the operator Z = H - Mx. It follows from Theorem 1.5 that [Z]
generates A/Ka. We show Z has a surprisingly rich collection of eigenvectors.

Theorem 1.11. Let Z= H - Mx. Then
op(Z) = (-1,0] U D(1,1).

The algebraic multiplicity of the eigenvalues of Z on the stick (-1,0] increases as A = 0-,
and hence operators X in the closed algebra generated by Z have the property that (X) is not
just in A(A), but is smoother. We prove:

Theorem 1.12. Let X be in the norm-closed algebra generated by Z. Then 6(X) is C™on
(_%-I—l’ 0)

2 Preliminaries

Definition 2.1. A monomial operator is a bounded linear operator T : L2[0,1] — L2[0,1] with
the property that there exist constants cnand pn so that

T:xn7— cnXxPr Vn € N. (2.2)

We call it a flat monomial operator if there exists some 1 so that p,=n + 7 for all n.

In [2] we showed that every flat monomial operator is in AlgLat(V ), and hence by
Theorem 1.9 in the weak closure of Ao. The Volterra operator V is Hilbert-Schmidt, and
hence compact. See e.g. [14] for a proof. Hardy proved that the Hardy operator is bounded
[11].

Lemma 2.3. Equalities (1.2) and (1.3) hold.

Proof: As all the operators are bounded, it suffices to check on monomials. We get



1 .
VM, — M, V) 2" — Y2k = k42
( ) ! (k+1)(k;—|—2)‘L

1
HM, — M,H) 2* = —HM,H 2¥ = —————  _gk*!
(HM, — M H) @ o krDk+2)"

Let H? denote the Hardy space of the unit disk, and kw(2) = 171152 the Szeg’o kernel. We
shall let S: f(z) 7—- zf(z) denote the unilateral shift on H2. Let

and let Cg: f7— f - [ denote the composition operator of composing with S.
There is a unitary U : L2 —» H? that is defined on monomials by

s+ 1 5+ (2.4)

7’

U:2°+—

and extended by linearity and continuity to the whole space. If T € B(L2), we shall let Tp

denote UTU". It is easy to see that U is unitary, as it preserves inner products. In [1] we prove
that U is given by the formula

1 ! .
Uf(z) = / flx)xT=dzx,
(2) ) (z) 2.5)
and show that
Vb:: (1—5*)6’;
Hbzl—S*.

The fact that 1 - H is unitarily equivalent to the backward shift was proved in [6]; see also
[13].

If X is a compact subset of C, we shall let C(X) denote the Banach algebra of functions that
are continuous on X, with the maximum modulus norm. We shall let A(X) denote the
subalgebra of functions that are continuous on X and analytic on the interior of X, and P(X)
denote the closure of the polynomials in C(X). A theorem of Mergelyan [16] says that if the
complement of X is connected, then A(X) = P(X).

3 The Calkin Hardy-Weyl Algebra

We let K denote the ideal of compact operators acting on L2and set
Ko=ANK
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Evidently, Ko is a 2-sided ideal in A. Consequently, we may define an algebra C, the Calkin
Hardy-Weyl algebra, by
C=A/Ko

If T € Awelet [T] denote the coset of Tin C, i.e,
[T] ={T + K |K € Ko}.
Proposition 3.1. C is an abelian Banach algebra.

Proof. That C is a Banach algebra follows from the fact that Ko is closed in A. To see that C is
abelian, observe that as Mxand H generate A, [Mx] and [H] generate C. Furthermore,
as MxH =V € Ko,

[Mx][H] = 0. (3.2)
Likewise, as HMx= (1 - H)V € Ko,
[H][Mx] =0, (3.3)

so that in particular we have that
[Mx][H] = [H][Mx].

As [Mx] and [H] commute and generate C, C is abelian. O]

3.1 A Uniform Algebra Homeomorphically Isomorphic to C

We begin by defining an algebra by gluing together two simpler algebras whose maximal
ideal spaces overlap at a single point. Let

P={f=(ff):f € C(-10]) f € A(D(1,1)) and £.(0) = £(0) } where we view P

as an algebra with the operations cf = (cf-,cf+), f+ g = (f-+ g-f+ + g+),and fg = (f-g-.f+g+),

and the norm

=max 4y max |f_(f)|, max z
170 = max {1701, max_f, ()] }

We abuse notation by letting
f0) =£~(0)

when f € P.
We note that if f € C([-1,0]), then as —Mxis self-adjoint and has spectrum equal to [-1,0],
we may form the operator f{-Mx). Likewise, as H is cosubnormal and has spectrum

equal to D(1,1), if g € A(D(1,1)), then we may form the operator g(H). Concretely,



o~

f(-Mx) = Mf-x) and g(H) = M,

where h(z) =g(1 - z°), and Mrdenotes multiplication by h.

Lemma 3.4.If f€ C([-1,0]) and g € A(D(1,1)), then

[A-M:)1[g(H)] = g(0)[A-M:)] + f{0)[g(H)] - f(0)g(0).
Proof. Since [-1,0] is a spectral set for ~-Mxand D(1,1) is a spectral set for H it suffices to prove
the lemma in the special case when fand g are polynomials. Let f{x) = f{0)+xf1(x) and g(x) =
g(0) + xg1(x). Using (3.2) and (3.3) we see that

Lf(=M)[g(H)] = ([f(0)] + [=M][f1(=D)]) ([9(0)] + [H][9: (H)))

=fl0)g(0) + g(0)[-M:][fr(-Mx)] + {O)[H][g:(H)] =
f10)g(0) +g(0)[A-Mx) - {0)] + f(0)[g(H) - g(0)] =

9(O)f(-M] + f0)[g(H)] - f(0)g(0).

If f € P we define y(f) € A by the formula

v(f) = f~(-Mx) + f+(H) - f{0). We also

define I' : P — C by the formula

rin =Nl
Proposition 3.5. T is a continuous unital homomorphism.

Proof. y is linear and y(1) = 1. Therefore, I is linear and I'(1) = 1. Also,
IECHIT = YOI

< [Nl

[f-(=Ma) + f(H) = f(O)]]
[f-(=Ma) || + [Lf+ CH)I[ + [£(0))]

max [f_(t)] + max _|fi(z)]+ [f(0)]

te[—1,0] 2eD(1,1)

<371,

VAN

so I' is continuous.
Finally, to see that I' preserves products, fix fg € P.
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L(AT(9) = [r(N] [r(9)]

= [F(-M) + fi(H) - f10)] [g-(-M:) + g:(H) - g(0)]
= (I (=Ma)llg-(=M)] + [F ()l (1))

(1= (=M)gs (D] + g (=M)[f+ (1))
— (FOlg- (=) + g (H)] + g(O)[f-(=Ma) + f+(H))

+f{0)g(0)

= A+B-C+f{0)g(0).
But
A

I

[ (=Ml (=Ma)] + £+ (H)]lg+ (H)))
/-

9-(=M)| + [fr9+(H)| - f(0)9(0)> +/(0)g(0)

N
v(fg)] + £(0)g(0)
['(fg) + £(0)g(0),

and using Lemma 3.4, we see that

B = (1 (=M)lgs (1)) + (lg-(~Mo)][+ (1))

— (9O (=M)] + [F(0)g (H)] = F(0)g(0) ) + (£(0)lg—(~Ma)] + [9(0) £+ (H)] = £(0)g(0))
= C—2/(0)g(0).

Therefore,

['(AT(g)=A+B-C+f{0)g(0)
= (T'(fg) + f{0)g(0)) + (C - 2f(0)g(0)) - C + f{0)g(0) = I'(f9).

Lemma 3.6. If p is a polynomial in two variables and we define f € P by letting
f(t) =p(t0), t € [-1,0] and f+(z2) =p(0,2), z€ D(1,1),
then p([-Mx],[H]) = T(f).

Proof. If p = p(x,y) is a polynomial in two variables and we let

q(xy) = p(xy) - p(x,0) - p(0y) + p(0,0),
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then p(xy) = p(x0) + p(0,y) - p(0,0) + g(xy)
and

q([-Mx],[H]) = 0.

Therefore,

p([—Mx],[HD = p([_MX]IO) + p(OI[H]) - p(0,0)
= f-([Mx]) + f+([h]) - f(O)

= [v(A] =
r(p.

Corollary 3.7. The range of I' is dense in C.

Proof. This follows immediately from Lemma 3.6 by recalling that [-Mx] and [H] generate C
(cf. proof of Proposition 3.1). m

Lemma 3.6 suggests that we consider the subset Po of P defined by
Po={f€ P |f~and f+ are polynomials}.

We note that it follows from the facts that the polynomials are dense in both C([-1,0]) and
A(D(1,1)) that Pois dense in P.

Lemma 3.8. If s € [-1,0], then
If~(s)] < kI'(Hk (3.9

forall f€ P.
Proof. As fis continuous, it suffices to prove the lemma under the assumption that s € (-1,0).
For n satisfying 1/n < min{s,1-s} we define a unit vector y» € L2 by the formula
_ 5o if [t —s| <1/n
Xa(t) { 0 if|t—s|>1/n

We observe that the mean value theorem for integrals implies that
lim hg yn,xni = g(s) n-e
whenever g € C([0,1]). Also, as y»— 0 weakly,
lim kKynk = 0 nseo

whenever K is a compact operator acting on L2. In particular, as Vis compact and V ya(t) = 0
when t € [0,s - 1/n),

lim kH)(nk =lim le/xV)(nk = 0. s now



More generally, if g is a polynomial and q(0) = 0, write q(z) = zr(z), and we get

lim kq(H)y=k = lim kr(H) Hxsk = 0. n-o

n—oo

Now fix f € Po and a compact operator K acting on L2 Using the observations in the
previous paragraph we have that

h(y(D + K) xnxni = h(f-(=Mx) + fs(H) = f{0) + K) Xn)ni
= hf—(—X)Xn,Xni + h(f+ —f+(0))(H) XnXnl + hKXn,Xni
- f~(s) + 0 + 0
= f(s)
Therefore, as kynk = 1, I~(s)| < ky(f) + Kk

for all f€ Poand K any compact operator acting on L2. Hence,

If~(s)| < inf ky(f) + Kk = kI'(f)k

KeKo

for all f € Po. As I is continuous and Po is dense in P, it follows that (3.9) holds for all f € P.
[

Lemma 3.10.If z € D(1,1), then

If+(2)] < kI'(Hk (3.11)
forall feP.

Proof. We first observe that as f+ € A(D(1,1)), by the Maximum Modulus Theorem it suffices

to prove the lemma under the assumption that z=1 + T where T € T \ {-1}. For a € D, let
k_a

Y, =U
1%—all,

where Uis as in (2.4). Clearly, as k-«/kk-«k is a unit vector and U*is unitary, Yeis a unit vector.
Also, as

k_a k_a
(1- 8% = (14 a)—=2
[k—all Ik-all,
it follows that HY«= (1 + a)Yq, and more generally,
f+(H)Ya=ﬁ(1 + Q')Ya (312)

forall feP.
Now notice that (2.4) implies that

Vi—|al? o

= — 7 l4a

1+«

[e3
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Claim 3.13.If p>0and T € T\ {-1}, then

lithpYa,Yai =0. (314) a-T

Proof. First note that

(L I
P Yo 1+a —f 11+ af?
so that
1 i 2 —
/x”_(ﬁJrﬁ)dx = <p+1 ’&’) 1
0 1+al?/
Hence,
_ 2 1 _
<.TPTQ, Ta> = % / :Up_(lia—i_li@)d_f];
al” Jo
1—|af? 1 — |a*\ 1
= s (o )
11+af 11+ af
1—|af?

- 1+ al?p +1—|a]?

Therefore, if p>0and t € T\ {-1}, (3.14) holds.

]

Observe that if g is a polynomial and 7 € T\ {-1}, then Claim 3.13 implies that hqYqYdi —

q(0) as a = t. In particular,
limhq(-Mx)YaYai =0 (3.15) a-r

whenever T € T\ {-1} and q is a polynomial satisfying q(0) = 0.

We now conclude the proof of the lemma. We need to show that if f€ P and 7 € T\{-1}
then (3.11) holds with z =1 + 7. First assume that f € Poand fix K € Ko. Since Ya«— 0 weakly as

a — 7, using (3.12) and (3.14) we have

h(y() + K)YoYd =

f+(1+1).
as a = 1. Therefore, if f€ Poand T € T \ {-1},
If+(1 + 7)| <ky(f) + Kk

Hence, if f € Py,
If+(1 + 7)| < infky(f) + Kk = kT['(Hk.

10

h(f— —f—(O))(—Mx)Ya,Yai + hf+(H)Ya,Yai + hKYa,Yai
- 0 + f+(1+71)

+ 0



KEeKo

As T is continuous and Pois dense in P, it follows that (3.11) holds withz=1 + t forall f€ P.

[
Lemma 3.16.I" is a homeomorphism.

Proof. In the proof of Proposition 3.5 we showed that
kT (fk < 3kfk

for all f € P. On the other hand, Lemma 3.8 implies that
maxx |/-(6)] < [T/

te[—1

for all f€ P and Lemma 3.10 implies that
max | fi(z)] < [[T(f)]]

z€D(1,1)

for all f € P. Therefore,

If]l = max { n[l_aﬁ]l.ﬂ(t)\, max_|fy(2)] } <[IT(f)]|
tel—1, en(1,1)

z

forall feP. 0

Putting together the results of Subsection 3.1 we get the following theorem.

Theorem 3.17. The map I" is a homeomorphic unital isomorphism from P onto C.

3.2 Some Observations on the Gelfand Theory of C

IfA=[-1,0] UD(1,1), then there is an isometric isomorphism from P onto the lollipop algebra
A(A) given by
AN) > [ ( fli=10 :f|(1u>(1,1)) )

So one could just as well state Theorem 3.17 with P replaced by A(A) and I' replaced with the
map ['~: A(A) = C defined by

DY) = [ ]y (M) + Flges (H) = £(0) |
Definition 3.18. Define 6 : A - A(A) by
0(X) = (I~)-([X]).

Then Theorem 3.17 says that there is a short exact sequence

0->Ka—>A-94(A) - 0.
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Remark 3.19. By Mergelyan’s theorem, A(A) = P(A), and since z generates P(A), it follows
that

[~(z) = [H - Mx]
generates C. We shall examine H — Mxin Section 6.

4 C+(A)

We shall let B = C*(A) denote the C*-algebra generated by A. Since it is irreducible, B contains
all the compact operators.

The Toeplitz C*-algebra T is the C* algebra generated by the shift S. There is a short exact
sequence

0->K->T-« A(B)—)O.

(See e.g. [8, 7.23]). A cross-section of a is the map that sends a function m to the Toeplitz

T, on H?

operator with symbol m.

Since H = §* + 1, the C*-algebra generated by H is unitarily equivalent to T . We wish
to think of it as living on D(1,1), so we must shift things over. Let 7(z) = z + 1. For any

function f defined on some domain in C, let fY(z) = f("z) be its reflection in the real axis.

Definition 4.1. Let i) € C(dD(1,1)). Let Hy € B(L?) be defined by
Hw — U*TE:/}OT)U U

The map i 7— Hyis unital and linear, but not multiplicative. One checks that if Y(z) = z»,
then Hz= H", and if Y(z) = "z", then Hz= (H*)".

Theorem 4.2. There is a short exact sequence

0—->K-B-7(C(0A) - 0. (4.3)
For every X in B, its coset in B/K can be written uniquely as

[X] = [g(=Mx) + Hy - g(0)] (4.4)

where g € C[-1,0], Y € C(dD(1,1)), and g(0) = ¥(0). The essential spectrum of X as in (4.4) is
g([0,1])uy(0D(1,1)). If A /€ 0e(X), then the Fredhom index is given by the winding number of
Y about A: ind(X - A) = indy(A).

Proof: For X € B, we shall let [X] denote its equivalence class in B/K. We have
[HMX] = [MXH] = O, (45)

since MxH = V which is compact, and (1.3) shows HMxis also compact. Moreover
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[HH*] = [H*H] = [H + H*], (4.6)

which can be seen by noting that all three of HH*,H*H and H + H* take xkto a constant minus

1 k
D) for k 1. S0 B/K is abelian. Moreover, for any polynomial g in 3 variables,

there are polynomials p1,p2,p3in one variable so that

[q(MxH,H)] = [p1(Mx) + p2(H) + p3(H*)]. (4.7)

Indeed, by (4.5), any term that has both Mxand either H or H*in it can be removed. An
induction argument on the total degree using (4.6) shows that any term that has factors of
both H and H* can be reduced to a linear combination of terms in just powers of H and
powers of H*. Therefore operators of the form (4.7) are dense in B/K.

We wish to prove that B/K is isomorphic to the abelian C*-algebra C(dA). We will use a
similar strategy to the proof of Theorem 3.17. Let

Q={f=(f-f) : f~€ C(]-1,0]),f+ € C(0D(1,1)),/~<(0) = f+(0)}. The algebra Q is just
C(0A), but it is easier to define the functional calculus on it. Define

§:Q - Bf7- f(-Mx) + Hy. - f0).

Let A(f) = [6(f)]- The following lemma is straightforward to prove.
Lemma 4.8. (i) Let i, € C(0D(1,1)). Then [HyHy] = [Hyo].
(ii) Let g € C([-1,0]) and ¢ € C(0D(1,1)). Then
[9(-Mx)1[Hy] = [Hy][g(-Mx)] = [g(0)Hy + Y (0)g(-M:) - g(0)1(0)].

Using Lemma 4.8, one can check that A is a unital *-homomorphism from Q into B/K. Its
range is dense, so if we can show it has no kernel, then it is a C*-isomorphism.

Lemma 4.9. If s € [-1,0], then

If~(s)] < KA(f)k (4.10)
forall f€ Q.

Proof. As fis continuous, it suffices to prove the lemma under the assumption that s € (-1,0),
and as A is continuous, we can assume that /- is a polynomial, and that f+(z) =

f(0) + zp2(z) + zp3(z) where p2 and p3 are polynomials.
As in Lemma 3.8, for n satisfying 1/n < min{s,1 - s} we define a unit vector y» € L2 by the
formula

13



B Toif [t —s| <1/n
Xn(t) - { 0 if |t — 8| > 1/77/

no|

Let K be compact.

h(6(f) + ’() Xn,)(ni = h(f—(—Mx) + Hzp2+ Hzps + ’() Xn,)(ni
= hff(=x)xnxni + hp2(H)H xn)xni + hyn,p3(H)H xni + hK yn,xni
- f~(s) + 0 + 0 + 0
= f(s)

Therefore,

If~(s)| < infké(f) + Kk = KA(f)k. kek
O
If A(f) = 0, by Lemma 4.9 we must have f- = 0. So §(f) = Hs must be compact.
But Hf is unitarily equivalent to a Toeplitz operator, and there are no non-zero compact
Toeplitz operators. Therefore A has a trivial kernel, and hence is a *-isomorphism.

The claim about the spectrum of [x] now follows from the fact that the spectrum of a
function in C(0A) equals its range. Finally, the claim about the Fredholm index follows from
the fact that the Fredholm index at A will be unchanged under any homotopy of f that keeps
A outside its range. Then f can be homotoped to (f-f+) where f+(z) = (z -1-A)"and f~(x) = (-1
- A)nfor some integer n, and the Fredholm index of 6(f) is n.

5 Compact operators in the little algebra Ao

Recall from Definition 1.8 that Ao is the norm-closed algebra generated by Mxand V. We shall
prove that every compact operator in AlgLat(V/) lies not just in A but in Ao.

For I aninterval in [0,1], let us write L2(I) for the subspace of L2that vanishes a.e. off I, and
let Prdenote projection onto L%(I). For ¢, € L2we write ¢ @1 to denote the rank one operator

® QY :f7- hfpie.

The key observation is the following:
Lemma 5.1. Suppose ¢ € L2[t,1] and i € L2[0,t]. Then ¢ & Y = M,V My*.

Proof: We have

MYVMfa) = (o) [ ()06,
0
The right-hand side is 0 if x < ¢, and @(x)hfyiif x > t.

Lemma 5.2. Every finite rank operator on L2[0,1] can be written as an integral operator
whose kernel is in L2([0,1] x [0,1]).
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Proof: Let!s = Zj:l 9i ® Vi Define

k(x,s) = Z ()15 (s)

j=1
ThenX /(%) = fol k(x,5)f(s)ds and kis in L2([0,1] x [0,1]).

. 1 »
Lemma 5.3. Let k be in L2([0,1] x [0,1]), and let 7/ (z) = [y k(2. 5)f(s)ds Then T is in
AlgLat(V) if and only if k(s,x) = 0 for s > x.

Proof: Sufficiency is clear. To prove necessity, assume that for some 0 < t < 1, the kernel
k(s,x)x10.a0ax1511(S)
is not 0 a.e. As an integral operator is zero if and only if the kernel is 0 a.e., this means that
the corresponding integral operator is non-zero, and hence T maps a function in L2(¢,1) to a
function thatisnot 0 a.e. on [0,t]. Lemma 5.4.Let T=¢ & y be a rank-one operator. Then
T is in AlgLat(V') if and only if for some 0 < t < 1, the support of ¢ is in [t,1] (i.e. ¢ = 0 a.e. on
[0,t]) and the support of ¥ is in [0,£]. In this case, T € Ao.

Proof: The first part follows from Lemma 5.3. For the second part, observe that if the
supports of ¢, are in [t,1] and [0,t] respectively, then ¢ @ ¥ = M,V My*. If ¢ and ¥ are both
in C([0,1]), this proves that ¢ @ Y € Ao.

For the general case, choose continuous functi/on%//n and gn that conver%/e to ¢ and ¥
respectively in L2. It follows from Lemma 5.1 that /7. V' My, converges to MoV Mg, porm
as n — oo, and thatMeV Mg, converges to MyV My*. Therefore® ® ¥ € Ao. 0

Theorem 5.5. Let K be a compact operator in AlgLat(V ). Then K € Ao, and can be
approximated in norm by finite rank operators in Ao.

Proof: Note that K € AlgLat(V ) means that for all 0 <s < 1, we have PjosKPjs11= 0. Let € >
0. First, consider Pj1/2,11KPj0,1/2). This can be approximated within /2 by a finite rank operator
that is a sum of rank one operators that map L2(0,1/2) to L2(1/2,1). By Lemma 5.4, this means
that this finite rank operator is in Ao.

A similar argument shows that P[i/41/21KPjo,1/4] and P[3/411KP[1/23/4] can both be
approximated by finite rank operators in Ao within /8. Iterating, we get that if n is a power
of 2, we can approximate

K =" Pgvymim K P—1)/mjn)

j=1
within ¢ by a finite rank operator in Ao.

Finally we observe that

1Y~ Pmty/mimE Plg-ymimll = max [|PG-1)m/mE Py mm|

1<j<n

=1 . (5.6)
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Since K is compact,
lim sup ||KF| =0

n—oo —
[I|=1/n ,

so (5.6) tends to 0.

6 The operator H-M;,

Let us write Z for the operator H-Mx. We know that [Z] generates the Calkin Hardy-Weyl
algebra C. By Theorem 3.17 we know that the spectrum of [Z] in A/Kois A. [t is not surprising
that D(1,1) are eigenvalues of Z, since they are eigenvalues of H. It is perhaps surprising that
every point in the stick, except -1, is also an eigenvalue. Moreover as we move up the stick to
the bulb of the lollipop, the eigenvalues increase in multiplicity.

Theorem 6.1. (i) 0p(Z) = D(1,1) U (-1,0].
(ii) The point spectrum of Z*is empty.
(iii) The spectrum of Z is A.
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Proof: (i) Suppose (Z-A)f=0. Letl (2) =V [(z) = fox f)dt Then we have

LF(@) = (+ N ()

As F9(x) = f{x), we get the equation

%F(x) = (2 +N)F'(z) (6.2)

with the boundary condition

F(0)=0. (6.3)
The function F is continuous. Let () denote the relatively open subset of [0,1] on which it is
non-zero.
We get that the solution of (6.2), with A 6= 0, is

Flo) = o5 )mm(x)

r+ A ) (6.4)

where the constant c can a priori be different on different components of (1 (though we show
below that () is actually connected). Hence

1 1

f(x) = cxi1(x + A)1ayq(x). (6.5)

Case: A =1[0,1].

For fto be in L2 with ¢ 6= 0, we need

1 1
QR(X — 1) > —5’

which is the same as A € D(1,1). For A € D(1,1), we get the eigenfunctions

f(x) = xu-1(x + A)-1-n. (6.6)

When A =0, we get
F(x) = ce /%,

and
1 1

J@) = eze (6.7)

Now suppose that () is not all of [0,1]. Decompose () as a union of disjoint non-empty
intervals. On each interval, we have that fis given by (6.5), with some constant c that can
depend on the interval. Choose such an interval, I. Then 0 cannot be an end-point of I, or we
would have that F is given by (6.4), and this is discontinuous at the right-hand end-point of I.
So assume that the left-hand end-point of I is t > 0. Then the boundary condition (6.3) is

replaced by F(t) = 0. On I, we have
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so to have F(t) = 0 we need A = —t. By continuity, F cannot vanish again, so we conclude that I
= (t,1] and that for A € (-1,0) the function

1 1

fx) = x0-1(x + A)-1-3x1-211 (%) (6.8)

is an eigenvector of Z with eigenvalue A.

«pi) — L
(ii) AsH" f(z) = fx %f(t)dt, the eigenvalue equation becomes

G = (x ""Uﬂx)rAs G'(z) = —if(a: ), we get the

where ) differential
Glz) = / %f(t)dt equation
G(x) = —x(x + A)G(x), G(1)=0. (6.9)

Solving for G, we get

G(x) = cx-u(x + A)aLy(Ge=0}.

The only solution on an interval that vanishes on the right end-point is the zero solution. (iii)
We know

0e(Z) =0A S A=0p(2) € 0(2).
If Ais a pointin C\ A, it must be a Fredholm point. By (i), it is not an eigenvalue of Z, and by
(i) it is not an eigenvalue of Z*. Therefore Z — A has trivial kernel and cokernel, and closed
range. Therefore it is invertible, and A is in the resolvent of Z.

Not only are points on the stick of the lollipop eigenvalues, there is some additional
smoothness. By a generalized eigenvector of order n we mean a vector f that satisfies (Z -
A)+if=0 but (Z - A)"f6= 0.

We shall prove the case A = 0 first.

Lemma 6.10. At 0, the operator Z has generalized eigenvectors of all orders.

_1
T

Proof: We want to show that if we let fo(2) = 1%6 * from (6.7), then for every n € N there

exists f € L2so that
Zfn+1= fa. (6.11)

Claim 6.12. For every n € N there exists a polynomial p» of degree 2n + 2, with lowest order
term of degree n + 2, so that the functions
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satisfy (6.11).
We prove this by induction on n. It is true when n = 0. Assume we have proved it up to
level n, and we want to prove it for n + 1. So we wish to solve the equation

1

Zfpy1 = fn:pn<;)e_5 (6.13)

and show that the solution is of the form

for1(x) = pn+1(é)€_%_ (6.14)

Writing Fn+1 for V fa+1, equation (6.13) is
1 €T
(H - Afx)fn+1($) - E / fn+1(t)dt - mfn+1(x)
0
1
—F,

(@) — 2FL, ()

= o).

This gives us the linear differential equation

Fi(@) = 5Fun(e) = —2ful@)
Multiply by the integrating factor co_to get

Lt hn@] = —en@

1 1
= _;pn(;)
Therefore ,
e hun(@) = a())

where gn is a polynomial of degree 2n + 2 that may have a constant term, and whose next
lowest order term is of degree n + 2. This gives

Fowi(x) = i{e—%qn(lﬂ

dx T

B B | 1,1

- ) - Ha)

Let
Pas1(7) = 2°qu(@) — 2%q, (2),

The degree of pn+1is two higher than gn, so it is 2(n+1)+2. There may be a term of order 2; the
next lowest order term is n + 3 = (n + 1) + 2. But as Zfo = 0, one can subtract a multiple of fo
from fn+1 without changing (6.13), so we can assume that pn+1 has no term of order 2. So we
have proved Claim 6.12. As any function of the form (6.14) is in L2, we are done.
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For points in the stick, a similar method works, but there are restrictions when requiring
the generalized eigenvectors to be in L2. Here is one result.
Lemma 6.15. Let A € (-1,0). Then Z has a generalized eigenvalue of order 1 at A if and only if
2
—: < A<0.
3

Proof: Let s = -A.

1
r—s\* 1
folz) = ( ) X[s,1]
x w(x—s)" (6.16)
All the functions below are supported on [s,1]. We wish to find a function f1 that satisfies
(Z + s)fr=fo. (6.17)
Writing/1 for Vfi(x) = [ fi (1)t this becomes
1
“Fi—(e—9)F = fo
T .
or
1 1
Fl-——F = ——f,
z(r — ) T—s", (6.18)

x

_ 1
An integrating factor for (6.18) is (I;s)é. This yields
1 1
d x s x s 1
& [( ) A = ()
x| \r—s r—s) x—s

xr(x —s)%

Integrating, we get

1
T s 1 r—s 1 1
( ) = ?log + - +c.

r—S T ST — S

Dividing through by the integrating factor and differentiating, we get

1 z—s\: 1 T —3s z—s\* s
= = —1
fil) s2 [( x ) 22 % Ty +( x ) x(x—s)]
1 1

+1 1 r—s n 1 z—s\* 1
s| (x—s)? x r—S x x?
(x—s)é_lll
+c |-
x x

We can choose ¢ = 0, since it is the coefficient of fo. This gives
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fi(z) = (x—s)g[l 1 logsv—s+1—s 1

x ?:r(:c—s) x s x(x—s)], (6.19)

Examining this expression, we see that f1is smooth on (s,1], and the first term

1
1(x—s)s' x—s
- - log
s2 pstl x

vanishes at s for every s < 1. However the second term
1
1—s (x—s)s2

1
S x5t

has a singularity that grows like (* — s)* . Thisis integrable for every s <1, butitis only in
2

L2[s,1] for 5 < 3. So we have shown that (6.17) has a solution fiin L2if and only if

A>—2

One can repeat the argument of Lemma 6.15 to get higher order generalized eigenvectors,
as A gets closer to 0.

2
Lemma 6.20. Let m = 1. Let A lie in the interval ( ~ 2m+1°0). Then Z has generalized
eigenvectors up to order m at A.

Proof: We shall inductively find functions fx satisfying (Z = A)fa+1 = fn, with foas in (6.16).
Let s = —-A, and write

Then we have

fle) = 0@
fz) = o) L%I(wl_ S log o, 1 - SJJ(L 3 -

WritingF nt1 for Vi = f: Jn (t)dt, we want to solve

L)~ (2 = 9Fale) = £

. (6.21)
After multiplying by the integrating factor 1/®, we have
d |1 1 1
- _Fn = = n\-
dx {‘P “] s (6.22)
Claim 6.23. There are constants Mnrsuch that the functions f» satisfy
[fn(x)] < Mn(x - s)as7-1 Vx € (s,1]. (6.24)
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Proof of Claim 6.23: By induction on n. It is true when n = 0. Assume it is true up to n. From
(6.22) we get for x € (s,1]:

1 1ol

——Fo(z) = / ————fu(t)dt + ¢,
®(z) " . P(t)t—s . (6.25)
By the inductive hypothesis, the integrand in (6.25) is O(t - s)™""2, so the integral is O(x -
s)"-1. So Fn+1 satisfies

1

Fni1(Xx) = cn®(x) + O(x - s)sn"L, (6.26)
From (6.21) we have
1 1
fr(®) = S @) = S o) 627

When we use (6.26) for Fn+1, we get

1
rT—Ss

for1(®) = cofolz) —

Now the claim follows from the inductive hypothesis on fx.
It follows from (6.27) that that fm is continuous on (s,1], and Claim 6.23 shows that its

fulz) + O(z — S)éfH.

1 1
singularity at s is of order (x-s)1 -1, This means fmis in L2 provided s ~— " — 1> 2, which

2
is the same as® < Zmt1.

For later use, let us note that if you track the constants M»in Claim 6.23, you can show:

1

Lemma 6.28. In Claim 6.23 one can takeMO ~ ""7%) and the consants Mj satisfy

M,
Mo < M,|1
= ( * n -+ 1)_

2
Lemma 6.29. Let m 2 1. On the interval (* 2m+1’ 0) one can choose the generalized
eigenvectors of order n of Z - A continuously in A, for every n < m, and satisfying (Z - A)fin=
fin-1, forevery 1 < n < m.

Proof: Let us write fan for the choice of generalized eigenvector of order n at A. Write

O\, z) = (:CJF)\)_ XH,l](-T)'

>|=

T

We have
D(A, )

1
f/\,o(l’) = m

On every compact subset K, of (-1,0) the functions {fi0: A € K} are uniformly bounded, and

2
limao—2 fa0,0(x) = f1,0(x) a.e., so the map A 7— fi0is continuous as a map from (—5mr '0) into L2.
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For higher n, we find f»+1as in Lemma 6.20. At each stage, we take the constant cnin
(6.26) to be 0. (We can do this because cnfi,0 will be in the kernel of Z - A.) This gives us

1 Pl 1
Samir(x) = m‘p(/\:f)/w mgfm(t)dt—x_sfm(x)

Moreover we have fin(x) = 0 ifx < -A and

[fAn(X)] £ Mna(x + A)-1-n-1, x>-A
2
By Lemma 6.28, we have that each M can be chosen uniformly in A for Ain ( 2m+1° 0).
For any interval I of length 6, we get

6 -
/]f,\m(x)\de < Mn/ P
I 0

1
- M,————
—Z _9p—1

57§72n71

2
Therefore, as A ranges over any compact subset of ( 2m+1° 0), the functions |fin(x)|? are
uniformly integrable in x. So, by the Vitali convergence theorem, the map

2
- 0 — L?
( 2m+1’)

A = .f)\,n

is continuous.

These lemmas say that operators in the closed algebra generated by Z have certain
smoothness properties when mapped by ¢ into A(A). The functions get smoother as we get
closer to 0.

Theorem 6.30. Let X be in the norm-closed algebra generated by Z. Then 6(X) is C"on
(_ 2m2+1 ’ 0)

Proof: Let 6(X) = ¢ € A(A). Let pjbe a sequence of polynomials so that kpj(Z) - Xk = 0. It
follows from Theorem 3.17 that pjconverges to ¢ uniformly on A.
Case: m = 1. Let fanbe as in Lemma 6.29. For any polynomial p, we have

hp(Z)fi0,fi0i = kfiokep(A).

Moreover, p(Z)fi1= p(A)fa1+ po(A)fao.

LetJ;1be the linear combination of fioand fi 1 that satisfies hfi,#9:1i = 1 and hf3,¥921i = 0. Then
hp(2)fa.ga'i = p°(A).

2
So as functions on (™ 3> 0), we get thatp;' ()‘) converges to some function y(A) = hXfy1,gali.
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2
Claim 6.31.Forallxin( 7 3'0), we have ¢°(x) = (x), and ¥ is continuous.
We have gal = axofa,0+axify1, where the coefficients axoand a1 solve the linear system

<<f)\,0;f>\70> <f,\.,0,f,\,1>) (am) _ (1>
(Fos o) (Fans fon)) \ana 0/

By Lemma 6.29, since fj0and fi,1are continuous in A, so as they are linearly independent, we
have that galis also continuous in A. Therefore 1 is continuous, and p% converges to i locally

T _ _ A1 z
uniformly on (_§7 0). Asf—% Pj(t)dt = ¢(z) — o 3) converges toJ 1 Y(B)dt e get that
P(x) = P(x). 3

fein (12
We have shown that ¢isin C (_570). A similar argument with higher derivatives proves
that @ 18 in C™(—5,.57,0).

Of course one can also find generalized eigenvectors for Z of all orders at points in D(1,1),

but we already know that 6(X) is analytic on D(1,1) for every X € A.

7 Open Questions

Question 7.1. Is there a good description of Ka, the compact operators in A?

Question 7.2. Is C*(Z) = C*(A)? To prove this, it is sufficient to show that C*(Z) is irreducible,

since then it would contain all the compacts, and its quotient by the compacts would be all of
C(0A).

Question 7.3. Do the eigenvectors of Z span L2?
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