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The relative class number one problem for function fields, III

Kiran S. Kedlaya

Abstract.  We complete the solution of the relative class number one problem
for function fields of curves over finite fields. Using work from two earlier
papers, this reduces to finding all function fields of genus 6 or 7 over F» with
one of 40 prescribed Weil polynomials; one may then verify directly that three
of these fields admit an everywhere unramified quadratic extension with trivial
relative class group. The search is carried out by carefully enumerating curves
based on the Brill-Noether stratification of the moduli spaces of curves in these
genera, and particularly Mukai's descriptions of the open strata.

1. Introduction

This paper continues and concludes the work done in [ 17,18] on the relative
class number one problemfor function fields of curves over finite fields (hereafter
simply “function fields”), building upon work of Leitzel-Madan [ 21] and Leitzel-
Madan-Queen [22]. That is, we seek to identify finite extensions #” </ 'of function
fields for which the two class numbers are equal.

To state the main result, we recall some context from the introduction of [17].
Given a finite extension/#” </#of function fields, we writeC*C  for the curves
corresponding to£*# ;g f «gr for the orders of the base fields of C*C" ;g f <¢F for
the genera of C*C” ; and/ r <2F for the class numbers of /24" . Since the relative
class number/ f 5 =/4F <4 is an integer (it is the order of the Prym variety of
the coveringC’" — (J, the relative class number one problem reduces to the cases
whereg r =g r (a constant extension) and whereg r =g ¢ (a purely geometric
extension). Excluding the trivial cases of a constant extension of genus-0 function
field and an extension with/4 = /7, one has the following result (see [ 17] for the
tables).

Theorem 1.1 (Solution of the relative class number one problem) . Let # </
be an extension of function fields of degreed> 1 of relative class number1.

(a) If # <#is constantand g > 0, then g /¢ r, and the isogeny class of
AC) appearin[17, Theorem 1.1]. In particular,

(gF dgr) EM2e21) (22:2) < (2c23) (23 1)« (32 1)< (4¢¢ 1)
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56 KIRAN S. KEDLAYA

(b) If # </ is purely geometric, g¢ < 1, and g >g ¢, then g <gr <gr ,
and the isogeny classes of AC) and AC') appearin [17, Table 3]. In
particular,

(gF gF gF ) ERM2<0< k)< (2c126)< (30 1)< (3c1c2)<(3c1<3)c (4<0< 1)< (4dxhe2)

(c) If £ < is purely geometric, g¢ > 1, and g= > 2, then d<gyr <gr </ appear
in [17, Table 4]. In particular,

(gF dgr <gr ) EMBc2:2:3)c (3c2c2c4) (32 3c5)c (3c3c2c4)c (4c2:2¢3)< (4¢B<2c4)

(d) If £ <Fis purely geometric, g¢ > 1, g = 2, and &> 2, then dgr <gr <&
appear in[17, Table 5. In particular,

(dgr gr ) ENMBc2:4)c (32¢6) (33 7)< (3c4c10)< (4<2<5)< (5<2<6)< (P2<8)

(e) If # <F is purely geometric, g¢g > 1, g =2, and &= 2, then gr <gr <&
appear in[17, Table 6. In particular,
(9 gF ) EM23)<(2:4)<(25)<(35) < (36) < (4<T)< (4<8)<(5<9)< (6<11)< {(¥<13)
() If # </ is neither constant nor purely geometricand gr >g r, then
o =29 =4, and (gr 9r </ (CJ</(C)) isoneof (0<1<09.4.ae) or
(1<21.2.c<2.4.ae.i) (using LMFDB labels to represent isogeny classes of
abelian varieties).

This statement is covered by 17, Theorems 1.1, 1.2, 1.3] except for the following
points.

* Part (b) requires classifying curves of genus 6 overF, with one particular
Weil polynomial. It is shown in [18, Lemma 10.2] that there is a unique
such curve.

* Part (d) requires showing that whengr = 2, the extension#” </is cyclic.
This is done in [ 18, Theorem 1.1] using constraints on the Weil polyno-
mials found in [17].

+ Part (e) requires finding all curves of genus 6 and 7 over F; with Weil
polynomials in a specific list of 40 entries found in17] (see Table 2). This
brings us to the main result of the present paper, stated as Theorem 1.2
below.

Theorem 1.2. The following statements hold.

(a) There are two isomorphism classes of curvesC of genus6 over F, admit-
ting an ‘etale double covering’ — C'such that# AC )(F2) = # AC)(F2).
The curves C are Brill-Noether general with automorphism groupss and
Cs.

(b) There is a unique isomorphism class of curvesC of genus7 over F, admit-
ting an ‘etale double covering’ - C'such that# AC )(F2) = # AC)(F2).
The curve (is bielliptic with automorphism group 2.

Asin [17], given a candidate for C'it is straightforward to use Magma to
generate all of the jetale double coverings¢” — (! thus the main computational
issue is to “invert the Weil polynomial function” on the output values indicated in
Table 2. Unfortunately, the Weil polynomial function is in some sense a “secure
hash function”, in that its value generally does not reveal much useful information
about the input. Examples where one can invert the function are often of some
extremal nature, as in Lauter’s approach to bounding the maximum number of
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points on a curve of fixed genus over a fixed finite field: one first enumerates the
Weil polynomials consistent with a given point count, then attempts to rule in or
out the various candidates. Much work has been done on the second step by Howe;
see [13] for a recent survey of this problem.

Unfortunately, the techniques described in [ 13] do not seem to be applicable
to the cases relevant to Theorem 1.2. Fortunately, for genera up to 7 it is feasible
to deploy a brute force strategy, i.e., to enumerate a collection of schemes known
to include all curves with the given Weil polynomials and then filter through the
results. One way to build such a collection is using singular plane curves; see [8|
and [9] for recent examples of this approach.

Here we take an alternate approach that accounts for the known geometry of
moduli spaces of curves based on Petri’s analysis of linear systems (see ). This
amounts to a natural extension of the computation of the set of isomorphism classes
of curves of genusg overF; forg = 4 by Xarles [34], based on the fact that a general
canonical curve of genus 4 is a complete intersection of type (2) 0 (3) in P3; and
¢ =5 by Dragutinovijc@], based on the fact that a general canonical curve of genus
5 is a complete intersection of type (2) N (2) N (2) in P*.

While one cannot hope to give similar such descriptions in arbitary genus (see
Remark 3.4), they are available in genus 6 and 7 by work of Muk26]27], although
some care is required to use them over a nonclosed base field. As in [8] and [9],
we short-circuit the searches using the Weil polynomial constraints, especially the
number of Fy-rational points. See Lemma 4.1 for more detailed internal references.

One technical innovation introduced along the way (see Appendix A) is a light-
weight method for computing orbits of the action of a group ' on subsets of a set
carrying aG-action; for instance, in the generic genus-7 case we compute orbits
of 6-element sets of IFy-rational points on the 10-dimensional orthogonal Grass-
mannian. This construction may be of independent interest for other applications,
including extending the tabulation of genus-g curves over F; to a few larger values
ofg for which the Brill-Noether stratification on moduli can again be made explicit
(see Remark 3.4), or finding supersingular genus-g curves overlF, forg in a similar
range. See B for more discussion of the relevant issues.

Asin [17] and [18], the arguments depend on a number of computations in
SageMath [30] and Magma [30]; the computations take about 8 hours on a
single CPU (Intel i5-1135G7@2.40GHz) and can be reproduced using some Jupyter
notebooks found in the repository [19]. (Some functionality used in SageMath is
derived from GAP [11] and Singular [5].)

2. The structure of canonical curves

LetC'be a curve of genusg over a finite field# Let4 be an algebraic closure of
C’. We collect here a few facts about the geometry of C’that will be used frequently,
and often without comment, in what follows. See [31] for a characteristic-free
treatment of much of this material (and [12, 4.3] for some additional details).

Ag 7 onCis a line bundle of  degree< whose space of  global sections has
dimensions + 1; if such a bundle is basepoint-free, then it defines a degree-Z map
C’ = P’". (If the bundle is not basepoint-free, then the global sections generate
a basepoint-free subbundle of degree strictly less than<)  Since# is finite, every
Galois-invariant divisor class on( contains a-rational  divisor (see for example
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[2, Remark 2.4]). Consequently, if ¢ admits a unique g for somer<, then so
doesC!

The Castelnuovo-Severi inequality (see for example [32, Theorem 3.11.3]) as-
serts that if there exist curvesC” 1<C of generag 1<> and morphisms/ 1: ¢ =
Ci<f2:C" = Cj of degreesd 1 <> such that4( () is the compositum of 4{C" 1) and
A Ch) over#, then

9=ty +dogp + (4 —1)(db —1)p
We will use this bound to ensure that certain low-degree maps out of C’occur in
isolation.

We say that C"ishyperellipticif C admits ay ) (which is automatically basepoint-
free if 4> 0). By Castelnuovo-Severi, if g¢> 1 thenC” ¢ can admit only oney 1;
consequently,’is hyperelliptic if and only ifC” ¢ is hyperelliptic. Lett :C” - P 2_1
be the canonical morphism defined by the canonical linear system; thent is a
degree-2 map onto a rational normal curve if C'is hyperelliptic and an embedding
otherwise. By abuse of language, ( is commonly called the canonical embedding
even when('is allowed to be hyperelliptic.

Forg> 4, we say thatC’is trigonal if it admits ag 1 but not ag J (so the
former is necessarily basepoint-free). By Castelnuovo-Severi again, ¢ can admit
only oneg _1,; consequently, (is trigonal if and only if Cf is trigonal. By Petri’s
theorem (a/k/a the Max Noether-Enriques-Petri theorem), if Cis not trigonal or
a smooth plane quintic (wheng = 6), thent(C} is cut out by quadrics.

By contrast, for C'trigonal, the linear system of quadrics containingt(C) cuts
out a rational normal scroll; the latter is isomorphic to the Hirzebruch surface

Fo = Projp; (Gh; @O(n)p})

for a certain integerz = 0 called the Maroni invariant’ ofC! The structure map
Fn = P}, whose fibers form a ruling of F,, restricts to the trigonal projection

m:C- P}

* Forzz> 0, Fj is isomorphic to an (72<1)-hypersurface inP | x4 PZ. Leté
be the unique irreducible curve in F, with negative self-intersection (the
directrix) and let /be a fiber of the ruling; then

(2.1) #=—-n  b<f=1< L =0¢

and blowing down F, alongé yields the weighted projective space P (1 :
1 :7) . Of the linear systems

(2.2) &+ /o B+ LI SR #2004 (n—2) /b

the first contains, the second defines the embedding F, — P 2_1, and
the third is the canonical linear system.

* Forz =0, wehave F = P}(— X P;(—. Let4 and /be fibers of the two
different rulings; then (2.1) and the interpretation of (2.2) remain valid.
Since 3 = 9;—2, the symmetry of the two rulings is broken by and so
everything descends from 4 to/

Since’ands are effective, 0 = 46<C'= —372 + %, SO

O=sn= %2 ¢ n=g (mod 2)s

THere we follow the terminology of [31]. The original definition of Maroni [25] follows a
different numbering convention which is also commonly used.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE RELATIVE CLASS NUMBER ONE PROBLEM FOR FUNCTION FIELDS, 111 59

In caser = 9;—2, we haves <C'= 0 and soC’also embeds into P (1 :1 :2).
We say thatC’is bielliptic if it admits a degree-2 map to a genus-1 curve over
4. By Castelnuovo-Severi once more, ifg> 5 thenC” ¢ can admit at most one such

map; consequently,’is bielliptic if and only ifC” ¢ is bielliptic.

3. Brill-Noether stratifications

We now specialize the previous discussion to the genera of direct concern
here, following Mukai. We use the conventions that the Grassmannian Gr(7<}")
parametrizes subspaces of dimension 7 of a specified vector space Fand that the
Pliftker embedding maps into P (A" V).

Theorem 3.1. Let C be a curve of genus 6 over a finite field £ Then one of
the following holds.

(1) The curve C'is hyperelliptic.

(2) The curve (C istrigonal of Maroni invariant 2. In this case, C occurs
as a complete intersection of type (2<1)n (1<3)in P } x P2, where the
(2< 1}yhypersurface is isomorphic to F,.

(3) The curve (s trigonal of Maroni invariant 0. In this case, C occurs as
a curve of bidegree(3<4)inP } x, P .

(4) The curve C'is bielliptic.

(5) The curve ¢ occurs as a smooth quintic curve in P2.

(6) The curve (C occurs as a transverse intersection of four hyperplanes, a
quadric hypersurface, and the 6-dimensional Grassmannian Gr(2<5) in
P?.

Proof. This again follows from Petri’s theorem except for the last case, in
which the description can be found in [26, Theorem 5.2]. We recall that argument
both to fill in some details that are left to the reader in [ 26] (by comparison with
a similar argument in genus 8), and to see that it is characteristic-free and applies
over a finite base field.

By the Brill-Noether theorem on the existence of special divisors (see [ 20] for
a characteristic-free treatment), (% admits ag J, which we call & letn :=w ¢ '
be its Serre adjoint. By Riemann-Roch we have

A& =2 2n) =4°8) +g—1—deg(§) = 3;
that is, is ay 2. Sinceis not trigonal or a plane quintic, the linear system ofofis
basepoint-free; we thus have a map ®,:C'r = P% induced byn. The image of @
cannot be a singular cubic or a smooth cubic because we are assuming C’is neither
hyperelliptic nor bielliptic, so it must be a sextic curve €7 Other thané, everyy 1 of
Ck arises by projection from a double point of (¥ it follows that the space //” 4 (%)
parametrizing theg }'s of C' is finite (recovering [26, Proposition 5.3]).

We now emulate [26, Lemma 3.6]. The extensions 0 = & = £ = n - 0 are
parametrized by Ext(n€) = £ (n7'§), which is Serre dual toZ °(n?). For an ex-
tensione, letd o :Z°%(n) » 4 (&) be the corresponding connecting homomorphism;
then the linear map

A Ext(n€) > #4(n)' @ A e,
is dual to the multiplication map

p: i °(n)® 2°(n) » 2 (n°)»
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By Riemann-Roch again, 2°(n?) = deg(n?) — g+ 1 = 7. Since the image of ® |
cannot be contained in a conic, the linear map Sym? Z°(n) » Z°(n?) is injective,
so its cokernel has codimension 1. We conclude that ker(A) is one-dimensional, and
so there is a unique nontrivial extension off) by which is a stable bundle with five
linearly independent global sections. Because# is perfect, this uniqueness property
ensures that the resulting vector bundle of rank 2 on ¢ descends to a unique vector
bundle ZonC’ We have now recovered 26, Theorem 5.1(1)]. We deduce from this
an analogue of [26, Lemma 3.10]: iff is anygj onC7, then dim Hom(§ <£) < 1.

Sinced . = 0 and€ andn are generated by global sections, so isZ Hence
for each point inC,  the fiber of £’at this point is a 2-dimensional  quotient of
the 5-dimensional space/Z °(£); this defines a map ® |¢: € = Gr(2Z°(£)Y).
LetA : A% ZP(£) » A°(N°2£) =4 °(wc) be the natural map. We then have a
commutative diagram

G —— LG (2:4°(£)")

P (2 () —2 b (A22P( £))

where the left vertical arrow is the canonical embedding and the right vertical arrow
is the Pl¥icker embedding. The hyperplanes of P (A?>/°(Z£)) are parametrized by

P ((A2Z°(£))"); the hyperplanes among these which containing the image of C’are
parametrized by P ((kerd) V).

We now emulate 26, Theorem B]. Suppose thatZ”  Z°(Z) is a 2-dimensional
subspace such thatA( A2Z7) = 0. Then the evaluation map/ ® @¢ — Zis not
generically surjective; its image is a line subbundleZ of FsatisfyingZzs °(2) =
2. The stability of Zforces deg(Z)< 5, and/ °(Z) = 2 sinceC’has nog 3 by
the adjunction formula. Since(is not hyperelliptic or trigonal, Z must be a
4. That is, this construction defines a map from P ((kerd) V) n Gr(2<Z°(£)") to
I} (Cx); this map is injective by our analogue of [26, Lemma 3.10] and surjective
by [26, Proposition 3.1]. We have now recovered 26, Theorem 5.1(2)].

We now follow the proof of [26, Theorem 5.2] as written. To wit, since
P ((kerd) ¥) n Gr(2:Z°(£)Y) = W} (%) is finite and Gr(24°(£)") has codimen-
sion 3in P (A*4°(£)), dim(kerd) = 4; hencel is surjective and so @ ¢ is an
embedding. By Petri’s theorem ( 2), the image of @] is cut out by the hyper-
planes in P ((kerd) V) plus a single quadric.

Theorem 3.2. Let C be a curve of genus 7 over a finite field 4 Then one of
the following holds.

(1) The curve C'is hyperelliptic.

(2) The curve Cistrigonal of Maroni invariant 3. In this case, C occurs as
a hypersurface of degre® in P (1 : 1 : 3).

(3) The curve Cis trigonal of Maroni invariant 1. In this case, C occurs as
a complete intersection of type (1<1)n (3<3)inP } x, P2.

(4) The curve Cis bielliptic.

(5) The curve C'is not bielliptic but admits a &£ which is self-adjoint (squares
to the canonical class). In this case, C'is a complete intersection of type
(3)n(4) inP (1:1:1:2), wherethe degree3 hypersurface can be taken
to be defined by zyzs + P3(z1 <z2) = 0 for some separable cubicA.
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(6) The curve ¢ admits a pair of distinct #£'s. In this case, ¢ occurs as a
complete intersection of type(1<1)n (1<1)n (2<2)in P 2 x4, P2.

(7) The curve ¢ does not admit a & but C does. In this case, ¢ occurs as
a complete intersection of type(1<1)n (1<1)n (2<2) in the quadratic twist
of P2 x, P2

(8) The curve ¢ admits a g} but (i does not admit ag. In this case, C’occurs
as a complete intersection of type (1<1)n (1<2)n (1<2)inP } x4, P3 in
which the (1< 1}-hypersurface is a P2-bundle over P'. (It is also true that
all of the (1< 2yhypersurfaces vanishing onC’ are geometrically irreducible,
but we won't use this here.)

(9) The curve Cdoes not admit ag). In this case, C’occurs as a transverse in-
tersection of 9 hyperplanes and the orthogonaGrassmannian OG* (5<10)
inP .

Proof. Petri's theorem covers cases (1)-(3). We treat cases (4)-(8) as summa-
rized in [27, Table 1], postponing case (9) until 7 where we introduce the relevant
notation.

Suppose that " is not hyperelliptic or trigonal but admits ag 1: leté be one
such and letn :=w ¢ &' be its Serre adjoint, which by Riemann-Roch is ay 3.
Since cannot admit ay 2, sfes basepoint-free. Letm = P;(— andt :C ¢ - P%
be the maps defined by efefand ofeb

If ¢ has noy é, thent is an embedding; its image cannot lie in a quadric
by the adjunction formula, son does not factor as a product of twog 4's. By
[26, Corollary 3.2], anyg J other thanf would have to occur as a subbundle off,
so in factf is the uniqueg J onC %~ This means that bothé andn descend from
C toC! We can now follow the proofs of [27, Lemma 6.1, Proposition 6.3] to the
desired conclusion.

Suppose instead thatC” ¢ has ag 2; leta be one such and letf be its Serre
adjoint, which is also ag 2. SinceC” 7 is not hyperelliptic or trigonal, the map
SO = P% defined by o ofis either birational onto a sextic or a double cover of
a smooth cubic. In the latter caseC” ¢ is evidently bielliptic, as then isC! In the
former case, from the proof of [ 26, Proposition 3.1] we see that there are noy &'s
onC'g other thana andB.  Namely, if{ is a thirdg 2, then for£=§ @ n we have
/A" £) = 0 and so

(L) +4°(n) =4°08) =% %(we (&) =% £) + 2 deg({) = 12;

this is only possible if one of{§ or{n is special,  which is impossible because they
are both of degree 12 and not canonical.

Ifa andf are isomorphic, then they both descend to ¥ otherwise, they descend
either toC or to its quadratic base extension. We can now follow the proof of
[27, Proposition 6.5] to conclude.

Remark 3.3. In [27, Proposition 6.4], it is also shown that bielliptic curves
occur as complete intersections of type (3)N(4) in P(1:1:1: 2). We will not use
this in our computations.

Remark 3.4. While we will not need to do so here, it is possible to push this
treatment through to a few higher genera. For example, Mukai showed that (over
an algebraically closed field) a genus-8 curve with nog 2 is a linear section of the
8-dimensional Grassmannian Gr(2<6) < P '# [27]; building on this, the complete
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Brill-Noether stratification in genus 8 has been described by Ide-Mukai [15]. Sim-
ilarly, a genus-9 curve with nog is a linear section of the 6-dimensional symplectic
Grassmannian SpG(3<6) < P '3 [28], and an analogous assertion holds in genus 10
[29]. Pushing this even further would amount to establishing unirationality of the
moduli space of genus-g curves, which is known to hold fory = 14 [33] and to fail
forg =22 [7], [10].

4. Overview of the proof
We now give an overview of the proof of Theorem 1.2.

Lemma 4.1. For the various strata in moduli described above,the number of
isomorphism classes of curves C over F, in each stratum admitting ‘etale double
coverings C' = (C such that # AC ) (F2) = #AC)( F2) is givenin Table 1. In
particular, Theorem 1.2 holds.

Table 1. Outline of the use of the Brill-Noether stratification
in the proof of Lemma 4.1. Of the columns, “Dim” records the
dimension of the stratum in moduli, “See” locates the description
of this case in the text, “# (" counts curves whose point counts
appear in Table 2, and “# " counts double covers with relative
class number 1.

g=6 g=7
Type of C Dim | See | #C | #C Time || Dim | See | #C || #C Time
hyperelliptic 11 85 0 0 — 13 | 85 0 0 —
trigonal, Maroni = 2 12 | 86 4 0 10m 13 | 85 0 0 —
trigonal, Maroni < 1 13 | 86 9 0 2m 15 | %6 0 0 5m
bielliptic 10 85 0 0 — 12 85 2 1 5m
plane quintic 12 | 86 1 0 m — — | = — —
self-adjoint g2 — = = = — 15 | 86 | 0O 0 5m
rational g2 pair — | = =] = — 16 | 86 | 0O 0 | 30m
irrational g pair — =] =1 = — 16 | 86 | © 0 | 45m
tetragonal, no g2 — | = =1 = — 17 | 86 | 1 0 2h
generic 15 | 86 | 38 2 2.5h 18 | §7 1 0 1h

Proof. To begin with, we recall from [17, Theorem 1.3(b)] that the Weil
polynomials of CandC  are restricted to an explicit finite list. In Table 2, we list
the possible values of the tuple (# C{Fy )L,

For each stratum, we exhibit a set 7’of schemes of finite type over F of size
at most 108, such that every curveC’over [, belonging to the specified stratum
whose point counts are consistent with Table 2 is isomorphic to some scheme in 7’.
In most cases, all of the schemes inZ"will be presented as subschemes of a single
ambient scheme_X; see Table 1 for internal cross-references.

Given a set7’as indicated, we conclude as follows (iterating over all "€ 77).
All computations are done in SageMath except as indicated.

* Optionally, for one or morez = 1, compute # C{F,i) using a lookup table
of X{ Fyi), retaining cases consistent with Table 2. We typically do this
when we have at least 10° cases to deal with.
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Table 2.
forg=6<7.

4, 14, 16, 18, 14, 92
4, 14, 16, 18, 24, 68
4, 14, 16, 26, 14, 68
4, 16, 16, 20, 9, 64
5,11, 11, 31, 20, 65
5,11, 11, 31, 20, 77
5,11, 11, 31, 20, 89
5,11, 11, 31, 30, 53
5,11, 11, 31, 30, 65
5,11, 11, 31, 30, 77
5,11, 11, 31, 30, 89

5,11, 11, 31, 40, 53
5,11, 11, 31, 40, 65
5,11, 11, 39, 20, 53
5,11, 11, 39, 20, 65
5,13, 14, 25, 15, 70
5,13, 14, 25, 15, 82
5,13, 14, 25, 15, 94
5,13, 14, 25, 25, 46
5,13, 14, 25, 25, 58
5,13, 14, 25, 25, 70
5,15, 5, 35, 20, 45

THE RELATIVE CLASS NUMBER ONE PROBLEM FOR FUNCTION FIELDS,

Tuples (#(Fy )L, allowed by [17, Theorem 1.3(b)]

6, 10, 9, 38, 11, 79
6, 10, 9, 38, 21, 67
6, 10, 9, 38, 31, 55
6, 14, 6, 26, 26, 68
6, 14, 6, 26, 26, 80
6, 14, 6, 26, 36, 56
6, 14, 6, 34, 16, 56
6, 14, 6, 34, 26, 44
6, 14, 12, 26, 6, 44
6, 14, 12, 26, 6, 56
6, 14, 12, 26, 6, 66

111 63

6, 18, 12, 18, 6, 60, 174
6, 18, 12, 18, 6, 72, 132
6, 18, 12, 18, 6, 84, 90
7,15, 7, 31, 12, 69, 126
7,15, 7, 31, 22, 45, 112
7,15, 7, 31, 22, 57, 70
7,15, 7, 31, 22, 57, 84

* Optionally, for one or morez = 1, compute #C{F,i) by computing the
length of the intersection inC” X g, Cof the diagonal with the graph of
thezth power of the Frobenius morphism, retaining cases consistent with
Table 2. We typically do this when we have between 16 and 10° cases to
deal with.

* Use Magma to check whether (’is one-dimensional and integral, and if so
whether its normalization has genusg. If so, compute # C{F,i) forz = 1,
. . . ,¢ by enumerating places of the function field of (] retaining cases
consistent with Table 2.

* Use Magma to compute isomorphism class representatives among the
remaining curves. The count of these is reported in Table 1.

* Use Magma to identify quadratic extensions of the remaining function
fields with relative class number 1.  The count of these is reported in
Table 1; this yields the claimed results.

Table 1 also includes in each case a rough timing of  the computation. The
timings should not be taken too seriously; they reflect some combination of the
dimensions of the strata in moduli (included in Table 1), the special nature of the
Weil polynomials in question (which we exploit especially heavily for generic curves
of genus 7), the highly nonuniform extent to which we attempted to optimize the
calculation in the various cases, the imbalance between genus 6 and 7 in Table 2,
and variable load on the machine in question.
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Table 3. Possible point counts for C"bielliptic of genus 6 covering
the genus-1 curveZ!

#HFE | #AFH)E, Disposition

(1<5<13<25)| (6<10<9<38) #AF) > 2# A Fy)
(3<9:9<9) | (5<13<41¢25) £((Fr6) > 24 2] Fre)
(3<9<9<9) | (6<10<9<38) #C(F16) > 2# £ F)
(5<5¢5<25)| (513 14¢25) #C(Fy) > 24 2 Fy)
(5<5<5<25)| (6:10<9<38)| #CFyq) = 2# £(F4), #C(F2) 0 (mo&?2)

5. Point counts

In a few cases of Lemma 4.1, we can confirm that the options listed in Table 2
imply a nontrivial lower bound on the gonality of €’ This amounts to settling some
cases of Lemma 4.1 with7'= @

* If =6, thenC'cannot be hyperelliptic: we have #C( Fq) > 10 =
24P 1(F4) except in three cases where # C{F16) = 38> 24P 1(F1¢).

* If =17, thenCcannot be hyperelliptic: we have #C( Fq) = 15>
24P 1(Fy).

o Ifg= 7 and #C( F,) = 6, then cannot be trigonal: we have #C([F4) =
18> 15 = 3# P 1(Fy).

* Ifg=7and #C( F,) = 7, thenC cannot be trigonal of Maroni invariant
3: we have #[(F,) = 7 which exceeds the number of smooth points of
P(1:1:3)F2).

We can use similar logic in the case where (is bielliptic. Suppose thatC” = £
is a double covering of an elliptic curve. Then the Weil polynomial of £ must
divide that of ] and moreover must satisfy the resultant criterion [ 17, Corol-
lary 9.4]. Forg = 6, the possibilities are listed in Table 3; in most cases, we find that
#Fyi ) > 24 A Fyi ) for somez, an impossibility. In one case, #ClF4) = 2# Z(Fa),
which ensures that " — Z£’does not ramify over any degree-1 places, but this is
inconsistent with the fact that #C{ F,) = 0 (mod 2). (Alternatively, the unique
degree-3 place of £ must map to a degree-1 place of (] which again contradicts
#Fy) = 2# Z(F4).) We thus again settle this case of Lemma 4.1 with7’= @

Forg= "7, we may make a similar application of the resultant criterion to
see that #C{ Fy) = 6 and # &{ F;) €93<5¢ We can rule out #2£{ Fz) =5 by
noting that #C( Fa) = 18> 10 = 2# A Fa); we must thus have # Z{ F;) = 3.
Now note that Zhaszrank 0 and C’hasprank 5, so by the Deuring-Shafarevich
formula [17, (7.2)] the mapZ — C'must ramify over six distinct geometric points.
Since #C(Fa4) = 18 = 24# Z{F4), the mapC” = Z£'cannot ramify over any degree-
1 or degree-2 points of (¥ the ramification is thus either over a single degree-6
place or over the two distinct degree-3 places of €1 We may thus settle this case
of Lemma 4.1 by computing the set 7Z7of  double covers of £ with the indicated
ramification divisors using Magma.

Remark 5.1. Although we did not exploit this systematically in our calcula-
tions, we point out that for every entry of Table 2 withg = 7, [ 13, Theorem 4.15]
implies the existence of a map fromC’to a particular elliptic curve of  degree at
most 5. For example, when #({Fy )., = (6<18<12<18<6+<72<132)must admit
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a degree-2 map to the elliptic curve £Zwith #Z{ F,) = 3; consequently, this option
can be ignored in all but the bielliptic case.

6. The use of orbit lookup trees

In most of the remaining cases, we use a uniform paradigm to make an exhaus-
tive calculation over the relevant term of the Brill-Noether stratification. Again,
all computations are done in SageMath except as indicated.

* Let.Y'be the ambient variety indicated in Table 4. Compute the set
&:=AX F;) and the group& := Aut(X)(F).

* Use the method of orbit lookup trees (Appendix A) to compute orbit
representatives for the action of G on subsets of.5of size up tog. In some
cases, we can impose extra conditions on the set .S

- Fory = 7 with a rational ¢, no three points of .Shave the same
projection onto either P 2.

- Forg = 7 tetragonal, no five points of.$have the same projection in
pl.

* For each orbit representative for subsets of size in <5< 6 (ify = 6) or
% 7\(ifg = 7), use linear algebra to find all tuples of hypersurfaces.t" 1,
... ,Xm=1 of the indicated degrees passing through these F;-points. In
the case of g = 7 trigonal of Maroni invariant 1, we require.” 1 to be
smooth.

* For each choice, impose linear conditions on_¥y, to ensure that X1 N <<<n
X has exactly the specified set of Fy-rational points. (This crucially
exploits the fact that the base field is Fy; a similar strategy is used in
[8, H].) TakeZto be the resulting set of schemes.X” 1 N <<<0kp,.

See Table 4 for how the notation maps to the various cases. Some additional
clarifications:

* In the case ofy = 6 trigonal of Maroni invariant 2, we take ' =X 1 to
be defined by (2§ +2%) +z 02125

* In the case ofg = 6 generic, we find candidates for the intersection of type
(1)* by computing orbits for the action on sets of 4 4points of the dual
of P 2. We then apply generators of GL(4 &) to these subsets to identify
cases where the linear spans are Grequivalent (compare Remark A.8); this
yields 20 candidates for_.¥'1 N <<<Aj,—1. We finally enumerate subsets of
XN X n<<<tlp-1 of size in <5< 63 without further use of the group
action.

* In the case ofy = 7 with a self-adjointy £, we take.¥' =% 3 to be defined
by a polynomial of the formz g23 + /2 (21 <z2) with

PEIr 2oy +$2)f$1(z12 +z122 Jrz%)fx? +$1z§ +z§§

and ignore the group action.

* In the case ofg = 7 tetragonal, we take X' =_1" 11 to be defined byzoz +
z171. We then break symmetry when choosing the defining polynomials
A P> of X7 <X, by fixing a total ordering on the quotient of the space
of (1<2)-polynomials by the multiples ofzoz +2 121 and then forcing an
ordering on the classes of 21 </%.

The generic case in genus 7 is handled slightly differently to avoid the compu-
tational bottleneck of enumerating orbits of 7-element subsets of .X; see .
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Table 4. Group actions associated to Brill-Noether strata.

g Case X X, A= | Am
6 | trigonal, Maroni 2 X cPTx P2 %] (1<3)
6 | trigonal, Maroni 0 Plxp! %) (3<4)
6 plane quintic P2 %) (5)
6 generic Gr(2<5)cP? (1)4 (2)
7 | trigonal, Maroni 1 PTxPpP? (1<1) (3<3)
7| self-adjointg? | F3cP(1:1:1:2) %) (4)
7 rationaly 2 P2x P2 (11 (2<2)
7 irrationalg 2 twist of P2 x P2 (117 (2<2)
7 tetragonal X1 cP'xp3 (1<2) (1<2)
7 generic OG™ cP™ (1)8 (1)

7. The generic case in genus 7

We now describe a variant of the paradigm from = to handle generic (non-
tetragonal) curves of genus 7. In the process, we summarize the proof of [27,
Theorem 0.4] and so confirm case (9) of Theorem 3.2.

Let/4 be a finite field (of any characteristic). Let 7’be the vector spaces '°
equipped with the quadratic form ?:1 Zizs+i . We write SO(F) for the unique
index-2 subgroup of the orthogonal group of /; it admits a characteristic-free char-
acterization as the kernel of the Dickson invariant.

The orthogonalGrassmannian of }’, denoted OG, parametrizes Lagrangian
(isotropic 5-dimensional) subspaces of /. LetZ o be the subspace spanned by the
first 5 coordinate vectorse 1, ... ,es, which by construction is isotropic. =~ Then
OG splits into two connected components, each of which parametrizes Lagrangian
subspaces of "whose intersection withZ ¢ has a specified parity. Let OG* be the
component containingZ o; it carries an action of SO( 7).

The space OG" admits an analogue of the Plifker embedding called thespinor
embedding The target of the spinor embedding can be described as the projectiviza-
tion of the even orthogonal algebraA® Zy. The spinor embedding can be computed
easily using the following (characteristic-free) recipe described in [27, #]. LetZ o
be the subspace spanned bye g, . . . ,40; this is an isotropic subspace lying on the
other component of OG. Split the orthogonal algebra.$S= A" Zs into even and
odd components.§'®¥ <5°99. The Clifford map 7"— End.Sthen carries each element
of Z« to a creation operator (taking the wedge product with that element) and
each element of Z ¢ = Z), to an annihilation operator (contraction). For each La-
grangian subspaceZ, the Clifford map carries the elements of Z to endomorphisms
of S whose joint kernel is one-dimensional, and is contained in either.s € or.$ °4d
according to whether or notZ €O0G" ; this yields the spinor embedding.

The following combines [27, Proposition 1.16, Proposition 2.2].

Lemma 7.1 (Mukai). Let 2 < P> be a 6-dimensional linear subspace which
passes throughZo and meetsOG" transversely.

(a) No 4 points of C= OG" nZliein a 2-plane.
(b) The scheme Cis a canonical curve of genus7 with one marked point with
no gj.
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Although for our purposes we only need the opposite implication to Lemma 7.1,
this direction is actually crucial to the argument.

Now letC’be a curve of  genus 7 with one marked point admitting noy  J.
We set notation as in [ 27, 8]. LetC” < P$ be the canonical embedding and set
W:=H (P8 </c(2); by Petri’s theorem (), dim /7= (g —2)(¢— 3)<2 = 10. Set
E::/Vg’/P ¢ ® w%; this is a bundle of ranky — 2 = 5. From the exact sequence

k
0—>/Vg’/P2—>QpEC—>wC—>O

we see that detZ = wg. Since/V [ s = e <2 andw ¢ = ¢ (1), we obtain a
linear map /7~ = A°(C*£). SinceCis not trigonal, by Petri's theorem again, for
every closed pointpy € C’the kernel 7/, of the induced map from /7to the fiber £
is 5-dimensional; this defines a mapC” = Gr(5).

The following is [27, Proposition 3.3].

Lemma 7.2. With notation as above (i.e., C'is a curve of genus 7 with no 4}),
for any two distinct closed pointw<y € C, the intersection /7, N 75 is 1-dimensional
(not just odd-dimensional).

The following is [27, Theorem 4.2].

Lemma 7.3 (Mukai). With notation as above (i.e., Cis a curve of genus7 with
no g), let f: Sym? W — A°(C*Synf £) be the naturalmap. Then every nonzero
element of ker /' is nondegenerate. Consequently, dim ker /' < 1.

When arises as in Lemma 7.1, then we have a natural identification J” = 7~
(see [27, Corollary 2.5]) and so the quadratic form on /defines a nonzero element
of ker /. The upshot of this is that the embedding " = Gr(5</#") factors through
OG™. As in R7, (5.1)], this defines an injective map from the space of linear sections
of OG" passing throughZ ¢ to the moduli space of genus 7 curves with one marked
point. As these spaces are both 11-dimensional and the latter is irreducible [ 4],
the map is dominant; that is, the generic curve of genus 7 with one marked point
occurs as a linear section of OG” passing throughZ . As in [27, Corollary 5.3], it
then follows that dim ker /= 1 in all cases (where we still assume thatC’has no
23). Thus we end up with a mapC = Gr(5<), and it is straightforward to check
that it is an embedding P7, Theorem 0.4]. This establishes case (9) of Theorem 3.2
modulo the following remark.

Remark 7.4. We comment briefly on what happens if we consider a curve of
genus 7 without a marked point. In this case, Z°(Z) still carries a distinguished
nondegenerate quadratic form, but it is not guaranteed to be isomorphic over £ to
the form we are using.

When# is finite, however, this issue does not arise for the following reason.
There are only two isomorphism classes of such forms, distinguished by the discrim-
inant in odd characteristic and the Arf invariant in even characteristic; moreover,
these become isomorphic over the quadratic extension of # By passing to a finite
extension of# of suitably large o0dd degree over which (acquires a rational point,
we can see that Z °(Z) must carry the quadratic form which admits Lagrangian
subspaces over#£.

We now specialize the previous discussion to the case# = F, and describe the
computation that proves Lemma 4.1 for curves of genus 7 with nog }. We first
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build an orbit lookup tree (Appendix A) to depth 6 for the action of @ := SO(}")
on$ := OG" (F2) with the following tuples forbidden.

* Any pair of points corresponding to Lagrangian subspaces whose intersec-
tion has dimension greater than 1 (ruled out by Lemma 7.2).

* Any triple of collinear points or 4-tuple of coplanar points (ruled out by
Lemma 7.1).

* Any tuple whose linear span has positive-dimensional intersection with
OG" (ruled out by the fact that the canonical embedding does not factor
through a hyperplane).

* Any tuple whose linear span meets OG* in 8 or more F,-rational points
(ruled out because Table 2 requires # C{(F,) < 7).

This yields 494 orbit representatives. Inspecting the results, we find that each orbit
representative spans either a 4-plane or a 5-plane in P ,1(5.

Let ”be an orbit representative. =~ We now separate into cases depending on
whether #C(F2) = 6 or #CF2) = 7, whether or not /’spans a 4-plane or a 5-plane,
and whether or not this span contains any more points of OG™ .

o If #C(F,) = 7 and Vspans a 4-plane, we verify that the span of "does
not contain a seventh Fa-point of OG* . This means that without loss of
generality, we may ignore this case.

o If #C(F,) = 6, FVspans a 5-plane, and this 5-plane does not contain a
7th point of OG" , we hash the remaining F,-points of OG* according to
their joint linear span with /7, retaining 6-planes that do not appear at
all.

o If #C(F,) = 7, Vspans a 5-plane, and this 5-plane does not contain a
7th point of OG", we build a similar hash table, retaining 6-planes that
occur exactly once.

* If #C(F;) = 6 and /spans a 4-plane, we build a similar hash table,
retaining 5-planes that do not appear at all. ~ We then hash pairs of 5-
planes in this list according to their span, retaining 6-planes that appear
3 times.

o If #C(Fy) = 7, F’spans a 5-plane, and this 5-plane contains a 7th point
of OG", we may assume without loss of generality that the maximum in-
tersection multiplicity of the linear span with OG among the F,-rational
intersection points occurs for the 7th point. We then build a similar hash
table, retaining 6-planes that do not appear at all.

We then takeZto be the set of  intersections of the resulting 6-planes with
0G".

8. Towards a full census in genera 6 and 7

It would be extremely desirable to refine the methods used here to complete
a full census of curves of genus 6 and 7 over [F;, both to provide a consistency
check on our own work and to make the tables available for other purposes. One
important aspect of such a census is the process of making it simultaneously reliable
and rigorous. In other words, given a putative list of isomorphism classes of curves
of genusg over [, how can one verify that this list is accurate?

In one direction, it is easy from the data first to compute individual properties
of the curves in question, such as their automorphism groups, and to test pairs of
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curves to confirm that they are not isomorphic; the latter can be accelerated by
first hashing curves according to their zeta function (and any other data that may
have been computed, such as the order and structure of the automorphism group).

In the other direction, one may check completeness of the list by computing the
count of Fg-points on the moduli spaceA7; using the Lefschetz trace formula for the
moduli space /T//g of stable curves of genusg and the combinatorics of the boundary
strata. (Note that the point count is “stacky” in that each equivalence class of Fg-
points is weighted inversely by the order of its automorphism group.) Forg = 6,
it is known that #.47;(Fy) equals a fixed polynomial ing [ 1, Corollary 1.6], which
in principle can be computed using the SageMath package described in [3]. For
7= T, while #44,(F,) is known to equal a fixed polynomial ing [1, Corollary 1.5],
the same does not immediately follow for #.44;(Fg) due to a possible contribution
from the level-1 modular form A in the boundary of A#.

As noted in the introduction, this discussion in principle also applies in some
higher genera, using the parametrizations indicated in Remark 3.4. However, it is
not clear to us to what extent the resulting computations are feasible.

Appendix A.  Orbit lookup trees

Throughout this appendix, fix a finite group ¢’ and a finite set.S equipped with
a left GZaction. We exhibit a combinatorial structure that allows us to efficiently
compute orbit representatives for the action of & on4-element subsets of S for
various small values of£. Such computations are already implemented in software
(notably in Magma); however, the approach we take here seems to be well-adapted
to our present work, as it avoids instantiating in memory the entire set of 4~element
subsets of.5!

Definition A.1. Let ' be a directed graph with loops with vertex set S ¥ ,
in which each edge is either of the form *= o for somer € .5 or of the form
n 4 2y for somev 1wy € Swith a label g € satisfyingg(z 1) =2 3. Defining
connected components of I in terms of the underlying undirected graph, we say
that a component is eligibleif it does not contain * and a vertex is eligible if it lies
in an eligible component.

A group retractof T consists of a subset /7of I' consisting of one vertex in each
eligible connected component, together with a function/ from the union of  the
eligible components to& with the property that for eachz €T in the connected
component ofe € I, we have/s(v )(v) =v .

One way to compute a group retract, given a choice of /| is to fix a spanning
tree in each eligible component, then compute the unique function satisfying:

» foralle €V,4(v) = 1¢;
* for each chosen spanning tree, for every edge 24 4 2y in the tree,Z(v2) =
g(n).
Note that this function can be computed in linear time in the input length.

Definition A.2. Let/'be a subset of the power set of.$'(the  forbidden sub
sets). We say that a subset ofS’is eligible if it contains no forbidden subset.

For any positive integers, an orbit lookup tree of depthz (for G<5<%) is a
rooted treeZ” , of depths with the following properties (and additional  data as
indicated).
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* Each node at depth4 is labeled by a/-element subset of S, colored
either red or green. In what follows, we freely conflate nodes with their

labels.
* The parent of every node/is a green node which is a subset of . In
particular, there is a unique ordering of the elementsz 1, ... ,zx of

such that each initial segment of this sequence is also a node; we write
U= [z1ppray] instead of = 91 ook Pwhen we need to indicate
this choice of ordering.

* For£=0, ...,n the green nodes at depth/ form a set of Grorbit
representatives for the eligible 4~element subsets of.9!

* For each eligible node”, we further record an elementy y € & such that
75 (&) is a green node.

* For each green node?/, we further record the stabilizer &y .

* Every green node”at depth4<7z has children which form a set of & (-
orbit representatives of the (4 + 1)-element subsets of.5 containingZ”.We
further record a function/ y :8 /7 = Gy such that for eachy € .57,
the elementzy (2) ==/ ;" () has the property that /U 92y () ¢}is a node.

As the name suggests, the structure of an orbit lookup tree makes it easy to
find the chosen GLorbit representative of a subset of S

Algorithm  A.3. Given an orbit lookup tree 7; of depth » forany £ €
9N o> P and any sequence =y, ..., zx of distinct elements of .S, the following
recursive algorithm determines whether ¥z, o<z is eligible, and if so produces
a green nodel’ of 7, and an element g € & such that ) = % vovzy

(1) If #= 0, return /= @ g:= 1 and stop.

(2) If ¥y oopzi—1 Qls anode of 7, let I/ be this node and set g := 1¢.
Otherwise, apply the algorithm toz,, . .., zx—1 to obtain a green nodel/
of 77and an elementg € & for which go(07) = %1 ver<z k-1 ¢ If instead
we find that 921 vrr<z (-1 IS not eligible, report thatZ’ is not eligible and
stop.

(3) Set y:=g5"' (ax), U5 :=U UT2y () 7 i=g0hu (2).

(4) Set g :=gy, and return I/:=y5 " ({4), g:=g1. If instead we find that
qu, Is undefined, then report thatZ’ is not eligible.

Remark A.4. In Algorithm A.5, we will use Algorithm A.3 in a situation
where the elementsg y, are not yet computed at depth4 By omitting step (4)
and returning’ 1 <91, we still obtain a nodeZof 7} and an elementy € & such
that A7) = 9y voowy <3 but without the guarantee that 7is green. However, at
deeper steps of the recursion we must execute Algorithm A.3 in full, including step

(4).

The key point is that we can use group retracts to build an orbit lookup tree
in an efficient fashion.

Algorithm A.5. Given an orbit lookup tree 7; of depth », the following algo-
rithm extends 7}, to an orbit lookup tree 7;.1 of depth + 1

(1) For each green nodel at depth 7:
(a) Choose a sequencen, . .., /m of generators ofGy by picking random
elements.
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(b) Construct the Cayley graph Ty on SN for the sequence /7, ...,
fom.

(c) Compute a group retract (Fég) of Ty U 9= (with no edges incident
to *)and set /y =g.

(d) Foreach y €V, add to Z;+1 an uncolored nodel/u ywith parent
’.

(2) Construct a directed graph with loopsl' on the nodes of depth  + 1 plus
the dummy vertex + as follows. For each node /= [z 1eepzpm | €T
(optionally in parallel):

(a) If U is forbidden, then add an edge— 7.
(b) If U/ is not forbidden, then for y=1, ..., n, apply Algorithm A.3,
as modified in Remark A.4, to the sequence

DN PPLZTj—1 Tpe1 Tje1 PPLTn T

to find a node 247 and an element ¢ € & such that ;1 (Ch) =/, and
add the edgesy 8 7 to T. If instead we find that ¢ is not eligible,
then add an edge— 7.

(3) Compute a group retract (V%) of I'. Color each vertex in }” green and
color each remaining vertex (other than ¢) red. For each vertex I/ in an
eligible component, setgy :=/4(0) .

(4) For each green nodel/ = [z1 vz p | at depthr+1, let Gy be the group
generated by:

* the stabilizer of zns1 in Gy, x .3/

* for each edge’; 4 05 in T, the element glj; 99U,

Proof. The key point here is to confirm that the group computed in step (4),
which is evidently contained in the stabilizer of the green node /= [z1 Prozpe |,
is actually equal to it. Let Zy be the group computed in (4) and let &y be the full
stabilizer; then the inclusions
X n} n G}M Qb’u n Gy{x1 ..... X n} < GYU n G’x1,...,x n} :Gy{xq,...,x n} n G},m
X n} n G}nﬂ < ﬁ’U n G}nﬂ S GYU n G}nﬂ :GY{XL-WX nt n G}nﬂ

,,,,,

.....

show that all of these groups coincide. That is,z p+1 has the same stabilizers in Zy
andy, and so the orbit-stabilizer formula implies that the index [¢ : £ y] equals
the size of the&y-orbit ofz p+1 divided by the size of the Zy-orbit. Consequently,
it suffices to check that the orbits coincide.

We again identify orbits with the connected components of the Cayley graph.
If the G y-orbit ofz p+1 consists ofz p+q itself, there is nothing to check. Otherwise,
the orbit also containsz ; for some;, € 91 o2 ¢} and the edges arising from the
index/in step (2b) guarantee thatz; andz p+ are joined in the Cayley graph.

Remark A.6. Algorithm A.3 provides a consistency check for the computation
of an orbit lookup tree, as one can spot-verify that a random 4-element subset is
indeed GZequivalent to some green node. For our purposes this is sufficient, as we
only need a set that covers all orbits, not necessarily a set of orbit representatives.

If one really wants to verify that no two distinct green nodes are G-equivalent,
it may be easiest to do this using some ad hoc computable invariants of the&t
action. Alternatively, if no subsets are forbidden, we may verify the orbit-stabilizer
formula: the sum of [¢:&y] over green nodes at depthz should equal |: I
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Remark A.7. We have made no systematic effort to optimize Algorithm A.5 or
even to give a careful costing. In step (2b) of Algorithm A.5, a further optimization
is possible: instead of taking all ; € 91 wprv2 (b it suffices to take a set of orbit
representatives for the action of @y ,,. x ,} on ooz 2 Our initial experiments
were inconclusive as to whether this yielded a meaningful speedup in practice, so
we did not pursue it.

Remark A.8. In some applications, the set.S carries the structure of  a/-
vector space for some finite field4, ( acts4:linearly on$, and one is interested
in the action of ¢ on subspaces rather than subsets. One can treat this situation
by considering orbits of linearly independent subsets, but in practice it would be
more efficient to adapt the algorithms to the linear setting. As we will not need
this here, we omit the details.
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