
An SMT Formalization of Mixed-Precision
Matrix Multiplication

Modeling Three Generations of Tensor Cores

Benjamin Valpey1[0000→0002→2245→3022] !, Xinyi Li2[0009→0005→7276→7715],
Sreepathi Pai1[0000→0002→3691→7238], and Ganesh

Gopalakrishnan2[0000→0002→4161→9278]

1
University of Rochester, Rochester, NY 14627, USA

{bvalpey,sree}@cs.rochester.edu
2

University of Utah, Salt Lake City, UT 84112, USA {xin_yi.li@utah.edu,

ganesh@cs.utah.edu}

Abstract. Many recent computational accelerators provide non-standard

(e.g., reduced precision) arithmetic operations to enhance performance

for floating-point matrix multiplication. Unfortunately, the properties of

these accelerators are not widely understood and lack su!cient descrip-

tions of their behavior. This makes it di!cult for tool builders beyond the

original vendor to target or simulate the hardware correctly, or for algo-

rithm designers to be confident in their code. To address these gaps, prior

studies have probed the behavior of these units with manually crafted

tests. Such tests are cumbersome to design, and adapting them as the

accelerators evolve requires repeated manual e"ort.

We present a formal model for the tensor cores of NVIDIA’s Volta, Tur-

ing, and Ampere GPUs. We identify specific properties—rounding mode,

precision, and accumulation order—that drive these cores’ behavior. We

formalize these properties and then use the formalization to automati-

cally generate discriminating inputs that illustrate di"erences among ma-

chines. Our results confirm many of the findings of previous tensor core

studies, but also identify subtle disagreements. In particular, NVIDIA’s

machines do not, as previously reported, use round-to-zero for accumu-

lation, and their 5-term accumulator requires 3 extra carry-out bits for

full accuracy. Using our formal model, we analyze two existing algo-

rithms that use half-precision tensor cores to accelerate single-precision

multiplication with error correction. Our analysis reveals that the newer

algorithm, designed to be more accurate than the first, is actually less

accurate for certain inputs.

Keywords: GEMM · Tensor Cores · Test Generation and Linear Algebra ·
Decision Procedures · Floating Point and Error Analysis · GPU

1 Introduction

As applications strive for greater performance in today’s post Moore’s Law era,
hardware designers have turned to specialized hardware units and non-standard

2 B. Valpey et al.

ISA extensions to satisfy this need. In 2016, Google announced its Tensor Pro-
cessing Unit, a hardware unit specializing in matrix multiplication [27]. The
next year, NVIDIA announced its new Volta architecture would feature Tensor
Cores [39] which have since evolved with each new architecture. Today, all ma-
jor CPU and GPU vendors incorporate ISA extensions for matrix multiplication
that operate on reduced-precision floating point formats. Notably, the function-
ality of these extensions is not standardized yet, and is poorly documented as
well. While non-standard designs might be successfully employed within closed-
source vendor libraries and for low-precision AI applications, they can prove to
be di!cult and error-prone for others who seek to build innovative linear algebra
methods that are precision-sensitive [20]. Tensor cores have demonstrated nu-
merical inconsistency across architectures that has an impact on the portability
of algorithms. For example, a tensor core implementation of Fast-Fourier trans-
form [32] saw its mean relative error drop by as much as 34%3 when moving
from Volta’s tensor cores to Ampere’s. This shifting behavior, coupled with the
lack of a specification, presents a challenge for safety-critical applications that
are sensitive to an implementation’s numerical behavior. Furthermore, without a
behavioral specification, e"orts such as Goodloe et al. [19] that verify numerical
programs cannot be utilized. Thankfully, work done by researchers to under-
stand tensor core functionality [16, 23, 33] has led to novel algorithms that can
use these cores to speed up even single-precision computations for HPC [37, 44].
As new cores are released, though, these same e"orts must be repeated.

In this paper, we provide a formal description for the tensor cores across three
generations of graphics cards. These formal descriptions can not only provide ac-
curate and reliable component-level specifications enabling automated reasoning
about their functionality but also facilitate the the creation of novel, hitherto
unimagined, uses, while also improving debuggability, correctness checking, and
security analyses.

Our models of tensor cores support two key properties: i) they are executable,
ii) they can be used in automated reasoning. Our models are also parametric,
enabling them to be quickly adapted for new architectures.

Our novel contributions include:

– A formalization of the numerical properties of mixed-precision block FMA,
collected from prior literature, that can be used to identify the properties of
di"erent matrix multiplication units

– A formal, executable model of the matrix multiplication units across three
generations of GPUs - Volta, Turing, and Ampere

– A revision of a mischaracterization in prior work that had concluded the
rounding mode of tensor cores is round-to-zero. The actual rounding behav-
ior, truncation, is subtly di"erent.

– An analysis of two error-correcting matrix-multiplication algorithms that
shows, due to the properties of the tensor cores, the method which trades

3
An accuracy test that accompanies the implementation [31] reports an error of 1.5e→2

on Volta and 9.92e→3
on Ampere.

An SMT Formalization of Mixed-Precision Matrix Multiplication 3

speed for accuracy can actually produce less accurate results than its faster
counterpart.

The functional and performance aspects of tensor core behavior have received
significant scrutiny through testing [50, 16, 54]. Nevertheless, our SMT formal-
ization unearths subtle discrepancies between test-based reverse engineered de-
scriptions and the actual hardware.

In addition to enabling program analyses, formal models enable the con-
struction of hardware simulators. These simulators in turn allow developers to
evaluate the numerical behavior of their algorithms on multiple di"erent ar-
chitectures, all from the same machine and without requiring access to many
di"erent and potentially expensive devices.

The rest of this paper is structured as follows. Section 2 provides a list of
closely related work. Section 3 provides background on PTX and SASS, two
instruction sets pertinent to NVIDIA GPUs and necessary to understand Tensor
Cores. It also details the HMMA instruction that carries out the matrix operation
D = A → B + C. Then, in section 4, we formalize the numerical properties
of tensor cores, compare our findings with previous works, and describe our
resulting formal model. In section 6, we study two methods used to perform
single-precision multiplications using the half-precision tensor cores discussed in
Ootomo and Yokota [44]. We then analyze these algorithms, using SMT to try
to prove that the error of Ootomo and Yokota’s method is always better than
Markidis et al. [37].

2 Related Work

We survey closely related work on floating-point formalization and testing-based
specification discovery, followed by some non-floating-point formalization e"orts.

An SMT theory for floating point reasoning was proposed by Rümmer and
Wahl [47], which also included formalizations for rounding modes. However,
SMT-based floating point reasoning has historically been found to have poor scal-
ability [11, 48], but has been successfully used for error analysis [49]. Leeser et al.
[30] demonstrated success in using SMT for floating-point reasoning, albeit using
the theory of Reals. Brain et al. [9] redefined the floating point theory, substan-
tially improving SMT’s capabilities. Darulova et al. [10] used SMT to statically
analyze floating point programs, for instance to compare roundo" errors between
fixed-point and floating-point arithmetic. Floating point capabilities have simi-
larly been implemented in other theorem provers, such as Coq [7] which has also
been used for error analysis [1]. Each of these formalizations follows the IEEE
standard [25] and hence do not contain support for the non-standard accumula-
tor which our work provides. Titolo et al. [51] present an abstract interpretation
framework for floating-point program roundo" error analysis.

Using tests to identify the implementation peculiarities of floating point
units dates as far back as Karpinski [28]. In the case of GPU tensor cores,
there has been considerable interest in understanding their functional as well as

4 B. Valpey et al.

performance characteristics. Sun et al. [50] studied the tensor core implemen-
tations across various NVIDIA architectures. While they primarily focused on
the throughput and latency, they briefly investigated the numerical behavior of
tensor cores by studying the relative error for di"erent floating point formats.
Blanchard et al. [4] devised a framework to perform an error analysis of block
fused multiply-add units. Their method incorporates the supported precision of
the unit in its formulation, allowing it to support future units that may o"er a
di"erent precision. Hickmann and Bradford [23] and Fasi et al. [16] studied ten-
sor cores by using carefully constructed experiments to determine the hardware’s
behavior such as its rounding mode, precision, and support for subnormals. Xinyi
et al. [33] employed similar techniques while further exploring the block-FMA
feature and additional bits for tensor cores and AMD’s matrix cores. Yan et al.
[54] also studied the instruction-level details of the tensor cores, providing in-
sights into how the matrix operation is performed on Turing, showing how the
threads in a warp cooperate to compute the mma operation.

Formal descriptions of architectural components have been used to detect
subtle correctness and security properties unrelated to floating-point arithmetic.
The Check tools (TriCheck [53], CoatCheck [35], CCICheck [36], PipeCheck [34]),
focus on memory consistency models and highlight the pitfalls resulting from
under-specified ISA details. The CheckMate tool [52] uses model checking to
automatically create exploits for cache side channels. Manual formalization of
specifications is costly and this has led to work that seeks to automate the cre-
ation of formal ISA semantics. SAIL [2] and K [12] have been explicitly built for
ISA specifications. For x86, Godefroid and Taly [17] leveraged SMT to find input
examples, while Heule et al. [22] explored stratified synthesis. Using program
synthesis has been explored to automatically formalize hardware specifications
for memory consistency models [24, 38].

3 PTX and SASS Background

The NVIDIA GPUs we use in this work are commonly programmed in the CUDA
programming language, a C++ dialect that supports explicit data parallelism
and the ability to specify which functions run on the CPU and which run on
the GPU. To use the tensor cores, CUDA provides library functions that are
internally implemented using inline assembly in the virtual PTX instruction set
architecture (ISA) [42]. PTX is a GPU independent ISA which resembles a com-
piler intermediate representation with features such as types, infinite registers,
scoping, and so on. The physical ISA, commonly referred to as SASS [40], re-
sembles a more traditional machine ISA and, unlike PTX, changes across GPU
architectures. PTX is compiled to SASS using an architecture-specific assembler
called ptxas. PTX provides forward compatibility with newer GPU architec-
tures. If the GPU driver does not find the SASS for the current architecture in
the executable, it will recompile the PTX in the executable at runtime to the
architecture-appropriate SASS. While NVIDIA provides a PTX specification, it

An SMT Formalization of Mixed-Precision Matrix Multiplication 5

does not provide any information about SASS, prompting reverse engineering
e"orts [50, 54, 14, 21].

3.1 Tensor Cores and the HMMA Instruction

HMMA is the primary SASS instruction that interacts with the tensor cores [26].
Programmers usually use CUDA’s Warp Matrix or wmma Functions [41, §7.24]
to use the tensor cores. However, the cores can also be accessed directly us-
ing inline assembly by using the PTX mma.m8n8k4 instruction. Examining with
cuobjdump [40] the disassembly of SASS programs that use either of these meth-
ods confirms variants of the HMMA SASS instruction are used.

Across di"erent architectures, the behavior of the tensor cores and its corre-
sponding HMMA instruction changes. On Volta and Turing, the tensor cores are
invoked via the HMMA.884 instruction, while the Ampere architecture replaced
this with HMMA.16816. Both instructions multiply two matrices, A and B, and
add a third matrix, C, though the 884 variant operates on 4→ 4 matrices, while
the 16816 variant operates on 8 → 8 matrices. In fact, this change highlights
another portability concern: the mma.m8n8k4 PTX instruction that previously
invoked tensor cores no longer does so on the Ampere architecture. Instead, it
produces a sequence of Fused Multiply-Add (FMA) instructions that use the de-
vice’s slower floating point cores whose numerical properties are quite di"erent
from tensor cores.

For both the 884 and 16816 variants, the HMMA operation consists of three
steps: 1) multiplying matrix A and B, 2) accumulating the products of A, B along
with matrix C, and 3) rounding the final result. Each element in the resulting
N →N matrix D is computed via the following equation:

Di,j = Ai,1 ·B1,j +Ai+1,1·B1,j+1 + . . .+AN,1 ·B1,N (1)

Unlike most GPU instructions, where each thread’s calculations are indepen-
dent of other threads, the HMMA instruction requires all threads within the warp
to cooperate to compute the result, and only one matrix multiplication is per-
formed per warp per instruction. Prior work by Yan et al. [54], Fang et al. [14]
has described how matrix elements are mapped to each participating threads’
registers. The HMMA instruction supports both F16 and F32 types for elements
of C and D which can be individually specified. A and B are always F16. Since
Volta, tensor cores introduced have support for more formats: INT4 (4-bit in-
tegers) and INT8 (8-bit integers) in Turing, followed by Ampere’s support for
double-precision (FP64) and a custom format, Tensor Float 32 (TF32).

This work focuses on the FP16 and FP32 formats that are supported on
all tensor cores, though the properties we establish can be adapted to study
tensor core behavior for di"erent formats. In the FP16 format, corresponding
to IEEE754’s binary16 format, 16 bits are used to represent the number. From
most significant to least significant: the first bit represents the sign, the next 5
bits encode the exponent (with a bias of 15), and the remaining 10 bits encode
the mantissa. Similarly, the FP32 format, corresponding to IEEE-754’s binary32

6 B. Valpey et al.

format, 32 bits are used: the first bit encodes the sign, the next 8 encode the
exponent (with a bias of 127), and the remaining 23 bits encode the mantissa.

4 Tensor Core Semantics

Although Equation 1 appears to be a su!cient description of how HMMA behaves,
floating point cognoscenti will immediately inquire about the following details
which are needed to build a su!ciently detailed formal model:

1. Are the multiplications and additions exact? What rounding mode is then
used?

2. Since standard floating point addition is not associative, how does the com-
putation di"er when terms are rearranged?

3. Are the intermediate sums normalized, or only the final result?

NVIDIA detailed the architecture of their tensor cores in their whitepaper
describing the Volta GPUs [39], though is missing this level of detail:

Tensor Cores operate on FP16 input data with FP32 accumulation. The
FP16 multiply results in a full precision product that is then accumulated
using FP32 addition with the other intermediate products for a 4→4→4
matrix multiply.

The PTX documentation is also unhelpful, stating that “The accumula-
tion order, rounding, and handling of subnormal inputs is unspecified.” [43,
§9.7.13.3.5]. Previously, Fasi et al. [16] answered some of these questions for
the Volta architecture using carefully reasoned empirical tests. Our goal, in con-
trast, is to provide a complete description of tensor core behavior as a formal
model to not only answer such questions but also allow reasoning about other
properties.

To establish a precise semantics for the HMMA instruction and its variants,
we focus on the computation for a single element in the output matrix – we
fix a single row of matrix A, a single column of matrix B, and the corresponding
element in C. Here, we just use the first row and column, making the computation
equivalent to equation 1 when i = j = 1. While this assumes that the same
computation is done for each row in the result matrix, it is easy to verify this is
the case by repeating the hardware evaluation for di"erent elements in the final
matrix.

The operations in equation 1 may be implemented in myriad ways impact-
ing the final result. Constructing a model requires determining which choices
were made in hardware. Doing this unavoidably requires some manual e"ort
to model the hardware design space and inform the possible implementations
that need to be evaluated. To construct our model, we scoured the literature for
implementations of matrix multiplication and dot products. The specification
that accumulation is done in FP32 enables us to eliminate several possibilities,
namely techniques like Bohlender and Kulisch [5] for exact accumulation and

An SMT Formalization of Mixed-Precision Matrix Multiplication 7

the fixed-point approaches such as described by Boldo et al. [6]. Ultimately, our
tensor core model is primarily built upon the existing work of Fasi et al. [16] and
Hickmann and Bradford [23]. We revise their findings and o"er models for Turing
an Ampere with a framework that can quickly adapt to new architectures.

Like previous work, we use tests to discriminate between the di"erent possi-
bilities. However, unlike previous work, these discriminating tests are automat-

ically generated using an automated theorem prover (e.g., cvc5 [3]). Essentially,
we write formulae to capture the possible ways in which the implementation of
the tensor core unit may behave and ask the automated theorem prover to find

input values that would yield di!erent outputs based on the design choices under

investigation. Our framework consists of these formalizations, encoded in SMT,
and produces inputs that are then provided to the hardware to probe their be-
havior. The queries are fully parametric, allowing them to be easily adjusted to
probe di"erent implementation possibilities.

Using SMT solvers to generate inputs this way is routine [45, 29], but we are
not aware of prior work that utilizes them to elicit the latent numeric behavior
of nonstandard floating point operations that are performed by GPU tensor
cores. This approach is particularly well suited for the ill-documented tensor
cores whose behavior continues to evolve with each new generation. New tests
can easily be automatically generated as the underlying architecture changes.
For instance, the tensor cores in Volta and Turing multiplied 4 → 4 matrices.
Ampere shifted to 8→ 8 matrices, requiring new tests to explore its behavior.

Additionally, compared to prior work that has investigated these proper-
ties without using SMT, we contribute knowledge about corner-cases involving
rounding-modes and the number of carry bits required due to lack of normaliza-
tion.4

4.1 Precision

To demonstrate our approach, we begin by testing one of the claims made in the
whitepaper: that the multiplication between the elements of A and B are per-
formed in single-precision. We use SMT to identify values that are representable
in FP16 but whose product is not. Then, we provide these values to the hardware
and determine whether the correct result is reported.

Listing 1.1 demonstrates how we identify discriminating inputs for our tests
using cvc5’s Python API [3]. Lines 6 and 7 express the multiplication in half-
precision and single-precision respectively, with the for loop iterating over each
rounding mode. Line 8 asserts that the two results di"er. Each of these lines
adds a constraint on the values of a and b that must be met in order for the
model to be satisfiable. In line 9, we ask the solver to find values for a and b

which satisfy each of these conditions. A sat response indicates the solver has
found such values. In line 10, get_model obtains these values from the solver,
producing the values shown in Table 1. Once the solver has proved that the
4

Recent growth in power of SMT-solvers to deal with floating-point queries was es-

sential for this to be practical [8]; see Table 4 and surrounding discussions.

8 B. Valpey et al.

1 from cvc5.pythonic import * # can also import Z3
2 s = Solver ()
3 a = FreshConst(Float16 ())
4 b = FreshConst(Float16 ())
5 for rm in {RNE(), RTZ(), RTN(), RTP()}:
6 FP16_result = fpToFP(RTZ(), fpMul(rm, a, b), Float32 ())
7 FP32_result = fpMul(rm, fpToFP(RTZ(), a, Float32 ()), fpToFP(RTZ(), b,

Float32 ())
8 s.add(Not(FP16_result == FP32_result))
9 if s.check () == sat:

10 m = s.get_model ()
11 # record values for a and b
12 print(m.eval(a), m.eval(b))
13 else:
14 print("Unsat/unknown")

Listing 1.1. The python script showing how to use cvc5’s (or Z3’s) python api

to identify a pair of half-precision values whose product is not exact when the

multiplication is performed in half-precision.

assertion holds, we can then extract the model in order to obtain inputs which
can test if the tensor cores indeed perform the multiplication in single-precision.

Table 1. Values showing the multiplications are performed with full precision

a 1.2587890625 · 2-15

b 1.3681640625 · 2-1

Exact Result 1.4162635803222656 · 2-17

Result (half) 1.1767578125 · 2-15

Hardware Result 1.4162635803222656 · 2-17

Fasi et al. [16] presumably used manual analysis in order to identify inputs
that could be used to test the numerical behavior of the tensor cores such as its
rounding mode and support for subnormals. Here, we show that an automated
theorem prover can be used to avoid this manual e"ort. In addition, our method
found two discrepancies in the work by Fasi et al., which we elaborate on in
detail in the following sections.

Table 2. A description of the notation and terms used in the properties

Symbol Meaning
a · b Denotes multiplication of a and b in single-precision.

a →rm b Denotes addition of a and b in single-precision. rm, when specified,

denotes the rounding mode, defaulting to round-to-zero.

ToFP32(a) Converts the FP16 input argument to its single-precision representa-

tion

ToFP16(rm, a) Converts the FP32 input argument to half-precision, rounded with rm

An SMT Formalization of Mixed-Precision Matrix Multiplication 9

Precision of Accumulation Tensor cores allow for the source and destination
to hold values in either half precision or single precision. The whitepaper states
that the accumulation is performed in single-precision. The PTX documentation
states that for half precision inputs and outputs, the accumulation is performed
with “at least half precision” [43, §9.7.13.4.14]. Here, we determine the actual pre-
cision used during accumulation for half-precision inputs and outputs by finding
input values that satisfy the following:

Property 1 a ·b↑c ·d ↓= ToFP32(a) · ToFP32(b) ↑ ToFP32(c) · ToFP32(d)
Where a, b, c, d, a · b↑ c · d ↔ FP16, a · b, c · d ↓↔ FP16

This states that certain FP16 inputs can yield products that cannot be repre-
sented in FP16, but whose sum can be. Our tests using inputs generated from the
SMT solver confirm that the hardware performs accumulation in single-precision
for half-precision inputs and outputs.

4.2 Rounding

Previously, Fasi et al. [16] determined that the intermediate results of the accu-
mulation were rounded using round-to-zero, while Hickmann and Bradford [23]
suggested that the results are truncated. Fasi et al. also determined that no ad-
ditional bits were used for rounding. However, properly rounding RTZ requires
additional guard bits. In a standard floating point addition algorithm, the terms
are aligned so that they have the same exponent. This requires shifting the man-
tissa of the term with the smaller magnitude to the right in what is called the
significand alignment step. IEEE-754 [25] round-to-zero requires that the result
be equal to the largest magnitude no larger than the exact result.

Table 3. Round-to-zero demonstration

Input a Input c Properly-rounded RTZ result Tensor Core Result
21 -2-40 2↑ 2-23 21 ✁

Consider the example in table 3. If a and c are 21 and -2-40 (and b is one),
then the result in round-to-zero mode should return the value 2↗2-23. However,
because the significance alignment step requires shifting the 2-40 term 41 bits to
the right, all of its bits would be lost and the result would be 21.

To properly handle this, floating point adders often make use of a “sticky bit”
that tracks whether any bits were lost during alignment [18, §2.1.4]. However, a
sticky bit does not work when aligning more than 2 terms, as the lost bits might
have had di"erent magnitudes across terms. Instead, accurate RTZ rounding
requires preserving the bits that would be lost during the alignment, which Fasi
et al. concluded were not present in Volta.

Our tests for the rounding mode on hardware generate inputs that discrimi-
nate between each pair of rounding modes.5 Evaluating the resulting inputs, we
5

Available online at https://pyxis-roc.github.io/tensor_core_semantics/

https://pyxis-roc.github.io/tensor_core_semantics/

10 B. Valpey et al.

HMMA .884. F16.F16.STEP0 R12 , R32.ROW , R2.COL , R12 ;
HMMA .884. F16.F16.STEP1 R14 , R32.ROW , R2.COL , R14 ;
ST.E.SYS [R4], R12 ; /* ... */

Listing 1.2. The SASS disassembly (Volta) for half-precision mma. Only the first store

is shown.

find that tensor cores do not adhere to any of the IEEE-754 rounding modes,
including RTZ rounding, contrary to the findings in Fasi et al. [16]. Instead, they
truncate, ignoring all of the lower bits when computing the final result. On the
Volta tensor cores, adding the aforementioned example, 21 and -2-40, results in
21, which would be the result in round-to-nearest. While one may conclude that
the rounding mode depends on the inputs, there is in fact a simpler explanation:
during the significand alignment step, mantissa bits that were discarded dur-
ing the shift are lost. This means that performing an e"ective subtraction with
numbers having an exponent di"erence greater than the number of bits in the
mantissa (23 in this case) is the same as adding zero. As mentioned before, this
behavior violates the guarantees of round-to-zero which mandates the rounded
result cannot be greater than the true result. This di"erence only manifests
in e"ective subtraction, a subtlety that explains the mischaracterization while
exposing the fragility of informal tests.

Tensor cores support outputting a FP16 result, requiring the FP32 accumu-
lation to be rounded. We encode property 2 and generate tests that identify the
rounding mode used in this case.

Property 2 ToFP16
(
rm1, T oFP32(a) · ToFP32(b)

)
↓=

ToFP16
(
rm2, ToFP32(a) · ToFP32(b)

)
Where a, b ↔ FP16, rm1 ↓= rm2

In this experiment, we find a pair of values in FP16 whose product, when rounded
to FP16, di"ers for di"erent rounding modes. We limit ourselves to a single
term, setting the rest of the values to 0 so as to avoid behavior that may be
attributed to the rounding mode that is used for computing the partial sums.
From the experiments, we conclude that the final rounding is performed in round-
to-nearest. While the behavior is consistent with the findings in Fasi et al., there
it was concluded that this rounding was done in software. Our experiments
reveal that this is not the case. This is further evidenced upon examining the
disassembly (listing 1.2) which shows no intervening instructions before the result
is stored to memory.6 This indicates that the rounding to FP16 is in fact handled
by the tensor cores.

4.3 Accumulation Order & Normalization

IEEE-754 addition is not associative due to the rounding and normalization that
occurs after each operation. Fasi et al. [16] determined that the accumulation for
6

This disassembly is consistent across multiple di"erent compiler versions — we tested

nvcc versions 11.3 through 12.4

An SMT Formalization of Mixed-Precision Matrix Multiplication 11

Volta is performed into the element with the largest magnitude, and that there
is no normalization of intermediate sums. We evaluate property 3 and determine
that the result does not depend on the order of the terms.

Property 3 (a1b1 ↑rtz a2b2) ↑rtz a3 · b3 ↓= a1 · b1 ↑rtz (a2 · b2 ↑rtz a3 · b3)

Testing for normalization requires an implementation of a multi-term floating-
point accumulator that could accumulate without normalizing intermediate sums.
However, the floating-point operations provided by SMTLIB are IEEE-754 com-
pliant, which means that the intermediate sums will always be normalized. To
overcome this, we developed our own floating-point accumulator using bitvector
operations. Our implementation takes into account each of the previous discov-
eries regarding tensor cores.

Property 4 (a1 · b1 ↑ a2 · b2) ↑ c ↓= no-normalize-sum(a1 · b1, a2 · b2, c).

Where a1, a2, b1, b2, c > 0 and no-normalize-sum(x, y, z) sums x, y, and z without

normalizing the intermediate results.

To accumulate without normalization, the terms are first aligned to the maxi-
mal exponent before being accumulated. Terms are aligned by right shifting their
mantissas according to the di"erence between their exponent and the maximal
exponent. An implementation may choose whether or not to track some or all
of the bits that were shifted out. We find that all shifted bits are discarded on
Volta, while one is preserved on Turing and Ampere. Evaluating the inputs pro-
vided by the theorem prover for property 4 confirms that the tensor cores do
not normalize intermediate sums.

Number of Carry-Out Bits Required Due to Lack of Normalization As Fasi
et al. [16] noted, for accumulation of N-terms, ↘log2(N)≃ extra carry-out bits
are needed, meaning 5-terms require 3 bits of carry out. However, they were
only able to find examples that required 2 carry-out bits. Finding inputs that
show that 3 extra carry-out bits are needed (and are used by the actual tensor
cores) in order to perform 5-term accumulation is a perfect task for SMT solvers.
As our implementation is fully parametric, we can easily model the use of dif-
fering numbers of carry bits and then use SMT to find values where they di"er.
It takes cvc5 just over a minute to find inputs proving that Volta and Turing
require 3 bits for carry-out, which we confirm by finding the hardware computes
the correct result.

When we evaluate the values produced by the automated theorem prover,
we find that the hardware reports the value that would be the result if 3 bits
were indeed used. Additionally, we also use SMT to prove that no more than
3 bits are needed by proving that accumulation with 4 extra bits is equivalent
to accumulation with 3 extra bits. We thus improve upon the findings of Fasi
et al. [16] and find that the 5-term accumulator uses 3 extra bits for carry
out. Ampere’s 9-term accumulator should likewise require 4 extra bits, though
attempts to find confirming inputs timed out after 6 hours.

12 B. Valpey et al.

4.4 Subnormals and Exceptional Values

Both Fasi et al. [16] and Hickmann and Bradford [23] examined support for sub-
normals, though the former found that subnormal FP32 inputs were supported
while the latter found otherwise. To remedy this, we conduct our own exper-
iments similar to Fasi et al., though once again using SMT, to determine the
handling of subnormal inputs and outputs in both FP16 and FP32. The queries
to evaluate this are straightforward: subnormal FP16 inputs can be tested by
prompting SMT for a pair of subnormal FP16 inputs whose product is normal in
FP16, support for subnormal outputs can likewise be tested by prompting SMT
for a pair of normal inputs whose product is subnormal. Testing for subnor-
mal outputs in FP32 cannot be done without also testing for subnormal inputs,
though the test is straightforward: simply set C to a value that is subnormal in
FP32. Our findings on the three generations of tensor cores agree with Fasi et al.:
tensor cores fully support subnormal numbers for both inputs (of all matrices
A, B, and C) and outputs (Matrix D); there is no automatic flush-to-zero.

Hickmann and Bradford [23] also examined how tensor cores handle excep-
tional values like NaN and infinity. Our findings align with theirs: tensor cores
follow IEEE-754 standard for computations that should result in NaNs and in-
finities. Additionally, we probed the hardware to determine the bit patterns used
for NaN outputs. For example, we exhaustively tested multiplying each NaN pat-
tern with 1.0 and multiplying infinities of di"erent signs, to determine support
for NaN payloads. In every case, all NaN outputs yield a canonical NaN with the
same bit pattern: a sign bit of 0, all exponent bits set, and the most significant
bit of the mantissa set. We also determined that tensor cores do not output -0:
all 0 outputs will be positive.

Algorithm 1 Dot-Product on Volta, Turing, and Ampere. (A: ...), (T:), and
(TA: ...) correspond to Ampere, Turing, or both Ampere and Turing, respectively

Inputs: Two four(eight)-term FP16 vectors a and b and one FP16/FP32 scalar c
Output: One FP16/FP32 scalar

1: Pairwise-multiply a and b, computing their exact results in FP32, to get ab
2: Collect ab together with the FP32 representation of c and find the largest exponent

2b: If any number is NaN, or there are infinities of di"erent signs, then return NaN

2c: (TA: Add one bit of padding to the least significant bit of each term’s mantissa)

3: Right shift each term’s 24(TA: 25)-bit mantissa, discarding all excess bits

4: Add three(four) bits of padding to the most significant bit of each term’s mantissa

5: Take the now 27(T: 28)(A: 29)-bit mantissas and accumulate them in any order

6: Normalize the result to FP32, shifting the mantissa and adjusting the exponent

7: Discard the upper 3(4) bits (and the lowest one bit)

8: Return the result in the requested precision, using round-to-nearest for FP16

An SMT Formalization of Mixed-Precision Matrix Multiplication 13

↑↓a f16↑↓
b f16

↑↓
abf32

c f32
Ampere/Turing:

pad LSB by 1 bit

align mantissas to

maximum magnitude

pad MSB, then

accumulate mantissas

normalize: adjust ex-

ponent, shift mantissa

truncate to FP32

FP16: Round-to-nearest

outputExact

Mul

Fig. 1. Behavior of Tensor Cores

Table 4. Timings for the queries sent to the solvers. In the last row, - means that the

solvers were unable to find a result given a 6 hour timeout

Query Z3 cvc5
Exact Multiplication 0.55s 0.027s

Exact Addition in FP16 27.59s 0.12s

Rounding of Final Result 0.52s 0.008s

Rounding of Accumulator 0.34s 0.017s

Accumulation Order 9.87s 0.25s

Normalization 9.63s 0.25s

Subnormal FP16 Inputs 0.117s 0.016s

Subnormal FP16 Outputs 0.682s 0.024s

3 Carry Bits 410.25s 72.793s

4 Carry Bits (Ampere) - -

5 Model and Results

Figure 1 outlines the behavior of the tensor cores’ dot product step from equation
1, which is described in more detail in algorithm 1.7 The inputs, (shown in
green in the figure) are two FP16 vectors containing four (eight on Ampere)
scalars, and an FP16 or FP32 scalar. Note that for the FP16 a and b values, the
multiplication of their 11-bit mantissas can always be represented in FP32’s 24
bit mantissa, meaning that no rounding is required and the results are always
exact. Our findings show that the Volta and Turing cores di"er in that Turing
uses an extra lower bit during significand alignment. Ampere tensor cores di"er
in that the multiplication is now performed for 8 → 8 matrices. Additionally,
while Volta and Turing discard all shifted bits during significand alignment, on
Ampere, one shifted bit is preserved.

Table 4 demonstrates how the recent advancements in SMT’s floating point
capabilities have dramatically improved SMT’s floating-point capabilities, result-
ing in impressive query times that in many cases respond in sub-second time. As
expected, the more inputs that are required to prove the property, the longer it
takes for the query. Queries for exact multiplication, addition and rounding each

7
The full implementation, including the SMT models, is available online at https:
//github.com/pyxis-roc/tensor_core_semantics

https://github.com/pyxis-roc/tensor_core_semantics
https://github.com/pyxis-roc/tensor_core_semantics

14 B. Valpey et al.

require just two inputs 8, normalization and accumulation order require 3, and
3 carry bits requires 9 inputs. Proving Ampere’s 9-term accumulator requires
4 carry bits requires finding 17 total inputs, a task which the current solvers
were ultimately unable to finish. Each of the queries are tested on a machine
running an AMD EPYC 7502P 32-core processor with 256GB RAM at 1.5GHz
and given a 6 hour timeout. For hardware tests, we used a Titan V GPU for
Volta, an RTX 2080Ti for Turing, and an RTX A6000 for Ampere. Kernels were
compiled with CUDA version 11.8. The timing results in Table 4 show the query
time, in seconds, using Z3 version 4.8.9 [13] and cvc5 version 1.0.2 [3].

6 Ootomo and Yokota Case Study

While tensor cores provide high-performance, their FP16 inputs mean they have
low precision. Ingenious methods have therefore been developed to take advan-
tage of tensor cores’ performance without sacrificing precision. One such method
was proposed by Markidis et al. [37], which introduced a residual matrix to record
the loss of mantissa (the di"erence between FP32 and FP16 inputs) which can
then be used to recover precision. A similar technique was used by Fasi et al.
[15]. For a matrix product A ·B, the residual matrices RA and RB are calculated
as the di"erence between the single-precision and half-precision representations
of A and B as RA = Af32 ↗Af16 and RB = Bf32 ↗Bf16 respectively. The final
recovered result is calculated using

Af32 ·Bf32 = RARB +Af16RB +RABf16 +Af16Bf16

To further reduce the error, Ootomo and Yokota [44] (which we abbreviate to
O-Y) improved Markidis et al. method by incorporating rounding to nearest in
the accumulator by performing accumulation outside of the tensor core unit.
Additionally, they implemented scaling when computing the residual matrix.
The updated procedure is as follows:

RA = (Af32 ↗Af16) · 211 RB = (Bf32 ↗Bf16) · 211

Af32Bf32 =
RARB

222
+

Af16RB +RABf16

211
+Af16Bf16

D = RN(Af32Bf32 + C)

where 211 is the scaling factor and RN denotes rounding to nearest.
The O-Y method is meant to improve the error correction of Markidis et al.’s

at the cost of extra computation. Using our models from Section 4, we implement
both error correction methods described by the paper in SMT. We then attempt
to prove that the absolute accuracy for one of the final elements of the matrix,
when using [44] method, can never be worse than [37]. To do this, we ask an
SMT solver to prove the following formula:
8

or four if querying for FP16 values. When possible, we asked the solver to first find

FP32 values that demonstrated the property, and then asked for FP16 values whose

product results in that value

An SMT Formalization of Mixed-Precision Matrix Multiplication 15

Property 5 ⇐ inputs s.t. |Markidis(inputs)↗actual(inputs)| < |Ootomo(inputs)↗
actual(inputs)|

Where Markidis and Ootomo correspond to the result of one element in the final
matrix computed using equation (6) and equation (24) from Ootomo and Yokota
[44], respectively; actual corresponds to the result obtained by performing the
dot product in double precision. We also restrict the exponent ranges for the
inputs to 2-15 and 214 as was done for O-Y’s Type 1 experiments.

Table 5 shows the values for which O-Y’s method has a higher error than
Markidis et al.’s. For this single query, it takes cvc5 less than 5 minutes to find
values for which the error using O-Y’s method can be worse. This is not to
say that O-Y’s method is worse overall, but rather proves that it is not more
accurate for every input. Nor does this contradict their empirical results showing
that their method was more accurate in general. In Ootomo and Yokota [44],
it was noted that one of the main contributors to the error was due to the
round-to-zero mode of tensor cores. This means that for many cases, performing
the accumulation outside of tensor cores can improve the accuracy of the final
result. However, as we showed in section 4, tensor cores do not normalize the
intermediate sums. This can improve the final accuracy by keeping parts of the
mantissa that would have been lost during the normalization step thus making
O-Y’s method worse on some inputs.

Table 5. Inputs which show the the error of Ootomo and Yokota [44] (O-Y) can be

greater than Markidis et al. [37] (M)

a 1.0009765625 · 2-8 1.326171875 · 2-14 2-12 2-12

b 1.998046875 · 2-7 1.4443359375 · 2-7 2-12 2-12

c 2-24

True 1 + 2-23

M 1 + 2-23

O-Y 1.0

The values produced by our experiment in Table 5 follows the same pattern.
To illustrate precisely why the error occurs, we walk through the example below.

1. a and b are multiplied; largest exponent of all terms is -1.
2. Each term is shifted to align their exponent to -1
3. a1b1 and a2b2 are accumulated, resulting in exactly 1 ↗ 2-24. This term is

not normalized.
4. 2-24 (a3b3) is added to the previous term, resulting in exactly 1.0, represented

internally as 2-1 · 21
5. 2-24 (a4b4) is added to the previous term resulting in 1.0 + 2-24, represented

as 2-1 · 21 + 2-23

6. At this point, O-Y’s method diverges from Markidis et al.
(a) 0.0 is added to 1.0 + 2-24

(b) 1.0+2-24 is normalized, yielding 1.0, as the lowest bit is lost in the shift.

16 B. Valpey et al.

(c) 1.0 is accumulated with 2-24 outside tensor cores. The result is 1.0.
7. In Markidis et al., c is accumulated inside the tensor cores

(a) 2-24 (c) is added to 1.0+2-24, resulting in 1.0+2-23, represented internally
as 2-1 for the exponent with 21 + 2-22 in the mantissa.

(b) The term is normalized, yielding 1.0 + 2-23

This experiment demonstrates precisely how the lack of normalization inside
tensor cores can lead to a result with less error. Fasi et al. [16, §D-2] also demon-
strated how normalization contributes to error with an experiment in which the
value 1↗ 2-24 is accumulated with four values, each 2-24. When partial sums are
normalized, the accumulation between 1↗2-24 and 2-24 would result in the value
of 1. After being normalized, the exponent di"erence between the accumulated
term and the remaining terms would cause the remaining additions to have no
e"ect in round-to-zero, as their sums would be shifted out. Instead, when the
intermediate sum is not normalized, none of the bits from the 2-24 terms are lost
and the final error is only 2-24.

7 Conclusions and Future Work

Using SMT, we formalized the properties of tensor cores and modeled their be-
havior across three generations. We showed how the in-progress specification and
an automated theorem prover could be used together to resolve contradictory ob-
servations obtained using solely test-based methods. While most of our findings
align with those of Fasi et al. [16], our model provided evidence that the round-
ing mode used for accumulation was simply truncation and Volta and Turing’s
5-term accumulator used three extra carry-out bits. Once the model was built,
we used it and an automated theorem prover to investigate two algorithms that
utilize tensor cores and examine claims about their relative accuracies, demon-
strating its usefulness of our model to algorithm designers.

The framework we established is fully parametric and future work can reuse
it to study the properties of tensor cores as they evolve across generations.
Preliminary experiments on Hopper GPUs (to which we lacked su!cient access
for thorough study), for instance, indicate that even more bits may be preserved
during significand alignment. Our model can also be adjusted to study di"erent
floating-point formats such as NVIDIA’s 8-bit exponent, 10-bit mantissa TF32
format, or the two FP8 formats supported on Hopper. Given that future HPC
hardware will likely be supported by non-standard hardware developed primarily
for AI (including especially Tensor Cores) [46], formalizations such as ours can
play a central role in supporting reliable scientific computing in the future. We
plan to develop formal support to analyze such algorithms using techniques
presented in this paper.

Acknowledgments.

We acknowledge the anonymous reviewers whose comments improved this work. This

work is supported in part by NSF Awards 2403379, 2346394, 2217154, and 2124100.

An SMT Formalization of Mixed-Precision Matrix Multiplication 17

Any opinions, findings and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

Disclosure of Interests.

The authors have no competing interests to declare that are relevant to the content of

this article.

Bibliography

[1] Appel, A., Kellison, A.: VCFloat2: Floating-Point Error Analysis in Coq.
In: Proceedings of the 13th ACM SIGPLAN International Conference on
Certified Programs and Proofs, pp. 14–29 (2024), https://doi.org/10.
1145/3636501.3636953

[2] Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Nor-
ton, R.M., Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark,
I., Krishnaswami, N., Sewell, P.: ISA semantics for ARMv8-a, RISC-v,
and CHERI-MIPS. Proceedings of the ACM on Programming Languages
3(POPL), 1–31 (jan 2019), ISSN 2475-1421, 2475-1421, https://doi.org/
10.1145/3290384

[3] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A.,
Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A
Versatile and Industrial-Strength SMT Solver. In: Fisman, D., Rosu, G.
(eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 13243, pp. 415–442, Springer (2022),
https://doi.org/10.1007/978-3-030-99524-9_24

[4] Blanchard, P., Higham, N.J., Lopez, F., Mary, T., Pranesh, S.: Mixed Pre-
cision Block Fused Multiply-Add: Error Analysis and Application to GPU
Tensor Cores. SIAM Journal on Scientific Computing 42(3), C124–C141
(2020), https://doi.org/10.1137/19M1289546

[5] Bohlender, G., Kulisch, U.: Comments on Fast and Exact Accumulation of
Products. In: Jónasson, K. (ed.) Applied Parallel and Scientific Computing,
pp. 148–156, Springer Berlin Heidelberg, Berlin, Heidelberg (2012), ISBN
978-3-642-28145-7, https://doi.org/10.1007/978-3-642-28145-7_15

[6] Boldo, S., Gallois-Wong, D., Hilaire, T.: A Correctly-Rounded Fixed-Point-
Arithmetic Dot-Product Algorithm. In: ARITH 2020 - IEEE 27th Sympo-
sium on Computer Arithmetic, pp. 9–16, IEEE, Portland, United States
(Jun 2020), https://doi.org/10.1109/ARITH48897.2020.00011

[7] Boldo, S., Melquiond, G.: Flocq: A Unified Library for Proving Floating-
Point Algorithms in Coq. In: 2011 IEEE 20th Symposium on Computer
Arithmetic, pp. 243–252 (2011), https://doi.org/10.1109/ARITH.2011.
40

[8] Brain, M., Schanda, F., Sun, Y.: Building Better Bit-Blasting for Floating-
Point Problems. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, pp. 79–98, Lecture Notes in
Computer Science, Springer International Publishing, Cham (2019), ISBN
978-3-030-17462-0, https://doi.org/10.1007/978-3-030-17462-0_5

https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-030-99524-9%5C_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1007/978-3-642-28145-7_15
https://doi.org/10.1007/978-3-642-28145-7_15
https://doi.org/10.1109/ARITH48897.2020.00011
https://doi.org/10.1109/ARITH48897.2020.00011
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1007/978-3-030-17462-0%5C_5
https://doi.org/10.1007/978-3-030-17462-0_5

An SMT Formalization of Mixed-Precision Matrix Multiplication 19

[9] Brain, M., Tinelli, C., Ruemmer, P., Wahl, T.: An Automatable Formal
Semantics for IEEE-754 Floating-Point Arithmetic. In: 2015 IEEE 22nd
Symposium on Computer Arithmetic, pp. 160–167 (2015), https://doi.
org/10.1109/ARITH.2015.26

[10] Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian,
R.: Daisy-Framework for Analysis and Optimization of Numerical Pro-
grams (Tool Paper). In: Tools and Algorithms for the Construction and
Analysis of Systems: 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceed-
ings, Part I 24, pp. 270–287, Springer (2018), https://doi.org/10.1007/
978-3-319-89960-2_15

[11] Darulova, E., Kuncak, V.: Sound Compilation of Reals. In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 235–248 (2014), https://doi.org/10.1145/
2535838.2535874

[12] Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Ro#u, G.: A Com-
plete Formal Semantics of x86-64 User-level Instruction Set Architecture.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 1133–1148, PLDI 2019, ACM,
New York, NY, USA (2019), ISBN 978-1-4503-6712-7, https://doi.org/
10.1145/3314221.3314601

[13] De Moura, L., Bjørner, N.: Z3: An E!cient SMT Solver. In: Proceedings
of the Theory and practice of software, 14th international conference on
Tools and algorithms for the construction and analysis of systems, pp. 337–
340, TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (mar 2008),
ISBN 978-3-540-78799-0, https://doi.org/10.5555/1792734.1792766

[14] Fang, B., Hari, S.K.S., Tsai, T., Li, X., Gopalakrishnan, G., Laguna, I.,
Barker, K., Li, A.: Towards Precision-Aware Fault Tolerance Approaches
for Mixed-Precision Applications. In: 2022 IEEE/ACM 12th Workshop on
Fault Tolerance for HPC at eXtreme Scale (FTXS), pp. 47–52, IEEE (2022),
https://doi.org/10.1109/FTXS56515.2022.00010

[15] Fasi, M., Higham, N.J., Lopez, F., Mary, T., Mikaitis, M.: Matrix Multi-
plication in Multiword Arithmetic: Error Analysis and Application to GPU
Tensor Cores. SIAM Journal on Scientific Computing 45(1), C1–C19 (2023),
https://doi.org/10.1137/21M1465032

[16] Fasi, M., Higham, N.J., Mikaitis, M., Pranesh, S.: Numerical Behavior of
NVIDIA Tensor Cores. PeerJ Computer Science 7, e330 (2021), https:
//doi.org/10.7717/peerj-cs.330

[17] Godefroid, P., Taly, A.: Automated Synthesis of Symbolic Instruction En-
codings from I/O Samples. SIGPLAN Not. 47(6), 441–452 (jun 2012), ISSN
0362-1340, https://doi.org/10.1145/2345156.2254116

[18] Goldberg, D.: What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Comput. Surv. 23(1), 5–48 (mar 1991),
ISSN 0360-0300, https://doi.org/10.1145/103162.103163

https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.1109/FTXS56515.2022.00010
https://doi.org/10.1109/FTXS56515.2022.00010
https://doi.org/10.1137/21M1465032
https://doi.org/10.1137/21M1465032
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.1145/2345156.2254116
https://doi.org/10.1145/2345156.2254116
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163

20 B. Valpey et al.

[19] Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of Nu-
merical Programs: From Real Numbers to Floating Point Numbers. In:
Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods, p. 441–446,
Springer Berlin Heidelberg, Berlin, Heidelberg (2013), ISBN 978-3-642-
38088-4, https://doi.org/10.1007/978-3-642-38088-4_31

[20] Haidar, A., Bayraktar, H., Tomov, S., Dongarra, J., Higham, N.J.: Mixed-
Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate
Solution of Linear Systems. Proceedings of the Royal Society A 476(2243),
20200110 (2020), https://doi.org/10.1098/rspa.2020.0110

[21] Hayes, A.B., Hua, F., Huang, J., Chen, Y., Zhang, E.Z.: Decoding CUDA
Binary. In: Proceedings of the 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization, p. 229–241, CGO 2019,
IEEE Press (2019), ISBN 9781728114361, https://doi.org/10.1109/
CGO.2019.8661186

[22] Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified Synthesis: Auto-
matically Learning the x86-64 Instruction Set. In: Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 237–250, PLDI ’16, ACM, New York, NY, USA (2016), ISBN
978-1-4503-4261-2, https://doi.org/10.1145/2908080.2908121, event-
place: Santa Barbara, CA, USA

[23] Hickmann, B.J., Bradford, D.: Experimental Analysis of Matrix Multipli-
cation Functional Units. 2019 IEEE 26th Symposium on Computer Arith-
metic (ARITH) pp. 116–119 (2019), https://doi.org/10.1109/ARITH.
2019.00031

[24] Hsiao, Y., Mulligan, D.P., Nikoleris, N., Petri, G., Trippel, C.: Synthe-
sizing Formal Models of Hardware from RTL for E!cient Verification of
Memory Model Implementations. In: MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, p. 679–694, MICRO ’21,
Association for Computing Machinery, New York, NY, USA (2021), ISBN
9781450385572, https://doi.org/10.1145/3466752.3480087

[25] IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008
pp. 1–70 (2008), https://doi.org/10.1109/IEEESTD.2008.4610935

[26] Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the NVIDIA
Volta GPU Architecture via Microbenchmarking (2018), https://doi.
org/10.48550/arXiv.1804.06826

[27] Jouppi, N.: Google Supercharges Machine Learning Tasks
with TPU Custom Chip (may 2016), URL https://
cloud.google.com/blog/products/ai-machine-learning/
google-supercharges-machine-learning-tasks-with-custom-chip

[28] Karpinski, R.: Paranoia: A Floating-Point Benchmark. Byte Magazine
10(2), 223–235 (Feb 1985), URL https://www.netlib.org/paranoia/

[29] Kim, B., Masuda, T., Shiraishi, S.: Test Specification and Generation for
Connected and Autonomous Vehicle in Virtual Environments. ACM Trans-
actions on Cyber-Physical Systems 4(1), 1–26 (2019), https://doi.org/
10.1007/978-3-642-20398-5_22

https://doi.org/10.1007/978-3-642-38088-4_31
https://doi.org/10.1007/978-3-642-38088-4_31
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1109/ARITH.2019.00031
https://doi.org/10.1109/ARITH.2019.00031
https://doi.org/10.1109/ARITH.2019.00031
https://doi.org/10.1109/ARITH.2019.00031
https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.48550/arXiv.1804.06826
https://doi.org/10.48550/arXiv.1804.06826
https://doi.org/10.48550/arXiv.1804.06826
https://doi.org/10.48550/arXiv.1804.06826
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip
https://www.netlib.org/paranoia/
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22

An SMT Formalization of Mixed-Precision Matrix Multiplication 21

[30] Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it Real: Ef-
fective Floating-Point Reasoning via Exact Arithmetic. In: 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–4,
IEEE (2014), https://doi.org/10.7873/DATE.2014.130

[31] Li, B.: tc"t. https://github.com/rox906/tcFFT (2024), accessed: 2024-
12-17

[32] Li, B., Cheng, S., Lin, J.: tc"t: A fast half-precision "t library for nvidia
tensor cores. In: 2021 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 1–11 (2021), https://doi.org/10.1109/Cluster48925.
2021.00035

[33] Li, X., Li, A., Fang, B., Swirydowicz, K., Laguna, I., Gopalakrishnan, G.:
FTTN: Feature-Targeted Testing for Numerical Properties of nvidia &
AMD Matrix Accelerators. In: 2024 IEEE/ACM 24th International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGrid), IEEE (2024),
https://doi.org/10.1109/CCGrid59990.2024.00014

[34] Lustig, D., Pellauer, M., Martonosi, M.: PipeCheck: Specifying and Veri-
fying Microarchitectural Enforcement of Memory Consistency Models. In:
2014 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 635–646, IEEE, Cambridge (dec 2014), ISBN 978-1-4799-6998-2,
https://doi.org/10.1109/MICRO.2014.38

[35] Lustig, D., Sethi, G., Martonosi, M., Bhattacharjee, A.: COATCheck:
Verifying Memory Ordering at the Hardware-OS Interface. In: Proceed-
ings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 233–247,
ACM, Atlanta Georgia USA (mar 2016), ISBN 978-1-4503-4091-5, https:
//doi.org/10.1145/2872362.2872399

[36] Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: CCICheck: Us-
ing µhb Graphs to Verify the Coherence-Consistency Interface. In: Pro-
ceedings of the 48th International Symposium on Microarchitecture, pp.
26–37, ACM, Waikiki Hawaii (dec 2015), ISBN 978-1-4503-4034-2, https:
//doi.org/10.1145/2830772.2830782

[37] Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.:
Nvidia Tensor Core Programmability, Performance & Precision. In: 2018
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 522–531, IEEE (2018), https://doi.org/10.1109/
ipdpsw.2018.00091

[38] Norman, C., Godbole, A., Manerkar, Y.A.: PipeSynth: Automated Synthe-
sis of Microarchitectural Axioms for Memory Consistency. In: Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, p. 513–527,
ASPLOS 2023, Association for Computing Machinery, New York, NY,
USA (2023), ISBN 9781450399180, https://doi.org/10.1145/3582016.
3582056

[39] NVIDIA: NVIDIA Tesla V100 GPU Architecture. whitepaper
WP-08608-001_v1.1, NVIDIA Corporation (Aug 2017), URL

https://doi.org/10.7873/DATE.2014.130
https://doi.org/10.7873/DATE.2014.130
https://github.com/rox906/tcFFT
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/CCGrid59990.2024.00014
https://doi.org/10.1109/CCGrid59990.2024.00014
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1145/2872362.2872399
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1145/3582016.3582056
https://doi.org/10.1145/3582016.3582056
https://doi.org/10.1145/3582016.3582056
https://doi.org/10.1145/3582016.3582056

22 B. Valpey et al.

https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf

[40] NVIDIA Corporation: cuda-binary-utilities (Mar 2024), URL
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_Binary_
Utilities.pdf

[41] NVIDIA Corporation: Cuda C++ Programming Guide (Mar 2024),
URL https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_C_
Programming_Guide.pdf

[42] NVIDIA Corporation: Inline PTX Assembly in CUDA (Mar 2024), URL
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/Inline_PTX_
Assembly.pdf

[43] NVIDIA Corporation: Parallel Thread Execution ISA Version 8.4 (Mar
2024), URL https://docs.nvidia.com/cuda/archive/12.4.0/pdf/ptx_
isa_8.4.pdf

[44] Ootomo, H., Yokota, R.: Recovering Single Precision Accuracy from Ten-
sor Cores While Surpassing the FP32 Theoretical Peak Performance. The
International Journal of High Performance Computing Applications 36(4),
475–491 (2022), https://doi.org/10.1177/10943420221090256

[45] Peleska, J., Vorobev, E., Lapschies, F.: Automated Test Case Generation
with SMT-solving and Abstract Interpretation. In: NASA Formal Methods:
Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings 3, pp. 298–312, Springer (2011), https://doi.org/
10.1007/978-3-642-20398-5_22

[46] Reed, D., Gannon, D., Dongarra, J.: HPC Forecast: Cloudy and Uncertain.
Communications of the ACM 66(2), 82–90 (2023)

[47] Rümmer, P., Wahl, T.: An SMT-LIB Theory of Binary Floating-Point
Arithmetic. In: International Workshop on Satisfiability Modulo Theories
(SMT), vol. 151 (2010)

[48] Schkufza, E., Sharma, R., Aiken, A.: Stochastic Optimization of Floating-
Point Programs with Tunable Precision. ACM SIGPLAN Notices 49(6),
53–64 (2014), https://doi.org/10.1145/2666356.2594302

[49] Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamari$, Z.,
Gopalakrishnan, G.: Rigorous Estimation of Floating-Point Round-o" Er-
rors with Symbolic Taylor Expansions. ACM Transactions on Programming
Languages and Systems (TOPLAS) 41(1), 1–39 (2018), https://doi.org/
10.1145/3230733

[50] Sun, W., Li, A., Geng, T., Stuijk, S., Corporaal, H.: Dissecting Tensor Cores
via Microbenchmarks: Latency, Throughput and Numeric Behaviors. IEEE
Transactions on Parallel and Distributed Systems 34(1), 246–261 (2022),
https://doi.org/10.1109/TPDS.2022.3217824

[51] Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An Abstract Inter-
pretation Framework for the Round-O" Error Analysis of Floating-Point
Programs. In: Dillig, I., Palsberg, J. (eds.) Verification, Model Checking,
and Abstract Interpretation, pp. 516–537, Springer International Publish-
ing, Cham (2018), ISBN 978-3-319-73721-8

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_Binary_Utilities.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_Binary_Utilities.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/Inline_PTX_Assembly.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/Inline_PTX_Assembly.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/ptx_isa_8.4.pdf
https://docs.nvidia.com/cuda/archive/12.4.0/pdf/ptx_isa_8.4.pdf
https://doi.org/10.1177/10943420221090256
https://doi.org/10.1177/10943420221090256
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1145/2666356.2594302
https://doi.org/10.1145/2666356.2594302
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1109/TPDS.2022.3217824
https://doi.org/10.1109/TPDS.2022.3217824

An SMT Formalization of Mixed-Precision Matrix Multiplication 23

[52] Trippel, C., Lustig, D., Martonosi, M.: CheckMate: Automated Synthe-
sis of Hardware Exploits and Security Litmus Tests. In: 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 947–960, IEEE, Fukuoka (oct 2018), ISBN 978-1-5386-6240-3, https:
//doi.org/10.1109/MICRO.2018.00081

[53] Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.:
TriCheck: Memory Model Verification at the Trisection of Software, Hard-
ware, and ISA. SIGARCH Comput. Archit. News 45(1), 119–133 (apr 2017),
ISSN 0163-5964, https://doi.org/10.1145/3093337.3037719

[54] Yan, D., Wang, W., Chu, X.: Demystifying Tensor Cores to Optimize
Half-Precision Matrix Multiply. In: 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 634–643 (2020), https:
//doi.org/10.1109/IPDPS47924.2020.00071

https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1145/3093337.3037719
https://doi.org/10.1145/3093337.3037719
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071

	An SMT Formalization of Mixed-Precision Matrix Multiplication

