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Abstract—Recent advances have made numeric debugging tools

much faster by using double-double oracles, and numeric analysis

tools much more accurate by using condition numbers. But

these techniques have downsides: double-double oracles have

correlated error so miss floating-point errors while condition

numbers cannot cleanly handle over- and underflow. We combine

both techniques to avoid these downsides. Our combination,

EXPLANIFLOAT, computes condition numbers using double-

double arithmetic, which avoids correlated errors. To handle over-

and underflow, it introduces a separate logarithmic oracle. As a

result, EXPLANIFLOAT achieves a precision of 80.0% and a recall

of 96.1% on a collection of 546 difficult numeric benchmarks:

more accurate than double-double oracles yet dramatically faster

than arbitrary-precision condition number computations.

Index Terms—floating-point, debugging, number systems

I. INTRODUCTION

Floating-point numbers approximate real values but introduce
subtle errors that can be difficult to detect, sometimes with
catastrophic consequences. Two prominent classes of automated
tools attempt to improve the situation. Numeric debugging
tools [1, 2, 3, 4, 5, 6] observe numeric program executions
and warn the programmer about error-inducing operations. By
contrast, static analysis tools [7, 8, 9, 10, 11, 12, 13] analyze
a short numeric program’s behavior over an entire region of
possible inputs and provide varyingly-sound guarantees about
the maximum possible floating-point error.

Recent years have seen rapid improvement in both tool
classes. In debugging, a line of tools from Herbgrind [2] to
FPSanitizer [3] and EFTSanitizer [4] has focused on reducing
runtime overhead by introducing more optimized ways to
compute oracle values for floating-point values. Herbgrind
computes these oracles using a JIT-compiled virtual machine,
FPSanitizer uses a compiler pass to insert native calls to
the GNU MPFR library, and EFTSanitizer replaces MPFR
with inlined double-double computations. These innovations
reduce overhead from 574→ to 111→ to 12.3→, but also reduce
accuracy and cause false negatives. In static analysis, a line
of tools from Salsa [7] to Rosa [11] and FPTaylor [9] have
focused on improving error estimation through more-accurate
representations of error bounds. Salsa uses value and error
interval arithmetic, Rosa uses affine arithmetic, and FPTaylor
uses error Taylor series. These innovations have dramatically
tightened achievable error bounds, but the best techniques
cannot reason accurately about overflow (and, for some tools,

underflow). More importantly, the performance innovations of
debugging tools and accuracy innovations of static analysis
tools have not yet been combined to achieve both performance
and accuracy simultaneously.

This paper introduces EXPLANIFLOAT,1 a floating-point
debugging tool that combines double-double oracle values [4].
with condition number Taylor error bounds [9, 14] to detect
erroneous operations. It also accurately detects over- and
underflow errors using a logarithmic oracle for out-of-range
values. Our implementation based on the qd library [15]
achieves high accuracy and high performance using a novel
implementation of these oracles: on 546 benchmarks from the
Herbie 2.1 suite, EXPLANIFLOAT achieves a a precision of
80.0% and a recall of 96.1%. By contrast, a traditional double-
double oracle achieves a precision of 56.5% and recall of 65.4%.
EXPLANIFLOAT’s accuracy is comparable to an arbitrary-
precision baseline, while also being significantly (4.24→) faster.
In short, this paper contributes:

• A debugging algorithm based on condition numbers
instead of oracle values (Section III).

• A novel logarithmic oracle for accurately tracking overflow
and underflows (Section IV).

• An implementation using a novel number representation
and the qd library (Section V).

II. BACKGROUND AND RELATED WORK

As is well known, floating-point numbers x̂ are a subset of
the real numbers x with a fixed precision and exponent range.
We write R(x) for the closest floating-point number to the
real number x; R suffers from rounding error due to limited
precision and over- and underflow due to limited exponent
range.

A. Debugging, Oracles, and Shadow Memory

A numerical error occurs when the floating-point result
of a program differs from the correct real-number result.
Modern debugging tools detect these errors using oracles:
for every floating-point intermediate x̂i they store an oracle
value xi in higher precision. By comparing x̂i to xi they
can then detect numerical errors. Examples of this approach

1EXPLANIFLOAT is open source and available online at https://github.com/
herbie-fp/herbie/tree/bhargav-nobigfloat.

https://github.com/herbie-fp/herbie/tree/bhargav-nobigfloat
https://github.com/herbie-fp/herbie/tree/bhargav-nobigfloat


include FpDebug [1], Herbgrind [2], and FPSanitizer [3],
while Shaman [5] and Verrou [6] use a similar technique but
probabilistically. The state of the art is the recent EFTSanitizer
tool, which uses an oracle based on double-double arithmetic.

A double-double value is a pair (x̂, r̂) representing the real
value x ↑ x̂+ r̂. Applying a function f̂i(x̂j) in double-double
yields x̂i and r̂i such that

x̂i = f̂i(x̂j)

r̂i = R(fi(x̂j + r̂j)↓ f̂i(x̂j))

The intuition is that r̂i captures the error of x̂i, providing, in
effect, extra precision for x̂i. Importantly, r̂i can be computed
using only hardware floating-point instructions much faster
than an arbitrary-precision libraries like MPFR.

However, double-double oracles can fall prey to the same
rounding errors as the original computation. For example, in
the textbook example [16]

↔
x+ 1↓

↔
x, thousands of bits of

precision are needed to accurately compute the result [2, 17].
The double-double oracle doesn’t have enough precision and
thus computes the same erroneous value as the original compu-
tation. This causes a numerical debugger using a double-double
oralce to miss the numerical error—a false negative. Double-
double oracles also cannot handle overflow and underflow,
since double-double values have an exponent range no larger
than ordinary double-precision floating-point.

B. Error Taylor Series and Condition Numbers

Numerical errors can be quantified via the relative error: a
program P̂ has a relative error bound c if |P̂ (x) ↓ P (x)|
is bounded by c|P (x)| for all x in some set of inputs.2
Modern error analysis tools derive such relative error bounds
by composing known error bounds f̂(x) = f(x)(1+ω) (where
|ω| < c) for primitive operations f(x).. Examples of such
tools include Salsa [7], Rosa [11], Daisy [8], Fluctuat [12],
Gappa [13], Precisa [18], and FPTaylor [9]. Note that while
debugging tools consider a single input at a time, worst-case
error bound tools aim to reason abstractly about a set of
possible inputs. The state of the art is the recent Satire [10]
tool, which uses error Taylor series computed using automated
differentiation.3

Error Taylor series replace every primitive operation f(x) in
the program P̂ (x) by f(x)(1 + ω),4 resulting in a real-number
formula P (x, ω) where each ω has bounded magnitude. Note
that P (x, 0) = P (x), the ideal real-number behavior; thus, a
worst-case error bound for P̂ can be derived by studying how
P (x, ω) varies in ω. We can estimate the worst-case error by

2The case when P (x) = 0 requires separate, usually tool-specific, handling.
3Satire’s approach is different from, but closely related to condition numbers.
4Using a unique ω for each operation.
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where ci is the maximum relative error of the i-th primitive
operation in P̂ . Each Ai is a real-valued function of x and
can be bounded using interval arithmetic, global non-linear
optimization, or other techniques to compute a worst-case error
bound for P̂ . The important take-away here is that worst-case
error bounds can be computed without computing the exact
value P (x) and thus without running the risk that that exact
value will be computed incorrectly,

Condition numbers are a convenient shortcut for computing
this Equation (1). The condition number !f (x) of a computa-
tion f(x) is
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The condition number has the following property: if x̂ =
x(1 + ω), then f(x̂) = f(x)(1 + !f (x)ω) +O(ω2), where the
O(ω2) term can be ignored when computing only the first-order
error. In other words, !f measures how much f amplifies
incoming relative error. Note that the condition number is
defined purely in terms of the real-number function f ; it is an
inherent property of the function conserved across precisions
and not dependent on the quality of an oracle. The relative
error of each intermediate value xi = fi(xj) in P̂ can then be
computed with

xi = fi(xj)

|Ei| = !fi(xj)|Ej |+ ci

and an analogous formula for binary functions. We refer the
reader to the ATOMU paper [14] for a more readable and
detailed derivation; the main take-away is that the first-order
method can be implemented by simply computing, for each
intermediate value xi, an error bound Ei. In practice, this
produces accurate error bounds even when the intermediate
value xi suffers from rounding error.

III. CONDITION NUMBERS FOR ROUNDING ERROR

EXPLANIFLOAT is based on the observation that modern
debugging and error-bound approaches both execute a program
while also tracking additional metadata (|Ei| and r̂) that
estimates the error of that computation. It thus uses a hybrid



approach, executing the floating-point program, but using
condition numbers to detect rounding error. Specifically, EX-
PLANIFLOAT executes the floating-point program and computes
a double-double oracle for each floating-point intermediate.
However, it detects possible numerical errors not by comparing
the actual and oracle value but by computing the condition
number of each operation.

This provides two advantages. Firstly, since the condition
number does not depend on an “oracle”, it is robust to innac-
curacies in the oracle. In fact, in our evaluation (Section VI),
EXPLANIFLOAT achieves much better precision and recall
than a similar tool using the oracle method, largely due to
innacuracies of the oracle. Secondly, though harder to evaluate,
condition numbers have better error localization. Each condition
number is computed from a specific floating-point operation,
and every warning raised by EXPLANIFLOAT indicates this
operation. Comparing the oracular and computed values, by
contrast, implicates the full program execution up to that point
so may raise errors too late, or warn the user about the slow
and steady accumulation of error over a long series of slightly-
erroneous computations where any single operation is a red
herring.

In practice, we found that condition numbers on their
own make for a poor debugging experience. A function like
sin has high condition numbers both for large inputs and
for inputs close to a multiple of ϑ; merely identifying the
problematic operation didn’t give users all the information
they needed. EXPLANIFLOAT therefore splits the condition
numbers of each supported operation. For example, the standard
condition number for sin(x) is !sin(x) = |x cot(x)|; we split
this into two parts: !1

sin(x) = |x| and !2
sin(x) = | cot(x)|,

with !sin = !1
sin!

2
sin. !1

sin(x) indicates “stability” errors for
sin(x), while !2

sin(x) indicates “cancellation” errors, where
“stability” refers to errors for very large or small inputs while
“cancellation” refers to errors for inputs close to some discrete
set. The split condition numbers for each operation supported
by EXPLANIFLOAT are shown in Table I.

All told, EXPLANIFLOAT detects and warns the user about
rounding error for each operation with high condition number,
testing each split condition number for that operation and
warning the user for each one that is past a user-specified
threshold. However, there is an exception to this rule in the case
of operations on exact values, like in log(1). Here, the condition
number |1/ log(1)| is infinite, meaning that the log operation
significantly amplifies any input error; however, because 1 is
exactly-represented in floating-point, it has no error to amplify.
To avoid raising false alarms in such situations, EXPLANIFLOAT
does not warn for high condition numbers for arguments that
are exact constants. For multi-argument functions where some
arguments are exact, only condition numbers associated with
non-exact arguments produce a warning.

Despite these tweaks, there is still one common cause of false
postives: operations that introduce minimal error. Normally,
floating-point operation introduce around one machine epsilon
of error. Some operations, however, introduce much less. For
example, the expression 2100 + 2↑100 evaluates to 2100, with

Operation Condition Number Bad inputs Type
x± y |{x, y}/(x± y)| x → y Cancellation
x · y, x/y - - -↑
x, 3

↑
x 1

2 , 1
3 - -

log(x) |1/ log(x)| x → 1 Cancellation
exp(x) |x| x large Sensitivity
xy |y| and |y log x| y large Sensitivity
sin(x) |1/ tan(x)| x → kε Cancellation

|x| x large Sensitivity
cos(x) | tan(x)| x → (k + 1

2 )ε Cancellation
|x| x large Sensitivity

tan(x) | tan(x) + 1/ tan(x)| x → ( k2 )ε Cancellation
|x| x large Sensitivity

acos(x) |x/(
↑
1↓ x2 acos(x))| |x| → 1 Cancellation

asin(x) |x/(
↑
1↓ x2 asin(x))| |x| → 1 Cancellation

TABLE I: All operations and split condition numbers supported
by EXPLANIFLOAT. Dashes indicate unused error types for a
particular operation. Note that all cancellation errors are caused
by the input x being close to some specific value (or discrete
set of values) while all sensitivity errors are caused by large
inputs.

2↑200 relative error. Later computations can amplify that error
by a lot and still not have significant error; for example, in
cos(2100 + 2↑100) the condition number 2100 only amplifies
the error to 2↑2002100 = 2↑100. This issue occurs rarely (see
Section VI), but is a notable case where comparing actual and
oracle values would be more accurate.

IV. ORACLES FOR OVERFLOW AND UNDERFLOWS

While condition numbers work better than oracles for
rounding error, we found the opposite to hold for over- and
underflow errors. In fact, both the debugging and static analysis
literature treat any overflow or underflow as an error,5 an
approach reminiscent of treating all large condition numbers
as errors. This weak modeling of over- and underflows causes
false positives, for example, in 1+1/ exp(x), exp(x) overflows
for large x but the full expression still correctly evaluates to 1.

Condition numbers cannot help with over- and underflows:
condition numbers are based on relative error bounds for
primitive operations that do not hold when overflow (and
sometimes underflow) occurs. But a oracle could avoid false
positives: instead of raising a warning when an expression
overflows, an over- and underflow oracle would approximate
the overflowed value and track whether the overflow actually
caused the computation to diverge from a real execution.

Since an over- and underflow oracle requires a vastly larger
dynamic range than ordinary floating-point, EXPLANIFLOAT
uses a logarithmic number system as an oracle. In this system,
a real number x is represented by its sign plus the floating-point
number R(log2(|x|)). Even extremely large numbers are rep-
resentable directly.6 Operations f(x) on oracle values require
computing log2(|f(2x)|); for example, to compute an oracle
for pow(x, y) (for positive x) one instead computes y log2(x).

5FPTaylor [9] does have specialized handling for underflow (via its f(x)(1+
ω) + ϑ error model) but treats any overflowing operation as an error.

6The logarithmic number system can itself overflows, but this doesn’t happen
in our evaluation suite.



Luckily, such an oracle can be implemented efficiently using
only hardware floating-point operations (see Section V).

EXPLANIFLOAT uses this logarithmic representation to
approximate values outside the standard floating-point range,
and warns when these out-of-range values cause the real and
floating-point computation to diverge. Consider the expression↔
1 + x2 in double precision; the x

2 term can overflow for very
large x like 10300.. In this case the exact real-number value of
x
2 is 10600 while the floating-point result is +↗. But, since

+↗ is in fact the best double-precision representation of 10600,
the floating-point and real executions have not yet actually
diverged and no error is raised. Instead, EXPLANIFLOAT just
represents the value logarithmically as log2(10

600) ↑ 1993.
However,

↔
1 + x2 evaluates to +↗ in floating-point while the

logarithmic oracle is approximately 10300. These are starkly
different in double-precision, so at this point EXPLANIFLOAT
determines that the floating-point and real executions have
diverged and raises an error.

In general EXPLANIFLOAT raises an error for any operation
on over- or underflowed values whose oracle result is within the
standard floating-point range. One particular class of underflow
errors, however is an exception from this rule. For example,
consider the same expression

↔
1 + x2 but now for a very

small value like x = 10↑300. The addition operation has an
out-of-range input (x2 underflows) and produces an output in
the standard range (1), but the underflow is benign because
the true value, 1 + 10↑600, still rounds to 1. To avoid such
false positives, EXPLANIFLOAT special-cases additions and
subtractions where the two arguments whose differ significantly
in order of magnitude, and over- and underflow errors in the
smaller value are ignored.

EXPLANIFLOAT’s over- and underflow oracle again shows
that combining both oracle and analytic techniques can reduce
false positives without using arbitrary-precision floating-point.

V. IMPLEMENTATION

The EXPLANIFLOAT implementation aims to test the idea
of a first-order method debugger with an oracle for overflow
and underflow detection. EXPLANIFLOAT is thus aimed at
debuggability rather than performance, and thus uses a simple
floating-point virtual machine instead of the more complex
(and performant) techniques pioneered in FPSanitizer and
EFTSanitizer [3, 4].

A. Shadow Memory
Each floating-point intermediate in EXPLANIFLOAT is shad-

owed by a double-double value, used for computing condition
numbers, and a logarithmic value (plus a sign bit) for the
over/underflow oracle:

!x" = (x̂, r̂, s, ê)

where x̂ is the floating-point value of x, r̂ is the residual error
of x, s the sign of x, and ê the logarithm of |x|. We call this
number system “DSL”, after its components: double-double,
sign, and logarithm. The double-double shadow value improves
the accuracy of computed condition numbers (reducing false

positives) and also improves the accuracy of the over/underflow
oracle after overflow or underflow occurs.

Every floating-point operation in our virtual machine per-
forms shadow operations to compute the relevant x̂, r̂, s, and
ê. For values in the floating-point range, the shadow output’s x̂
and r̂ are computed from the shadow input’s x̂ and r̂, and the s

and ê values are computed from the shadow output. For values
outside the floating-point range, the input x̂ and r̂ values are
ignored (since they typically contain zeros, infinities, and NaNs)
and instead the shadow output’s s and ê are computed directly
from the shadow input’s s and ê using standard logarithmic
number system techniques.

After computing the shadow value, EXPLANIFLOAT also
computes the condition number of each operation using the
same number representation. If the condition number is greater
than a user-configurable threshold, EXPLANIFLOAT computes
each split condition number and raises the appropriate error
for each one over the threshold. (Note that both the full and
split condition numbers must be computed because functions
like sinx can have split condition numbers (x and 1/ tan(x))
that cancel out for some inputs (x ↑ 0).) Finally, if the output
shadow value’s ê indicates that it is inside the representable
floating-point range, while at least one input’s shadow value is
outside that range, EXPLANIFLOAT also raises the appropriate
over/underflow error, except in the case of suppression as
described in Sections III and IV.

Notably, all of these values are machine floating-point
numbers (save s, which is a machine boolean) and do
not require allocation; all shadow operations likewise use
machine floating-point operations instead of arbitrary-precision
arithmetic libraries like MPFR [19]. We expect this to enable
high performance, much like in EFTSanitizer [4]. In fact, our
evaluation (see Section VI) shows a 4.24→ speedup over an
arbitrary precision library, and we expect much larger speedups
in a real-world implementation focused on performance and
run on larger benchmark programs.

The challenge with combining two number systems—the
double-double values for computing condition numbers and
the logarithmic values for detecting problematic overflows and
underflows—is understanding how they interact. In EXPLAN-
IFLOAT, only one component is active at a time: either the
value is in the representable floating-point range, in which
case the double-double value is used, or the value is out
of the representable range and the logarithmic component
is used; the logarithmic component determines which case
a value is in. As a result, a shadow operation may either
receive inputs where the double-double component is active
and produce logarithmic outputs, or vice-versa; both these
cases require conversion. Double-double inputs that overflow
are first converted to logarithmic values, and then a logarithmic
operation is performed; the conversion just requires taking the
logarithm and recording the sign. Logarithmic values that bring
the value back in range compute an output double-double value
by exponentiating. Naturally, the resulting value is not precisely
known, since the logarithmic component has less precision than
even a simple double value, let alone a double-double one.



However, this logarithmic-to-double-double conversion only
occurs after an over/underflow renormalization—in other words,
after an error is already detected—so accuracy is less important.

B. Implementing Double-Double Computation

To implement double-double floating-point numbers, we
wrap David Bailey’s qd floating-point library [15]. This library
provides double-double implementation cores for a variety of
operations. These cores compute highly accurate x̂ and r̂ values,
but typically only on a narrow range of values. For example,
the sin implementation in qd uses a naive range-reduction
algorithm and is not accurate for inputs much larger than ϑ.
The cores are also not robust to special values such as NaN;
some cores like atan even cause segmentation faults if called
with NaN. To address this, EXPLANIFLOAT wraps qd with
code that tests for special values and performs range reduction.

While handling special values was straightforward, range
reduction took particular care, and our approach was heavily
influenced by, and with significant code borrowed from, the
classic fdlibm library [20]. Consider the analog of sin(x) in
qd, c_dd_sin, which is only accurate for inputs x close to 0.
We need a wrapper around c_dd_sin to reduce input values
to bring them closer to 0. Since sin(x) is periodic, it is enough
to subtract the relevant multiple of 2ϑ; in fact, it is enough
to subtract the relevant multiple of ϑ/2, and then dispatch to
± sin(x) or ± cos(x) to compute the final value. What’s tricky
is subtracting the relevant muliple of ϑ/2 in high precision
from both the primary and residual parts of a double-double
value.

To do so, we use the standard Payne-Hanek algorithm [21],
as implemented in the rem_pio2 function from fdlibm.7
This helper function converts an input x into outputs x1, x2,
and k where x ↑ x1 + x2 +

ε

2 k.8 To extend this approach to
the double-double value x+ r, we apply rem_pio2 to both
x and r, yielding

x+ r =
(
x1 + x2 +

ϑ

2
kx

)
+
(
r1 + r2 +

ϑ

2
kr

)

Then, x1 + x2 and r1 + r2 can be added as double-double
values, yielding x

→ + r
→; in other words,

x+ r = x
→ + r

→ +
ϑ

2
(kx + kr mod 4)

The combined x
→, r→, and kx + kr mod 4 values can then be

passed to c_dd_sin (or c_dd_cos) to compute sin(x +
r). In other words, we combine fdlibm’s range reduction
with qd’s trigonometric cores to achieve a full-range double-
double sin implementation. A similar approach is used for other
trigonometric functions. For the logarithmic function, where
a high-precision value of e is required, we instead transplant
a simpler implementation from the Racket math/flonum
library’s [23] fl2log function.

7For smaller input, rem_pio2 will use the faster Cody-Waite [22]
algorithm.

8With x1 and x2 forming a double-double value and k and integer between
0 and 4.

The ultimate result is an elementary function library for
double-double values that implements the shadow operations
in EXPLANIFLOAT. Importantly, our implementation uses
basically-standard double-precision algorithms for range re-
duction, and thus does not carry the performance penalty of an
arbitrary-precision library. To our knowledge, EXPLANIFLOAT
is the first numeric debugging tool with support for double-
double transcendental function implementations.

C. Implementing Logarithmic Computation

To implement logarithmic floating-point numbers, we use the
technique of Swartzlander and Alexopoulos [24]; in short, this
technique centers around the use of ”+(x) = log(1 + exp(x))
and ”↑(x) = log(1 ↓ exp(x)) functions for addition and
subtraction. Our implementation of these ” functions internally
uses the qd library for higher precision, in order to ensure
accuracy. Exponential, root, power, logarithm, and exponent
operations use the straightforward implementation. Some oper-
ations, such as trigonometric functions, are very challenging
to implement for logarithmic values, so we don’t try. Instead,
we note that applying these functions on out-of-range floating-
point numbers returns in-range results (save near 0), meaning
any use of these functions on over/underflowed inputs will raise
an over/underflow error. An accurate implementation is thus
not needed. Like the double-double operations, logarithmic
operations use ordinary floating point operations, avoiding the
overhead of arbitrary-precision computation.

VI. EVALUATION

We evaluate EXPLANIFLOAT both in isolation as a numeric
debugger and also by testing various components in an ablation
study. We focus on three research questions:
RQ1 Does EXPLANIFLOAT detect erroneous operations with

few false positives and negatives?
RQ2 Is EXPLANIFLOAT more accurate than an oracle-based

debugging tool?
RQ3 Is EXPLANIFLOAT as accurate as, but more performant

than, an arbitrary-precision baseline?
We chose the Herbie 2.1 [17] benchmark suite as our

evaluation target. These 546 benchmarks9 are drawn from
textbooks, papers, and open-source code and intended for
evaluating floating-point repair tools, so have many complicated
numerical errors, with many overflow, cancellation, and stability
errors, many involving transcendental functions. At the same
time, they are small: up to 16 variables (2.7 average) and up
to 360 floating-point operations (9.5 average) each. This is
critical for our evaluation, which evaluates EXPLANIFLOAT by
comparing to a baseline that uses very high arbitrary-precision
(up to 10,000 bits) interval arithmetic to compute a ground
truth. These results should thus be indicative of the accuracy of
EXPLANIFLOAT’s error detection; we expect EXPLANIFLOAT’s
design, using only machine floating-point operations, to scale

9Six benchmarks that use operations like fmod, log1p, hypot, and
copysign are not included in the results, as these operations are not supported
by EXPLANIFLOAT.



Fig. 1: A precision vs recall graph of EXPLANIFLOAT, the
arbitrary-precision baseline and the double-double oracle based
debugging baseline. We run them on thresholds starting from 4
to 4 096 doubling each time. Note that the precision and recall
do not change drastically with change in the threshold.

to much larger programs, but leave that evaluation for future
work.

The Herbie 2.1 benchmarks come with a test runner that
randomly samples 256 valid inputs for each benchmark; 115
benchmarks have no detected floating-point error, while the
rest have at least some for some inputs. Most benchmarks use
64-bit floating-point but some (33) use 32-bit floating-point; in
either case EXPLANIFLOAT uses 64-bit floating-point for its
shadow operations. All experiments are run on a machine with
a i7-8700K CPU (at 3.70GHz) and 32GB of DDR3 memory
running Ubuntu 24.01, Racket 8.10, and MPFR version 4.2.1.

A. RQ1: Predicting Floating-Point Error
To determine EXPLANIFLOAT’s false positive and false

negative rate, we need an accurate ground truth to compare
to. We compute one using the Rival interval arithmetic
package [25] with up to 10 000-bit-precision floating-point. 10

If EXPLANIFLOAT raises condition number or over/underflow
error for a specific input to a specific benchmark, we consider
that a true positive if the Rival ground-truth value differed from
the computed floating-point value by more than 16 ULPs.11 We
then measure the rate of false positives and negatives, using the
standard precision and recall metrics, to determine the accuracy
of EXPLANIFLOAT as a debugger.

The precision-recall plot in Figure 1 plots EXPLANIFLOAT’s
results with a blue line. Each point along this line shows the
precision (vertical) and recall (horizontal) of EXPLANIFLOAT
over all inputs to all 546 benchmarks; up and to the right is
better. Different points along the line use different condition
number thresholds from 4 to 4 096. The exact precision
and recall vary by threshold, but for a threshold of 64,
EXPLANIFLOAT has a precision of approximately 80.0% and a

10Five benchmarks are discarded because correctly-rounded evaluation fails.
11We technically check for more than four “bits of error”, which is subtly

different than 16 ULPs for subnormals.

recall of approximately 96.1%. The high recall is critical in a
debugging tool: it means no false negatives that would hide the
true source of error. The high but lower precision, by contrast,
is less of a concern because a debugging tool is typically used
only when a problem of some kind is already known to occur.
Note that different thresholds have similar precision and recall
results; this means that users do not have to fine-tune the
threshold to get good results from EXPLANIFLOAT.

To concretize these results, we examine four specific
benchmarks where EXPLANIFLOAT either performs well or
suffers from false positives and negatives. On the “Asymptote
C” benchmark,

x

x+ 1
↓ x+ 1

x↓ 1
for x = ↓1.3337344672928248 · 1072,

EXPLANIFLOAT has perfect accuracy and recall: it detects a
cancellation issue for 117 of 256 inputs, and in exactly those
117 cases the floating-point error surpasses 16 ULPs.

In the “HairBSDF, Mp, Lower” benchmark drawn from a
computer graphics textbook [19],

exp

((((
cicO

v
↓ sisO

v

)
↓ 1

v

)
+ 0.6931

)
+ log

(
1

2v

))
,

EXPLANIFLOAT’s handling of overflow and underflow is
essential. For specific, unusual inputs, the subexpression
si · sO underflows, but dividing by v brings the result back
into range. However, the resulting value (si · sO)/v is then
added to (ci · cO)/v, a much larger number, so whether
or not (si · sO)/v underflows has minimal impact on the
overall expression’s floating-point error, and EXPLANIFLOAT
suppresses the underflow explanation and avoids generating a
false positive. Across all inputs to this benchmark, underflow
suppression reduces the number of false positives from 112 to
1.

Meanwhile, “Expression, p6”, (a+ (b+ (c+ d))) 2, has
a false negative for specific a input a ↑ ↓13.58 . . ., b ↑
↓2.32 . . ., c ↑ 3.08 . . ., d ↑ 12.53 . . ., the final addition
(between a and b+ (c+ d)) has a condition number of about
45. This causes false negatives at higher condition number
thresholds like 64, though not at lower thresholds like 32.
68 other inputs to this benchmark have similarly-middling
condition numbers.

EXPLANIFLOAT also sometimes generates false positives.
For example, consider the “Spherical law of cosines” bench-
mark,

cos↑1 (sinϖ1 · sinϖ2 + (cosϖ1 · cosϖ2) · cos (ϱ1 ↓ ϱ2))R

For inputs where ϱ1 is large but ϱ2 is very small, EXPLANI-
FLOAT generates a false positive error for cos(ϱ1 ↓ ϱ2). Since
ϱ1 is large, the condition number for cos is large, but ϱ1 ↓ ϱ2

introduces such a tiny relative error (roughly 2 · 10↑182), that
even amplifying it by the very large condition number doesn’t
cause much end-to-end error. Addressing this cause of false
positives would be an interesting direction for future work.



VII. RQ2: COMPARISON TO ORACLE METHOD

EXPLANIFLOAT’s exact precision and recall are less in-
dicative than how it compares to the oracle method. We
thus compare EXPLANIFLOAT to a double-double oracle-
method debugger inspired by EFTSanitizer [4]. This variant of
EXPLANIFLOAT evaluates the program using double-precision
shadow memory, just like EXPLANIFLOAT, but detects errors
by comparing the standard floating-point evaluation to the
oracle value.

Figure 1 plots this oracle method baseline in green, for a
range of ULP error thresholds. The oracle baseline has a much
worse precision and recall, topping out at a precision of 56.5%
and a recall of 65.4%. At no tested threshold value is the
oracle-method debugger competitive with EXPLANIFLOAT.

A closer look at the benchmarks shows that the issue is as
expected: the oracle suffers from rounding error that masks
or hides the rounding error in the floating-point evaluation.
Consider the “2sqrt” benchmark, drawn from a numerical
method textbook [16],

↔
x+ 1↓

↔
x, for x = 10100.

Here the oracle-method baseline computes the same result for
both

↔
x+ 1 and

↔
x, resulting in a final oracle value of 0.

The floating-point computation also computes 0, meaning no
error is raised; across all inputs to this benchmark, the oracle-
method baseline has a recall of 11.3%. EXPLANIFLOAT, on
the other hand, detects a very large condition number in this
case and achieves a perfect 100.0% recall across all inputs to
this benchmark.

The oracle baseline also handles overflow and underflow
poorly. Consider the benchmark “cos2” from the same source,

(1↓ cos(x))/(x→ x), for x = 10200

The double-double oracle warns about overflow in x → x.
However, both the correct and computed floating-point results
are 0, meaning this input actually has no error. EXPLANIFLOAT
correctly handles this case by computing the logarithm of the
output value as outside the representable range. Since the value
is never brought back into range, it does not produce a warning.

A. RQ3: Equal performance to arbitrary precision
Finally, we aim to show that using double-double values

provides enough precision for accurate condition number
computation. We thus modify EXPLANIFLOAT to use Rival’s
correctly-rounded arbitrary-precision baseline for all intermedi-
ate values, but still produce errors using condition numbers and
overflow renormalization. Because the intermediate values are
computed exactly, this variation allows us to evaluate whether
the use of double-double shadow values introduces additional
false positives and negatives.

Figure 1 plots this baseline in red. On average, this baseline
achieves a precision of 83.2% and a recall of 98.1%. These are
only slightly higher (by 3.2% and 2.0%) than EXPLANIFLOAT,
showing that the precision of EXPLANIFLOAT’s shadow values
do not significantly affect its results. Despite the largely-
similar predictive accuracy, DSL is significantly faster than

the alternative baseline, taking 3.7 seconds in EXPLANIFLOAT
versus 15.7 seconds with the alternative baseline, a speedup
of 4.24→. Since EXPLANIFLOAT was not engineered for
maximum performance, we take this speedup number with a
grain of salt, but we do expect EXPLANIFLOAT’s performance
advantage to be substantial, since it avoids allocation and
arbitrary-precision computations, and to grow even larger for
larger programs.

Comparing EXPLANIFLOAT to the perfect-oracle baseline,
we find that EXPLANIFLOAT’s shadow values introduce three
core limitations: cancellation in large sums; residual underflow;
and aliasing between errors in transcendental functions. Can-
cellation in large sums refers to cases where three or more
values are summed together and multiple cancellations occur,
like in the “exp2” benchmark,

(ex ↓ 2) + e
↑x

For x close to zero, such as x = 10↑200, the exponential terms
in this expression implicitly act like the sum 1 ± x + x

2
/2,

meaning that this expression effectively adds seven terms, of
which 5 (1, 1, and ↓2; x and ↓x) cancel. DSL is not effective
on this input because double-double evaluation of ex retains
only the 1 and ±x term. In other words, DSL only stores the
values that cancel, so its final evaluation of the expression is 0.
While EXPLANIFLOAT does detect a high condition number,
it is not able to determine whether underflow occurs, which
causes false positives.

Residual underflow refers to cases where the residual term in
a double-double value cannot be represented in floating-point,
but the primary term can. For example, consider the the “sintan”
benchmark:

(x↓ sin(x))/(x↓ tan(x))

For x very close to zero, such as x = 10↑200, sin(x) and tan(x)
evaluate to x with a residual value of approximately 10↑600.
However, this residual value in fact underflows, meaning that
in effect EXPLANIFLOAT performs only a double-precision
evaluation of the benchmark. Here, EXPLANIFLOAT does
correctly warn due to the high condition number, but does
not also produce a renormalization error because it cannot
compute the exponent of the subtraction. This issue was also
noted in EFTSanitizer [4], but the issue was rare in that paper’s
evaluation on mostly-linear-algebra workloads. In our larger
and more diverse benchmark suite, it does cause false negatives.

Aliasing refers to cases where one operation’s rounding error
is cancelled by another operation’s rounding error. For example,
consider the “logs” benchmark:

((n+ 1) log(n+ 1)↓ n log n) + 1

For large n, like n = 10200, log(n + 1) and log(n) are very
close and have nearly-identical rounding error. In this case,
(n + 1) log(n + 1) and n log n have the same shadow value
and so their difference evaluates to exactly 0. EXPLANIFLOAT
raises a condition number error, but the later addition to 1
means that the error is (incorrectly) suppressed, leading to
a false negative. In reality, the error is approximately log n,



much larger than 1. EFTSanitizer likely did not have this issue
due to its limited support for transcendental functions.

All that said, EXPLANIFLOAT’s precision and recall are
very similar to the arbitrary-precision baseline, showing that
the performance benefits of EXPLANIFLOAT’s shadow values
come with very few downsides in precision or recall.

VIII. CONCLUSION

EXPLANIFLOAT combines recent advances in numeric
debugging and static analysis tools to create an accurate yet
performant numerical debugger. It uses condition numbers
instead of oracles to detect rounding error and uses a novel
oracle for detecting over- and underflows. The result has
exceptional precision (80.0%) and recall (96.1%), beating both
double-double oracle and arbitrary-precision approaches.
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