
Rigorous Error Analysis for
Logarithmic Number Systems

Thanh Son Nguyen
University of Utah

thahnson@cs.utah.edu

Alexey Solovyev
University of Utah

solovyev.alexey@gmail.com

Mark G. Arnold
Lehigh University
maab@lehigh.edu

Ganesh Gopalakrishnan
University of Utah

ganesh@cs.utah.edu

Abstract—Theorem proving demonstrates promising potential

for verifying problems beyond the capabilities of SMT-solver-

based verification tools. We explore and showcase the capability

of Lean, an increasingly popular theorem-proving tool, in deriv-

ing the error bounds of table-based Logarithmic Number Systems

(LNS). LNS reduces the number of bits needed to represent a

high dynamic range of real numbers with finite precision and

efficiently performs multiplication and division. However, in LNS,

addition and subtraction become non-linear functions that must

be approximated—typically using precomputed look-up tables.

We provide the first rigorous analysis of LNS that covers first-

order Taylor approximation, cotransformation techniques in-

spired by European Logarithmic Microprocessor, and the errors

introduced by fixed-point arithmetic involved in LNS implemen-

tations. By analyzing all error sources and deriving symbolic

error bounds for each, then accumulating these to obtain the

final error bound, we prove the correctness of these bounds using

Lean and its Mathlib library. We empirically validate our analysis

using an exhaustive Python implementation, demonstrating that

our analytical interpolation bounds are tight, and our analytical

cotransformation bounds overestimate between one and two bits.

Index Terms—Computer Arithmetic, Theorem Proving, Loga-

rithmic Number Systems, Error Analysis

I. INTRODUCTION

Spurred by the ever-growing need to reduce the burden
of data movement while maintaining sufficient real-number
representation precision, we are witnessing heightened interest
in numerics: number system representations, their formal
properties and verification methods. Mainstream verification
techniques, primarily based on SMT-solvers, have shown lim-
itations when confronted with complex mathematical problems
involving non-linearity and multiple layers of quantifiers.
Ironically, many of these challenges can be overcome by
humans leveraging mathematical knowledge. Theorem prov-
ing emerges as a powerful extension to SMT-solver-based
verification tools, enabling the application of mathematical
theorems to enhance problem-solving capabilities. While the-
orem proving significantly reduces the tedium and errors
associated with traditional human-led proof construction and
checking, its main drawback lies in the requirement for human
involvement. This research investigates the capabilities and
convenience of Lean 4 in proving rigorous error bounds

Supported in part by NSF Awards 2403379 and 2346394 and Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research
under award number DE-SC0024042

for the Logarithmic Number System (LNS) inspired by the
European Logarithm Microprocessor (ELM). This number
system requires approximation of non-linear functions to
perform addition and subtraction operations, making error
analysis significantly more challenging compared to Floating-
Point (FP). Successfully deriving rigorous error bounds for
the LNS using Lean 4, with a reasonable amount of human
intervention, serves as a compelling demonstration of theorem
proving’s power in tackling intricate mathematical problems.
This achievement not only showcases the potential of theorem
proving in elaborate mathematical analysis but also hints at
its broad applicability in verification across various fields,
pushing the boundaries of what can be formally verified in
computer arithmetic. Utilizing the Lean 4 theorem prover, this
research investigates rigorous bounds for the implementation
errors within the Logarithmic Number System (LNS) and
evaluates Lean 4’s efficacy for conducting rigorous formal
error analysis in numerical computing.

A. Introduction of LNS
With the increasing costs of data movement in today’s HPC

and ML applications [1] [2], there is significant pressure to
reduce the number of bits used to represent real numbers using
finite-precision representations. With fewer bits moved, mem-
ory bandwidth as well as cache memories are better utilized.
Also, given the sheer number of multiplications carried out by
these applications (e.g., when performing matrix and tensor
products), those number representations help reduce the cost
of multiplications, divisions, and roots. Logarithmic number
systems (LNS) possess both these advantages [3]. They store
only the logarithm of real numbers in finite-precision fixed-
point representations1. Furthermore, multiplications and divi-
sions turn into fixed-point addition and fixed-point subtraction
(respectively); and in the absence of overflows, introduce no
additional error. Addition and subtraction are a whole different
story, turning into calculations involving non-linear functions.
This requires good trade-offs between numerical accuracy and
computational speed. In more detail, methods are needed to
perform additions and subtractions using various lookup tables
whose overall cost must be minimized.2 However, despite
the availability of these correction methods, there are no

1In virtually all LNS implementations that are surveyed later.
2“Tableless methods” are also popular, approximating what table-based

methods provide, but are not studied in this work.

rigorous error analysis methods available that tightly bound
the worst-case error. Our work in this research closes this
gap by providing such a rigorous error bound. All existing
error estimation techniques that we know of perform error
estimations through empirical testing. It is well-known that
without tight error bounds, actual hardware/software designs
most likely will end up over-provisioning to accommodate for
these “excess errors” that never occur. The key contribution
of this research is the first such tight and rigorous bound
parameterized over Taylor interpolation and Coleman’s co-
transformation [4]. Specifically,

• We provide the first tight parametric error estimate formu-
lae in terms of parameters such as the machine-epsilon of
fixed-point numbers as well as look-up table sizes. Such
a parameterization can help precisely guide hardware and
software implementations.

• We formalize the error bound proof using the Lean 4
theorem prover and develop generic tactics and theorems
that can be reused in similar work. We release this code
in a repository https://github.com/soarlab/R

igorousErrorLNS and refer the interested reader to
specific Lean files for details of the proofs not covered
in this paper.

• We demonstrate through systematic testing using a
Python implementation of LNS that our estimates
are trustworthy and tight. This Python code is
available for reuse in other applications with
pip install of “xlns” followed by “import
xlnsconf.utah_tayco_ufunc”. The open-
source xlns package [5] allows fair comparison of our
technique against many others such as NVIDIA’s [6].

B. Comparison of LNS and IEEE Floating-Point

For those familiar with IEEE floating-point arithmetic [7],
an IEEE normal floating-point number is described by a triple
(s, e,m), where s → {↑1, 1} denotes the sign, e → Z is
the exponent and m → [1, 2) is the mantissa (also known as
the significand). The value of the real number represented by
this triple is s · m · 2e. Unlike floating-point, LNS does not
have the mantissa but allows rational exponent instead. Also,
while a subnormal IEEE floating-point number has m < 1 (in
which case its value is encoded by the value in the mantissa
weighted by the smallest normal exponent), LNS seldom has
the notion of subnormals: the entire representable number
scale is modeled in the same manner. Specifically, an LNS
number is described by a pair (s, e), where s → {↑1, 1}
denotes the sign and e → Q is the exponent. This pair
represents the real value s · 2e. The exponent part of LNS
is represented by a signed fixed-point number. LNS often
represents zero with an extra bit or, alternatively, by using
the most negative possible value of e as a special marker.

C. Rounding Modes for LNS

Two consecutive LNS fixed-point representations define
an interval of real-numbered values, within which any real
number can be rounded a variety of ways, such as up, down,

faithfully (either up or down at implementor’s discression),
stochastic [8] (like faithful but unbiasedly random), to the
nearest representable value (difficult with LNS), or Better
Than Floating Point (BTFP; like nearest except faithful in
difficult cases) [9]. The distance between two consecutive LNS
fixed-point words (or half for rounding to nearest) establishes
the machine-epsilon for LNS, denoted by ω, which determines
the relative error bound for real values, 2ω ↑ 1. It is worth
noting that some hardware designs may employ guard bits to
improve computational accuracy [10]. In such cases, a series of
arithmetic operations may be performed in extended precision
before rounding back to the original precision. Because our
work focuses on deriving the error bound for a single oper-
ation, in the remainder of this paper, we define the machine
epsilon, ω, to be that associated with the fixed-point words
(including any guard bits if used). This paper will assume
faithful rounding, in which ω is the same as the weight of the
least-significant bit of the LNS fixed-point representation.

D. Rigorous Problem Statement
We now introduce some basic notions underlying LNS that

allow us to define the problem a bit more tightly. First, we
describe how the four basic operations: addition, subtraction,
multiplication and division are performed in LNS (operations
such as square-root are not described, for brevity). In all
four operations, the sign and magnitude of the result can be
computed separately. Because computing the sign is straight-
forward, we assume that all the operands are positive. Let
2p, 2q be real numbers which can be exactly represented in
LNS by the two fixed-point numbers p, q, then multiplication
and division of 2p and 2q can be performed efficiently and
exactly in LNS by fixed-point addition and subtraction:

log2(2
p ↓ 2q) = log2 2

p+q = p+ q

log2(2
p
/2q) = log2 2

p→q = p↑ q.

However, the main drawback is that addition and subtraction
are not directly realizable in LNS. Without loss of generality,
let p ↔ q and let us use x ↗ 0 to denote q↑ p (this allows us
to write 2x, knowing that it will be a fraction in (0, 1]). Then,

log2(2
p + 2q) = log2(2

p(1 + 2x)) = p+ log2(1 + 2x)

log2(2
p ↑ 2q) = log2(2

p(1↑ 2x)) = p+ log2(1↑ 2x).

Now let us introduce two non-linear functions !+ and !→

(plotted in Figure 1, and also called Gaussian Logarithms [11])
defined as:

!+(x) = log2(1 + 2x) and !→(x) = log2(1↑ 2x).

In Section III, we will show that !+ and !→ will be ap-
proximated via ROM tables look-up and interpolation. Thus,
to compute log2(2

p + 2q), we can simply perform a fixed-
point addition of p to the result of !+(x) (likewise for
log2(2

p↑2q)). In this work, we focus on deriving the bounds
for the absolute-errors of the approximations of !+ and !→,
for convenience, we call them error bounds.

Fig. 1. Plots of Gaussian Logs, !+(x) and !→(x).

E. Rigorous error bound derivation
We derived the error bound of the !+/!→ approximation

for first-order Taylor approximation and the cotransforma-
tion technique proposed in European Logarithm Microproces-
sor [4]. To derive the rigorous error bounds, firstly, we analyze
all error sources of each technique, which include the errors of
the mathematical nature of the approximation method and the
errors of finite-precision hardware implementation. Then, we
mathematically derive the error bound of each error source by
symbolic function analysis, and finally accumulate them using
the triangle inequality for absolute values. Details of all error
sources considered in our analysis and error bounds derivations
for each source are presented in Sections III and IV.

F. Lean Proof
We construct a Lean 4 proof for the derived error bounds

that leverages calculus theorems and tactics available in the
Mathlib library, providing a solid foundation for our formal
verification efforts. We also developed a set of lemmas and
tactics which efficiently compute the symbolic derivatives of
input functions and prove their monotonicity or antitonicity
over specified domains, which not only facilitate the current
proof but also can be reused in future verifications in similar
domains. The resulting Lean proof, comprising approximately
2000 lines of code, is comparable in length to a fully detailed
manually written proof.

II. RELATED WORK

Proposed in the early 1970s, LNS is still a topic of current
active interest. A bibliography [5] lists over 600 historic
citations relevant to LNS research. The only previous attempt
with LNS automated theorem proving was limited to direct
lookup [12]. To date, no previous research has employed
formal theorem proving to derive rigorous error bounds for
LNS interpolation or cotransformation—a gap that this work
addresses. We provide a brief, non-exhaustive survey of related
work on LNS, and the current status of error analysis.

a) European Logarithm Microprocessor [13]: This first
complete hardware realization of an LNS microprocessor uses
base-2 logarithm, error-correction algorithms for the approxi-
mation of !±(x), and also the cotransformation technique [14]
for !→ when x ↘ 0. These authors evaluate area and delay,
showing area equivalent to that of floating-point implementa-
tions with better delay. Although the authors compare the error

of LNS with that of floating-point through empirical testing,
there is no rigorous error analysis for LNS.

b) Convolution Neural Networks (CNN) Using Log-
arithmic Data Representations [15]: This approach, with
logarithm bases 2 as well as

≃
2, proposes the first CNN

implemented in low-precision LNS and shows that LNS is
superior to fixed-point arithmetic because of the non-uniform
distribution of weights and activations. This hardware, as far
as we know, has not been subject to rigorous analysis.

c) LogNet [16]: This approach, again with logarithm
bases 2 and

≃
2, focuses on improving the learning algorithm

of CNNs using LNS, demonstrating the superiority of LNS
over fixed-point schemes in terms of hardware costs, but
rigorous error analysis has not been attempted.

d) LNS-MADAM [6]: An LNS-based implementation
of weight updates in neural network training was recently
proposed by NVIDIA where a hardware implementation is
proposed. In this scheme, the logarithm base used is 21/k.
The highlight of their work is proposing a training algorithm
for Deep Neural Networks (DNN) in low-precision LNS with
an approximation of addition technique and the Multiplicative
Weight Update (MWU) algorithm to replace Stochastic Gra-
dient Descent. The authors propose their own LNS’s design
and hardware implementation, which is based on Mitchell’s
method and stochastic rounding [8]. The paper also performs
symbolic error analysis to show that Multiplicative Weight
Update is superior to Stochastic Gradient Descent in terms
of minimizing the quantization error bound, assuming ideal
LNS. However, the error bound does not provide insight to
the accuracy of their LNS’s design and implementation.

e) Dynamic LNS [17]: An FPGA-based implementation
of dynamic LNS was studied for supporting large language
models (LLM). This provides sufficient quantization for num-
bers closer to zero while also handling long-tail distribution of
LLM outliers. Their work does not provide any error analysis.

III. RIGOROUS ERROR BOUND VIA FIRST-ORDER TAYLOR
APPROXIMATION

a) Notation: The computation of LNS addition and sub-
traction involves fixed-point addition/subtraction and interpo-
lations with tables that discretize the !+ and !→ functions,
suitably limiting the number of precomputed and stored table
values. Let ! generically stand for either !+ or !→.

When it is necessary to make it clear that we are indexing
tables, we will use the notation !T . We will sample ! at a
spacing of ” and store these values in !T . Now, given an
arbitrary x, define i as

⌈
x

”

⌉
” and r as i ↑ x. Recall that x

is negative. Thus, i is the discrete index after x and we have
x ↗ i ↗ 0, 0 ↗ r < ”, and x = i ↑ r. It must be clear that
!T (i) = !(i) and !T (x) (viewed as a tabular function) is
undefined at other x than at these i. For x not in !T , we can
apply interpolation techniques [9], [13], [18].

b) First-order Taylor approximation: We can now define
an approximation to !(x) defined with the help of two tables
!T and !

→

T that are defined at the i points:

!̂T (x) = !(i)↑ r!↑(i) = !T (i)↑ r!↑
T (i) (1)

Equation 1 shows how to calculate !+ and !→ using the first-
order Taylor approximation, the error of which is illustrated in
Figure 2. However, because LNS is implemented in hardware

Fig. 2. The error of the first-order Taylor approximation of !+(x).

using fixed-point numbers, there are two more sources of error
due to the fact that the look-up tables’ values of !(i) and !↑(i)
must be rounded to the LNS fixed-point representation, and
the multiplication r!↑(i) is performed in fixed-point arithmetic
(with rounding). Taking into account the implementation using
fixed-point, we refine the first-order Taylor approximation
presented in Equation 1 as:

!̃T (x) = !(i)↑ rnd(r!↑(i)) (2)

where ! and !↑ are the fixed-point rounded look-up tables for
! and !↑.

We define the notations for the three sources of error:
• Interp-err: the mathematical error of interpolating !+ and
!→ via first-order Taylor approximation, which is |!(x)↑
!̂T (x)|.

• Tab-err: the rounding error of the precomputed values in
the look-up tables, which are |!(i)↑!(i)| and |!↑(i)↑
!↑(i)|.

• Mul-err: the error of fixed-point arithmetic multiplication,
which is |r!↑(i)↑ rnd(r!↑(i))|.

The error of interpolating ! using first-order Taylor ap-
proximation is |!(x) ↑ !̃T (x)|, where !̃T (x) is defined in
Equation 2. The rigorous error bound is derived as follows.

c) Error bound of Interp-err derivation: Lemma 1 and
Lemma 2 derive the error bound of the Interp-err for !+ and
!→, without considering Tab-err and Mul-err. Intuitively, from
the shape of Interp-err of !+ (illustrated in Figure 2), we
observe that:

• For each ”-segment, the error is greater when x is further
away from 0.

• The further a ”-segment is away from 0, the smaller its
supremum error is.

Lemma 1 formally proves these observations by analyzing the
error function |!+(x)↑!̂+

T (x)|, concluding that the supremum
of the error over the whole domain x < 0 is reached as
x ↘ ↑”. This supremum is denoted by E

+
!(0). Similarly,

Lemma 2 proves that the error bound of !→ is achieved as
x ↘ ↑1↑”, denoted by E

→
!(↑1).

d) Total error bound derivation: The error bound of Tab-
err and Mul-err is simply a constant ω, which is the maximum
absolute rounding error of the fixed-point representation of
LNS. The total error bound is derived in Theorem 1 by
accumulating (using the triangle inequality for absolute values)
the error bound of Interp-err with that of Tab-err and Mul-err.

Lemma 1 derives the error bound of Interp-err of !+ in the
range (↑⇐, 0]. Recall that the Interp-err is |!+(x)↑ !̂+

T (x)|
and E!(i) = !(i↑”)↑ !(i) +”!↑(i).

Lemma 1. For all x → (↑⇐, 0],

|!+(x)↑ !̂+
T (x)| ↗ E

+
!(0) =

ln 2

8
”2 +O(”4).

Proof. Let E(i, r) = !+(x)↑ !̂+
T (x). From the definition of

!̂+
T (x) in Equation 1:

E(i, r) = !+(i↑ r)↑ (!+(i)↑ r(!+)↑(i)).

A novel approach which has not been used in LNS analysis
before is to note that despite the definition: i =

⌈
x

”

⌉
”, it is

safe to consider the domain of i to be R↓0 instead of ”Z↓0

when deriving error bound, because:

max
i↔!Z↑0,0↓r<!

|E(i, r)| ↗ max
i↔R↑0,0↓r<!

|E(i, r)|.

This allows to prove the lemma using calculus techniques
alone, without induction otherwise needed for a discrete i.

The lemma is proved by:
1) Proving that ⇒i ↗ 0, 0 ↗ r < ” : E(i, r) ↔ 0, so

E(i, r) = |E(i, r)| = |!+(x)↑ !̂+
T (x)|.

2) Proving that both partial derivatives of E w.r.t r and i
are non-negative, so E approaches its supremum when
i = 0 and r ↘ ”. Formally, we have to prove that
⇒i ↗ 0, 0 ↗ r < ” : εE

εr (i, 0) ↔ 0 and εE
εi (i, 0) ↔ 0, so

maxi↔R↑0,0↓r<! E(i, r) ↗ E(0,”) = E
+
!(0).

Take the first and second derivatives of E(i, r) w.r.t r:

εE

εr
(i, r) =

2i

2i + 1
↑ 2i→r

2i→r + 1
,

ε
2
E

εr2
(i, r) =

2i→r ln 2

(2i→r + 1)2
.

From ε2E
εr2 (i, r) > 0 and εE

εr (i, 0) = 0, we conclude that ⇒i ↗
0, 0 ↗ r < ” : εE

εr (i, r) ↔ 0.
Then, because E(i, 0) = 0, we conclude that ⇒i ↗ 0, 0 ↗ r <

” : E(i, r) ↔ 0.
We complete the proof by proving that ⇒i ↗ 0, 0 ↗ r < ” :

εE
εi (i, r) ↔ 0. Let a = r ln 2, then

εE

εi
(i, r) =

2i

(2i + 1)2(2i→r + 1)

(
2if(a) + g(a)

)

with f(a) = ae
→a + e

→a ↑ 1 and g(a) = e
→a + a↑ 1.

Since 2i

(2i+1)2(2i↓r+1) > 0, the sign of εE
εi (i, r) is the same

as that of N(i) = 2if(a) + g(a).
Because a ↔ 0, from f(0) = 0 and f

↑(a) = ↑ae
→a ↗ 0,

we conclude that f(a) ↗ 0, so

N
↑(i) = 2i(ln 2)f(a) ↗ 0.

Let h(a) = N(0) = (a + 2)e→a + a ↑ 2, then h(0) = 0 and
h
↑(a) = ↑f(a) ↔ 0, we conclude that: h(a) = N(0) ↔ 0.
From N(0) ↔ 0 and N

↑(i) ↗ 0, we conclude that for all
i ↗ 0, N(i) ↔ N(0) ↔ 0. Hence, ⇒i ↗ 0, 0 ↗ r < ”:
εE
εi (i, r) ↔ 0.

Lean 4 proof: Lemma 1 corresponds to the Ep_bound
lemma in the file BasicErrTaylor.lean. The proof
primarily employs the following techniques:

1) Applying Mathlib’s strictMonoOn_of_deriv_pos
theorem to establish the strict monotonicity of E.

2) Using the custom get_deriv tactic to compute the
derivatives.

3) Using the positivity tactic to establish the positivity
of the expressions.

4) Utilizing the fun_prop tactic to verify the continuity
and differentiability of the functions.

Lemma 2 derives the error bound of Interp-err of !→ in
the range (↑⇐,↑1]. Note that for the range (↑1, 0), !→ is
calculated by the cotransformation technique, the error bound
of which is derived in Section IV.

Lemma 2. Suppose that 1
! → N (e.g., ” = 2→k for some

natural number k). Then for all x → (↑⇐,↑1],

|!→(x)↑ !̂→
T (x)| ↗ ↑E

→
!(↑1) = (ln 2)”2 +O(”3).

Proof. Define E(i, r) = ↑
(
!→(i↑r)↑(!→(i)↑r(!→)↑(i))

)
.

Using the same proof techniques as in the proof of Lemma 1,
we can show that for all i < 0 and 0 ↗ r < ”, partial
derivatives of E w.r.t. to i and r are non-negative. It follows
that

|E(i, r)| = E(i, r) ↗ E(i↗,”)

for all i ↗ i↗ < 0 and 0 ↗ r < ”.
To prove the lemma, we need to take i↗ corresponding to

the largest value of x ↗ ↑1. Since 1
! → N, we obtain i↗ =⌈→1

!

⌉
” = ↑1 and the error bound is E(↑1,”) = ↑E

→
!(↑1).

Lean 4 Proof: Lemma 2 corresponds to the Em_bound
lemma in the file BasicErrTaylor.lean and its formal
proof is similar to the formal proof of Lemma 1.

Theorem 1 derives the total error bound of computing !+

and !→ using first-order Taylor approximation.

Theorem 1. Let ω be the machine-epsilon of the fixed-point
representation of the LNS under consideration. Let E

+
M =

E
+
!(0), and E

→
M = ↑E

→
!(↑1). Then

|!(x)↑ !̃T (x)| < EM + (2 +”)ω.

Proof. We have the following inequality

|!(x)↑ !̃T (x)| ↗ |!(x)↑ !̂T (x)|+ |!̂T (x)↑ !̃T (x)|
↗ EM + |!̂T (x)↑ !̃T (x)|.

From Equation 1 and Equation 2, !̂T (x)↑ !̃T (x) can be re-
written as a1 + a2 + a3, where

a1 = !(i)↑ !(i)

a2 = r(!↑(i)↑ !↑(i))

a3 = r!↑(i)↑ rnd(r!↑(i)).

Apply the triangle inequality for absolute values again:

|!̂T (x)↑ !̃T (x)| ↗ |a1|+ |a2|+ |a3|.

From |a1|, |a3|, |!↑(i)↑!↑(i)| ↗ ω (as they are errors of fixed-
point rounding) and 0 ↗ r < ”:

|!̂T (x)↑ !̃T (x)| < (2 +”)ω.

Hence, the final error bound of first-order Taylor approxima-
tion is

|!(x)↑ !̃T (x)| < EM + (2 +”)ω.

Lean 4 proof: The proof of Theorem 1 is stored in the file
ErrTaylor.lean. The proof involves the following steps:

1) Defining the error bound of fixed-point rounding as an
axiom (defined in the structure FixedPoint):

hrnd : ⇒x, |x↑ rnd(x)| ↗ ϑ.

2) Using the abs_add theorem to prove the total rounding
error.

IV. RIGOROUS ERROR BOUND VIA COTRANSFORMATION
TECHNIQUE

One of the more difficult cases of error control in LNS
is when computing !→(x) for values of x close to 0. The
trouble arises because of the nature of this function: the nth
derivative of !→(x) for all n tends to ↑⇐ as x approaches
0, i.e. !→(x) has a singularity at 0 (see Figure 1). To avoid
computing !→(x) in this range, addition/subtraction can be
split across different intervals and computed by the so-called
cotransformation techniques [14], [19]–[22]. Cotransformation
has the advantage of using less memory than other accu-
rate alternatives [9], [18], [23]. A cotransformation technique
is proposed by European Logarithmic Microprocessor [14],
which suggests 3-way interval split defined by design-specific
constants ”a and ”b. The general idea is to maintain three
extra look-up tables Ta, Tb and Tc of !→ inside the range
(↑1, 0), then transform !→(x) such that it can be computed
by indexing those look-up tables together with interpolating
!→ outside of the range (↑1, 0).

Let ”a and ”b be two positive fixed-point numbers such
that ”a is very close to 0, ”b is a multiple of ”a and 1

!b
→ N:

• The table Ta covers all fixed-point numbers in a very
small range [↑”a, 0),

• The table Tb covers all multiples of ”a in the range
[↑”b,↑”a).

• The table Tc covers all multiples of ”b in the range x →
(↑1,↑”b).

Let x → (↑1, 0). Compute !→(x) as follows:
Case 1: x → [↑”a, 0). !→(x) is indexed directly from table
Ta.
Case 2: x → [↑”b,↑”a).

Let rb =

(⌈
x

”a

⌉
↑ 1

)
”a (i.e. rb is the index value of

Tb which is smaller than and closest to x) and ra = rb ↑ x.
Let k = x↑!→(rb) +!→(ra). It can be shown that k ↗ ↑1
(Lemma 4) and

!→(x) = !→(rb) + !→(k). (3)

!→(ra) and !→(rb) are indexed directly from tables Ta (since
↑”a ↗ ra < 0) and Tb respectively, and !→(k) is computed
with first-order Taylor approximation for k → (↑⇐,↑1].
Case 3: x → (↑1,↑”b).

Let rc =
(⌈

x

”b

⌉
↑ 1

)
”b, (i.e. rc is the index value of Tc

which is smaller than and closest to x)
and rab = rc ↑ x,

and rb =

(⌈
rab

”a

⌉
↑ 1

)
”a, (i.e. rb is the index value of

Tb which is smaller than and closest to rab)
and ra = rb ↑ rab,
and k1 = rab ↑ !→(rb) + !→(ra),
and k2 = x↑ !→(rc) + !→(rab) = x↑ !→(rc) + !→(rb) +
!→(k1).
Then k1 ↗ ↑1, 3

k2 ↗ ↑1 and

!→(x) = !→(rc) + !→(k2) (4)

where !→(ra), !→(rb), and !→(rc) are indexed directly from
tables Ta, Tb, and Tc respectively, and !→(k1) and !→(k2)
are computed with first-order Taylor approximation.

Now we derive and prove the error bound of the co-
transformation technique described above.

Lemma 3 derives the error bound of computing !→(x) given
the error bound of x (assuming that computing !→(x) is error-
free).

Lemma 3. For all x, x↗ ↗ ↑1 and |x↑ x
↗| ↗ m

|!→(x)↑ !→(x↗)| ↗ !→(↑1↑m)↑ !→(↑1).

Proof. Note that both the first and second derivatives of !→

are always negative:

⇒x, (!→)↑(x) =
↑2x

1↑ 2x
< 0 and (!→)↑↑(x) =

↑2x ln 2

(1↑ 2x)2
< 0.

Without loss of generality, suppose that x ↔ x
↗, then |!→(x)↑

!→(x↗)| = !→(x↗)↑ !→(x).
Let t = x ↑ x

↗ and F (x, t) = !→(x ↑ t) ↑ !→(x), then
0 ↗ t ↗ m and

F (x, t) = |!→(x)↑ !→(x↗)| ↗ max
0↓t↓m,x↓→1

F (x, t).

We will prove that max0↓t↓m,x↓→1 F (x, t) = F (↑1,m),
which is true if both partial derivatives of F are non-negative.
Since x ↔ x↑ t and (!→)↑↑(x) < 0:

εF

εx
(x, t) = (!→)↑(x↑ t)↑ (!→)↑(x) ↔ 0.

3If rab → [↑”a, 0), it may happen that k1 > ↑1. But rab ↓ ↑”a

implies that the computations from Case 2 can be applied to this case. More
specifically, replace rb and ra (in Case 2) with rc and rab (from Case 3)
and follow the computation steps of Case 2: !→(rc) is indexed from Tc and
!→(rab) is indexed from Ta since rab → [↑”a, 0).

Since (!→)↑(x) < 0:

εF

εt
(x, t) = ↑(!→)↑(x↑ t) ↔ 0

Therefore, max0↓t↓m,x↓→1 F (x, t) = F (↑1,m).

Lemma 4 establishes a bound of k (and also k1, k2).

Lemma 4. Suppose that x ↗ ↑d < 0. Let i =
(⌈x

d

⌉
↑ 1

)
d

and r = i↑ x. Then

x↑ !→(i) + !→(r) ↗ ↑d↑ !+(↑d) ↗ ↑1↑ d

2
.

Proof. Let f(x) = x ↑ !→(x). We have x = i ↑ r. Rewrite
the left hand side of the goal as follows:

i↑ r ↑ !→(i) + !→(r) = f(i)↑ f(r).

We can prove that f(x) is strictly increasing (for x < 0) by
taking its derivative and showing that it is positive. It is easy
to prove that i ↗ ↑2d (since x ↗ ↑d) and ↑d ↗ r. Hence

f(i)↑f(r) ↗ f(↑2d)↑f(↑d) = ↑d↑
(
!→(↑2d)↑!→(↑d)

)
.

It is not difficult to show that !→(↑2d)↑!→(↑d) = !+(↑d).
The inequality ↑d ↑ !+(↑d) ↗ ↑1 ↑ d

2 can be shown by
moving everything to the right hand side and showing that the
derivative of the right hand side is non-negative.

Lean 4 Proofs: Lemma 3 and Lemma 4 correspond
to lemmas cotrans_lemma and k_bound in the file
BasicCotrans.lean. All proof steps use similar proof-
construction techniques as used in previous lemmas and the-
orems.

Theorem 2 performs step-by-step error bound derivation for
each of the three cases of the cotransformation technique’s
computation. The total error bound is the maximum of three
error bounds.

Theorem 2. Let ω be the machine-epsilon of the fixed-point
representation of the LNS under consideration and E”↓ be
the error bound of interpolating of !→ in the range (↑⇐, 1].
Assume also that ”a ↔ 4ω and ”b ↔ 8ω + 2E”↓ . The error
bound of computing !→(x) when x → (↑1, 0) using the co-
transformation technique is:

!→(↑1↑ Ek2)↑ !→(↑1) + E”↓ + ω

where

Ek2 = !→(↑1↑ 2ω)↑ !→(↑1) + E”↓ + 2ω.

Proof. Case 1: x → [↑”a, 0). !→(x) is indexed directly from
Ta, so the error bound is ω.
Case 2: x → [↑”b,↑”a). rb is error-free because it is an
integer multiple of a fixed-point number ”a. ra = rb ↑ x

is error-free as a difference of two fixed-point numbers. We
derive the error bound of computing k, !→(k), and !→(x).
Let k̃ and !̃→ be the results of the computations of k and !→

with fixed-point rounding and interpolation errors. From the
formula k = x ↑ !→(rb) + !→(ra), the error of computing
k consists of the two fixed-point rounding errors of !→(ra)

and !→(rb), so its error bound is 2ω, (i.e. |k ↑ k̃| ↗ 2ω).
From the error bound of computing k and Lemma 3, we get
|!→(k)↑ !→(k̃)| ↗ !→(↑1↑ 2ω)↑ !→(↑1). Next, because
!̃→(k̃) is computed by interpolation, |!→(k̃)↑!̃→(k̃)| ↗ E”↓ ,
we derive the error bound of computing !→(k) :

|!→(k)↑ !̃→(k̃)| ↗ |!→(k)↑ !→(k̃)|+ |!→(k̃)↑ !̃→(k̃)|
↗ !→(↑1↑ 2ω)↑ !→(↑1) + E”↓ .

We also need to show that k̃ ↗ ↑1 (because the interpolation
error E”↓ is valid in (↑⇐,↑1] only). Using the bound from
Lemma 4 with d = ”a and the error bound of k̃, we get that
”a ↔ 4ω implies k̃ ↗ ↑1.

Finally, from Equation 3, we accumulate the error bound of
computing !→(k) with the fixed-point rounding error bound
of !→(rb), which is ω, to get the error bound of computing
!→(x) in Case 2:

!→(↑1↑ 2ω)↑ !→(↑1) + E”↓ + ω.

Case 3: x → (↑1,↑”b). Similar to Case 2, all the terms rc,
rab, rb and ra are error-free. We derive the error bound of
computing k1, !→(k1), k2, !→(k2), and finally !→(x). Let
k̃1, k̃2 and !̃→ be the actual results of computation of k1, k2
and !→. Because of the similarity in the formula of k1 and that
of k in Case 2, the error bound of computing k1 and !→(k1) is
the same as that of computing k and !→(k) in Case 2, which
are 2ω and !→(↑1↑2ω)↑!→(↑1)+E”↓ . From the formula
k2 = x + !→(rb) + !→(k1) ↑ !→(rc), we derive the error
bound of computing k2 by accumulating the error bound of
computing !→(k1) with the fixed-point rounding error bounds
of !→(rb) and !→(rc) (both are ω). Let Ek2 be the error bound
of computing k2, then

Ek2 = !→(↑1↑ 2ω)↑ !→(↑1) + E”↓ + 2ω.

Similar to how we derive the error bound of computing
!→(k1), the error bound of computing !→(k2) is:

|!→(k2)↑ !̃→(k̃2)| ↗ !→(↑1↑ Ek2)↑ !→(↑1) + E”↓ .

We can also show that ”b ↔ 8ω + 2E”↓ implies k̃2 ↗ ↑1
(the proof is similar to the corresponding inequality for k̃ in
Case 2). Finally, from Equation 4, we accumulate the error
bound of computing !→(k2) with the fixed-point rounding
error bound of !→(rc), which is ω, to get the error bound of
computing !→(x) in Case 3:

!→(↑1↑ Ek2)↑ !→(↑1) + E”↓ + ω.

The error bound of computing !→(x) when x → (↑1, 0)
with cotransformation technique is the maximum of the error
bounds of Cases 1, 2, and 3, which is the error bound of
Case 3 (it follows from the fact that !→ is decreasing and
↑Ek2 ↗ ↑2ω).

Lean 4 Proof: The proof of Theorem 2 is located in the
file Cotransformation.lean, with the error bounds for
Case 2 and Case 3 established in lemmas bound_case2 and
bound_case3.

Fig. 3. Plots of actual worst-case errors for ω = 2→23 obtained via
exhaustive testing (solid lines) and theoretical error bounds (dashed lines).
Cotransformation errors are computed with ”a = 2→20 and ”b = 2→10.

V. NUMERICAL VALIDATION OF ERROR BOUNDS

Fig. 3 shows a log-log figure of the actual errors (solid
lines) observed in exhaustive simulation (ω = 2→23, similar to
IEEE-754 single FP) versus our error bounds (dashed lines)
for the three methods analyzed here plotted against log2(”).
All the log-log plots are “hockey sticks” (left flat line; middle
transition curve; and right upward diagonal). Except in the
transition, these are straight lines. Until ” becomes small
enough that ω quantization plays a role, log2(error) is pro-
portional to 2 log2(”) = log2(”

2) plus a constant, making
the “hockey sticks” mostly parallel to each other, consistent
with the well-known quadratic error from linear interpolation
[24], [25]. The constant is the same for !→ interpolation and
cotransformation because Coleman’s cotransformation method
exclusively uses !→ interpolation in its implementation. On
the other hand, !+ interpolation (both actual and bounds) is
two bits more accurate than !→ interpolation for a given ”.

The designer of an LNS circuit typically wants to achieve
below a certain error using minimum memory. Since ” is
inversely proportional to memory size, achieving the same
accuracy for !→ interpolation as for !+ interpolation requires
twice as much memory. The desired values of log2(”) are on
the right of Fig. 3, where the formally-proved interpolation
bounds given here are asymptotic to the exhaustive-simulation
results. Where the bounds diverge pessimistically on the left
are for over-provisioned ” ⇑ ω unlikely to be used in an actual
implementation. LNS designers can trust our Lean-validated
interpolation bounds are both valid and tight for practical use.

On the other hand, the bound derived here for Coleman’s
cotransformation is one to two bits more pessimistic than the
actual result because it assumes the worst-case error bound for
!→ interpolation in all computations used with cotransforma-
tion. Another reason is the cotransformation version [14] used
here has a third case that interpolates !→ twice. The original
Coleman cotransformation [4] only has two cases and one !→

interpolation, which would allow the bound to be tighter.

VI. CONCLUSION AND FUTURE WORK

In summary, this work demonstrates the effectiveness of
theorem proving with Lean in addressing verification prob-
lems that exceed the capabilities of SMT-based tools. We
performed a comprehensive error analysis of table-based
Logarithmic Number Systems (LNS), focusing on challenges
arising from non-linear approximations for addition and sub-
traction. Through detailed examination of errors from first-
order Taylor approximation and cotransformation, we derived
symbolic error bounds and formally verified their correctness
using Lean and Mathlib. Empirical validation through an
exhaustive Python implementation confirmed the accuracy of
our interpolation bounds and highlighted the conservativeness
of our cotransformation bounds. This study not only deepens
the theoretical understanding of LNS but also underscores
Lean’s value as a robust tool for formal error analysis in
numerical methods.

Although hardware for LNS via linear Taylor interpolation
is well-known [4], [24], [25], this is the first rigorous machine-
verified bound on such hardware. We are currently considering
bounds for Coleman’s Error Correction (EC) [4] and other
quadratic methods [9] of interpolation. Future work includes
deriving tighter bounds for cotransformation, including other
cotransformations [19], [22], which unlike Coleman’s cotrans-
formation [4], do not use the less accurate !→ interpolation
to implement cotransformation. Although we did not attempt
to model bases other than two [16], guard bits [10], varying
”s [4], [9], etc., these would be straightforward extensions to
our Lean code.

REFERENCES

[1] S. John, “The future of computing beyond moore’s law,” 2020, philo-
sophical Transactions of the Royal Society, http://doi.org/10.1098/rsta.2
019.0061.

[2] D. Reed, D. Gannon, and J. Dongarra, “Hpc forecast: Cloudy and
uncertain,” Commun. ACM, vol. 66, no. 2, p. 82–90, jan 2023. [Online].
Available: https://doi.org/10.1145/3552309

[3] E. E. Swartzlander and A. G. Alexopoulos, “The sign/logarithm number
system,” IEEE Transactions on Computers, vol. 100, no. 12, pp. 1238–
1242, 1975.

[4] J. N. Coleman, E. Chester, C. I. Softley, and J. Kadlec, “Arithmetic
on the european logarithmic microprocessor,” IEEE Transactions on
Computers, vol. 49, no. 7, pp. 702–715, 2000.

[5] “XLNS Research,” website: http://www.xlnsresearch.com, repository:
https://github.com/xlnsresearch.

[6] J. Zhao, S. Dai, R. Venkatesan, B. Zimmer, M. Ali, M.-Y. Liu,
B. Khailany, W. J. Dally, and A. Anandkumar, “Lns-madam: Low-
precision training in logarithmic number system using multiplicative
weight update,” IEEE Transactions on Computers, vol. 71, no. 12, pp.
3179–3190, 2022.

[7] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod et al., Hand-
book of Floating-Point Arithmetic, 2nd ed. Birkhauser, 2018, softcover
reprint of the original edition.

[8] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic
rounding: implementation, error analysis and applications,” Royal Soci-
ety Open Science, vol. 9, no. 3, p. 211631, 2022.

[9] H. Fu, O. Mencer, and W. Luk, “Fpga designs with optimized logarith-
mic arithmetic,” IEEE Transactions on Computers, vol. 59, no. 7, pp.
1000–1006, 2010.

[10] M. Arnold, E. Chester, and J. Cowles, “Guarding the guards: Enhancing
lns performance for common applications,” in 2016 IEEE 27th Inter-
national Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 2016, pp. 123–130.

[11] Gaussian logarithm, “Gaussian logarithm — Wikipedia, the free
encyclopedia,” 2021, [Online; 16 July 2023]. [Online]. Available:
https://en.wikipedia.org/wiki/Gaussian logarithm

[12] M. G. Arnold, T. A. Bailey, and J. A. Cowles, “Towards automated
verification of logarithmic arithmetic,” arXiv preprint arXiv:2411.12923,
1994.

[13] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M. Tichy,
Z. Pohl, A. Hermanek, and N. F. Benschop, “The european logarithmic
microprocesor,” IEEE Transactions on Computers, vol. 57, no. 4, pp.
532–546, 2008.

[14] J. N. Coleman and R. C. Ismail, “Lns with co-transformation competes
with floating-point,” IEEE Transactions on Computers, vol. 65, no. 1,
pp. 136–146, 2015.

[15] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[16] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet:
Energy-efficient neural networks using logarithmic computation,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2017, pp. 5900–5904.

[17] P. Haghi, C. Wu, Z. Azad, Y. Li, A. Gui, Y. Hao, A. Li, and T. T. Geng, “
Bridging the Gap Between LLMs and LNS with Dynamic Data Format
and Architecture Codesign ,” in 2024 57th IEEE/ACM International
Symposium on Microarchitecture (MICRO). Los Alamitos, CA, USA:
IEEE Computer Society, Nov. 2024, pp. 1617–1631. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MICRO61859.2024.00118

[18] N. Belanger and Y. Savaria, “On the design of a double precision
logarithmic number system arithmetic unit,” in 2006 IEEE North-East
Workshop on Circuits and Systems. IEEE, 2006, pp. 241–244.

[19] M. G. Arnold, T. A. Bailey, J. R. Cowles, and M. D. Winkel, “Arith-
metic co-transformations in the real and complex logarithmic number
systems,” IEEE Transactions on Computers, vol. 47, no. 7, pp. 777–786,
1998.

[20] M. Basir, R. Ismail, and S. Naziri, “An investigation of extended co-
transformation using second-degree interpolation for logarithmic num-
ber system,” in 2020 FORTEI-International Conference on Electrical
Engineering (FORTEI-ICEE). IEEE, 2020, pp. 59–63.

[21] M. Basir, R. Ismail, and M. Isa, “A novel double co-transformation for a
simple and memory efficient logarithmic number system,” in 2020 IEEE
International Conference on Semiconductor Electronics (ICSE). IEEE,
2020, pp. 25–28.

[22] Y. Popoff, F. Scheidegger, M. Schaffner, M. Gautschi, F. K. Gürkaynak,
and L. Benini, “High-efficiency logarithmic number unit design based
on an improved cotransformation scheme,” in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
1387–1392.

[23] I. Orginos, V. Paliouras, and T. Stouraitis, “A novel algorithm for
multi-operand logarithmic number system addition and subtraction using
polynomial approximation,” in Proceedings of ISCAS’95-International
Symposium on Circuits and Systems, vol. 3. IEEE, 1995, pp. 1992–
1995.

[24] D. M. Lewis, “An architecture for addition and subtraction of long word
length numbers in the logarithmic number system,” IEEE Transactions
on Computers, vol. 39, no. 11, pp. 1325–1336, 1990.

[25] M. G. Arnold, T. A. Bailey, and J. R. Cowles, “Comments on ‘an
architecture for addition and subtraction of long word length numbers
in the logarithmic number system’,” IEEE Transactions on Computers,
vol. 41, no. 6, pp. 786–788, 1992.

