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The relative class number one problem for function fields, III

Kiran S. Kedlaya

Abstract. We complete the solution of the relative class number one problem
for function fields of curves over finite fields. Using work from two earlier
papers, this reduces to finding all function fields of genus 6 or 7 over F2 with
one of 40 prescribed Weil polynomials; one may then verify directly that three
of these fields admit an everywhere unramified quadratic extension with trivial
relative class group. The search is carried out by carefully enumerating curves
based on the Brill–Noether stratification of the moduli spaces of curves in these
genera, and particularly Mukai’s descriptions of the open strata.

1. Introduction
This paper continues and concludes the work done in [ 17, 18] on the relative

class number one problemfor function elds of curves over nite elds (hereafterfi fi fi
simply function elds ),“ fi ” building upon work of Leitzel Madan [– 21] and Leitzel–
Madan Queen [– 22]. That is, we seek to identify nite extensionsfi  F /F of function
elds for which the two class numbers are equal.fi

To state the main result, we recall some context from the introduction of [17].
Given a nite extensionfi  F /F of function elds,fi we write  C, C for the curves
corresponding to  F, F ;  q F , q F for the orders of the base elds offi  C, C ;  g F , g F for
the genera of  C, C ; and  h F , h F for the class numbers of  F, F . Since the relative
class number  h F /F =  h F /hF is an integer (it is the order of the Prym variety of
the covering  C → C), the relative class number one problem reduces to the cases
where  g F =  g F (a constant extension) and where  q F =  q F (a purely geometric
extension). Excluding the trivial cases of a constant extension of genus-0 function
eld and an extension withfi  F ∼= F , one has the following result (see [ 17] for the

tables).

Theorem 1.1 (Solution of the relative class number one problem) . Let F /F
be an extension of function fields of degreed > 1 of relative class number1.

(a) If F /F is constant and gF > 0, then qF , d, g F , and the isogeny class of
J(C) appear in [17, Theorem 1.1]. In particular,
(qF , d, g F )  ∈{(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (3, 2, 1), (4, 2, 1)}.

The author was supported by NSF (grants DMS-1802161, DMS-2053473) and UC San Diego
(Warschawski Professorship).

c2024 by the authors (licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0))

55



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

56 KIRAN S. KEDLAYA

(b) If F /F is purely geometric, gF ≤ 1, and gF > g F , then qF , g F , g F ,
and the isogeny classes of J(C) and J(C ) appear in [17, Table 3]. In
particular,

(qF , g F , g F )  ∈{(2, 0, 1–4), (2, 1, 2–6), (3, 0, 1), (3, 1, 2), (3, 1, 3), (4, 0, 1), (4, 1, 2)}.
(c) If F /F is purely geometric,gF > 1, and qF > 2, then d, g F , g F , F appear

in [17, Table 4]. In particular,
(qF , d, g F , g F )  ∈{(3, 2, 2, 3), (3, 2, 2, 4), (3, 2, 3, 5), (3, 3, 2, 4), (4, 2, 2, 3), (4, 3, 2, 4)}.

(d) If F /F is purely geometric,gF > 1, qF = 2, and d > 2 , then d, g F , g F , F
appear in [17, Table 5]. In particular,

(d, g F , g F )  ∈{(3, 2, 4), (3, 2, 6), (3, 3, 7), (3, 4, 10), (4, 2, 5), (5, 2, 6), (7, 2, 8)}.
(e) If F /F is purely geometric, gF > 1, qF = 2, and d = 2, then gF , g F , F

appear in [17, Table 6]. In particular,
(gF , g F )  ∈{(2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 7), (4, 8), (5, 9), (6, 11), (7, 13)}.

(f ) If F /F is neither constant nor purely geometric and gF > g F , then
qF = 2, q F = 4 , and (gF , g F , J (C), J (C )) is one of (0, 1, 0,1.4.ae) or
(1, 2,1.2.c, 2.4.ae i) (using LMFDB labels to represent isogeny classes of
abelian varieties).

This statement is covered by [17, Theorems 1.1, 1.2, 1.3] except for the following
points.

• Part (b) requires classifying curves of genus 6 overF2 with one particular
Weil polynomial. It is shown in [18, Lemma 10.2] that there is a unique
such curve.

• Part (d) requires showing that when  qF = 2, the extension  F /F is cyclic.
This is done in [ 18, Theorem 1.1] using constraints on the Weil polyno-
mials found in [17].

• Part (e) requires nding allfi curves of genus 6 and 7 over F2 with Weil
polynomials in a speci c list of 40 entries found in [fi 17] (see Table 2). This
brings us to the main result of the present paper, stated as Theorem 1.2
below.

Theorem 1.2. The following statements hold.
(a) There are two isomorphism classes of curvesC of genus6 over F2 admit-

ting an ´etale double coveringC → C such that#J(C )(F2) = #J(C)(F2).
The curves C are Brill–Noether general with automorphism groupsC3 and
C5.

(b) There is a unique isomorphism class of curvesC of genus7 over F2 admit-
ting an ´etale double coveringC → C such that#J(C )(F2) = #J(C)(F2).
The curve C is bielliptic with automorphism groupD6.

As in [ 17], given a candidate for  C it is straightforward to use Magma to
generate all of the ´etale double coverings  C → C; thus the main computational
issue is to invert the Weil polynomial function  on the output values indicated in“ ”
Table 2. Unfortunately, the Weil polynomial function is in some sense a secure“
hash function , in that its value generally does not reveal much useful information”
about the input. Examples where one can invert the function are often of some
extremal nature, as in Lauter s approach to bounding the maximum number of’
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points on a curve of xed genus over a xed nite eld:fi fi fi fi one rst enumerates thefi
Weil polynomials consistent with a given point count, then attempts to rule in or
out the various candidates. Much work has been done on the second step by Howe;
see [13] for a recent survey of this problem.

Unfortunately, the techniques described in [ 13] do not seem to be applicable
to the cases relevant to Theorem 1.2. Fortunately, for genera up to 7 it is feasible
to deploy a brute force strategy, i.e., to enumerate a collection of schemes known
to include all curves with the given Weil polynomials and then lter through thefi
results. One way to build such a collection is using singular plane curves; see [8]
and [9] for recent examples of this approach.

Here we take an alternate approach that accounts for the known geometry of
moduli spaces of curves based on Petri s analysis of linear systems (see’ §2). This
amounts to a natural extension of the computation of the set of isomorphism classes
of curves of genus  g overF2 for  g = 4 by Xarles [34], based on the fact that a general
canonical curve of genus 4 is a complete intersection of type (2) ∩ (3) in P 3; and
g = 5 by Dragutinovi´c [6], based on the fact that a general canonical curve of genus
5 is a complete intersection of type (2) ∩ (2) ∩ (2) in P 4.

While one cannot hope to give similar such descriptions in arbitary genus (see
Remark 3.4), they are available in genus 6 and 7 by work of Mukai [26,27], although
some care is required to use them over a nonclosed base eld.fi As in [8] and [9],
we short-circuit the searches using the Weil polynomial constraints, especially the
number of F2-rational points. See Lemma 4.1 for more detailed internal references.

One technical innovation introduced along the way (see Appendix A) is a light-
weight method for computing orbits of the action of a group  G on subsets of a set
carrying a  G-action; for instance, in the generic genus-7 case we compute orbits
of 6-element sets of F2-rational points on the 10-dimensional orthogonal Grass-
mannian. This construction may be of independent interest for other applications,
including extending the tabulation of genus-g curves over F2 to a few larger values
of  g for which the Brill Noether strati cation on moduli can again be made explicit– fi
(see Remark 3.4), or nding supersingular genus-fi g curves overF2 for  g in a similar
range. See §8 for more discussion of the relevant issues.

As in [ 17] and [18], the arguments depend on a number of computations in
SageMath [30] and Magma [30]; the computations take about 8 hours on a
single CPU (Intel i5-1135G7@2.40GHz) and can be reproduced using some Jupyter
notebooks found in the repository [19]. (Some functionality used in SageMath is
derived from GAP [11] and Singular [5].)

2. The structure of canonical curves
Let  C be a curve of genus  g over a finite eldfi  k. Let  k be an algebraic closure of

C. We collect here a few facts about the geometry of  C that will be used frequently,
and often without comment, in what follows. See [ 31] for a characteristic-free
treatment of much of this material (and [12, §4.3] for some additional details).

A  g r
d on  C is a line bundle of degree  d whose space of global sections has

dimension  r + 1; if such a bundle is basepoint-free, then it de nes a degree-fi d map
C → P r . (If the bundle is not basepoint-free, then the global sections generate
a basepoint-free subbundle of degree strictly less than  d.) Since  k is nite,fi every
Galois-invariant divisor class on  C contains a  k-rational divisor (see for example
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[2, Remark 2.4]). Consequently, if Ck admits a unique gr
d for some  r, d, then so

does  C.
The Castelnuovo Severi– inequality (see for example [ 32, Theorem 3.11.3]) as-

serts that if there exist curves  C 1, C 2 of genera  g 1, g 2 and morphisms  f 1 : C →
C1, f 2 :  C → C2 of degrees  d 1, d 2 such that  k(C) is the compositum of  k(C 1) and
k(C2) over  k, then

g ≤ d1g1 +  d 2g2 + (d1 − 1)(d2 − 1).

We will use this bound to ensure that certain low-degree maps out of  C occur in
isolation.

We say that  C ishyperelliptic if  C admits a  g 1
2 (which is automatically basepoint-

free if g > 0). By Castelnuovo Severi,– if g > 1 then  C k can admit only one  g 1
2 ;

consequently,  C is hyperelliptic if and only if  C k is hyperelliptic. Let  ι :  C → P g−1
k

be the canonical morphism, de ned by the canonicalfi linear system; then  ι is a
degree-2 map onto a rational normal curve if  C is hyperelliptic and an embedding
otherwise. By abuse of language, ι is commonly called the canonical embedding
even when  C is allowed to be hyperelliptic.

For  g > 4, we say that  C is trigonal if it admits a  g 1
3 but not a  g 1

2 (so the
former is necessarily basepoint-free). By Castelnuovo Severi– again, Ck can admit
only one  g 1

3 ; consequently, C is trigonal if and only if Ck is trigonal. By Petri s’
theorem (a/k/a the Max Noether Enriques Petri theorem), if– –  C is not trigonal or
a smooth plane quintic (when  g = 6), then  ι(C) is cut out by quadrics.

By contrast, for  C trigonal, the linear system of quadrics containing  ι(C) cuts
out a rational normal scroll; the latter is isomorphic to the Hirzebruch surface

F n := ProjP 1
k
(OP 1

k
 ⊕O (n)P 1

k
)

for a certain integer  n ≥ 0 called the Maroni invariant 1 of  C. The structure map
F n → P 1

k , whose bers form a ruling offi F n , restricts to the trigonal projection
π :  C → P 1

k .

• For  n > 0, F n is isomorphic to an (n, 1)-hypersurface in P 1
k × k P 2

k . Let  b
be the unique irreducible curve in F n with negative self-intersection (the
directrix) and let  f be a ber of the ruling; thenfi

(2.1) b2 = −n, b·f = 1, f2 = 0,

and blowing down F n along  b yields the weighted projective space P (1 :
1 :  n) k . Of the linear systems

(2.2) |3b + g+3n+2
2 f|, |b + g+n−2

2 f|, |−2b + (−n− 2)f|,
the rst containsfi  C, the second de nes the embeddingfi F n → P g−1

k , and
the third is the canonical linear system.

• For  n = 0, we have F n,k
∼= P 1

k × k P 1
k . Let  b and  f be bers of the twofi

di erent rulings;ff then (2.1) and the interpretation of (2.2) remain valid.

Since 3 = g+2
2 , the symmetry of the two rulings is broken by  C and so

everything descends from  k to  k.

Since  C and  b are e ective, 0ff ≤ b ·C = −3n + g+3n+2
2 , so

0 ≤ n ≤ g+2
3 , n ≡ g (mod 2).

1Here we follow the terminology of [31]. The original definition of Maroni [25] follows a
different numbering convention which is also commonly used.
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In case  n = g+2
3 , we have  b ·C = 0 and so  C also embeds into P (1 : 1 :  n).

We say that  C is bielliptic if it admits a degree-2 map to a genus-1 curve over
k. By Castelnuovo Severi once more, if–  g > 5 then  C k can admit at most one such
map; consequently,  C is bielliptic if and only if  C k is bielliptic.

3. Brill–Noether stratifications
We now specialize the previous discussion to the genera of direct concern

here, following Mukai. We use the conventions that the Grassmannian Gr(r, V )
parametrizes subspaces of dimension  r of a speci ed vector spacefi  V and that the
Plücker embedding maps into P (∧r V ∨).

Theorem 3.1. Let C be a curve of genus 6 over a finite field k. Then one of
the following holds.

(1) The curve C is hyperelliptic.
(2) The curve C is trigonal of Maroni invariant 2. In this case, C occurs

as a complete intersection of type (2, 1)∩ (1, 3) in P 1
k × k P 2

k , where the
(2, 1)-hypersurface is isomorphic to F2.

(3) The curve C is trigonal of Maroni invariant 0. In this case, C occurs as
a curve of bidegree(3, 4) in P 1

k × k P 1
k .

(4) The curve C is bielliptic.
(5) The curve C occurs as a smooth quintic curve in P 2

k .
(6) The curve C occurs as a transverse intersection of four hyperplanes, a

quadric hypersurface, and the 6-dimensional Grassmannian Gr(2, 5) in
P 9

k .

Proof. This again follows from Petri s theorem except for the last case,’ in
which the description can be found in [26, Theorem 5.2]. We recall that argument
both to ll in some details that are left to the reader in [fi 26] (by comparison with
a similar argument in genus 8), and to see that it is characteristic-free and applies
over a nite base eld.fi fi

By the Brill Noether theorem on the existence of special divisors (see [– 20] for
a characteristic-free treatment), Ck admits a  g 1

4 , which we call ξ; let  η :=  ω C ξ−1

be its Serre adjoint. By Riemann Roch we have–
h0(ξ) = 2, h0(η) =  h 0(ξ) +  g − 1− deg(ξ) = 3;

that is,  η is a  g 2
6 . Since  C is not trigonal or a plane quintic, the linear system |η|is

basepoint-free; we thus have a map Φ|η|:  C k → P 2
k induced by  η. The image of Φ|η|

cannot be a singular cubic or a smooth cubic because we are assuming  C is neither
hyperelliptic nor bielliptic, so it must be a sextic curve  C. Other than  ξ, every  g 1

4 of
Ck arises by projection from a double point of  C; it follows that the space  W 1

4 (Ck )
parametrizing the  g 1

4 ’s of  C k is nite (recovering [fi 26, Proposition 5.3]).
We now emulate [26, Lemma 3.6]. The extensions 0 → ξ → E → η → 0 are

parametrized by Ext( , η ξ) ∼= H1(η−1ξ), which is Serre dual to  H 0(η2). For an ex-
tension  e, let  δ e :  H 0(η) → H1(ξ) be the corresponding connecting homomorphism;
then the linear map

:Δ Ext( , η ξ) → H0(η)∨ ⊗H1(ξ), e → δe

is dual to the multiplication map

μ:  H 0(η)⊗H0(η) → H0(η2).
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By Riemann Roch again,– h0(η2) = deg(η2) − g + 1 = 7. Since the image of Φ |η|
cannot be contained in a conic, the linear map Sym 2 H0(η) → H0(η2) is injective,
so its cokernel has codimension 1.We conclude that ker( ) is one-dimensional, andΔ
so there is a unique nontrivial extension of  η by  ξ which is a stable bundle with vefi
linearly independent global sections. Because  k is perfect, this uniqueness property
ensures that the resulting vector bundle of rank 2 on  Ck descends to a unique vector
bundle  E on  C. We have now recovered [26, Theorem 5.1(1)]. We deduce from this
an analogue of [26, Lemma 3.10]: if  ξ is any  g 1

4 on  C k , then dim Hom(ξ , E) ≤ 1.
Since  δ e = 0 and  ξ and  η are generated by global sections, so is  E. Hence

for each point in  C, the ber offi E at this point is a 2-dimensional quotient of
the 5-dimensional space  H 0(E); this de nes a map fi Φ |E| : C → Gr(2, H 0(E)∨).

Let  λ : ∧2 H0(E) → H0(∧2E) =  H 0(ωC ) be the natural map. We then have a
commutative diagram

Ck
Φ|E| //Gr(2, H 0(E)∨)

P (H0(ωC ))
P(λ) //P (∧2H0(E))

where the left vertical arrow is the canonical embedding and the right vertical arrow
is the Pl ücker embedding. The hyperplanes of P (∧2H0(E)) are parametrized by
P ((∧2H0(E))∨); the hyperplanes among these which containing the image of  C are
parametrized by P ((ker  λ) ∨).

We now emulate [26, Theorem B]. Suppose that  U ⊂H0(E) is a 2-dimensional
subspace such that  λ( ∧2U ) = 0. Then the evaluation map  U  ⊗O C → E is not
generically surjective; its image is a line subbundle  L of E satisfying  h 0(L) ≥
2. The stability of E forces deg(L)  < 5, and  h 0(L) = 2 since  C has no  g 2

4 by
the adjunction formula. Since  C is not hyperelliptic or trigonal, L must be a
g1

4 . That is, this construction de nes a map fromfi P ((ker  λ) ∨) ∩Gr(2, H 0(E)∨) to
W 1

4 (Ck ); this map is injective by our analogue of [26, Lemma 3.10] and surjective
by [26, Proposition 3.1]. We have now recovered [26, Theorem 5.1(2)].

We now follow the proof of [26, Theorem 5.2] as written. To wit, since
P ((ker  λ) ∨) ∩Gr(2, H 0(E)∨) ∼= W 1

4 (Ck ) is nite and Gr(2fi , H 0(E)∨) has codimen-
sion 3 in P (∧2H0(E)), dim(ker  λ) ≤ 4; hence  λ is surjective and so Φ |E| is an
embedding. By Petri s theorem (’ §2), the image of Φ|E| is cut out by the hyper-
planes in P ((ker  λ) ∨) plus a single quadric.

Theorem 3.2. Let C be a curve of genus 7 over a finite field k. Then one of
the following holds.

(1) The curve C is hyperelliptic.
(2) The curve C is trigonal of Maroni invariant 3. In this case, C occurs as

a hypersurface of degree9 in P (1 : 1 : 3)k .
(3) The curve C is trigonal of Maroni invariant 1. In this case, C occurs as

a complete intersection of type (1, 1)∩ (3, 3) in P 1
k × k P 2

k .
(4) The curve C is bielliptic.
(5) The curve C is not bielliptic but admits a g2

6 which is self-adjoint (squares
to the canonical class). In this case, C is a complete intersection of type
(3) ∩ (4) in P (1 : 1 : 1 : 2)k , where the degree3 hypersurface can be taken
to be defined byx0x3 +  P 3(x1, x 2) = 0 for some separable cubicP3.
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(6) The curve C admits a pair of distinct g2
6 ’s. In this case, C occurs as a

complete intersection of type(1, 1)∩ (1, 1)∩ (2, 2) in P 2
k × k P 2

k .
(7) The curve C does not admit a g2

6 but Ck does. In this case, C occurs as
a complete intersection of type(1, 1)∩ (1, 1)∩ (2, 2) in the quadratic twist
of P 2

k × k P 2
k .

(8) The curve C admits ag1
4 butCk does not admit ag2

6 . In this case, C occurs
as a complete intersection of type (1, 1)∩ (1, 2)∩ (1, 2) in P 1

k × k P 3
k in

which the (1, 1)-hypersurface is a P2-bundle over P1. (It is also true that
all of the (1, 2)-hypersurfaces vanishing onC are geometrically irreducible,
but we won’t use this here.)

(9) The curve C does not admit ag1
4 . In this case, C occurs as a transverse in-

tersection of 9 hyperplanes and the orthogonalGrassmannianOG+ (5, 10)
in P 15

k .

Proof. Petri s theorem covers cases (1) (3).’ – We treat cases (4) (8) as summa-–
rized in [27, Table 1], postponing case (9) until§7 where we introduce the relevant
notation.

Suppose that  C k is not hyperelliptic or trigonal but admits a  g 1
4 ; let  ξ be one

such and let  η :=  ω C ξ−1 be its Serre adjoint, which by Riemann Roch is a–  g 2
8 .

Since  C cannot admit a  g 2
5 , |η|is basepoint-free. Let  π :  C k → P 1

k and  τ :  C k → P 3
k

be the maps de ned byfi |ξ|and |η|.
If Ck has no  g 2

6 , then  τ is an embedding; its image cannot lie in a quadric
by the adjunction formula, so  η does not factor as a product of two  g 1

4 ’s. By
[26, Corollary 3.2], any  g 1

4 other than  ξ would have to occur as a subbundle of  η,
so in fact  ξ is the unique  g 1

4 on  C k . This means that both  ξ and  η descend from
Ck to  C. We can now follow the proofs of [27, Lemma 6.1, Proposition 6.3] to the
desired conclusion.

Suppose instead that  C k has a  g 2
6 ; let  α be one such and let  β be its Serre

adjoint, which is also a  g 2
6 . Since  C k is not hyperelliptic or trigonal, the map

f :  C k → P 2
k de ned byfi |α|is either birational onto a sextic or a double cover of

a smooth cubic. In the latter case  C k is evidently bielliptic, as then is  C. In the
former case, from the proof of [ 26, Proposition 3.1] we see that there are no  g 2

6 ’s
on  C k other than  α and  β. Namely, if  ζ is a third  g 2

6 , then for  E =  ξ ⊕ η we have
h0(ζ−1E) = 0 and so

h0(ζξ) +  h 0(ζη) =  h 0( Eζ ) =  h 0(ωC Eζ ∨) =  h 0(ζ−1E) + 2 deg(ζ) = 12;

this is only possible if one of  ζξ or  ζη is special, which is impossible because they
are both of degree 12 and not canonical.

If  α and  β are isomorphic, then they both descend to  C; otherwise, they descend
either to  C or to its quadratic base extension. We can now follow the proof of
[27, Proposition 6.5] to conclude.

Remark 3.3. In [27, Proposition 6.4], it is also shown that bielliptic curves
occur as complete intersections of type (3)∩(4) in P (1 : 1 : 1 : 2)k . We will not use
this in our computations.

Remark 3.4. While we will not need to do so here, it is possible to push this
treatment through to a few higher genera. For example, Mukai showed that (over
an algebraically closed eld) a genus-8 curve with nofi  g 2

7 is a linear section of the
8-dimensional Grassmannian Gr(2, 6) ⊂ P 14 [27]; building on this, the complete
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Brill Noether strati cation in genus 8 has been described by Ide Mukai [– fi – 15]. Sim-
ilarly, a genus-9 curve with no  g1

5 is a linear section of the 6-dimensional symplectic
Grassmannian SpG(3, 6)⊂ P 13 [28], and an analogous assertion holds in genus 10
[29]. Pushing this even further would amount to establishing unirationality of the
moduli space of genus-g curves, which is known to hold for  g ≤ 14 [33] and to fail
for  g ≥ 22 [7], [10].

4. Overview of the proof
We now give an overview of the proof of Theorem 1.2.

Lemma 4.1. For the various strata in moduli described above,the number of
isomorphism classes of curves C over F2 in each stratum admitting ´etale double
coverings C → C such that #J(C )(F2) = #J(C)( F2) is given in Table 1. In
particular, Theorem 1.2 holds.

Table 1. Outline of the use of the Brill Noether strati cation– fi
in the proof of Lemma 4.1. Of the columns, “Dim  records the”
dimension of the stratum in moduli, See  locates the description“ ”
of this case in the text, “#C  counts curves whose point counts”
appear in Table 2, and #“ C  ” counts double covers with relative
class number 1.

g = 6 g = 7
Type of C Dim See #C #C Time Dim See #C #C Time

hyperelliptic 11 §5 0 0 — 13 §5 0 0 —
trigonal, Maroni ≥ 2 12 §6 4 0 10m 13 §5 0 0 —
trigonal, Maroni ≤ 1 13 §6 9 0 2m 15 §6 0 0 5m

bielliptic 10 §5 0 0 — 12 §5 2 1 5m
plane quintic 12 §6 1 0 1m — — — — —
self-adjoint g2

6 — — — — — 15 §6 0 0 5m
rational g2

6 pair — — — — — 16 §6 0 0 30m
irrational g2

6 pair — — — — — 16 §6 0 0 45m
tetragonal, no g2

6 — — — — — 17 §6 1 0 2h
generic 15 §6 38 2 2.5h 18 §7 1 0 1h

Proof. To begin with, we recall from [ 17, Theorem 1.3(b)] that the Weil
polynomials of  C and  C are restricted to an explicit nite list.fi In Table 2, we list
the possible values of the tuple (#C(F2i ))g

i=1 .
For each stratum, we exhibit a set  T of schemes of nite type overfi F2 of size

at most 10 6, such that every curve  C over F2 belonging to the speci ed stratumfi
whose point counts are consistent with Table 2 is isomorphic to some scheme in  T .
In most cases, all of the schemes in  T will be presented as subschemes of a single
ambient scheme  X; see Table 1 for internal cross-references.

Given a set  T as indicated, we conclude as follows (iterating over all C ∈T ).
All computations are done in SageMath except as indicated.

• Optionally, for one or more  i ≥ 1, compute #C(F2i ) using a lookup table
of  X( F2i ), retaining cases consistent with Table 2. We typically do this
when we have at least 105 cases to deal with.
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Table 2. Tuples (#C(F2i ))g
i=1 allowed by [17, Theorem 1.3(b)]

for  g = 6, 7.

4, 14, 16, 18, 14, 92 5, 11, 11, 31, 40, 53 6, 10, 9, 38, 11, 79
4, 14, 16, 18, 24, 68 5, 11, 11, 31, 40, 65 6, 10, 9, 38, 21, 67
4, 14, 16, 26, 14, 68 5, 11, 11, 39, 20, 53 6, 10, 9, 38, 31, 55
4, 16, 16, 20, 9, 64 5, 11, 11, 39, 20, 65 6, 14, 6, 26, 26, 68
5, 11, 11, 31, 20, 65 5, 13, 14, 25, 15, 70 6, 14, 6, 26, 26, 80
5, 11, 11, 31, 20, 77 5, 13, 14, 25, 15, 82 6, 14, 6, 26, 36, 56
5, 11, 11, 31, 20, 89 5, 13, 14, 25, 15, 94 6, 14, 6, 34, 16, 56
5, 11, 11, 31, 30, 53 5, 13, 14, 25, 25, 46 6, 14, 6, 34, 26, 44
5, 11, 11, 31, 30, 65 5, 13, 14, 25, 25, 58 6, 14, 12, 26, 6, 44
5, 11, 11, 31, 30, 77 5, 13, 14, 25, 25, 70 6, 14, 12, 26, 6, 56
5, 11, 11, 31, 30, 89 5, 15, 5, 35, 20, 45 6, 14, 12, 26, 6, 66

6, 18, 12, 18, 6, 60, 174
6, 18, 12, 18, 6, 72, 132
6, 18, 12, 18, 6, 84, 90
7, 15, 7, 31, 12, 69, 126
7, 15, 7, 31, 22, 45, 112
7, 15, 7, 31, 22, 57, 70
7, 15, 7, 31, 22, 57, 84

• Optionally, for one or more  i ≥ 1, compute #C(F2i ) by computing the
length of the intersection in  C × F2 C of the diagonal with the graph of
the  i-th power of the Frobenius morphism, retaining cases consistent with
Table 2. We typically do this when we have between 104 and 105 cases to
deal with.

• Use Magma to check whether  C is one-dimensional and integral, and if so
whether its normalization has genus  g. If so, compute #C(F2i ) for  i = 1,
. . . ,g by enumerating places of the function eld offi C, retaining cases
consistent with Table 2.

• Use Magma to compute isomorphism class representatives among the
remaining curves. The count of these is reported in Table 1.

• Use Magma to identify quadratic extensions of the remaining function
elds with relative class number 1.fi The count of these is reported in

Table 1; this yields the claimed results.

Table 1 also includes in each case a rough timing of the computation. The
timings should not be taken too seriously; they re ect some combination offl the
dimensions of the strata in moduli (included in Table 1), the special nature of the
Weil polynomials in question (which we exploit especially heavily for generic curves
of genus 7), the highly nonuniform extent to which we attempted to optimize the
calculation in the various cases, the imbalance between genus 6 and 7 in Table 2,
and variable load on the machine in question.
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Table 3. Possible point counts for  C bielliptic of genus 6 covering
the genus-1 curve  E.

#E(F2i )4
i=1 #C(F2i )4

i=1 Disposition
(1, 5, 13, 25) (6, 10, 9, 38) #C(F2)  > 2#E( F2)
(3, 9, 9, 9) (5, 13, 41, 25) #C(F16)  > 2#E( F16)
(3, 9, 9, 9) (6, 10, 9, 38) #C(F16)  > 2#E( F16)
(5, 5, 5, 25) (5, 13, 14, 25) #C(F4)  > 2#E( F4)
(5, 5, 5, 25) (6, 10, 9, 38) #C(F4) = 2#E(F4), #C(F2) ≡0 (mod 2)

5. Point counts
In a few cases of Lemma 4.1, we can con rm that the options listed in Table 2fi

imply a nontrivial lower bound on the gonality of  C. This amounts to settling some
cases of Lemma 4.1 with  T = ∅.

• If g = 6, then  C cannot be hyperelliptic: we have #C( F4) > 10 =
2#P 1(F4) except in three cases where #C(F16) = 38  > 2#P 1(F16).

• If g = 7, then  C cannot be hyperelliptic: we have #C( F4) ≥ 15  >
2#P 1(F4).

• If  g = 7 and #C( F2) = 6, then  C cannot be trigonal: we have #C(F4) =
18  > 15 = 3#P 1(F4).

• If  g = 7 and #C( F2) = 7, then  C cannot be trigonal of Maroni invariant
3: we have #C(F2) = 7 which exceeds the number of smooth points of
P (1 : 1 : 3)(F2).

We can use similar logic in the case where  C is bielliptic. Suppose that  C → E
is a double covering of an elliptic curve. Then the Weil polynomial of E must
divide that of C, and moreover must satisfy the resultant criterion [ 17, Corol-
lary 9.4]. For  g = 6, the possibilities are listed in Table 3; in most cases, we nd thatfi
#C(F2i )  > 2#E( F2i ) for some  i, an impossibility. In one case, #C(F4) = 2#E(F4),
which ensures that  C → E does not ramify over any degree-1 places, but this is
inconsistent with the fact that #C( F2) ≡ 0 (mod 2). (Alternatively, the unique
degree-3 place of E must map to a degree-1 place of C, which again contradicts
#C(F4) = 2#E(F4).) We thus again settle this case of Lemma 4.1 with  T = ∅.

For  g = 7, we may make a similar application of the resultant criterion to
see that #C( F2) = 6 and #E( F2)  ∈{ 3, 5}. We can rule out #E( F2) = 5 by
noting that #C( F4) = 18  > 10 = 2#E( F4); we must thus have #E( F2) = 3.
Now note that  E has  p-rank 0 and  C has  p-rank 5, so by the Deuring Shafarevich–
formula [17, (7.2)] the map  E → C must ramify over six distinct geometric points.
Since #C(F4) = 18 = 2#E(F4), the map  C → E cannot ramify over any degree-
1 or degree-2 points of C; the rami cation is thus either over a single degree-6fi
place or over the two distinct degree-3 places of  C. We may thus settle this case
of Lemma 4.1 by computing the set  T of double covers of E with the indicated
rami cation divisors usingfi Magma.

Remark 5.1. Although we did not exploit this systematically in our calcula-
tions, we point out that for every entry of Table 2 with  g = 7, [ 13, Theorem 4.15]
implies the existence of a map from  C to a particular elliptic curve of degree at
most 5. For example, when #C(F2i )7

i=1 = (6, 18, 12, 18, 6, 72, 132),C must admit
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a degree-2 map to the elliptic curve  E with #E( F2) = 3; consequently, this option
can be ignored in all but the bielliptic case.

6. The use of orbit lookup trees
In most of the remaining cases, we use a uniform paradigm to make an exhaus-

tive calculation over the relevant term of the Brill Noether strati cation.– fi Again,
all computations are done in SageMath except as indicated.

• Let  X be the ambient variety indicated in Table 4. Compute the set
S :=  X( F2) and the group  G := Aut(X)(F2).

• Use the method of orbit lookup trees (Appendix A) to compute orbit
representatives for the action of  G on subsets of  S of size up to  g. In some
cases, we can impose extra conditions on the set  S.

– For  g = 7 with a rational g2
6 , no three points of S have the same

projection onto either P 2
k .

– For  g = 7 tetragonal, no ve points offi  S have the same projection in
P 1

k .
• For each orbit representative for subsets of size in {4, 5, 6} (if  g = 6) or
{6, 7}(if  g = 7), use linear algebra to nd all tuples of hypersurfacesfi  X 1,
. . . ,Xm−1 of the indicated degrees passing through these F2-points. In
the case of g = 7 trigonal of Maroni invariant 1, we require  X 1 to be
smooth.

• For each choice, impose linear conditions on  Xm to ensure that  X 1  ∩· · · ∩
Xm has exactly the speci ed set offi F2-rational points. (This crucially
exploits the fact that the base eld isfi F2; a similar strategy is used in
[8, §6].) Take  T to be the resulting set of schemes  X 1  ∩· · · ∩Xm .

See Table 4 for how the notation maps to the various cases. Some additional
clari cations:fi

• In the case of  g = 6 trigonal of Maroni invariant 2, we take  X =  X 2,1 to
be de ned by (fi x2

0 +  x 2
1)y1 +  x 0x1y2.

• In the case of  g = 6 generic, we nd candidates for the intersection of typefi
(1)4 by computing orbits for the action on sets of 4  k-points of the dual
of P 9

k . We then apply generators of GL(4,F2) to these subsets to identify
cases where the linear spans are  G-equivalent (compare Remark A.8); this
yields 20 candidates for  X 1  ∩· · · ∩Xm−1 . We nally enumerate subsets offi
X ∩X1  ∩· · · ∩Xm−1 of size in {4, 5, 6}, without further use of the group
action.

• In the case of  g = 7 with a self-adjoint  g 2
6 , we take  X =  X 3 to be de nedfi

by a polynomial of the form  x 0x3 +  P (x1, x 2) with

P  ∈{x1x2(x1 +  x 2), x 1(x
2
1 +  x 1x2 +  x 2

2), x
3
1 +  x 1x

2
2 +  x 3

2}
and ignore the group action.

• In the case of  g = 7 tetragonal, we take  X =  X 1,1 to be de ned byfi  x 0y0 +
x1y1. We then break symmetry when choosing the de ning polynomialsfi
P1, P 2 of X1, X 2 by xing a totalfi ordering on the quotient of the space
of (1, 2)-polynomials by the multiples of  x 0y0 +  x 1y1 and then forcing an
ordering on the classes of  P 1, P 2.

The generic case in genus 7 is handled slightly di erently to avoid the compu-ff
tational bottleneck of enumerating orbits of 7-element subsets of  X; see §7.
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Table 4. Group actions associated to Brill Noether strata.–

g Case X X1, . . . ,  Xm−1 Xm
6 trigonal, Maroni 2 X2,1 ⊂ P 1 × P 2 ∅ (1, 3)
6 trigonal, Maroni 0 P 1 × P 1 ∅ (3, 4)
6 plane quintic P 2 ∅ (5)
6 generic Gr(2, 5)⊂ P 9 (1)4 (2)
7 trigonal, Maroni 1 P 1 × P 2 (1, 1) (3, 3)
7 self-adjoint  g 2

6 X3 ⊂ P (1 : 1 : 1 : 2) ∅ (4)
7 rational  g 2

6 P 2 × P 2 (1, 1)2 (2, 2)
7 irrational  g 2

6 twist of P 2 × P 2 (1, 1)2 (2, 2)
7 tetragonal X1,1 ⊂ P 1 × P 3 (1, 2) (1, 2)

7 generic OG+ ⊂ P 15 (1)8 (1)

7. The generic case in genus 7
We now describe a variant of the paradigm from §6 to handle generic (non-

tetragonal) curves of genus 7. In the process, we summarize the proof of [27,
Theorem 0.4] and so con rm case (9) of Theorem 3.2.fi

Let  k be a nite eld (offi fi any characteristic). Let  V be the vector space  k 10

equipped with the quadratic form
5
i=1 xi x5+i . We write SO(V ) for the unique

index-2 subgroup of the orthogonal group of  V ; it admits a characteristic-free char-
acterization as the kernel of the Dickson invariant .

The orthogonalGrassmannian of V , denoted OG, parametrizes Lagrangian
(isotropic 5-dimensional) subspaces of  V . Let  L 0 be the subspace spanned by the
rst 5 coordinate vectorsfi  e 1, . . . ,e5, which by construction is isotropic. Then

OG splits into two connected components, each of which parametrizes Lagrangian
subspaces of  V whose intersection with  L 0 has a speci ed parity.fi Let OG+ be the
component containing  L 0; it carries an action of SO(V ).

The space OG+ admits an analogue of the Plücker embedding called thespinor
embedding. The target of the spinor embedding can be described as the projectiviza-
tion of the even orthogonal algebra∧evL0. The spinor embedding can be computed
easily using the following (characteristic-free) recipe described in [27, §1]. Let  L ∞

be the subspace spanned by  e 6, . . . ,  e10; this is an isotropic subspace lying on the
other component of OG. Split the orthogonal algebra  S = ∧• L∞ into even and
odd components  S ev , S odd. The Clifford map V → End  S then carries each element
of L∞ to a creation operator (taking the wedge product with that element) and
each element of  L 0 ∼= L∨

∞ to an annihilation operator (contraction). For each La-
grangian subspace  L, the Cli ord map carries the elements offf  L to endomorphisms
of  S whose joint kernel is one-dimensional, and is contained in either  S ev or  S odd

according to whether or not  L ∈OG+ ; this yields the spinor embedding.
The following combines [27, Proposition 1.16, Proposition 2.2].

Lemma 7.1 (Mukai) . Let P ⊂ P 15
k be a 6-dimensional linear subspace which

passes throughL0 and meetsOG+ transversely.
(a) No 4 points of C = OG+ ∩P lie in a 2-plane.
(b) The scheme C is a canonical curve of genus7 with one marked point with

no g1
4 .
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Although for our purposes we only need the opposite implication to Lemma 7.1,
this direction is actually crucial to the argument.

Now let  C be a curve of genus 7 with one marked point admitting no  g 1
4 .

We set notation as in [ 27, §3]. Let  C ⊂ P 6
k be the canonical embedding and set

W :=  H 0(P 6
k , I C (2)); by Petri s theorem (’ §2), dim  W = (g − 2)(g − 3)/2 = 10. Set

E :=  N ∨
C/P 6

k
⊗ω2

C ; this is a bundle of rank  g − 2 = 5. From the exact sequence

0 → N∨
C/P 6

k
→ ΩP 6

k C
→ ωC → 0

we see that det  E ∼= ω2
C . Since  N ∨

C/P 6
k

∼= IC /I2
C and  ω C ∼= OC (1), we obtain a

linear map  W → H0(C, E). Since  C is not trigonal, by Petri s theorem again,’ for
every closed point  p ∈C the kernel  W p of the induced map from  W to the berfi  E p
is 5-dimensional; this de nes a mapfi  C → Gr(5, W ).

The following is [27, Proposition 3.3].

Lemma 7.2. With notation as above (i.e., C is a curve of genus 7 with no g1
4),

for any two distinct closed pointsp, q ∈C , the intersection Wp∩Wq is 1-dimensional
(not just odd-dimensional).

The following is [27, Theorem 4.2].

Lemma 7.3 (Mukai). With notation as above (i.e., C is a curve of genus7 with
no g1

4 ), let f : Sym2 W → H0(C, Sym2 E) be the naturalmap. Then every nonzero
element of ker  f is nondegenerate.Consequently, dim ker  f ≤ 1.

When  C arises as in Lemma 7.1, then we have a natural identi cationfi  V ∼= W
(see [27, Corollary 2.5]) and so the quadratic form on  V de nes a nonzero elementfi
of ker  f . The upshot of this is that the embedding  C → Gr(5, W ) factors through
OG+ . As in [27, (5.1)], this de nes an injective map from the space of linear sectionsfi
of OG+ passing through  L 0 to the moduli space of genus 7 curves with one marked
point. As these spaces are both 11-dimensional and the latter is irreducible [ 4],
the map is dominant; that is, the generic curve of genus 7 with one marked point
occurs as a linear section of OG+ passing through  L 0. As in [27, Corollary 5.3], it
then follows that dim ker  f = 1 in all cases (where we still assume that  C has no
g1

4). Thus we end up with a map  C → Gr(5, W ), and it is straightforward to check
that it is an embedding [27, Theorem 0.4]. This establishes case (9) of Theorem 3.2
modulo the following remark.

Remark 7.4. We comment brie y on what happens if we consider a curve offl
genus 7 without a marked point. In this case, H0(E) still carries a distinguished
nondegenerate quadratic form, but it is not guaranteed to be isomorphic over k to
the form we are using.

When  k is nite,fi however, this issue does not arise for the following reason.
There are only two isomorphism classes of such forms, distinguished by the discrim-
inant in odd characteristic and the Arf invariant in even characteristic; moreover,
these become isomorphic over the quadratic extension of  k. By passing to a nitefi
extension of  k of suitably large odd degree over which  C acquires a rational point,
we can see that  H 0(E) must carry the quadratic form which admits Lagrangian
subspaces over  k.

We now specialize the previous discussion to the case  k = F2 and describe the
computation that proves Lemma 4.1 for curves of genus 7 with no  g 1

4 . We rstfi
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build an orbit lookup tree (Appendix A) to depth 6 for the action of  G := SO(V )
on  S := OG+ (F2) with the following tuples forbidden.

• Any pair of points corresponding to Lagrangian subspaces whose intersec-
tion has dimension greater than 1 (ruled out by Lemma 7.2).

• Any triple of collinear points or 4-tuple of coplanar points (ruled out by
Lemma 7.1).

• Any tuple whose linear span has positive-dimensional intersection with
OG+ (ruled out by the fact that the canonical embedding does not factor
through a hyperplane).

• Any tuple whose linear span meets OG + in 8 or more F2-rational points
(ruled out because Table 2 requires #C(F2) ≤ 7).

This yields 494 orbit representatives. Inspecting the results, we nd that each orbitfi
representative spans either a 4-plane or a 5-plane in P 15

k .
Let  V be an orbit representative. We now separate into cases depending on

whether #C(F2) = 6 or #C(F2) = 7, whether or not  V spans a 4-plane or a 5-plane,
and whether or not this span contains any more points of OG+ .

• If #C(F2) = 7 and  V spans a 4-plane, we verify that the span of  V does
not contain a seventh F2-point of OG+ . This means that without loss of
generality, we may ignore this case.

• If #C(F2) = 6, V spans a 5-plane, and this 5-plane does not contain a
7th point of OG+ , we hash the remaining F2-points of OG+ according to
their joint linear span with  V , retaining 6-planes that do not appear at
all.

• If #C(F2) = 7, V spans a 5-plane, and this 5-plane does not contain a
7th point of OG+ , we build a similar hash table, retaining 6-planes that
occur exactly once.

• If #C(F2) = 6 and  V spans a 4-plane, we build a similar hash table,
retaining 5-planes that do not appear at all. We then hash pairs of 5-
planes in this list according to their span, retaining 6-planes that appear
3 times.

• If #C(F2) = 7, V spans a 5-plane, and this 5-plane contains a 7th point
of OG+ , we may assume without loss of generality that the maximum in-
tersection multiplicity of the linear span with OG+ among the F2-rational
intersection points occurs for the 7th point. We then build a similar hash
table, retaining 6-planes that do not appear at all.

We then take  T to be the set of intersections of the resulting 6-planes with
OG+ .

8. Towards a full census in genera 6 and 7
It would be extremely desirable to re ne the methods used here to completefi

a full census of curves of genus 6 and 7 over F2, both to provide a consistency
check on our own work and to make the tables available for other purposes. One
important aspect of such a census is the process of making it simultaneously reliable
and rigorous. In other words, given a putative list of isomorphism classes of curves
of genus  g over F2, how can one verify that this list is accurate?

In one direction, it is easy from the data rst to compute individual propertiesfi
of the curves in question, such as their automorphism groups, and to test pairs of
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curves to con rm that they are not isomorphic;fi the latter can be accelerated by
rst hashing curves according to their zeta function (and any other data that mayfi

have been computed, such as the order and structure of the automorphism group).
In the other direction, one may check completeness of the list by computing the

count ofFq-points on the moduli spaceMg using the Lefschetz trace formula for the

moduli spaceMg of stable curves of genus  g and the combinatorics of the boundary
strata. (Note that the point count is stacky  in that each equivalence class of“ ” Fq-
points is weighted inversely by the order of its automorphism group.) For  g = 6,
it is known that #Mg(Fq) equals a xed polynomial infi  q [ 1, Corollary 1.6], which
in principle can be computed using the SageMath package described in [3]. For
g = 7, while #Mg(Fq) is known to equal a xed polynomial infi  q [1, Corollary 1.5],
the same does not immediately follow for #Mg(Fq) due to a possible contribution

from the level-1 modular form  in the boundary ofΔ M7.
As noted in the introduction, this discussion in principle also applies in some

higher genera, using the parametrizations indicated in Remark 3.4. However, it is
not clear to us to what extent the resulting computations are feasible.

Appendix A. Orbit lookup trees
Throughout this appendix, x a nite groupfi fi  G and a nite setfi  S equipped with

a left  G-action. We exhibit a combinatorial structure that allows us to e cientlyffi
compute orbit representatives for the action of G on  k-element subsets of S for
various small values of  k. Such computations are already implemented in software
(notably in Magma); however, the approach we take here seems to be well-adapted
to our present work, as it avoids instantiating in memory the entire set of  k-element
subsets of  S.

Definition A.1. Let  be a directed graph with loops with vertex setΓ  S  { }• ,
in which each edge is either of the form  •→ v for some  v ∈ S, or of the form

v1
g
→ v2 for some  v 1, v 2 ∈ S with a label g ∈G satisfying  g(v 1) =  v 2. De ningfi

connected components of  in terms ofΓ the underlying undirected graph, we say
that a component is eligible if it does not contain • and a vertex is eligible if it lies
in an eligible component.

A group retractof  consists of a subsetΓ  V of  consisting of one vertex in eachΓ
eligible connected component, together with a function  h from the union of the
eligible components to  G with the property that for each  v ∈  in the connectedΓ
component of  v ∈V , we have  h(v )(v) =  v .

One way to compute a group retract, given a choice of  V , is to x a spanningfi
tree in each eligible component, then compute the unique function satisfying:

• for all  v ∈V ,  h(v) = 1 G ;

• for each chosen spanning tree, for every edge  v1
g
→ v2 in the tree,  h(v 2) =

gh(v1).

Note that this function can be computed in linear time in the input length.

Definition A.2. Let  F be a subset of the power set of  S (the forbidden sub-
sets). We say that a subset of  S is eligible if it contains no forbidden subset.

For any positive integer  n, an orbit lookup tree of depth  n (for  G, S, F ) is a
rooted tree  T n of depth  n with the following properties (and additional data as
indicated).
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• Each node at depth  k is labeled by a  k-element subset  U of S, colored
either red or green. In what follows, we freely con ate nodes with theirfl
labels.

• The parent of every node  U is a green node which is a subset of U . In
particular, there is a unique ordering of the elements  x 1, . . . ,xk of U
such that each initial segment of this sequence is also a node; we write
U = [x 1, . . . , x k ] instead of U = {x1, . . . , x k}when we need to indicate
this choice of ordering.

• For  k = 0, . . . ,n, the green nodes at depth  k form a set of G-orbit
representatives for the eligible  k-element subsets of  S.

• For each eligible node  U , we further record an element  g U ∈G such that
g−1

U (U ) is a green node.
• For each green node  U , we further record the stabilizer  G U .
• Every green node  U at depth  k < n has children which form a set of  G U -

orbit representatives of the (k + 1)-element subsets of  S containing  U .We
further record a function  h U :  S \U → GU such that for each  y ∈S \U ,
the element  x U (y) :=  h −1

U (y) has the property that  U  ∪{xU (y)}is a node.

As the name suggests, the structure of an orbit lookup tree makes it easy to
nd the chosenfi  G-orbit representative of a subset of  S.

Algorithm A.3. Given an orbit lookup tree Tn of depth n, for any k ∈
{0, . . . , n} and any sequence x1, . . . , xk of distinct elements of S, the following
recursive algorithm determines whether{x1, . . . , x k} is eligible, and if so produces
a green nodeU of Tn and an element g ∈G such that g(U) = {x1, . . . , x k}.

(1) If k = 0, return U := ∅, g := 1G and stop.
(2) If {x1, . . . , x k−1} is a node of T , let U be this node and set g0 := 1G .

Otherwise, apply the algorithm tox1, . . . , xk−1 to obtain a green nodeU
of T and an elementg0 ∈G for which g0(U ) = {x1, . . . , x k−1}. If instead
we find that{x1, . . . , x k−1}is not eligible, report thatU is not eligible and
stop.

(3) Set y :=  g −1
0 (xk ), U1 :=  U  ∪{xU (y)}, g1 :=  g 0hU (y).

(4) Set g2 :=  g U1 and return U :=  g −1
2 (U1), g :=  g 1g2. If instead we find that

gU1 is undefined, then report thatU is not eligible.

Remark A.4. In Algorithm A.5, we will use Algorithm A.3 in a situation
where the elements  g U1 are not yet computed at depth  k. By omitting step (4)
and returning  U 1, g 1, we still obtain a node  U of Tn and an element  g ∈G such
that  g(U ) = {x1, . . . , x k}, but without the guarantee that  U is green. However, at
deeper steps of the recursion we must execute Algorithm A.3 in full, including step
(4).

The key point is that we can use group retracts to build an orbit lookup tree
in an e cient fashion.ffi

Algorithm A.5. Given an orbit lookup treeTn of depthn, the following algo-
rithm extends Tn to an orbit lookup treeTn+1 of depth n + 1.

(1) For each green nodeU at depth n:
(a) Choose a sequenceh1, . . . , hm of generators ofGU by picking random

elements.
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(b) Construct the Cayley graph ΓU on S \U for the sequence h1, . . . ,
hm .

(c) Compute a group retract (V, g) of ΓU  ∪{ }• (with no edges incident
to • ) and set hU :=  g .

(d) For each y ∈V , add to Tn+1 an uncolored nodeU  ∪{y}with parent
U .

(2) Construct a directed graph with loopsΓ on the nodes of depthn + 1 plus
the dummy vertex • as follows. For each node U = [x 1, . . . , x n+1 ] ∈ Γ
(optionally in parallel):
(a) If U is forbidden, then add an edge  •→ U .
(b) If U is not forbidden, then for j = 1 , . . . , n, apply Algorithm A.3,

as modified in Remark A.4, to the sequence

x1, . . . , x j−1 , x n+1 , x j+1 , . . . , x n , x j

to find a node U1 and an element g1 ∈G such that g1(U1) =  U , and
add the edgeU1

g1→ U to Γ . If instead we find that U is not eligible,
then add an edge  •→ U .

(3) Compute a group retract (V, h) of Γ . Color each vertex in V green and
color each remaining vertex (other than • ) red. For each vertex U in an
eligible component, setgU :=  h(U) .

(4) For each green nodeU = [x1, . . . , x n+1 ] at depthn+1 , let GU be the group
generated by:

• the stabilizer of xn+1 in G{x 1 ,...,x n } ;
• for each edgeU1

g
→ U2 in Γ , the element g−1

U2
ggU1 .

Proof. The key point here is to con rm that the group computed in step (4),fi
which is evidently contained in the stabilizer of the green node  U = [x 1, . . . , x n+1 ],
is actually equal to it. Let  H U be the group computed in (4) and let  GU be the full
stabilizer; then the inclusions

G{x 1 ,...,x n } ∩Gx n+1 ⊆HU ∩G{x 1 ,...,x n } ⊆GU ∩G{x 1 ,...,x n } =  G {x 1 ,...,x n } ∩Gx n+1

G{x 1 ,...,x n } ∩Gx n+1 ⊆HU ∩Gx n+1 ⊆GU ∩Gx n+1 =  G {x 1 ,...,x n } ∩Gx n+1

show that all of these groups coincide.That is,  x n+1 has the same stabilizers in  HU
and  G U , and so the orbit-stabilizer formula implies that the index [GU :  H U ] equals
the size of the  G U -orbit of  x n+1 divided by the size of the  H U -orbit. Consequently,
it su ces to check that the orbits coincide.ffi

We again identify orbits with the connected components of the Cayley graph.
If the  G U -orbit of  x n+1 consists of  x n+1 itself, there is nothing to check.Otherwise,
the orbit also contains  x j for some  j  ∈{1, . . . , n}, and the edges arising from the
index  j in step (2b) guarantee that  x j and  x n+1 are joined in the Cayley graph.

Remark A.6. Algorithm A.3 provides a consistency check for the computation
of an orbit lookup tree, as one can spot-verify that a random  k-element subset is
indeed  G-equivalent to some green node. For our purposes this is su cient,ffi as we
only need a set that covers all orbits, not necessarily a set of orbit representatives.

If one really wants to verify that no two distinct green nodes are  G-equivalent,
it may be easiest to do this using some ad hoc computable invariants of the  G-
action. Alternatively, if no subsets are forbidden, we may verify the orbit-stabilizer

formula: the sum of [G :  G U ] over green nodes  U at depth  n should equal |S|
n .
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Remark A.7. We have made no systematic e ort to optimize Algorithm A.5 orff
even to give a careful costing. In step (2b) of Algorithm A.5, a further optimization
is possible: instead of taking all j  ∈{1, . . . , n}, it su ces to take a set offfi orbit
representatives for the action of  G {x 1 ,...,x n } on {1, . . . , n}. Our initial experiments
were inconclusive as to whether this yielded a meaningful speedup in practice, so
we did not pursue it.

Remark A.8. In some applications, the set  S carries the structure of a  k-
vector space for some nite eldfi fi  k, G acts  k-linearly on  S, and one is interested
in the action of  G on subspaces rather than subsets. One can treat this situation
by considering orbits of linearly independent subsets, but in practice it would be
more e cient to adapt the algorithms to the linear setting.ffi As we will not need
this here, we omit the details.
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