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Linearized Brascamp–Lieb Inequalities
Thomas A. Courtade

University of California, Berkeley
Department of Electrical Engineering and Computer Sciences

email: courtade@berkeley.edu

Abstract—Combining Valdimarsson’s characterization of ex-
tremizers for the Brascamp–Lieb inequalities together with their
dual entropic form, a linearization argument reveals that sev-
eral well-known inequalities in probability can be viewed as
consequences of the Brascamp–Lieb inequalities. The resulting
“linearized Brascamp–Lieb inequalities” admit interpretation as
a sharp spectral gap inequality for a simple physical process.

I. INTRODUCTION

Fix a Euclidean space E, linear subspaces Ei ⇢ E, i =

1, . . . , k, a collection of linear maps B = (Bi : E ! Ei)
k

i=1,
and non-negative real numbers c = (ci)

k

i=1 ⇢ (0, 1). The pair
(B, c) is called a (Brascamp–Lieb) datum. The Brascamp–Lieb
inequalities [3], [4] take the form

Z

E

kY

i=1

(fi � Bi)
ci  eBL(B,c)

kY

i=1

✓Z

Ei

fi

◆ci

, (1)

where the Brascamp–Lieb constant BL(B, c) is defined to be
the smallest constant such that (1) holds for all non-negative
fi 2 L1

(Ei), i = 1, . . . , k. Here, the integrals are with respect
to Lebesgue measure, and a theorem of Lieb [15] is that
BL(B, c) can be computed by considering centered Gaussian
functions (fi)

k

i=1.
For a linear subspace V ⇢ E, we let PV : E ! E denote

the orthogonal projection of E onto V . A datum (B, c) is said
to be geometric if B⇤

i
Bi = PEi for each i = 1, . . . , k, and the

following frame condition holds:
kX

i=1

ciPEi = idE . (2)

When (B, c) is geometric, we have BL(B, c) = 0 [1].
For a given datum (B, c), inequality (1) is said to be

extremizable if there exist admissible (fi)
k

i=1 such that (1)
is met with equality. Modulo an equivalence relation that
amounts to a linear change of variables, it is known that all
extremizable data are equivalent to geometric data [1], and the
extremizers in this case have been completely characterized by
Valdimarsson [18].

For a Euclidean space E, let M(E) denote the set of Borel
probability measures on E, absolutely continuous with respect
to Lebesgue measure. For µ 2 M(E) with density dµ = fdx,
We define the (Shannon) entropy

h(µ) = �
Z

E

f log fdx,
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provided the integral exists in the Lebesgue sense. Carlen and
Cordero-Erausquin [8] observed the following dual formula-
tion of the Brascamp–Lieb inequalities: For every µ 2 M(E)

with finite entropy,

h(µ) 
kX

i=1

cih(Bi#µ) + BL(B, c), (3)

where # denotes the usual pushforward operation. We say that
(3) is extremizable if there exists µ 2 M(E) such that (3) is
an equality, and all entropies therein are finite; such a µ is
called an extremizer. As one expects, (3) is extremizable if
and only if (1) is extremizable. Hence, we can simply refer to
the datum (B, c) as being extremizable without confusion.

Recall that for two probability measures ⌫, µ 2 M(E), the
relative entropy is defined as

D(⌫kµ) :=

(R
E

log(
d⌫

dµ
)d⌫ if ⌫ ⌧ µ

+1 otherwise.

Having recalled all of the above, we can now state a
variation of the Brascamp–Lieb inequalities involving relative
entropies, for reference measure equal to an extremizer of (3).

Theorem 1. Let (B, c) be extremizable, and µ 2 M(E) an
extremizer in (3). For any ⌫ 2 M(E), we have

kX

i=1

ciD(Bi#⌫kBi#µ)  D(⌫kµ). (4)

A linearization argument leads to the following family of
variance inequalities, which is the subject of this note.

Theorem 2. Let (B, c) be extremizable, and µ 2 M(E) an
extremizer in (3). For X ⇠ µ and integrable ' : E ! R,

kX

i=1

ci Var(E['(X)|BiX])  Var('(X)). (5)

In order to apply (5) in practice, we need two things: (i) a
characterization of extremizable data; and (ii) a characteriza-
tion of extremal µ 2 M(E) in (3). The first has been already
addressed, and in particular, it suffices to consider geometric
data, which are concisely characterized by the frame condition
(2). The second can also be addressed easily enough. In
particular, Valdimarsson’s characterization of extremal (fi)

k

i=1

in (1) can be translated to a neat characterization of extremal
µ in (3). To state it, let µ 2 M(E), and let µEi (resp. µ

E
�
i

)
denote the marginal of µ on Ei (resp. E?

i
). We say that µ splits
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along (Ei, E?

i
) if we have the decomposition µ = µEi ⌦µ

E
�
i

.
In other words, µ splits along (Ei, E?

i
), if it is product with

respect to the orthogonal decomposition E = Ei � E?

i
.

The following can be distilled from Valdimarsson’s charac-
terization of extremal (fi)

k

i=1 in (1), and provides a satisfactory
answer to the second issue noted above.

Proposition 1. Let (B, c) be geometric, and let µ 2 M(E)

have finite entropy. The following are equivalent:
1) µ is an extremizer in (3);
2) µ splits along (Ei, E?

i
) for each i = 1, . . . , k.

We remark that Valdimarsson [18] actually leads to a more
explicit characterization of extremal µ than above (roughly
speaking, an extremal µ has a rigid factorization into inde-
pendent components, with some factors chosen freely, and
others isotropic Gaussians). However, for our purposes, the
characterization in Proposition 1 suffices, and is easily stated.

We thus arrive at the following simple and explicit state-
ment, which we call linearized Brascamp–Lieb inequalities.

Corollary 1 (Linearized Brascamp–Lieb inequalities). Let c

and (Ei)
k

i=1 satisfy the frame condition (2). If X has law
that splits along (Ei, E?

i
) for each i = 1, . . . , k, then for all

integrable ' : E ! R,
kX

i=1

ci Var(E['(X)|PEiX])  Var('(X)). (6)

The remainder of this note is organized as follows. Section
II illustrates a few applications of (6) to inequalities in prob-
ability. Section III explains how (6) may be interpreted as a
sharp spectral gap inequality. Section IV contains the proofs,
and Section V gives some brief concluding remarks.

II. APPLICATIONS

It’s well-known that the Brascamp–Lieb inequalities (1)
contain many classical analytic and geometric inequalities
(e.g., the Hölder, Young, and Loomis–Whitney inequalities),
and their dual formulation (3) can be seen as generalizing
the information-theoretic inequality known as subadditivity of
entropy. All of these applications require only the evaluation
of BL(B, c), which can be accomplished in practice due to
the Gaussian saturation property. By incorporating the char-
acterization of extremizers into the picture, we obtain (4) and
(5). As a consequence, we find that a variety of probabilistic
inequalities may also be obtained from the Brascamp–Lieb
inequalities. Toward that end, let us now demonstrate some
special cases of the linearized Brascamp–Lieb inequalities.

Example 1 (Efron–Stein inequality [13], [17]). Let X =

(Xi)
k

i=1 be a random vector with independent components
(Xi)

k

i=1, and define

X(i)
= (X1, . . . , Xi�1, Xi+1, . . . Xk).

For any measurable ' with Var('(X)) < 1,

Var('(X)) 
kX

i=1

E[Var('(X)|X(i)
)]. (7)

Proof. We can assume X takes values in E, and choose Ei

such that Xi is the component of X in E?

i
. This implies the

orthogonal decomposition E = �k

i=1E
?

i
, which yields the

frame condition

1

k � 1

kX

i=1

PEi = idE .

By the independence hypothesis, the law of X splits along
(Ei, E?

i
) for each i = 1, . . . , k, and therefore (7) follows

from (6) by invoking the classical variance decomposition
Var('(X)) = E[Var('(X)|Y )]+Var(E['(X)|Y ]) with Y =

X(i).

More generally, the classical variance decomposition can be
applied directly to (6) to obtain a generalized version of the
Efron–Stein inequality. We’ll return to this in our interpretation
of (5) as a spectral gap inequality in Section III.

Example 2 (Dembo–Kagan–Shepp inequality [12]). Let
(Xi)i�1 be a sequence of i.i.d. random vectors, and define
Sn =

P
n

j=1 Xj . If function g satisfies E[g(Sn)] < 1, then

Var(E[g(Sn)|Sm])  m

n
Var(g(Sn)), n � m � 1. (8)

Proof. For simplicity of notation, we’ll assume each Xi is one-
dimensional. Consider the random vector X = (X1, . . . , Xn)

taking values in E := Rn, with Xj the projection of X along
natural basis vector ej , j = 1, . . . , n. Take (Ei)

k

i=1 be an
enumeration of all k =

�
n

m

�
subspaces of E, equal to the linear

span of exactly m natural basis vectors. By construction, X
splits along (Ei, E?

i
), and the frame condition (2) holds with

ci =
n

m
/
�

n

m

�
for each i. By symmetry, E[g(Sn)|PEiX] are

equal in law for each i = 1, . . . , k. So, an application of (6)
with '(X) = g(Sn) gives

Var(E[g(Sn)|X1, . . . , Xm])  m

n
Var(g(Sn)), n � m � 1.

The claim follows since Sm is a sufficient statistic of
(X1, . . . , Xm) for Sn.

By L2 duality, (5) is equivalent to the following “variance
drop” inequality.

Corollary 2 (Variance Drop1). Let the notation and assump-
tions of Theorem 2 prevail. For any real-valued  i : BiX 7!
 i(BiX) with finite variance,

Var

 
kX

i=1

ci i(BiX)

!


kX

i=1

ci Var ( i(BiX)) . (9)

Moreover, this is equivalent to (5).

It is tempting to regard (9) as a consequence of Jensen’s
inequality applied to convexity of variance. To see that it is
not, assume without loss of generality that (B, c) is geometric.
Taking traces of the frame condition implies

P
k

i=1 ci  1, with

1Inequality (9) can be obtained by applying (1) to functions fi = e��i f̃i,
for extremal (f̃i)k

i=1 and vanishing ✏. However, the interpretation of f̃i as
the marginal density of Bi#µ for some meaningful µ only becomes apparent
upon inspection of passage between (1) and (3) via duality.
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equality only in the case where Ei = E for every i. In this
latter case, every X is an admissible extremizer. Hence, (9) is a
strict improvement of Jensen’s inequality except in degenerate
cases.

Proof. To see that (5) implies (9), put ' :=
P

k

i=1 ci i � Bi.
Applying Cauchy-Schwarz twice followed by (5), we have

Var('(X))

=

kX

i=1

ci Cov(E['(X)|BiX], i(BiX))


kX

i=1

ci Var (E['(X)|BiX])
1/2

Var ( i(BiX))
1/2


 

kX

i=1

ci Var (E['(X)|BiX])

!1/2 
kX

i=1

ci Var ( i(BiX))

!1/2

 Var ('(X))
1/2

 
kX

i=1

ci Var ( i(BiX))

!1/2

.

To see the reverse implication (9) )(5), observe that

kX

i=1

ci Var(E['(X)|BiX])

=

kX

i=1

ci Cov('(X), E['(X)|BiX])

 Var('(X))
1/2

Var

 
kX

i=1

ciE['(X)|BiX]

!1/2

 Var ('(X))
1/2

 
kX

i=1

ci Var (E['(X)|BiX])

!1/2

,

where the first inequality is Cauchy–Schwarz, and the second
follows from (9) with  i(BiX) = E['(X)|BiX].

As a special case, we recover an inequality due to Madiman
and Barron [16], which is itself a generalization of a classical
result on U -statistics due to Hoeffding [14]. To state it, recall
that T ⇢ 2

[n] is said to be an r-cover of [n] := {1, . . . , n} if
each element of [n] is contained in exactly r members of T .

Example 3 (Madiman–Barron inequality [16]). Let X =

(Xm)
n

m=1 be a collection of n independent random random
vectors, and let (Si)

k

i=1 ⇢ 2
[n] be an r-cover of [n]. For any

real-valued  i : BiX 7!  i(BiX) with finite variance,

Var

 
kX

i=1

 i(XSi)

!
 r

kX

i=1

Var ( i(XSi)) , (10)

where XSi := (Xm)m2Si .

Proof. Let E be the space in which the random vector X =

(X1, . . . , Xn) takes values. Consider the geometric datum with
ci = 1/r and Ei equal to the subspace of E in which the
coordinate XSi lives, and apply (9).

We’ve focused this section on implications of (5), but we
emphasize that the relative entropy inequalities (4) also contain
useful results. To give a quick example, we note that Shearer’s
inequality corresponds to the case where (B, c) is geometric,
and µ has suitable product structure.

Example 4 (Shearer’s inequality [10]). Let E admit an orthog-
onal decomposition E = �n

m=1Vm, and let µ = µ1 ⌦ · · ·⌦µn

enjoy product structure with respect to this decomposition
(µm is a probability measure on Vm, m = 1, . . . , n). Fix a
collection of subsets (Si)

k

i=1 ⇢ 2
[n]. If c = (ci) ⇢ (0, 1)

k

i=1

satisfies
P

i:Si�m
ci = 1 for each m = 1, . . . , n, then for all

probability measures ⌫
kX

i=1

ciD(⌫SikµSi)  D(⌫kµ), (11)

where µSi (resp. ⌫Si ) denotes the marginal of µ (resp. ⌫) on
�m2SiVi.

Proof. Put Ei = �m2SiVi, and note that
P

i:Si�m
ci = 1

coincides with the frame condition (2). Thus, the claim follows
from (4).

Remark 1. The most common statement of Shearer’s inequal-
ity assumes (Si)

k

i=1 is an r-cover of [n], and has all (ci)
k

i=1

equal to 1/r. However, inequality (11) can be regarded as
a simple self-strengthening obtained by iteration. A weighted
version of (10) also appears in [16].

Remark 2. In the terminology of Valdimarsson [18], Shearer’s
inequality (11) corresponds to (4) in the special case of a
geometric datum (B, c) with no “dependent subspace”.

The author has previously observed that the Dembo–Kagan–
Shepp inequality and the Madiman–Barron inequality can be
derived directly by linearizing Shearer’s inequality [11], as
can be the Efron–Stein inequality. Of course, each of these
classical inequalities has its own direct proof by ad hoc
arguments. Nevertheless, these examples are worth repeating
to emphasize their interpretation as special cases of linearized
Brascamp–Lieb inequalities. The following is a simple explicit
example of a linearized Brascamp–Lieb inequality that is not
a linearization of Shearer’s inequality.

Example 5. Let X ⇠ N(0, idR2), and let (ui)
3
i=1 ⇢ R2

be equiangular unit vectors (i.e., uT

i
ui = 1 and uT

i
ui0 =

cos(2⇡/3) = �1/2 for i 6= i0). For any integrable ',
3X

i=1

Var(E['(X)|uT

i
X])  3

2
Var('(X)).

III. SPECTRAL GAP INTERPRETATION

We’ve seen how several inequalities in probability follow
as special cases of the linearized Brascamp–Lieb inequalities.
Now, we turn attention to the most general statement of
the linearized Brascamp–Lieb inequalities and give a simple
physical interpretation, inspired by the folklore interpretation
of the Efron–Stein inequality as a Poincaré (or, spectral gap)
inequality. Toward this end, for a linear subspace V ⇢ E
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and x 2 E, write x = (xV , xV �), where xV := PV x, and
xV � := PV �x = (idE �PV )x.

Consider an experiment where two particles of equal mass
and respective velocities x, x0 2 E undergo an elastic colli-
sion. By conservation of energy and momentum, the particles
necessarily exchange velocity components on some subspace
V . That is, the post-collision velocities of the first and second
particles are, respectively:

x+ = (x0

V
, xV �), and x0

+ = (xV , x0

V �).

Suppose we now adopt a probabilistic collision model in
which the subspace V is randomly chosen from some set
{V1, . . . , Vk}, with respective probabilities p1, . . . , pm. Then,
given pre-collision velocities x, x0, the expected change of
velocity imparted to the first particle through collision is

�v(x, x0
) =

kX

i=1

pjPVi(x
0 � x).

If the incoming velocities x, x0 undergo a common orthogonal
transformation, then a natural physical constraint imposed on
the model is that the expected change in velocity �v(x, x0

)

should undergo the same orthogonal transformation. That is,
we require �v to satisfy �v(Ux, Ux0

) = U�v(x, x0
) for all

x, x0 2 E and orthogonal U : E ! E. Using definitions, this
invariance implies that there must exist some � 2 R such that

kX

i=1

piPVi = � idE .

Moreover, it is easy to check that 0  �  1, with equality
only in the trivial cases where Vi = {0} for every i (non-
interacting particles), or where Vi = E for every i (particles
completely exchange velocities).

Now, let µ be a probability measure on E, and consider a
stochastic process (X(t); t � 0) where a particle with initial
velocity X(0) is placed in contact with a bath containing
particles with velocities distributed i.i.d. according to µ, and
collisions between our particle and particles in the bath occur
at rate 1, according to a Poisson point process. Note that if a
collision happens at time t, the post-collision velocity of our
particle will be

X(t+) = (X 0

Vi
, X

V
�

i
(t�)) with probability pi, 1  i  k,

where X 0 ⇠ µ is independent of the pre-collision velocity
X(t�) of the particle of interest. Assuming the bath is in
equilibrium, the background measure µ must be invariant under
these dynamics, which is true if and only if it splits along each
(Vi, V ?

i
), i = 1, . . . , k.

The linearized Brascamp–Lieb inequalities can be inter-
preted as a spectral gap inequality for this stochastic process.
Indeed, define Ei := V ?

i
and ci :=

pi

1��
, which can be checked

to satisfy the frame condition (2). For X ⇠ µ, the linearized
Brascamp–Lieb inequalities can be rewritten as

Var('(X))  1

�

kX

i=1

piE[Var('(X)|X
V

�
i

)],

by the classical variance decomposition. Thus, in general, the
linearized Brascamp–Lieb inequalities coincide with the sharp
Poincaré inequality for the described dynamics.

The inequality (4) can similarly be interpreted as governing
convergence to equilibrium, but in the stronger sense of relative
entropy. In our setting, (4) can be written as

kX

i=1

piD(µVi ⌦ ⌫
V

�
i

kµ)  (1 � �)D(⌫kµ), (12)

where µVi and ⌫
V

�
i

denote the marginals of µ and ⌫ on Vi

and V ?

i
, respectively. If our particle has pre-collision velocity

with law ⌫, then the post-collision velocity of the particle
will have µVi ⌦ ⌫

V
�

i
with probability pi, and therefore the

law of the post-collision velocity averaged over the collision
model is the mixture ⌫+ :=

P
k

i=1 µVi ⌦ ⌫
V

�
i

. By convexity
of relative entropy, the above inequality implies D(⌫+kµ) 
(1 � �)D(⌫kµ), demonstrating a strict trend to equilibrium
in relative entropy with each collision. Since we assume
collisions occur at rate 1, if our particle has initial velocity
with law ⌫0 and (⌫t)t�0 denotes the evolution of ⌫0 along
these dynamics, an application of Grönwall’s lemma yields
the exponential decay of entropy

D(⌫tkµ)  e��tD(⌫0kµ), t � 0.

Remark 3. There seems to be no fundamental reason to
limit ourselves to a discrete set of collision possibilities.
For example, if E = Rn, we could take the frame to be
{Pspan{�};� 2 Sn�1}, equipped with the uniform measure on
Sn�1. This would give spectral gap � = 1/n, and the unique
invariant measures are the isotropic Gaussians.

IV. PROOFS

The hard work has already been done by Bennett, Car-
bery, Christ and Tao [1], Valdimarsson [18], and Carlen and
Cordero-Erausquin [8]. We only need to point out how the
ingredients fit neatly together. We only sketch the proofs due
to space constraints.

Proof of Proposition 1. Let (B, c) be geometric. As observed
in [8, Theorem 2.2], inspection of the duality argument that
allows passage between (1) and (3) reveals that µ is an
extremizer in (3) if and only if it admits a density f satisfying

f =

kY

i=1

(fi � Bi)
ci , (13)

where fi denotes the density of Bi#µ. Moreover, if (13)
holds, the marginal densities (fi)

k

i=1 will be extremizers in
(1). Now, the asserted splitting property can be obtained from
the splitting property in Valdimarsson’s characterization of
extremizers for (1) in geometric settings [18].

With the identity (13) already noted, Theorem 1 follows
easily.

Proof of Theorem 1. All extremizable data are equivalent to
geometric data by a linear change of variables. Hence, by the
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data processing property of relative entropy, we may assume
(B, c) is geometric without any loss of generality.

To prove (4), it clearly suffices to assume D(⌫kµ) < 1,
since otherwise the claim is trivial; note that this implies ⌫ ⌧
µ, and also D(Bi#⌫kBi#µ) < 1 for each i by the data
processing inequality. Now, let dµ = fdx, and write

D(⌫kµ) = �h(⌫) +

Z
log fd⌫

� �
kX

i=1

ci

✓
h(Bi#⌫) +

Z
log(fi � Bi)d⌫

◆

= �
kX

i=1

ci

✓
h(Bi#⌫) +

Z
log(fi)d(Bi#⌫)

◆

=

kX

i=1

ciD(Bi#⌫kBi#µ),

where the first and last lines are definitions, the inequality
follows from (3) and (13), and the penultimate line follows
from the definition of pushforward.

The standard program for deriving a spectral gap inequality
from an entropy inequality is to linearize it to reveal the
local behavior (see, e.g., [9]). Toward that end, recall that the
relative entropy of P ⌧ Q can be written as D(PkQ) =R

dP

dQ
log

⇣
dP

dQ

⌘
dQ. Therefore, if P is a perturbation of Q in

the sense that dP = (1+✏')dQ for a bounded function ' and ✏
sufficiently small, then Taylor expansion of x 2 R+ 7! x log x
about x = 1 gives the local behavior of relative entropy

D(PkQ) =
✏2

2
VarQ(') + o(✏2),

where the first-order term is absent since ' necessarily satisfiesR
'dQ = 0 for P to be a probability measure.

Proof of Theorem 2. It suffices to assume ' is bounded, since
the general statement follows by localization. Thus, let X ⇠ µ
be an extremizer in (3), assume

R
'dµ = 0 and define dµ✏ :=

(1 + ✏')dµ, which is a valid probability measure for all ✏
sufficiently small. Definitions imply

d(Bi#µ✏) = (1 + ✏E['(X)|BiX])d(Bi#µ),

where E['(X)|BiX] is the conditional expectation of '(X)

with respect to the �-algebra generated by BiX . Thus, by
linearization and Theorem 1, we have

✏2

2

kX

i=1

ci Var(E['(X)|BiX]) + o(✏2)

=

kX

i=1

ciD
�
Bi#µ✏

��Bi#µ
�

 D(µ✏kµ) =
✏2

2
Var('(X)) + o(✏2).

Dividing through by ✏2 and letting ✏ � 0 completes the proof.

In view of Proposition 1 and Theorem 2, Corollary 1 holds
whenever µ is absolutely continuous with respect to Lebesgue
measure and has finite entropy. It is straightforward to extend
the statement to the case when either (or both) of these
qualifications do not hold.

V. CLOSING REMARKS

The duality between functional Brascamp–Lieb inequalities
and their entropic form continues to hold in abstract settings.
The transference principle of extremizers introduced here to
obtain inequalities of the type (4) continues to apply. This
suggests many interesting questions. For example, do the
Shearer-type inequalities for non-product measures in [2], [5]–
[7] fit into the context of Brascamp–Lieb-type inequalities on
suitable spaces, as happens with Sn [9]? Does an approximate
form of (4) hold when µ is a near-extremizer in a quantitative
sense? Answers could lead to a systematic development of
spectral gap inequalities for interesting classes of processes.

Acknowledgement: The author thanks Efe Aras, Pietro Caputo,
and Max Fathi for stimulating conversations.
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