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effective tutoring strategies tailored to student needs. The ABM Num_Out A 4 Table 4: Input Parameters to Review Legitimacy of the Model

quantifies the number of students who are likely to pass a
course based on a minimum threshold for comprehension. With review | | g
the objective of lowering the D-F-Withdraw (DFW) rate, a new
metric is introduced for identifying how cost effective a selected _ e
number of tutors would be at supporting the filling of —
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Input Parameters

num-cells 70 72 122 121

measuring thresholds limits for staffing purposes as shown in Figure 2: The Base-Model Using NetLogo
Figure 1. Table 2: Input Model Parameters num-TAs 1 2 3 3
Input Variables Description
num-cells Number of students is dynamic to user preference num-topics 5 5 5 5
. The average satisfactory comprehension on quizzes in
.' I percentage_comprehension
, the course
Student takes i num-TAs User specified number ofg'g?)ss to remediate knowledge S, . . : :
assessment =Y between_new_topics
fp n —_ -X num-topics Number of major topic assessments, such as quizzes
' ® rP y= Sessions-between-new- Number of tutoring/ remediation sessions between
’) .& : = = Course Grades topics major topic in course Identifying optimal number of tutors for the Spring 2022 semester
Sthdent receives Student min_average_in_course Minimum percentage value to pass the course configuration
. : d Min_A Minimum percentage in a course to receive an “A”
remediation receives graae 70
/ r? \_/ hourly_rate_per_tutor Hourly dollar payrate for a_teaching assistant (tutor)
. 62.5
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Figure 1: Traditional Remediation-Based Framework. num-green Number of students that fully comprehended all topics 20 — —
. Number of students that do not fully comprehend all topics 43.75
num-yellow 40
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required in the course 30 =i=Average # of DFW's
Need fo.r Qua.ntlfy.ln.g Optl.mal TA Staffl.ng o . average_dfw Average “num_out” value over 100 runs of the simulation " —e— Remediation Cost per Supported
Automating of identifying optimal TA allocation within higher- | Students
ed courses total_monatary_cost | The total cost to pay all the tutors for all the hours worked y 18.75 :
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support the filling of knowledge gaps presented in Figure 4
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Agent-Based Model via NetLogo .
Utilization of NetLogo provides a visual and easily append able EXpe rime nta I SEtU p

model to be a general tool for various course configurations ] .
shown in Figure 2 and supported with Algorithm 1 Course Selection: The research focuses on a required Table 5: Statistical Analysis on the Four Observed Semesters
ECE undergraduate course, which is identified as

i i having high DFW rates, making it an ideal candidat
Research Contributions aving high DFW rates, making it an ideal candidate e ———————

for testing the effectiveness of teaching assistant

Figure 4: |dentifying the Ideal Number of Tutors for the Spring 2022 Semester
for the EEL3801 Computer Organization course at large state university in USA

Confidence Interval at 95% DFW

Predictive Modeling: The study develops an agent-based model support. Spring 2022 3.908 4.532 4
(ABM) that successfully estimates the number of students at risk Model Parameters: The ABM considers various
of fa.iling or warning in a required ECE unc?le.rgraduate course, parameters such as student population, instructor AIEL ke Sy L2l E =
offering a valuable tool for instructors to anticipate and mitigate teaching style, and grading scheme to simulate the Fall 2022 12.356 13.364 14
student struggles. The estimations are presented in Figure 3 & | : g dict student '
listed within Table 5. cdrning Process and predict student -outcomes. Spring 2023 8.881 9.768 10
Teaching Assistant Effectiveness: The research demonstrates Which can be realized in Table 1 and parameters
that increasing the number of teaching assistants can listed in Table 2, & 3 c I -
significantly reduce the number of DFW students and identifies Simulation and Evaluation: The model is applied to a Onc US|ons
an optimal threshold limit on TAs per course configuration four-semester period listed in Table 5, with three out Predictive Power
(listed in Table 4), providing actionable insights for instructors to of four semesters'’ DFW student numbers bein _ _
enhance support services. | Ve . g The agent-based model developed in this study
Cost-Benefit_Analysis: The study introduces a Relative Cost- successfully predicted within a magnitude of one, demonstrates predictive power in forecasting student
Student Support (RCSS) metric to measure the cost-effectiveness allowing for a comprehensive evaluation of its outcomes, providing instructors with a valuable tool to
of employing tutors, offerl.ng ms’Fltutlons.. a data-.drlven approa.\ch predictive capabilities. anticipate and mitigate student struggles.
to allocate resources and invest in tutoring services that provide . . .
. . . o Tutoring Services Effectiveness
a clear financial benefit shown in Figure 4. Model vs Real Data T : :
2 The research highlights the effectiveness of tutoring
Table 1: Spring 2022 Semester Gradebook Statistics for Base Model Selection services in reducing DFW rates and improving student
Quizl Quiz2 Quiz3 Midterm1l Midterm 2 Final Average 16 . . . . .
Minimum passing | = | 1o | 1. . - . ) outcomes, offering institutions a data-driven approach to
grade on quiz 12 allocate resources and invest in support services.
# above passing 49 49 46 36 32 22 . .
grade 10 Future Research Directions
# of students in 70 70 70 70 70 70 8 ] o
course 6 Future work is suggested to explore threshold limits on
Average # of . . . . .
student'sabove | 70 | 70 | 65714 | 51429 | 45714 | 31429 | 55.7143 s teaching assistants, cost-effectiveness analysis of different
_Passing grace. - 0 tutoring models, and quantifying student, instructor, and
e - Spring 202 Summer 2022 Fall 2022 Spring 2023 tutor behaviors to further enhance the predictive
Average#of o —@—Predicted DFWValue =~ —e—Actual DFW Value Capabi“ties Of the ABM.
tutoring sessions/TA ' Figure 3: Model Predictions Compared to Real Values
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