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Abstract

Diffusion models have become the go-to method
for large-scale generative models in real-world ap-
plications. These applications often involve data
distributions confined within bounded domains,
typically requiring ad-hoc thresholding techniques
for boundary enforcement. Reflected diffusion
models [Lou and Ermon, 2023] aim to enhance
generalizability by generating the data distribu-
tion through a backward process governed by re-
flected Brownian motion. However, reflected dif-
fusion models may not easily adapt to diverse
domains without the derivation of proper diffeo-
morphic mappings and do not guarantee optimal
transport properties. To overcome these limitations,
we introduce the Reflected Schrödinger Bridge
algorithm—an entropy-regularized optimal trans-
port approach tailored for generating data within
diverse bounded domains. We derive elegant re-
flected forward-backward stochastic differential
equations with Neumann and Robin boundary con-
ditions, extend divergence-based likelihood train-
ing to bounded domains, and explore natural con-
nections to entropic optimal transport for the study
of approximate linear convergence—a valuable in-
sight for practical training. Our algorithm yields
robust generative modeling in diverse domains,
and its scalability is demonstrated in real-world
constrained generative modeling through standard
image benchmarks.

1 INTRODUCTION

Iterative refinement is key to the unprecedented success of
diffusion models. They exhibit statistical efficiency [Koehler
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et al., 2023] and reduced dimensionality dependence [Vono
et al., 2022], driving innovation in image, audio, video, and
molecule synthesis [Dhariwal and Nichol, 2022, Ho et al.,
2022, Hoogeboom et al., 2022, Bunne et al., 2023]. How-
ever, diffusion models do not inherently guarantee optimal
transport properties [Lavenant and Santambrogio, 2022]
and often result in slow inference [Ho et al., 2020, Salimans
and Ho, 2022, Lu et al., 2022]. Furthermore, the consistent
reliance on Gaussian priors imposes limitations on the appli-
cation potential and sacrifices the efficiency when the data
distribution significantly deviates from the Gaussian prior.

The predominant method for fast inference originates from
the field of optimal transport (OT). Notably, the (static) iter-
ative proportional fitting (IPF) algorithm [Kullback, 1968,
Ruschendorf, 1995] addresses this challenge by employing
alternating projections onto each marginal distribution. This
algorithm has showcased impressive performance in low-
dimensional contexts [Chen and Georgiou, 2016, Pavon
et al., 2021, Caluya and Halder, 2022]. In contrast, the
Schrödinger bridge (SB) problem [Léonard, 2014] intro-
duces a principled framework for the dynamic treatment of
entropy-regularized optimal transport (EOT) [Villani, 2003,
Peyré and Cuturi, 2019]. Recent advances [De Bortoli et al.,
2021, Chen et al., 2022b] have pushed the frontier of IPFs
to (ultra-)high-dimensional generative models using deep
neural networks (DNNs) and have generated straighter tra-
jectories; Additionally, SBs based on Gaussian process [Var-
gas et al., 2021] demonstrates great promise in robustness
and scalability; Bridge matching methods [Shi et al., 2023,
Peluchetti, 2023] also offers promising alternatives for solv-
ing complex dynamic SB problems.

Real-world data, such as pixel values in images, often ex-
hibits bounded support. To address this challenge, a com-
mon practice involves the use of thresholding techniques
[Ho et al., 2020] to guide the sampling process towards
the intended domain of simple structures. Lou and Ermon
[2023] introduced reflected diffusion models that employ
reflected Brownian motion on constrained domains such
as hypercubes and simplex. However, constrained domains
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on general Euclidean space with optimal transport guaran-
tee are still not well developed. Moreover, Lou and Ermon
[2023] relies on a uniform prior based on variance-exploding
(VE) SDE to derive closed-form scores, and the popular
variance-preserving (VP) SDE is not fully exploited.

To bridge this gap, we propose the Reflected Schrödinger
Bridge (SB) to model the transport between any smooth
distributions with bounded support. We derive novel re-
flected forward-backward stochastic differential equations
(reflected FB-SDEs) with Neumann and Robin boundary
conditions and extend the divergence-based likelihood train-
ing to ensure its confinement within any smooth bound-
aries. We further establish connections between reflected
FB-SDEs and EOT on bounded domains, where the lat-
ter facilitates the theoretical understanding by analyzing
the convergence of the dual, potentials, and couplings on
bounded domains. Notably, our analysis provides the first
non-geometric approach to study the uniform-in-time sta-
bility w.r.t. the marginals and is noteworthy in its own right.
We empirically validate our algorithm on 2D examples and
standard image benchmarks, showcasing its promising per-
formance in generative modeling over constrained domains.
The flexible choices on the priors allow us to choose freely
between VP-SDE and VE-SDE.

2 RELATED WORKS

Constrained Sampling Bubeck et al. [2018] studied the
convergence of Langevin Monte Carlo within bounded do-
mains. His work revealed a polynomial sample time for log-
concave distributions, which is later extended to non-convex
settings by Lamperski [2021]. Furthermore, the exploration
of constrained sampling in challenging scenarios with ill-
conditioned and non-smooth distributions was explored by
Kook et al. [2022], who leveraged Hamiltonian Monte Carlo
techniques. Other constrained sampling works include prox-
imal Langevin dynamics [Brosse et al., 2017] and mirrored
Langevin dynamics [Hsieh et al., 2018].

Constrained Generation De Bortoli et al. [2022], Huang
et al. [2022] studied the extension of diffusion models
on Riemannian manifolds, and the convergence is further
analyzed by De Bortoli [2022]. This groundwork subse-
quently motivated follow-up research, including implicit
score-matching loss via log-barrier methods and reflected
Brownian motion [Fishman et al., 2023] and Schrödinger
bridge [Thornton et al., 2022] on the Riemannian mani-
fold. Alternatively, drawing inspiration from the popular
thresholding technique in real-world diffusion applications,
Lou and Ermon [2023] proposed to train explicit score-
matching loss based on reflected Brownian motion, which
demonstrated compelling empirical performance. Mirror
diffusion models [Liu et al., 2023a] studied constrained gen-
eration on convex sets and found interesting applications

in watermarked generations. Liu et al. [2023b] employed
Doob’s h-transform to learn diffusion bridges on various
constrained domains. The study of reflected Schrödinger
bridge was initiated by Caluya and Halder [2021] in the
control community and has shown remarkable performance
in low-dimensional problems.

3 PRELIMINARIES

Diffusion models [Song et al., 2021b] have achieved tremen-
dous progress in (text-to-)image generation. However, real-
world data (such as the bounded pixel space in images) often
comes with bounded support. As such, practitioners often
employ ad-hoc thresholding techniques to project the data
to the desired space, which inevitably affects the theoretical
understanding and hinders future updates.

To generalize these techniques, Lou and Ermon [2023]
utilized reflected Brownian motion to train explicit score-
matching loss in bounded domains. They first perturb the
data with a sequence of noise and then propose to generate
the constrained data distribution via the corresponding re-
flected backward process [Williams, 1987, Cattiaux, 1988].

dxt = f(xt, t)dt+ g(t)dwt + dLt, x0 ∼ pdata ⊂ Ω
(1a)

dxt =
[
f(xt, t)− g(t)2∇ log pt (xt)

]
dt (1b)

+ g(t)dwt + dLt, xT ∼ pprior ⊂ Ω

where Ω is the state space in Rd; f (xt, t) and g(t) are the
vector field and the diffusion term, respectively; wt is the
Brownian motion; wt is another independent Brownian mo-
tion from time T to 0; Lt and Lt are the local time to confine
the particle within the domain and are defined in Eq.(19);
the marginal density at time t for the forward process (1a)
is denoted by pt. ∇ log pt (·) is the score function at time
t, which is often approximated by a neural network sθ(·, t).
Given proper score approximations, the data distribution
pdata can be generated from the backward process (1b).

4 REFLECTED SCHRÖDINGER BRIDGE

Although reflected diffusion models have demonstrated em-
pirical success in image applications on hypercubes, exten-
sions to general domains with optimal-transport guarantee
remain limited [Lavenant and Santambrogio, 2022]. No-
tably, the forward process (1a) requires a long time T to
approach the prior distribution, which inevitably leads to
a slow inference [De Bortoli et al., 2021]. To solve that
problem, the dynamic SB problem on a bounded domain Ω
proposes to solve

inf
P∈D(µ⋆,ν⋆)

KL(P∥Q), (2)

where the coupling P belongs to the path spaceD(µ⋆, ν⋆) ⊂
C(Ω, [0, T ]) with marginal measures µ⋆ at time t = 0 and
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Figure 1: Constrained generative modeling via reflected forward-backward SDEs.

ν⋆ at t = T ; Q is the prior path measure, such as the measure
induced by the path of the reflected Brownian motion or
Ornstein-Uhlenbeck (OU) process. From the perspective of
stochastic control, the dynamical SBP aims to minimize the
cost along the reflected process

inf
u∈U

E
{∫ T

0

1

2
∥u(xt, t)∥22dt

}
s.t. dxt = [f(xt, t) + g(t)u(xt, t)] dt (3)

+
√
2εg(t)dwt + n(xt)dLt,

x0 ∼ µ⋆, xT ∼ ν⋆, xt ∈ Ω, for any t ∈ [0, T ]

where U is a set of control functions; ε is the entropic reg-
ularizer for EOT; n(x) is an inner unit normal vector at
x ∈ ∂Ω and 0 for x ∈ Ω; the expectation follows from the
density ρ(x, t). Simulation demos of the reflected SDEs are
shown in Figure 2.

To derive the reflected FB-SDEs and training scheme, we
first present standard assumptions on the regularity proper-
ties [Øksendal, 2003], as well as the smoothness of measure
[Chen et al., 2022a,b] and boundary [Lamperski, 2021]:

Assumption A1 (Regularity on drift and diffusion). The
drift f and diffusion term g > 0 satisfy the Lipschitz and
linear growth condition.

Assumption A2 (Smooth boundary). The domain Ω is
bounded and has a smooth boundary.

Extensions to general convex domains (with corners) are
also studied in Lamperski [2021].

Assumption A3 (Smooth measure). The probability mea-
sures µ⋆ and ν⋆ are smooth such that the energy functions
U⋆ = −∇ log dµ⋆

dx and V⋆ = −∇ log dν⋆
dx are differentiable.

4.1 REFLECTED FORWARD-BACKWARD
STOCHASTIC DIFFERENTIAL EQUATIONS

Following the tradition in mechanics [Pavliotis, 2014], we
rewrite the reflected SBP as follows

inf
u∈U

∫ T

0

∫
Ω

1

2
ρ∥u∥22dxdt

s.t.
∂ρ

∂t
+∇ · J|x∈Ω = 0,

〈
J,n

〉
|x∈∂Ω = 0, (4)

where J is the probability flux of continuity equation J ≡
ρ(f + gu)− εg2∇ρ [Pavliotis, 2014].

We next solve the objectives with a Lagrangian multiplier:
ϕ(x, t). Applying the Stokes theorem with details presented
in appendix A.1, we have

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
− ⟨∇ϕ,J⟩

)
dxdt︸ ︷︷ ︸

L(ρ,u,ϕ)

(5)

+

∫
Ω

ϕρ|Tt=0dx︸ ︷︷ ︸
constant term w.r.t. u

+

∫ T

0

∫
∂Ω

〈
J,n

〉
dσ(x)dt︸ ︷︷ ︸

:=0 by Eq.(4)

.

Minimizing L with respect to u, we can obtain u⋆ =

g∇ϕ. Further applying the Cole-Hopf transform
−→
ψ (x, t) =

exp
(ϕ(x,t)

2ε

)
and setting L(ρ,u⋆, ϕ) = 0, we derive the

backward Kolmogorov equation with Neumann boundary
conditions{

∂
−→
ψ
∂t + εg2∆

−→
ψ + ⟨∇

−→
ψ ,f⟩ = 0 in Ω

⟨∇
−→
ψ ,n⟩ = 0 on ∂Ω.

Next we define←−φ = ρ⋆/
−→
ψ , where ρ⋆ is the optimal density

of Eq.(3) given u⋆. We arrive at the forward Kolmogorov
equation with the Robin boundary condition{

∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
)
= 0 in Ω

⟨←−φ f − εg2∇←−φ ,n⟩ = 0 on ∂Ω.
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Despite the elegance, solving PDEs in high dimensions
often poses significant challenges due to the curse of dimen-
sionality [Han et al., 2019]. To overcome these challenges,
we resort to presenting a set of reflected FB-SDEs:

Theorem 1. Consider a Schrödinger (PDE) system with
Neumann and Robin boundary conditions{

∂
−→
ψ
∂t

+ ⟨∇
−→
ψ ,f⟩+ εg2∆

−→
ψ = 0

∂←−φ
∂t

+∇ · (←−φ f)− εg2∆←−φ = 0
(6)

where
〈
∇
−→
ψ ,n

〉
|x∈∂Ω = 0,

〈
f←−φ − εg2∇←−φ ,n

〉
|x∈∂Ω = 0.

Solving the PDE system gives rise to the reflected FB-SDEs

dxt =
[
f(xt, t) + 2εg(t)2∇ log

−→
ψ (xt, t)

]
dt (7a)

+
√
2εg(t)dwt + n(x)dLt, x0 ∼ µ⋆,xt ∈ Ω,

dxt =
[
f(xt, t)− 2εg(t)2∇ log←−φ (xt, t)

]
dt (7b)

+
√
2εg(t)dwt + n(x)dLt, xT ∼ ν⋆,xt ∈ Ω.

The connection to the probability flow ODE is also studied
and presented in section A.2.

4.2 LIKELIHOOD TRAINING

It is worth mentioning that the reflected FB-SDE (7) is not
directly accessible due to the unknown control variables
(∇ log

−→
ψ ,∇ log←−φ ). To tackle this issue, a standard tool is

the (nonlinear) Feynman-Kac formula [Ma and Yong, 2007,
Karatzas and Shreve, 1998], which leads to a stochastic
representation.

Proposition 1 (Feynman-Kac representation). Assume as-
sumptions A1-A2 hold. ←−φ satisfies a PDE (6) and xt fol-
lows from a diffusion (7a). Define −→y t ≡ −→y (xt, t) =

log
−→
ψ (xt, t) and←−y t ≡ ←−y (xt, t) = log←−φ (xt, t).

Then←−y s admits a stochastic representation

←−y s = E
[
←−y T −

∫ T

s

(
ζ(xt, t)dt− d

←−
L t

)∣∣∣∣xs = xs
]
,

on Ω×[0, T ];−→z t ≡ −→z (xt, t) = g∇−→y t,←−z t ≡ ←−z (xt, t) =

g∇←−y t, d
←−
L t =

1
g ⟨
←−z t,nt⟩dLt, ζ(xt, t) = 1

2∥
←−z t∥22 +∇ ·(←−g zt − f

)
+ ⟨←−z t,−→z t⟩.

Sketch of proof The proof primarily relies on Theorem
3 from Chen et al. [2022b] and applies (generalized) Itô’s
lemma to ←−y t using (6) and (7a). The difference is to in-
corporate the generalized Itô’s lemma [Bubeck et al., 2018,
Lamperski, 2021] to address the local time of xt at the
boundary ∂Ω. Subsequently, our analysis establishes that
←−y s −

∫ s
s1
ζ(xt, t)dt− d

←−
L t, where s ∈ [s1, T ], is a martin-

gale in the domain Ω.

A direct application of the proposition is to obtain the log-
likelihood←−y 0 given data points x0. With parametrized mod-
els (−→z θt ,

←−z ωt ) to approximate (−→z t,←−z t), we can optimize
the backward score function←−z ωt through the forward loss
function L(x0;ω) in Algorithm 1. Regarding the forward-
score estimation, similar to Theorem 11 [Chen et al., 2022b],
the symmetric property of the reflected SB also enables to
optimize −→z t via the backward loss function L(xT ; θ).

By the data processing inequality, our loss function provides
a lower bound of the log-likelihood, which resembles the ev-
idence lower bound (ELBO) in variational inference [Song
et al., 2021a]. We can expect a smaller variational gap given
more accurate parametrized models.

When the domain is taken to be Ω = Rd, the aforementioned
solvers become equivalent to the loss function (18-19) pre-
sented in Chen et al. [2022b].

4.3 CONNECTIONS TO THE IPF ALGORITHM

Similar in spirit to Theorem 3 of Song et al. [2021a], Algo-
rithm 1 results in an elegant half-bridge solver (µ⋆ → ν⋆
v.s. µ⋆ ← ν⋆) to approximate the primal formulation [Nutz,
2022] of the dynamic Schrödinger bridge (2) [De Bortoli
et al., 2021, Vargas et al., 2021]:

Dynamic Primal IPF P2k = argmin
P∈D(·,ν⋆)

KL(P∥P2k−1),

P2k+1 = argmin
P∈D(µ⋆,·)

KL(P∥P2k),
(8)

which is also known as the dynamic IPF algorithm (also
known as Sinkhorn algorithm) [Ruschendorf, 1995, De Bor-
toli et al., 2021]. Consider the disintegration of the path
measure P = π ⊗ Pµ⋆,ν⋆

P(·) =
∫∫

Ω2

Px0,xT (·)π(dx0, dxT ), (9)

where Px0,xT ∈ Pµ⋆,ν⋆ is a diffusion bridge from x0 = x0
to xT = xT , π ∈ Π(µ⋆, ν⋆) and the product space
Π(µ⋆, ν⋆) ⊂ Ω2 denotes the space of couplings with the
first and second marginals following from µ⋆ and ν⋆, respec-
tively. Now project the path space D to the product space Π.
We have the static IPF algorithm in the primal formulation:

Static Primal IPF π2k = argmin
π∈Π(·,ν⋆)

KL(π∥π2k−1),

π2k+1 = argmin
π∈Π(µ⋆,·)

KL(π∥π2k).
(10)

5 CONVERGENCE ANALYSIS VIA
ENTROPIC OPTIMAL TRANSPORT

The dynamic IPF algorithm offers an efficient training
scheme to fit marginals in high-dimensional problems. How-
ever, the understanding of the convergence remains unclear
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Figure 2: Reflected OU processes (reflected v.s. unconstrained), driven by the same Brownian motion, excluding the
reflections. All boundary curves have properly defined unit vectors.

Algorithm 1 One iteration of the backward-forward score function solver to optimize (−→z θt ,
←−z ωt ) with the reflection

implemented in Algorithm 4. We cache the trajectories following De Bortoli et al. [2021] to avoid expensive computational
graphs. In practice, E[log←−y T ] and E[log−→y 0] are often omitted to facilitate training [Chen et al., 2022b].

L(x0;ω) = −
∫ T

0

Ext∼(7a)

[(
1

2
∥←−z ωt ∥22 + g∇ ·←−z ωt + ⟨−→z θt ,

←−z ωt ⟩
)
dt+ d

←−
L ω
t

∣∣∣∣x0 = x0

]
L(xT ; θ) = −

∫ T

0

Ext∼(7b)

[(
1

2
∥−→z θt ∥22 + g∇ · −→z θt + ⟨

←−z ωt ,
−→z θt ⟩

)
dt+ d

−→
L θ
t

∣∣∣∣xT = xT
]
,

where d
←−
L ω
t = 1

g ⟨
←−z ωt ,nt⟩dLt and d

−→
L θ
t =

1
g ⟨
−→z θt ,nt⟩dLt. (7a) (respectively, (7b)) is approximated via −→z θt (respectively,

←−z ωt ).

to the machine learning community. To get around this issue,
we leverage the progress from the static optimal transport
on bounded domains and costs [Carlier, 2022, Chen et al.,
2016, Deligiannidis et al., 2021].

Our analysis is illustrated as follows: We first draw connec-
tions between dynamic and static (primal) IPFs by project-
ing the path space D to the product space Π and then show
the equivalence between the dual and primal formulations.
Next, we perturb the marginals (in terms of energy func-
tions) and show the approximate linear convergence of the
dual, potential, and then static couplings. The convergence
of dynamic couplings can be expected given a reasonable
estimate of diffusion bridge.

Dynamic Primal IPF (8)
Disintegration←−−−−−−→

Projection
Static Primal IPF (10)

Equivalence(B.5)←−−−−−−−→
Lemma 1

Static Dual IPF (14)

5.1 EQUIVALENCE BETWEEN DYNAMIC SBP
AND STATIC SBP

Assuming the solutions exist, the disintegration of measures
implies that the equivalence of solutions between the dy-
namic and static SBPs [Léonard, 2014]:

Dynamic SBP P⋆ = argmin
P∈D(µ⋆,ν⋆)

KL(P∥Q)

⇐⇒ π⋆ = argmin
π∈Π(µ⋆,ν⋆)

KL(π∥G), Static

where π (respectively, G) is the projection of the path mea-
sure P (respectively, Q) on the product space at t = 0 and

T ; dG ∝ e−cεd(µ⋆⊗ ν⋆); cε is a cost function. Both the dy-
namic and static SBP formulations yield structure properties
(see the Born’s formula in Léonard [2014]) and enables to
represent Schrödinger bridges P⋆ and π⋆ using Schrödinger
potentials φ⋆ and ψ⋆:

Dynamic Struture dP⋆ = eφ⋆(x)+ψ⋆(y)dQ (11)

⇐⇒ dπ⋆(x,y) = eφ⋆(x)+ψ⋆(y)dG. Static

Moreover, the summation φ⋆⊕ψ⋆ is unique such that (φ⋆+
a)⊕ (ψ⋆ − a) is also viable for any a.

This static structural representation establishes a connection
between the static SBP and entropic optimal transport (EOT)
with a unit entropy regularizer [Chen et al., 2023], and the
latter results in an efficient scheme to compute the optimal
coupling:

inf
π∈Π(µ⋆,ν⋆)

∫∫
Ω2

cε(x,y)π(dx, dy) + KL(π∥µ⋆ ⊗ ν⋆).

5.2 DUALITY FOR SCHRÖDINGER BRIDGES
AND APPROXIMATIONS

The Schrödinger bridge is a constrained optimization prob-
lem and possesses a computation-friendly dual formulation.
Moreover, the duality gap is zero under probability measures
[Léonard, 2001].

Lemma 1 (Duality [Nutz, 2022]). Given assumptions A1-
A3, the dual via potentials (φ,ψ) follows

min
π∈Π(µ⋆,ν⋆)

KL(π|G) = max
φ,ψ

G(φ,ψ), (12)
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where G(φ,ψ) := µ⋆(φ) + ν⋆(ψ) −
∫∫

Ω2 e
φ⊕ψdG + 1,

µ⋆(φ) =
∫
Ω
φdµ⋆, ν⋆(ψ) =

∫
Ω
ψdν⋆, φ ∈ L1(µ⋆), and

ψ ∈ L1(ν⋆).

An effective solver is to maximize the dual G via
φk+1 = argmaxφ∈L1(µ⋆)G(φ,ψk) and ψk+1 =
argmaxψ∈L1(ν⋆)G(φk+1, ψ) alternatingly. From a geomet-
ric perspective, alternating maximization corresponds to
alternating projections (detailed in Appendix B.4)

φk+1 = argmax
φ∈L1(µ⋆)

G(φ,ψk) (13a)

=⇒ the first marginal of π(φk+1, ψk) is µ⋆,
ψk+1 = argmax

ψ∈L1(ν⋆)

G(φk+1, ψ) (13b)

=⇒ the second marginal of π(φk+1, ψk+1) is ν⋆.

The marginal properties of the coupling implies the
Schrödinger equation [Nutz and Wiesel, 2022]

φ⋆(x) = − log

∫
Ω

eψ⋆(y)−cε(x,y)ν⋆(dy),

ψ⋆(y) = − log

∫
Ω

eφ⋆(x)−cε(x,y)µ⋆(dx).

Since the Schrödinger potential functions (ψ⋆, φ⋆) are not
known a priori, the dual formulation of the static IPF algo-
rithm was proposed to solve the alternating projections as
follows:

Static Dual IPF : ψk(y) = − log

∫
Ω

eφk(x)−cε(x,y)µ⋆(dx),

φk+1(x) = − log

∫
Ω

eψk(y)−cε(x,y)ν⋆(dy).

(14)

The equivalence between the primal IPF and dual IPF is
further illustrated in Appendix B.5.

However, given a limited computational budget, projecting
to the ideal measure µ⋆ (or ν⋆) in Eq.(13) at each itera-
tion may not be practical. Instead, some close approxima-
tion µ⋆,k+1 (or ν⋆,k) is used at iteration 2k + 1 (or 2k) via
Gaussian processes [Vargas et al., 2021] or neural networks
[De Bortoli et al., 2021, Chen et al., 2022b]. Therefore, one
may resort to an approximate marginal that still achieves
reasonable accuracy:

µ2k+1 = µ⋆,k+1 ≈ µ⋆, ν2k = ν⋆,k ≈ ν⋆. (15)

We refer to the IPF algorithm with approximate marginals
as approximate IPF (aIPF) and present the static dual for-
mulation of aIPF in Algorithm 2. The difference between
IPF and aIPF is detailed in Figure 3. The structure represen-
tation (11) can be naturally extended based on approximate

Figure 3: IPF v.s. aIPF. The approximate (or exact) projec-
tions are highlighted through the dotted (or solid) lines.

marginals and is also studied by Deligiannidis et al. [2021]

dπ2k = eφk⊕ψk−cεd(µ⋆,k ⊗ ν⋆,k),
dπ2k−1 = eφk⊕ψk−1−cεd(µ⋆,k ⊗ ν⋆,k−1),

(16)

where πk is the approximate coupling at iteration k. By
the structural properties in Eq.(11), the representation also
applies to the dynamic settings, which involves the compu-
tation of the static IPF, followed by its integration with a
diffusion bridge [Eckstein and Nutz, 2022].

Algorithm 2 One iteration of aIPF (static). The static cou-
pling πk can be recovered by the structural representation in
(16); the dynamic coupling Pk =

∫∫
Ω2 Px0,xT

k (·)πk(x0, xT )
can be solved by further learning a diffusion bridge Px0,xT

k .

ψk(y) = − log

∫
Ω

eφk(x)−cε(x,y)µ⋆,k(dx),

φk+1(x) = − log

∫
Ω

eψk(y)−cε(x,y)ν⋆,k(dy).

(17)

5.3 CONVERGENCE OF COUPLINGS WITH
BOUNDED DOMAIN

Despite the rich literature on the analysis of SBP on bounded
domains [Chen et al., 2016], most of them are not applicable
to practical scenarios where exact marginals are not avail-
able. To fill this gap, we extend the linear convergence with
perturbed marginals. The key to our proof is the strong con-
vexity of the dual (12). To quantify the convergence, similar
to De Bortoli [2022], we introduce an assumption to control
the perturbation of the marginals such that:

Assumption A4 (Marginal perturbation). Uk =

∇ log
dµ⋆,k

dx and Vk = ∇ log
dν⋆,k
dx are the approxi-

mate energy functions at the k-th iteration and are ϵ-close
to energy functions U⋆ and V⋆∥∥Uk(x)− U⋆(x)∥∥2 ≤ ϵ(1 + ∥x∥2),∥∥Vk(x)− V⋆(x)∥∥2 ≤ ϵ(1 + ∥x∥2), ∀x ∈ Ω.
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Note that the Lipschitz cost function on Ω2 is also a standard
assumption [Deligiannidis et al., 2021]. It is not required
here by Assumption A1, which leads to a smooth transition
kernel and cost function.

Recall the connections between dynamic primal IPF and
static dual IPF, we know ϵ mainly depends on the score-
function (−→z θt ,

←−z ωt ) estimations [Song et al., 2021a] and
numerical discretizations. More concrete connections be-
tween them will be left as future work. In addition, the errors
in the two marginals don’t have to be the same, and we use
a unified ϵ mainly for analytical convenience.

Moreover, we use the same domain Ω for both marginals to
be consistent with our algorithm in Section 4. The proof can
be extended to different domains X and Y for µ⋆ and ν⋆.

Approximately linear convergence and proof sketches
We first follow Carlier [2022], Nutz [2022], Marino and
Gerolin [2020] to build a centered aIPF algorithm in Al-
gorithm 3 with scaled potential functions φ̄k and ψ̄k such
that µ⋆(φ̄k) = 0. Since the summations of the potentials φ⋆
and ψ⋆ are unique by (11), the centering operation doesn’t
change the dual objective but ensures that the aIPF iterates
are uniformly bounded in Lemma 4 by the decomposition

∥φ̄⊕ ψ̄∥2L2(µ⋆⊗ν⋆) = ∥φ̄∥
2
L2(µ⋆)

+ ∥ψ̄∥2L2(ν⋆)
if µ⋆(φ̄) = 0.

How to ensure centering with perturbed marginals in Algo-
rithm 3 is crucial and one major novelty in our proof. We
next exploit the strong convexity of the exponential function
ex w.r.t. the concave dual. We obtain an auxiliary result
regarding the convergence of the dual and the potentials.

Lemma 2 (Convergence of the Dual and Potentials). Let
(φ̄k, ψ̄k)k≥0 be the iterates of a variant of Algorithm 2.
Given assumptions A1-A4 with small enough marginal per-
turbations ϵ, we have

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≲ (1− e−24∥cε∥∞)k + e24∥cε∥∞ϵ,

∥φ̄⋆ − φ̄k∥L2(µ⋆) + ∥ψ̄⋆ − ψ̄k∥L2(ν⋆)

≲ e3∥cε∥∞(1− e−24∥cε∥∞)k/2 + e15∥cε∥∞ϵ1/2.

Since the centering operation doesn’t change the structure
property (11), we are able to analyze the convergence of
the static couplings. Motivated by Theorem 3 of Deligianni-
dis et al. [2021], we exploit the structural property (11) to
estimate the W1 distance based on its dual formulation.

Theorem 2 (Convergence of Static Couplings). Given as-
sumptions A1-A4 with small marginal perturbations ϵ, the
iterates of the couplings (πk)k≥0 in Algorithm 2 satisfy the
following result

W1(πk, π⋆)

≤ O
(
e9∥cε∥∞(1− e−24∥cε∥∞)k/2 + e21∥cε∥∞ϵ1/2

)
.

Such a result provides the worst-case guarantee on the con-
vergence of the static couplings πk. For example, to obtain a
ϵ⋆-W1 distance, we can run Ω(e24∥cε∥∞(∥cε∥∞− log(ϵ⋆∧
1))) iterations to achieve the goal. Recall that cε = c/ε
[Chen et al., 2023], a large entropic-regularizer ε may be
needed in practice to yield reasonable performance, which
also leads to specific tuning guidance on ε.

Our proof employs a non-geometric method to show the
uniform in time stability, w.r.t. the marginals. Unlike the
elegant approach [Deligiannidis et al., 2021] based on the
Hilbert-Birkhoff projective metric [Chen et al., 2016], ours
does not require advanced tools and may be more friendly
to readers.

Recall the bridge representation in Eq.(9), we have
W1(πk ⊗ Pµ⋆,ν⋆

k , π⋆ ⊗ Pµ⋆,ν⋆
⋆ ) ≤ W1(πk, π⋆) +

W1(Pµ⋆,ν⋆
k ,Pµ⋆,ν⋆

⋆ ). Assume the same assumptions as in
Theorem 2, we arrive at the final result:

Proposition 2 (Convergence of Dynamic Couplings). The
iterates of the dynamic couplings (Pk)k≥0 in Algorithm 1
satisfy the following result

W1(Pk,P⋆) ≤ O(e9∥cε∥∞(1− e−24∥cε∥∞)k/2)

+O(e21∥cε∥∞ϵ1/2) +W1(Pµ⋆,ν⋆
k ,Pµ⋆,ν⋆

⋆ ).

The result paves the way for understanding the general con-
vergence of the dynamic IPF algorithm by incorporating a
proper approximation of the diffusion bridge [Heng et al.,
2022].

6 EMPIRICAL SIMULATIONS

6.1 GENERATION OF 2D SYNTHETIC DATA

We first employ the reflected SB algorithm to generate three
synthetic examples: checkerboard and Gaussian mixtures
from a Gaussian prior and spiral from a moon prior. The
domains are defined to be flower, octagon, and heart, where
all boundary points are defined to have proper unit-vectors.
We follow Chen et al. [2022b] and adopt a U-net to model
(−→z θt ,

←−z ωt ). We chose RVP-SDE as the base simulator from
time 0 to T = 1, where the dynamics are discretized into
100 steps.

Our generated examples are presented in Figure 1 and 4. We
see that all the data are generated smoothly from the prior
and the forward and backward process matches with each
other elegantly. To the best of our knowledge, this is the first
algorithm (with OT guarantees) that works on custom do-
mains. Other related work, such as Lou and Ermon [2023],
mainly focuses on hypercubes in computer vision. We also
visualize the forward-backward policies←−z ωt and −→z θt in Fig-
ure 4. Our observations reveal that the forward vector fields
−→z θt demonstrate substantial nonlinearity when compared
to the linear forward policy in SGMs, and furthermore, the
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Figure 4: Demo of generative samples (top) and vector fields (bottom) based on Reflected SB.

forward vector fields exhibit pronounced dissimilarity when
compared to the backward vector fields←−z ωt .

6.2 GENERATION OF IMAGE DATA

We test our method on large-scale image datasets using
CIFAR-10 and ImageNet 64×64. As the RGB value is be-
tween [0, 1], we naturally select the domain as Ω = [0, 1]d,
where d = 3 × 32 × 32 for the CIFAR-10 task and
d = 3 × 64 × 64 for the ImageNet task. It is known that
the SB system can be initialized with score-based genera-
tive models [Chen et al., 2022b] and the warm-up study for
reflected SB is presented in Appendix C.2. We choose RVE-
SDE as the prior path measure. The prior distribution of ν⋆
is the uniform distribution on Ω. The SDE is discretized into
1000 steps. In both scenarios, images are generated uncon-
ditionally, and the quality of the samples is evaluated using
Frechet Inception Distance (FID) over 50,000 samples. The
forward score function is modeled using U-net structure; the
backward score function uses NCSN++ [Song et al., 2021b]
for the CIFAR-10 task and ADM [Dhariwal and Nichol,
2022] for the ImageNet task. Details of the experiments are
shown in Appendix C.

We have included baselines for both constrained and un-
constrained generative models and summarized the experi-
mental results in Table 1. While our model may not surpass
the state-of-the-art models, the minor improvement over the
unconstrained SB-FBSDE [Chen et al., 2022b] underscores
the effectiveness of the reflection operation. Moreover, the
experiments verify the scalability of the reflected model and
the training process is consistent with the findings in Lou
and Ermon [2023], where the reflection in cube domains
is easy to implement and the generation becomes more sta-
ble. Sample outputs are showcased in Figure 5 (including

CIFAR-10 Constrained OT NLL FID

MCSN++ [Song et al., 2021b] No No 2.99 2.20

DDPM [Ho et al., 2020] No No 3.75 3.17

SB-FBSDE [Chen et al., 2022b] No Yes - 3.01

Reflected SGM [Lou and Ermon, 2023] Yes No 2.68 2.72

Ours Yes Yes 3.08 2.98

ImageNet 64×64

PGMGAN [Armandpour et al., 2021] No No – 21.73

GLIDE [Li et al., 2023] No No – 29.18

GRB [Park and Shin, 2022] No No – 26.57

Ours Yes Yes 3.20 23.95

Table 1: Evaluation of generative models on image data.

MNIST), with additional figures available in Appendix C.
Notably, our generated samples exhibit diversity and are
visually indistinguishable from real data.

6.3 GENERATION IN THE SIMPLEX DOMAIN

Alongside the irregular domains illustrated in Figure 2 and
the hypercube for image generation, we implement the
method on the high-dimensional projected simplex. A d-
projected simplex is defined as ∆̄d := {x ∈ Rd :

∑
i xi ≤

1,xi ≥ 0}. Our method relies on reflected diffusion process
instead of using diffeomorphic mapping (stick breaking) as
in Lou and Ermon [2023]. As a comparison, we replicate the
generative process using diffeomorphic mapping as well.

The data is created by collecting the image classification
scores of Inception v3 from the last softmax layer with
1008 dimension. All the data fit into the projected simplex

1062



Figure 5: Samples via reflected SB on MNIST (left), CIFAR10 (middle), and ImageNet 64 (right).

Figure 6: Generations of high-dimensional projected simplex. The results compare the reflection-based and stick-breaking
based methods.

∆̄1008. The Inception model is loaded from a pretrained
checkpoint*, and the classification task is performed on the
64× 64 Imagenet validation dataset of 50,000 images. The
neural network of the score function is composed of 6 dense
layers with 512 latent nodes. In every diffusion step, we
use the reflection operator described in Algorithm 4 to con-
strain the data within the projected simplex. The alternative
method is using stick breaking method to constrain the dif-
fusion process. The transformation includes the mapping
[f(x)]i = xi

∏d
j=i+1(1 − xj) and the inverse mapping

[f−1(y)]i =
yi

1−
∑d

j=i+1 yj
. In every diffusion step, it first

maps the data into an unit cube domain using reflection,
then uses the forward transformation to map it within the
projected simplex.

The results are shown in Figure 6. We compare the generated
distribution of the most likely classes. The category index
is in the same order of the pre-trained model’s output. The
last plot in Figure 6 compares the cumulative distribution
of the ground truth and generated distribution, providing a
cleaner view of the comparison. The curve closely follows
the diagonal in the CDF comparison, signifying a strong
alignment between the true data distribution and the distri-
bution derived from the generative model. The result using
diffeomorphic mapping is shown in Figure 6. By compar-
ing the CDF comparison plots of two methods, the reflec-

*https://github.com/mseitzer/pytorch-fid/
releases/download/fid_weights

tion based method outperforms the diffeomorphic based
method, where the latter suffers from visible bias of the
distribution due to the analytic blowups at edges/corners at
edges/corners.

7 CONCLUSION

Reflected diffusion models, which are motivated by thresh-
olding techniques, introduce explicit score-matching loss
through reflected Brownian motion. Traditionally, these
models are applied to hypercube-related domains and ne-
cessitate specific diffeomorphic mappings for extension to
other domains. To enhance generality with optimal trans-
port guarantees, we introduce the Reflected Schrödinger
Bridge, which employs reflected forward-backward stochas-
tic differential equations with Neumann and Robin boundary
conditions. We establish connections between dynamic and
static IPF algorithms in both primal and dual formulations.
Additionally, we provide an approximate linear convergence
analysis of the dual, potential, and couplings to deepen our
understanding of the dynamic IPF algorithm. Empirically,
our algorithm can be applied to any smooth domains us-
ing RVE-SDE and RVP-SDE. We evaluate its performance
on 2D synthetic examples and standard image benchmarks,
underscoring its competitiveness in constrained generative
modeling. In future research, our focus includes integrating
nonlinear diffusion based on importance sampling [Deng
et al., 2022a,b] to further expedite the generation process.
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Notations Ω is the bounded domain of interest, ∂Ω denotes the boundary, and D is the radius of a ball centered at
the origin that covers Ω. ∇· and ∇ denote the divergence and gradient operator (with respect to x). ε is the entropic
regularizer; ϵ controls the perturbation of the marginals. cε and c are cost functions in EOT, and cε = c/ε. ψ⋆ and φ⋆ are the
Schrödinger potentials; ∇ log

−→
ψ (xt, t) and ∇ log←−φ (xt, t) are the forward-backward score functions in reflected FB-SDE.

D(µ⋆, ν⋆) ⊂ C(Ω, [0, T ]) is the path space with marginals µ⋆ (data distribution) at time t = 0 and ν⋆ (prior distribution) at
t = T , Π(µ⋆, ν⋆) ⊂ Ω2 is the product space containing couplings with the first marginal µ⋆ and second marginal ν⋆.

A REFLECTED FORWARD-BACKWARD SDE

A.1 FROM REFLECTED SCHRÖDINGER BRIDGE TO REFLECTED FB-SDE

We consider the stochastic control of the reflected SBP

inf
u∈U

E
{∫ T

0

1

2
∥u(x, t)∥22dt

}
s.t. dxt = [f(x, t) + g(t)u(x, t)] dt+

√
2εg(t)dwt + n(x)dLt (18)

x0 ∼ µ⋆, xT ∼ ν⋆, xt ∈ Ω,

where Ω is the state-space of x and u : Ω× [0, T ]→ Rd is the control variable in the space of U ; f : Ω× [0, T ]→ Rd is the
vector field; wt denotes the Brownian motion; The expectation is evaluated w.r.t the PDF ρ(x, t) of (18); ε is the diffusion
term and also the entropic regularizer; L is the local time supported on {t ∈ [0, T ]|xt ∈ ∂Ω} and forces the particle to go
back to Ω. More precisely, L is a continuous non-decreasing process with L0 = 0 and it increases only when xt hits the
boundary ∂Ω, that is,

Lt =

∫ t

0

1{xs∈∂Ω}dLs. (19)

The existence and uniqueness of SDE (18) can be addressed through the so-called Skorokhod problem [Skorokhod, 1961]
which amounts to finding the decomposition for any given continuous path wt ∈ C(Rd, [0, T ]), there exists a pair (yt,Lt)
such that

wt = yt + Lt,

where yt ∈ C(Ω, [0, T ]) and Lt satisfies (19) [Lions and Sznitman, 1984].
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Rewrite reflected SBP into a variational form [Chen et al., 2021]

inf
u∈U ,ρ

∫ T

0

∫
Ω

1

2
∥u(x, t)∥22ρ(x, t)dxdt (20)

s.t.
∂ρ

∂t
+∇ · J|x∈Ω = 0,

〈
J,n

〉
|x∈∂Ω = 0, (21)

where J is the probability flux of continuity equation [Pavliotis, 2014] given by

J ≡ ρ(f + gu)− εg2∇ρ. (22)

Explore the Lagrangian of (20) and incorporate a multiplier: ϕ(x, t) : Ω× [0, T ]→ R

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

1

2
∥u∥22ρ+ ϕ

(
∂ρ

∂t
+∇ · J

)
dxdt (23)

=

∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
− ⟨∇ϕ,J⟩

)
dxdt+

∫
Ω

ϕρ|Tt=0dx︸ ︷︷ ︸
constant term

+

∫ T

0

∫
∂Ω

〈
J,n

〉
dσ(x)dt︸ ︷︷ ︸

:=0 by Eq.(21)

,

where the second equation follows by Stokes’ theorem.

Plugging (22) into (23) and ignoring constant terms, we have

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
−

〈
∇ϕ, ρ(f + gu)− εg2∇ρ

〉)
dxdt. (24)

The optimal control u⋆ follows by taking gradient with respect to u

u⋆(x, t) = g(t)∇ϕ(x, t). (25)

Plugging u⋆(x, t) into (24) and setting L(ρ,u⋆, ϕ) ≡ 0, we apply integration by parts and derive

0 = −
∫ T

0

∫
Ω

(
1

2
ρg2∥∇ϕ∥22 + ρ

∂ϕ

∂t
+ ρ

〈
∇ϕ,f

〉
− εg2

〈
∇ϕ,∇ρ

〉)
dxdt

= −
∫ T

0

∫
Ω

ρ

(
1

2
g2∥∇ϕ∥22 +

∂ϕ

∂t
+

〈
∇ϕ,f

〉
+ εg2∆ϕ

)
dxdt+

∫ T

0

∫
∂Ω

εg2ρ⟨∇ϕ,n⟩dσ(x)dt.

This yields the following constrained Hamilton–Jacobi–Bellman (HJB) PDE:{
∂ϕ
∂t + εg2∆ϕ+ ⟨∇ϕ,f⟩ = − 1

2∥g(t)∇ϕ(x, t)∥
2
2 in Ω

⟨∇ϕ,n⟩ = 0 on ∂Ω.

Applying the Cole-Hopf transformation:

−→
ψ (x, t) = exp

(
ϕ(x, t)

2ε

)
, ϕ(x, t) = 2ε log

−→
ψ (x, t), (26)

then we see that
−→
ψ satisfies a backward Kolmogorov equation with Neumann boundary condition{

∂
−→
ψ
∂t + εg2∆

−→
ψ + ⟨∇

−→
ψ ,f⟩ = 0 in Ω

⟨∇
−→
ψ ,n⟩ = 0 on ∂Ω.

On the other hand, we set

←−φ (x, t) = ρ⋆(x, t)/
−→
ψ (x, t), (27)
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where ρ⋆(x, t) is the probability density of Eq.(20) given the optimal control variable u⋆. Then from ρ⋆ =←−φ
−→
ψ , Eq.(21)

can be further simplified to

0 = ∂tρ
⋆ +∇ ·

[
ρ⋆
(
f + gu⋆

)
− εg2∇ρ⋆

]
= ∂t(

←−φ
−→
ψ ) +∇ ·

[
←−φ
−→
ψ
(
f + g2∇ϕ

)
− εg2∇(←−φ

−→
ψ )

]
= (∂t

←−φ )
−→
ψ +←−φ (∂t

−→
ψ ) +∇ ·

[
←−φ
−→
ψ
(
f + 2εg2∇ log

−→
ψ
)]
− εg2∆(←−φ

−→
ψ )

= · · · =
−→
ψ

(
∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
))
,

where we use the identify ∆(
−→
ψ←−φ ) =←−φ∆

−→
ψ +∆←−φ

−→
ψ +2⟨∇

−→
ψ ,∇←−φ ⟩. Then we arrive at the forward Kolmogorov equation

with the Robin boundary condition {
∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
)
= 0 in Ω

⟨←−φ f − εg2∇←−φ ,n⟩ = 0 on ∂Ω,

where the second boundary condition follows by invoking the Stokes’ theorem for the first equation.

Plugging Eq.(25) and Eq.(26) into Eq.(18), the backward PDE corresponds to the forward SDE

dxt =
[
f(xt, t) + 2εg(t)2∇ log

−→
ψ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, x0 ∼ µ⋆.

Reversing the forward SDE [Williams, 1987, Cattiaux, 1988] with log
−→
ψ (·, t) + log←−φ (·, t) = log ρ⋆(·, t) based on Eq.(27),

we arrive at the backward SDE

dxt =
[
f(xt, t)− 2εg(t)2∇ log←−φ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, xT ∼ ν⋆.

Our derivation is in a spirit similar to Caluya and Halder [2021]. The difference is that the proof is derived from the
perspective of probability flux and enables us to derive the Neunman and Robin boundaries more explicitly.

Remark 1. Regarding the scores∇ log
−→
ψ and∇ log←−φ at t = 0 and T , we follow the standard truncation techniques [Ho

et al., 2020, Fishman et al., 2023] and fix them to 0. We refer readers to Appendix C of Song et al. [2021b] and Appendix B
of Song et al. [2021a] for more discussions.

A.2 CONNECTIONS BETWEEN REFLECTED FB-SDES AND FLOW-BASED MODELS

Similar to Fishman et al. [2023], Lou and Ermon [2023], our flow representation in Eq.(21) together with (27) naturally
yields

Proposition 3 (Probability Flow ODE). Consider the reflected FB-SDEs (7) with Neumann and Robin boundary conditions.
The corresponding probability flow ODE is given by

dxt =
[
f(xt, t) + εg(t)2

(
∇ log

−→
ψ (xt, t)−∇ log←−φ (xt, t)

)]
dt.

The result is the same as in Chen et al. [2022b] and provides a stable alternative to compute the log-likelihood of the data.

B CONVERGENCE OF DUAL, POTENTIALS, AND COUPLINGS

Next, we modify Algorithm 2 following the centering method developed in [Carlier, 2022].

The algorithm differs from Algorithm 2 in that an additional centering operation is included in the updates of φ̄k+1 to ensure
µ⋆(φ̄k+1) = 0. Notably, µ⋆ is required for the centering operation to upper bound the divergence, although it is not directly
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Algorithm 3 Centered Sinkhorn. Set φ̄0 := 0. For k ≥ 0, the iterate follows

ψ̄k(y) := − log

∫
Ω

eφ̄k(x)−cε(x,y)µ⋆,k(dx) (28)

φ̄k+1(x) := − log

∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy) + λk, where (29)

λk :=

∫
Ω

log

(∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy)

)
µ⋆(dx).

accessible and no implementation is needed. The main contribution of the centering operation is that the two coordinates
(φ̄, ψ̄) become separable

∥φ̄⊕ ψ̄∥2L2(µ⋆⊗ν⋆) = ∥φ̄∥
2
L2(µ⋆)

+ ∥ψ̄∥2L2(ν⋆)
if µ⋆(φ̄) = 0. (30)

The coordinate ascent is equivalent to the following updates

ψ̄k(y) = argmax
ψ̄∈L1(ν⋆)

G(φ̄k, ψ̄), φ̄k(y) = argmax
φ̄∈L1(µ⋆):µ⋆(φ̄)=0

G(φ̄, ψ̄k).

The relation between the Schrödinger potentials (φk, ψk) and centered Schrödinger potentials (φ̄k, ψ̄k) is characterized as
follows

Lemma 3. Denote by (φk, ψk) the Sinkhorn iterates in Algorithm 2. For all k ≥ 0, µ⋆(φk) = −(λ0 + · · · + λk−1).
Moreover, we have

φ̄k = φk − µ⋆(φk), ψ̄k = ψk + µ⋆(ψk).

In particular, φ̄k ⊕ ψ̄k = φk ⊕ ψk and G(φ̄k, ψ̄k) = G(φk, ψk).

Proof Applying the induction method completes the proof directly.

Recall how ψ̄k is defined through the Schrödinger equation

The second marginal of π2k(φ̄k, ψ̄k) = eφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) is ν⋆,k,

as in Eq.(15). However, dπ2k+1(φ̄k+1, ψ̄k) = eφ̄k+1⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) fails to yield the first marginal µ⋆,k due to the
centering constraint.

Next, we show the modified iterates are bounded by the cost function c.

Lemma 4. For every k ≥ 0, the potentials are bounded by

∥φ̄k∥∞ ≤ 2∥cε∥∞, ∥ψ̄k∥∞ ≤ 3∥cε∥∞.

Proof By Assumption A1, the transition kernel K(x,y) = e−cε(x,y) associated with xt = f(xt, t)dt+
√
2εg(t)dwt +

n(x)dLt is smooth in Ω, hence the cost function is Lipschitz continuous, which implies the cost function is bounded
(denoted by a constant cε).

Recall the definition of φ̄k+1 in Algorithm 3, we have ∀x1,x2 ∈ Ω,

φ̄k+1(x1)− φ̄k+1(x2)

= log

∫
Ω

eψ̄k(y)−cε(x2,y)ν⋆,k(dy)− log

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

≤ log

[
esupy∈Ω |cε(x1,y)−cε(x2,y)|

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

]
− log

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

= sup
y∈Ω
|cε(x1,y)− cε(x2,y)| ≤ 2∥cε∥∞.

As µ⋆(φ̄k) = 0, we have supx φ̄k(x) ≥ 0 and infx φ̄k(x) ≤ 0, hence the above implies ∥φ̄k∥∞ ≤ 2∥cε∥∞. The definition
of ψ̄k in Eq.(28) yields ∥ψ̄k∥∞ ≤ ∥φ̄k∥∞ + ∥cε∥∞ ≤ 3∥cε∥∞.
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The key to the proof is to adopt the strong convexity of the function ex for x ∈ [−α,∞) and some constant α ∈ R,

eb − ea ≥ (b− a)ea + e−α

2
|b− a|2 for a, b ∈ [−α,∞). (31)

We also present two supporting lemmas in order to complete the proof

Lemma 5. Given φ,φ′ ∈ L2(µ⋆) and ψ,ψ′ ∈ L2(ν⋆), and define

∂1G(φ,ψ)(x) = 1−
∫
Ω

eφ(x)+ψ(y)−cε(x,y)ν⋆(dy)

∂2G(φ,ψ)(y) = 1−
∫
Ω

eφ(x)+ψ(y)−cε(x,y)µ⋆(dx).

(32)

If both φ⊗ ψ − cε ≥ −α and φ′ ⊕ ψ′ − cε ≥ −α for some α ∈ R, we have

G(φ′, ψ′)−G(φ,ψ) ≥
∫
Ω

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx)

+

∫
Ω

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Proof By Eq.(31), we have

G(φ′, ψ′)−G(φ,ψ)

= µ⋆(φ
′ − φ) + ν⋆(ψ

′ − ψ) +
∫∫

Ω2

(eφ⊕ψ−cε − eφ
′⊕ψ′−cε)d(µ⋆ ⊗ ν⋆)

≥ µ⋆(φ′ − φ) + ν⋆(ψ
′ − ψ) +

∫∫
Ω2

(φ⊕ ψ − φ′ ⊕ ψ′)eφ
′⊕ψ′−cεd(µ⋆ ⊗ ν⋆)

+
e−α

2

∫∫
Ω2

∥φ⊕ ψ − φ′ ⊕ ψ′∥22d(µ⋆ ⊗ ν⋆)

=

∫
Ω

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx) +

∫
Ω

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Lemma 6. Given a small ϵ ≤ 1
(D+1)2 , we have

G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) ≥
σ

2

(
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+ ∥ψ̄k+1 − ψ̄k∥2L2(ν⋆)

)
−O(ϵ),

where σ := e−6∥cε∥∞ ; the big-O notation mainly depends on volume of the domain Ω.

Proof We first decompose the LHS as follows

G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) = G(φ̄k+1, ψ̄k+1)−G(φ̄k+1, ψ̄k)︸ ︷︷ ︸
I

+G(φ̄k+1, ψ̄k)−G(φ̄k, ψ̄k)︸ ︷︷ ︸
II

.

For the estimate of I, by Lemma 5 with σ = e−6∥cε∥∞ , we have

I ≥
∫
Ω

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy) +
σ

2
∥ψ̄k − ψ̄k+1∥L2(ν⋆).
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For the integral above, by the definition of ∂2G in Eq.(32), we have

∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)

= ν⋆(dy)−
∫
Ω

eφ̄k+1(x)+ψ̄k+1(y)−cε(x,y)µ⋆(dx)ν⋆(dy)

= ν⋆(dy)−
∫
Ω

π2k+2(dx, ·)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
,

(33)

where the last equality follows by the LHS of Eq.(16), the last integral is with respect to x.

Apply Lemma 7 with respect to dµ⋆

dµ⋆,k+1
(x)∫

Ω

π2k+2(dx, ·)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
≤

∫
Ω

(
1 +O(ϵ)

)
π2k+2(dx, ·)

ν⋆(dy)

ν⋆,k+1(dy)

≤
(
1 +O(ϵ)

)
ν⋆,k+1(dy)

ν⋆(dy)

ν⋆,k+1(dy)

=
(
1 +O(ϵ)

)
ν⋆(dy),

(34)

where the second inequality is derived by the fact that the second marginal of π2k+2 is ν⋆,k+1 in Eq.(15). Similarly, we can
show

∫
Ω
π2k+2(dx, ·) dµ⋆⊗dν⋆

dµ⋆,k+1⊗dν⋆,k+1
≳ (1−O(ϵ))ν⋆(dy).

Combining Eq.(33) and (34), we have

|∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)| ≲ ϵν⋆(dy). (35)

We now build the lower bound of the integral as follows∫
Ω

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy)

≳ −ϵ
∫
Ω

∣∣ψ̄k+1(y)− ψ̄k(y)
∣∣ν⋆(dy)

≳ −ϵ,

(36)

where the first inequality follows by Eq.(33) and the second inequality follows by the boundedness of the potential function
in Lemma 4. The above means that I ≥ σ

2 ∥ψ̄k − ψ̄k+1∥L2(µ⋆⊗ν⋆) −O(ϵ). For the estimate of II, Lemma 5 yields

II ≥
∫
Ω

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄k+1∥L2(µ⋆).

Recall the definition of φ̄k+1 in Eq.(29) states that
∫
Ω
eψ̄k(y)−cε(x,y)ν⋆,k(dy) = e−φ̄k+1(x)+λk . Apply Lemma 7 with

respect to dν⋆
dν⋆,k

(y)

∂1G(φ̄k+1, ψ̄k)(x) = 1− eφ̄k+1(x)

∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy)
ν⋆(dy)

ν⋆,k(dy)

≥ 1− eφ̄k+1(x)

∫
Ω

(
1 +O(ϵ)

)
eψ̄k(y)−cε(x,y)ν⋆,k(dy)

≥ 1− (1 +O(ϵ))eλk −O(ϵ)

∫
Ω

∥y∥22eφ̄k+1(x)+ψ̄k(y)−cε(x,y)ν⋆,k(dy)︸ ︷︷ ︸
bounded and non-negative from Lemma 4

= 1− (1 +O(ϵ))eλk −O(ϵ)

∂1G(φ̄k+1, ψ̄k)(x) ≤ 1 + (1 +O(ϵ))eλk +O(ϵ),

which includes a deterministic scalar (independent of x) and a small perturbation (dependent of x and ϵ). Denote R(x,y) =
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∥y∥22eφ̄k+1(x)+ψ̄k(y)−cε(x,y), Combining the centering operation with µ⋆(φ̄k+1) = µ⋆(φ̄k) = 0∫
Ω

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)

= deterministic scalar ·
∫
Ω

[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
:=0 by the centering operation

+ϵ

∫
Ω

R(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
integrable by the boundedness ofR,φ̄k+1,ψk

= O(ϵ).

Combining the estimates of I and II completes the proof.

B.1 CONVERGENCE OF DUAL AND POTENTIALS

Proof of Lemma 2

Part I: Convergence of the Dual

By Lemma 5 with α = 6∥c∥∞ and the decomposition in Eq.(30), we have

G(φ̄k, ψ̄k)−G(φ̄⋆, ψ̄⋆)

≥
∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

+

∫
Ω

∂2G(φ̄k, ψ̄k)(y)[ψ̄k(y)− ψ̄⋆(y)]ν⋆(dy)

+
σ

2

(
∥φ̄k − φ̄⋆∥2L2(µ⋆)

+ ∥ψ̄k − ψ̄⋆∥2L2(ν⋆)

)
≥

∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄⋆∥2L2(µ⋆)

−O(ϵ),

(37)

where σ := e−6∥cε∥∞ , and the last inequality follows by Eq.(35) and boundedness of ψ̄k and ψ̄⋆ in Lemma 4. For the first
integral,

∫
Ω
∂1G(φ̄k+1, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx) = O(ϵ) because ∂1G(φ̄k+1, ψ̄k)(x) includes a deterministic scalar

and a small perturbation with µ⋆(φ̄k(x) = µ⋆(φ̄⋆(x)) = 0.

Hence ∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

=

∫
Ω

[∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)][φ̄k(x)− φ̄⋆(x)]µ⋆(dx) +O(ϵ)

≥ − 1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

− σ

2
∥φ̄k(x)− φ̄⋆(x)∥2L2(µ⋆)

+O(ϵ),

(38)

where the inequality follows from Hölder’s inequality and Young’s inequality.

Plugging Eq.(38) into Eq.(37), we have

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

+O(ϵ). (39)

Note that

|∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)| ≤
∫
Ω

∣∣∣eφ̄k+1⊕ψ̄k−cε − eφ̄k⊕ψ̄k−cε
∣∣∣ ν⋆(dy)

≤ e6∥cε∥∞

∫
Ω

|φ̄k+1 ⊕ ψ̄k − φ̄k ⊕ ψ̄k|ν⋆(dy)

=
1

σ
|φ̄k+1(x)− φ̄k(x)|,

(40)
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where the second inequality follows by Lemma 4 and the exponential function follows a Lipschitz continuity such that:
ea − eb ≤ eM |b− a| for a, b ≤M ; σ := e−6∥cε∥∞ .

First combining Eq.(39) and (40) and then including Lemma 6, we conclude that

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ3
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+O(ϵ)

≤ 1

σ4

(
G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k)

)
+
O(ϵ)

σ4
,

where the last inequality follows by σ ≤ 1. Further writing ∆k = G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k), we have

∆k ≤
1

σ4
(∆k −∆k+1) +

O(ϵ)

σ4
.

In other words, we can derive the contraction property as follows

∆k+1 ≤ (1− σ4)∆k +O(ϵ) ≤ · · · ≤ (1− σ4)k+1∆0 +O(e24∥cε∥∞ϵ).

which hereby completes the claim of the theorem for any k ≥ 1.

Part II: Convergence of the Potentials

For the convergence of the potential function, in spirit to Lemma 6, we obtain

G⋆(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) := ∆k ≥
σ

2

(
∥φ̄⋆ − φ̄k∥2L2(µ⋆)

+ ∥ψ̄⋆ − ψ̄k∥2L2(ν⋆)

)
−O(ϵ).

We can upper bound the potential as follows

∥φ̄⋆ − φ̄k∥2L2(µ⋆)
+ ∥ψ̄⋆ − ψ̄k∥2L2(ν⋆)

≤ 2

σ
∆k +

O(ϵ)

σ
≤ 2

σ
(1− σ4)k∆0 +O(e30∥cε∥∞ϵ).

Further applying (|a|+ |b|)2 ≤ 2a2 + 2b2 and
√
c2 + d2 ≤ |c|+ |d|, we have

∥φ̄⋆ − φ̄k∥L2(µ⋆) + ∥ψ̄⋆ − ψ̄k∥L2(ν⋆) ≤
√

4

σ
(1− σ4)k+1∆0 +O(e15∥cε∥∞ϵ1/2)

≲ e3∥cε∥∞β
k
2
ε + e15∥cε∥∞ϵ1/2,

(41)

where βε = 1− σ4 = 1− e−24∥cε∥∞ .

B.2 CONVERGENCE OF THE STATIC COUPLINGS

Proof of Theorem 2

Recall from the bounded potential in Lemma 4, we have

eφ̄⋆⊕ψ̄⋆−cε − eφ̄k⊕ψ̄k−cε ≤ e6∥cε∥∞
(
|φ̄⋆ − φk|+ |ψ̄⋆ − ψ̄k|

)
. (42)

Following Theorem 3 of Deligiannidis et al. [2021], we define a class of 1-Lipschitz functions Lip1 =
{
F
∣∣|F (x0,y0)−

F (x1,y1)| ≤ ∥x1−x0∥2+∥y1−y0∥2
}

. Since the structural property (11) allows to represent π⋆ using (φ⋆+a)⊕(ψ⋆−a)
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for any a. For any F ∈ Lip1, we have∫∫
X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k)

≤
∫∫

X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ ν⋆)

+

∫∫
X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k)

≤
∫∫

X×Y

F |eφ̄⋆⊕ψ̄⋆−cε − eφ̄k⊕ψ̄k−cε |︸ ︷︷ ︸
by Eq.(42)

d(µ⋆ ⊗ ν⋆)

+

∫∫
X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ |ν⋆ − ν⋆,k|+ |µ⋆ − µ⋆,k| ⊗ ν⋆,k)

≲ e9∥cε∥∞βk/2 + e21∥cε∥∞ϵ1/2,

where the last inequality is mainly derived from the first term in the second inequality by combining (41) and (42); the
second term in the second inequality can be upper bounded by Lemma 7.

Recall the definition of the duality of the 1-Wasserstein distance, we have

W1(πk, π⋆) = sup

{∫∫
X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)

−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) : F ∈ Lip1

}
≤ O(e9∥cε∥∞βk/2 + e21∥cε∥∞ϵ1/2).

B.3 AUXILIARY RESULTS

Lemma 7. Given probability densities ρ(x) = e−U(x)/Z and ρ̃(x) = e−Ũ(x)/Z̃ defined on Ω, where Ω is a bounded
domain that contains Ω and Ω, Z and Z̃ are the normalizing constants. For small enough ϵ ≲ 1

(D+1)2 , where D is the radius
of a centered ball covering Ω, we have

1−O(ϵ) ≤ ρ(x)

ρ̃(x)
≤ 1 +O(ϵ), 1−O(ϵ) ≤ ρ̃(x)

ρ(x)
≤ 1 +O(ϵ). (43)

Proof

From the approximation assumption A4: ∥∇Ũ(x)−∇U(x)∥2 ≤ ϵ(1 + ∥x∥2).

Moreover, U satisfies the smoothness assumption A3. Note that for any x,y ∈ Ω

U(x)− U(y) =

∫ 1

0

d

dt
U(tx+ (1− t)y) =

∫ 1

0

⟨x− y,∇U(tx+ (1− t)y)⟩dt.

Moreover, there exist x0 such that U(x0) = Ũ(x0) since ρ and ρ̃ are probability densities. It follows

|Ũ(x)− U(x)| =
∣∣∣∣ ∫ 1

0

⟨x− x0,∇Ũ(ẋt)−∇U(ẋt)⟩dt
∣∣∣∣

≤
∫ 1

0

∥x− x0∥2 ·
∥∥∇Ũ(ẋt)−∇U(ẋt)

∥∥
2
dt

≤ ϵ(∥x∥2 + ∥x0∥2)(1 + ∥x∥2) ≲ ϵ(D + 1)2,

where ẋt = tx+ (1− t)x0 is a line from x0 to x.
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For the normalizing constant, we have

|Z̃− Z| ≤
∫
Ω

e−U(x)
∣∣e−Ũ(x)+U(x) − 1

∣∣dx ≲ ϵ

∫
Ω

e−U(x)ϵ(D + 1)2dx,

where the last inequality follows by Eq.(B.3) and ea ≤ 1 + 2a for a ∈ [0, 1]. We deduce∣∣∣∣log ρ(x)ρ̃(x)

∣∣∣∣ =
∣∣∣∣∣Ũ(x)− U(x) + log

Z̃
Z

∣∣∣∣∣ ≤ O(ϵ).

Notably, the above lemma also implies that KL(ρ∥ρ̃) ≤ O(ϵ) and KL(ρ̃∥ρ) ≤ O(ϵ).

B.4 CONNECTIONS BETWEEN DUAL OPTIMIZATION AND PROJECTIONS

To see why (13b) holds. We first denote the second marginal of dπ(φk, ψk) := eφk⊕ψkdG by ν′ and then proceed to show
ν′ = ν⋆ [Nutz, 2022]. Recall that G is concave and ψk = argmaxψ∈L1(ν⋆)G(φk, ψ), it suffices to show that given fixed
φk ∈ L1(µ⋆), ψk ∈ L1(ν⋆), a constant η and bounded measurable function δψ : Rd → R, the maximality of G(φk, ψk)
implies

0 =
d

dη

∣∣∣∣
η=0

G(φk, ψk + ηδψ) = ν⋆(δψ)−
∫∫

Ω2

δψe
φk⊕ψkdG = ν⋆(δψ)− ν′(δψ).

Hence ν′ = ν⋆. Similarly, we can show (13a).

B.5 CONNECTIONS BETWEEN STATIC PRIMAL IPF AND STATIC DUAL IPF

It suffices to show the equivalence between π2k = argminπ∈Π(·,ν⋆) KL(π∥π2k−1) and ψk(y) =

− log
∫
Ω
eφk(x)−cε(x,y)µ⋆(dx).

For any π2k ∈ Π(·, ν⋆), we invoke the disintegration of measures and obtain π2k = K? ⊗ ν⋆. In addition, we have
π2k−1 = K⊗ ν′. Now we can formulate

KL(π∥π2k−1) = KL(ν⋆∥ν′) + KL(K?∥K).

The conditional probability of π2k−1 given y is a normalized probability such that

dπ2k−1

dµ⋆⊗ν⋆∫ dπ2k−1

dµ⋆⊗ν⋆ dµ⋆
=

dK

dµ⋆
(x,y) =

eφk⊕ψk−1−cε∫
eφk⊕ψk−1−cεdµ⋆

=
eφk−cε∫
eφk−cεdµ⋆

.

The minimizer is achieved by setting K? = K, namely π2k = K⊗ ν. It follows that

dπ2k
d(µ⋆ ⊗ ν⋆)

=
d(K⊗ ν⋆)
d(µ⋆ ⊗ ν⋆)

=
eφk−cε∫
eφk−cεdµ⋆

:= eφk⊕ψk−cε .

In other words, we have ψk(y) = − log
∫
Ω
eφk(x)−cε(x,y)µ⋆(dx), which verifies the connections.

C EXPERIMENTAL DETAILS

Reflection Implementations Lou and Ermon [2023] already gave a nice tutorial on the implementation of hypercube-
related domains with image applications. For extensions to general domains, we provide our solutions in Algorithm 4. The
crucial component is a Domain Checker to verify if a point is inside or outside of a domain, and it appears to be quite
computationally expensive. To solve this problem, we propose two solutions :
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1) If there exists a computationally efficient conformal map that transforms a manifold into simple shapes, such as a sphere
or square, we can apply simple rules to conclude if a proposal is inside a domain.

2) If the first solution is expensive, we can cache the domain through a fine-grid mesh {Xi,j,···}i,j,···. Then, we approximate
the condition via

min
i,j,···

Distance(x̃k−1, {Xi,j,···}i,j,···) ≤ threshold.

With the parallelism in Torch or JAX, the above calculation can be quite efficient. Nevertheless, a finer grid leads to a higher
accuracy but also induces more computations. We can also expect the curse of dimensionality in ultra-high-dimensional
problems and simpler domains are more preferred in such cases. Moreover, if xk+1 /∈ Ω in extreme cases, one may consider
ad-hoc rules with an error that decreases as we anneal the learning rate. Other elegant solutions include slowing down the
process near the boundary or warping the geometry with a Riemannian metric [Fishman et al., 2023].

Algorithm 4 Practical Reflection Operator

Simulate a proposal x̃k+1 via an SDE given xk ∈ Ω.
if Domain Checker: x̃k+1 ∈ Ω then

Set xk+1 = x̃k+1

else
Search (binary) the boundary ẋk+1 ∈ ∂Ω, where ẋk+1 = ηxk + (1− η)x̃k+1 for η ∈ (0, 1).
Compute ν = x̃k+1 − ẋk+1 and the unit normal vector n associated with ẋk+1.
Set xk+1 = ẋk+1 + ν − 2⟨ν,n⟩n.

end if

C.1 DOMAINS OF 2D SYNTHETIC DATA

We consider input t ∈ [0, 1] and output (x, y) ∈ R2. The normal vector can be derived accordingly.

Flower (petals p = 5 and move out length m = 3)

r = sin(2πpt) +m, x = r cos(2πt), y = r sin(2πt).

Heart

x = 16 sin(2πt)3, y = 13 cos(2πt)− 5 cos(4πt)− 2 cos(6πt)− cos(8πt).

Octagon (c+ 1 edges (Xi, Yi)
c
i=0 with (Xc, Yc) = (X0, Y0))

r = ct− ⌊ct⌋; x = (1− r) ·X⌊ct⌋ + r ·X⌊ct⌋+1; y = (1− r) · Y⌊ct⌋ + r · Y⌊ct⌋+1.

C.2 HOW TO INITIALIZE: WARM-UP STUDY

Consider a Langevin diffusion (LD) and a reflected Langevin (RLD) with score functions S1 and S2:

LD : dxt = S1(xt)dt+ dwt, xt ∈ Rd

RLD : dxt = S2(xt)dt+ dwt + n(x)dLt, xt ∈ Ω.

LD converges to µ1 ∝ eS1(x) and RLD converges to µ2 ∝ eS2(x)1x∈Ω [Bubeck et al., 2018, Lamperski, 2021] as t→∞. In
other words, inheriting the score function S1 from LD to RLD (by setting S1 = S2) yields the desired invariant distribution
µ11x∈Ω.

Denote by RVP (or RVE) the VP-SDE (or VE-SDE) in reflected SB. One can easily show in Table 2 that VP (or RVP)
converges approximately to a (or truncated) Gaussian prior within a practical training time, which implies an unconstrained
VP-SDE diffusion model is a good warm-up candidate for reflected SB. Empirically, we are able to verify this fact through
2D synthetic data.

However, this may not be the case for VE because it converges to a uniform measure in Rd but only obtains an approximate
Gaussian in a short time. By contrast, RVE converges to the invariant uniform distribution much faster because it doesn’t
need to fully explore Rd. This implies initializing the score function from VE-based diffusion models for reflected SB may
not be a good choice. Instead, we use RVE-based diffusion models [Lou and Ermon, 2023] as the warm-up.
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Table 2: Densities using (relected) Langevin diffusion with a practical running time and infinite time.

SDE Practical Time Infinite Time SDE Practical Time Infinite Time
VP Approx. Gaussian Gaussian RVP Approx. Truncated Gaussian Truncated Gaussian
VE Approx. Gaussian Uniform RVE Approx. Truncated Uniform Truncated Uniform

C.3 GENERATION OF IMAGE DATA

Datasets. Both CIFAR-10 and ImageNet 64×64 are obtained from public resources. All RGB values are between [0, 1].
The domain is Ω = [0, 1]d, where d = 3 × 32 × 32 for the CIFAR-10 task, d = 3 × 64 × 64 for the ImageNet task,
d = 1× 32× 32 for the MNIST task.

SDE. We use reflected VESDE for the reference process due to its simplicity [Lou and Ermon, 2023], and it helps with
facilitating the warmup training. The SDE is discretized into 1000 steps. The initial and the terminal scale of the diffusion
are σmin = 0.01 and σmax = 5 respectively. The prior reference is set as the uniform distribution on Ω.

Training. The alternate training Algorithm 1 can be accelerated with proper initialization, and the pre-training of the
backward score model is critical for successfully training the model. At the warmup phase, the forward score is set as zero
and only the backward score model is trained by inheriting the setup in the reflected SGM [Lou and Ermon, 2023]. The
learning rate is 10−5. To improve the training efficiency and stabilize the full path-based training target in Algorithm 1, We
use Exponential Moving Average (EMA) in the training with the decay rate of 0.99 [Hyvärinen, 2005, Vahdat et al., 2021,
Lou and Ermon, 2023].

Neural networks. As the high accuracy inference task relies more on the backward score model than the forward score
model, the backward process is equipped with more advanced and larger structure. The backward score function uses
NCSN++ [Song et al., 2021b] for the CIFAR-10 task and ADM [Dhariwal and Nichol, 2022] for the ImageNet task. The
NCSN++ network has 107M parameters. The ADM network has 295M parameters. For MNIST, a smaller U-Net structure
with 1.3M parameters (2 attention heads per attention layer, 1 residual block per downsample, 32 base channels) is used
for both forward and backward processes. Many previous studies have verified the success of these neural networks in the
diffusion based generative tasks [Song et al., 2021b, Lou and Ermon, 2023, Chen et al., 2022b]. The forward score function
is modeled using a simpler U-Net with 62M parameters.

Inference. In both CIFAR-10 and ImageNet 64×64 tasks, images are generated unconditionally, and the quality of the
samples is evaluated using Frechet Inception Distance (FID) over 50,000 samples [Heusel et al., 2017, Song et al., 2021b].
In MNIST, the the quality of the samples is evaluated using Negative Log-Likelihood (NLL). Predictor-Corrector using
reflected Langevin dynamics is used to further improve the result which does not require any change of the model structure
[Song et al., 2021b, Chen et al., 2022b, Lou and Ermon, 2023, Bubeck et al., 2018].

x′t = reflection
(

xt + σts(t, xt) +
√
2σtε

)
, ε ∼ N(0, I)

s(t, xt) =
1

g
[−→z θt (t, xt) +

←−z ωt (t, xt)], σt =
2r2SNRg

2∥ε∥2

∥s(t, xt)∥2

where −→z θt ,
←−z ωt are the backward and forward score functions as in Algorithm 1.

The likelihood of the diffusion model follows the probabilistic flow neural ODE [Song et al., 2021b, Chen et al., 2022b, Lou
and Ermon, 2023]

dxt =
[
f(xt, t)−

1

2
g(t)2s(t, xt)

]
dt := f̃(xt, t)dt

log p0(x0) = log pT (xT ) +
∫ T

0

∇ · f̃(xt, t)dt

C.4 OPTIMAL TRANSPORT MAY HELP REDUCE NFES

To demonstrate the effectiveness of OT in reducing the number of function evaluations (NFEs), we study generations based
on different NFEs on a simulation example and the MNIST dataset and compare the reflected Schrödinger bridge with
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reflected diffusion (implicit) [Fishman et al., 2023]. We use the same setup (e.g. implicit training loss with the same training
budget) to be consistent except that reflected SB uses a well-optimized forward network −→z θt to train the backward network
←−z ωt while reflected diffusion can be viewed as the first stage of SB training by fixing −→z θt ≡ 0. We use the standard setup to
train the score functions with NFE=100 and employ a uniform time grid to simulate the probability flow with reduced NFEs
(10, 12, 20).

We observe in Figure 7 that in the regime of NFE=20, both reflected diffusion (implicit) and reflected SB demonstrate
remarkable performance in the simulation example. Despite the inherent compromise in sample quality with smaller NFEs,
our investigation revealed that a well-optimized −→z θt significantly contributes to training←−z ωt compared to the baseline with
−→z θt ≡ 0, leading to an improved sample quality even in cases where NFE is set to 10 and 12. Similar findings are observed
in the MNIST dataset in Figure 8. We use the same setup as before, finding NFE=100 delivers reasonable performance in
both reflected diffusion (implicit) and reflected SB. Decreasing NFE to 50 shows slightly stronger performance retention in
reflected SB.

Figure 7: Reflected Schrödinger bridge v.s. reflected diffusion (implicit) based on different NFEs.

Figure 8: Reflected Schrödinger bridge v.s. reflected diffusion (implicit) based on MNIST
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Figure 9: Generated samples via reflected SB on MNIST.
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Figure 10: Generated samples via reflected SB on CIFAR-10.
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Figure 11: Generated samples via reflected SB on ImageNet-64.
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