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Abstract—Distributed wireless Software Defined Networking
(SDN) has emerged as a solution to the scalability bottleneck of
traditional SDN. Despite its inherent importance, optimal network
control for distributed wireless SDN has remained an open
problem, where previous works either fail to account for wireless
interference constraints, or are only sub-optimal in throughput
due to quasi-static shortest path routing.

In this paper, we propose the Distributed Universal Max-Weight
(DUMW) algorithm as a novel optimal control framework for
distributed wireless SDN. The DUMW algorithm is theoretically
throughput-optimal and practically congruent with SDN system
idiosyncrasies. Our algorithmic development non-trivially extends
the throughput-optimal Universal Max-Weight (UMW) policy to
permit distributed control and optimal inter-domain scheduling
under the setting of heterogeneously delayed network state
information. Furthermore, we design controller synchronization
strategies that resolve the problem of multi-domain flow instal-
lation and are tailored to DUMW for maintaining throughput-
optimality with negligible communication overhead.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] emerged from
the urgent need for a programmable networking framework
with adaptive reconfiguration to meet modern networking
requirements. Its flexibility has facilitated the implementation
of widespread network management functionalities such as rout-
ing, load-balancing and traffic engineering. Unlike traditional
network architectures, SDN decouples the data plane from
the control plane, where the data forwarding devices, called
switches, passively execute the instructions received from the
programmable network controller. This unique architecture is
often incompatible with many state-of-the-art network control
algorithms, which is further exacerbated in wireless systems
with the requirements for dynamic control and distributed
operations. Nonetheless, there has been increasing interest in
wireless SDN thanks to the surge in mobile communication
and wireless infrastructures [2]. In addition to the challenges
introduced by the wireless setting, the SDN architecture
possesses some inherent limitations. Utilizing its global view
of the network information, the logically centralized controller
can be designed to make optimal decisions for application
performance. However, the centralized nature of SDN incurs
significant communication overhead to the control plane in
large-scale networks and suffers from the single point-of-failure
problem. Distributed SDN [3] has emerged to mitigate the
scalability and reliability bottlenecks. In this work, we focus
on designing optimal control framework for distributed SDN.
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A distributed wireless SDN system decomposes the un-
derlying network topology into inter-connected sub-networks,
referred to as domains, and assigns each domain to a physically
separate SDN controller. The controllers synchronize with each
other to partially or fully maintain their global view of the
network, which can be utilized to enhance decision making for
inter-domain tasks. While there have been several consistency
models considered in the literature, the two most predominant
classes are: strong consistency and eventual consistency [3].
By requiring all the controllers to be synchronized at any
time, strongly consistent protocols maintain fresh global
network information for optimizing application performance.
However, its practicality is hindered by the unreliable nature of
network communications and the prohibitively high overhead
for frequent controller coordination. On the other hand, eventual
consistency requires the controllers to be eventually synchro-
nized, thereby allowing for temporarily inconsistent network
view. The overhead reduction due to the relaxed synchronization
requirement has been both a blessing and a curse: distributed
SDN can scale pervasively and has been adopted at production-
level, yet the inconsistent network information significantly
degrades the inter-domain application performance. Improving
the performance of ad-hoc inter-domain tasks via customized
algorithms and synchronization strategies is an active area
of research [4]. While there have been several applications
considered in the literature, such as traffic engineering, load-
balancing or utility maximization, optimal network control
comprised of routing and scheduling is the most prominent
for being the backbone of network operations. To this end, we
study the optimal network control framework for distributed
wireless SDN under the eventual consistency model.

A. Open Problems and Motivation

To the best of our knowledge, optimal network control for
distributed wireless SDN has remained an open problem. We
attribute this to the nascent literature on network control for
wireless SDN, and the challenge of making decisions with
respect to inconsistent view of global network state information
(NSI) and flow statistics. For inter-domain routing, the vast
literature relies on quasi-static shortest path (SP) algorithms,
where much of the work is focused on optimizing the controller-
synchronization rate. Since SP routing is known to be sub-
optimal in terms of throughput and not tailored to handling
heterogeneous view of NSI, all of the proposed algorithms, even
when predicated on sophisticated synchronization strategies,
still operate below the throughput capacity of the network. In
fact, to the best of our knowledge, no work has theoretically



studied the throughput capacity of the inter-domain routing
approaches. In terms of wireless scheduling for SDN, all the
previous works fail to accommodate interference constraints,
which are a critical element in any wireless networking
system. To fill this gap, we thus investigate the unsolved yet
critical problem of optimal network control for distributed
wireless SDN. Our goal is to develop a new algorithm that is
theoretically throughput-optimal and practically congruent with
the distributed SDN architecture and the wireless environments.

B. Contributions

In this paper, we propose a novel unified optimal control
framework for distributed wireless SDN that fully addresses the
aforementioned challenges. Our contributions are three-fold:

o We formulate the problem of optimal inter-domain routing
and scheduling for distributed wireless SDN. Our analyt-
ical model is the first to capture the interplay between
distributed control and SDN system idiosyncrasies. The
fully wireless system studied in this work also accommo-
dates wireless inter-domain communication, which was
neglected by the previous works whereby wired inter-
domain communication was assumed for simplicity.

e We present the Distributed Universal Max-Weight
(DUMW) algorithm for distributed wireless SDN that
is throughput-optimal and can handle generalized wire-
less interference constraints. Unlike conventional control
schemes, DUMW leverages easy-to-track virtual queues,
in place of physical queues whose operations are not
supported by SDN switches. Moreover, we propose a novel
scheduling algorithm for DUMW, which is optimal under
the considered setting of heterogeneously delayed NSI
with hierarchy, and is of independent interest. For inter-
domain routing, DUMW resolves the challenge of inter-
domain flow installation by enforcing consensus among
controller through periodic synchronization.

II. SOFTWARE-DEFINED NETWORK (SDN)
A. Wireless SDN Architecture

The standard SDN architecture decouples the control plane
from the data plane (Figure 1). This is in contrast to the tradi-
tional network architecture where control logic is embedded
in the forwarding hardware.

Data plane: The data plane is comprised of network nodes,
called switches, which are all connected to the control plane
and interconnected by links to form the underlying network
topology. The switches passively execute the instructions
received from the programmable control plane.

Control plane: The control plane is in charge of all
logical operations and essential functionalities of the network.
Gathering NSI from the data plane, the control plane computes
the routing and scheduling decisions, to be sent to the switches
for packet routing and link activation.

Packet life cycle and MPLS routing: Whenever the
first packet of a flow arrives at a switch, a flow request is
generated by the switch and sent to the control plane, which
computes the flow installation rules and scheduling decisions.

The control plane then deploys the packet forwarding rules on
the switches and notifies the switches adjacent to activated links
to transmit packets. Subsequent packets of the same flow do not
generate flow request and are routed via the Multiprotocol Label
Switching (MPLS) mechanism. After computing the route for
the first packet of a flow, the control plane updates the routing
tables on all the participating switches and augments incoming
packet with a MPLS label at the source node to which packets
arrive. The switches then look up the routing tables for the
entries matching the MPLS labels to forward packets.

Wireless model: The inter-switch communication corre-
sponds to the network link activation for packet transmission,
whereby wireless interference constraints must be satisfied.
We assume reliable and stable wireless controller-switch
communication in order to ensure error-free flow installation
and accumulation of network statistics. Reliable controller-
switch communication is required by the SDN literature and,
under the wireless setting, is facilitated via the controller
placement in proximity to switches or enhanced coding and
retransmission at the physical and link layers.

B. Distributed Wireless SDN Architecture

In this setting, the underlying network topology is decom-
posed into inter-connected domains, each of which is an inde-
pendent sub-network and managed by a SDN controller. The
high-level architecture is given in Figure 2, which generalizes
the basic wireless SDN with the following distinctive features:

Wireless inter-controller communication: The controllers,
each of which manages a sub-network domain, must commu-
nicate to exchange their local network information. The inter-
controller network is separate from the underlying network.

Controller synchronization: Unlike that in basic SDN, a
controller in distributed wireless SDN only has instantaneous
view of its local domain’s NSI and statistics. Under the
eventual consistency model, all the controllers periodically
synchronize to maintain the global view of the delayed NSI and
statistics. Additionally, the synchronization must be designed
to accommodate the wireless inter-controller communication.

Inter-domain routing: Whenever a packet enters a new
domain, the domain controller is triggered for flow installation
if no routing instructions are available, and augments the packet
with a MPLS header, which can either be new if the packet
joins the network for the first time, or replace the preceding
domain’s MPLS header. This process of packet traversal within
a domain is summarized in steps 1, 2 and 3 in Figure 2.
The partial control capability, whereby a controller can only
route packets within its domain, makes inter-domain routing
especially challenging and inter-dependent with the controller
synchronization problem. In Figure 2 for example, even though
the blue controller (C1) receiving the new packet can compute
the optimal path, colored in grey, it must rely on the other
controllers (red (C2) and green (C3)) to install the flow in the
other domains; however, the blue controller can only reach
consensus with other controllers via periodic synchronization.

Inter-domain wireless scheduling: Under the eventual
consistency model, since a controller cannot observe the
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Fig. 1: Basic SDN architecture and packet life cycle

fresh state of certain inter-domain links, i.e. links with end
nodes belonging to two different domains, which can interfere
with its domain’s internal links yet are managed by other
controllers, interference is inevitable. It is thus important to
design scheduling policies that minimize such interference,
thereby maximizing the overall network throughput.

III. PRELIMINARIES AND PROBLEM FORMULATION
A. System Model

1) Network Infrastructure: The data plane is a multi-hop
wireless network with arbitrary topology represented by the
directed graph G = (V| E), where V is the set of nodes, i.e.
SDN switches, and F is the set of directed links. For simplicity,
we assume each link has capacity 1. Time is slotted. At any time
slot, only certain subsets of links can be activated, according to
the wireless interference constraint of the network. An incoming
packet belongs to some class ¢ € C traffic, which is identified
by its source node s(¢) € V, the set of its required destination
nodes D(¢) C V and the set 7() of all admissible routes from
5(9) to D(©). An admissible route 7(9) € T(¢) is a tree rooted
at the source node s(©) with the set of leaves formed by D(¢),
We define the set of distinct classes of incoming traffic as C.
Packet arrivals are i.i.d. at every slot. At time slot ¢, A()(t)
packets from class ¢ arrive at source node s(¢). The mean rate
of arrival for class ¢ is E[A(®)(t)] = A(®), The total number of
external packet arrivals at any slot ¢ is assumed to be bounded
by a finite number A,,4,. To model time-variation, we consider
the model where a link can be in one of the two states, ON or
OFF. Denote by C.[t] the state of link e € E at time slot ¢:

1, if e is ON at time ¢

C.lt] =
1 0, if e is OFF at time ¢

For any link subset £’ C F, we define Cg[t] = {Ce[t]}ecr
as the vector of links’ states of E’. At a given time, the network
can be in any configuration C[t] = o € {0, 1}/Fl. Each ele-
ment « corresponds to a sub-graph G(V, E,,) C G(V, E), with
E, C E, denoting the set of links that are ON. The network-
configuration process {Cgl[t]}:>0 evolves in discrete-time

This captures unicast, multicast or broadcast traffic.
We use this ON-OFF model for simplicity of presentation. Generalization
to more sophisticated models is straightforward (albeit cumbersome).
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Fig. 2: Distributed wireless SDN architecture and workflow

according to a stationary ergodic process with the stationary
distribution {p(a)}seqo,13171, Where 3 o 1y1m p(a) = 1.
In the distributed wireless SDN setting, m controllers
Dy, Do, ..., and D,, collectively manage the entire network
infrastructure. The underlying network topology G = (V, E)
is decomposed into independent and inter-connected domains
G = U,G; with G; = (V;, E;), whereby the sub-graph
G; is associated with the controller D;. The decomposition
must satisfy E; = {e = (u,v)|u € V;}, so that any node
u € V; within the domain of D; can transmit over links out-
going from it. The controllers synchronize every 7 time slots,
where 7; = j7 is the 4t synchronization point. For analytical
simplicity, we assume that the global NSI changes at every
synchronization point 7; and remains the same ftill time 7;4:

ey

We assume that the network state is random and can be
described as a finite-state Markov chain, i.e.

CE[Tj] = CE[T]' + 1] =..= CE[Tj+1 — 1].

P(Ce[ry]|Celrj-1], oo Celmo]) = P(Celrj]|Celrj-1]). (2)

Furthermore, at time 7;, any controller D; gets access to the
instantaneous view of its domain’s NSI Cg, [7;] and delayed
view of the global NSI Cg[7;_1], which precedes the current
time by 7 time slots and is the result of the closest controller
synchronization point at time 7;_1. By (1) and (2), at any time
t, the controller D, always has the fresh local NSI C, [¢] and
delayed global NSI Cg[t — 7], the dynamics of which can be
characterized by the Markov probability P(Cg[t)]|Cgt — 7]).

For the data plane network, we assume a general collision
model for wireless inter-switch interference. If two links
interfere with each other, simultaneous transmissions over the
two links will lead to a collision and no packet will get through.
Denote by I, the set of links that interfere with link e € F
and by D,(t) the decision of whether to activate link e € E:

D.(t) = 1, if e is activated at time ¢
© 0, if e is not activated at time ¢

For any link subset E’ C E, we define Dg/ (t) = {Dc(t) }ecr
as the link activation vector of E’. Link e successfully transmits
a packet at time ¢ if the following conditions hold:



e Link eis ON (i.e. C.[t] = 1) and activated (i.e. D.(t) = 1)
at the same time. This is equivalent to C.[t] - D.(t) = 1.

« No interfering links initiate packet transmission, i.e. C[t]-
Do (t) = 0,Ve € I..

The effective service rate of edge e is thus characterized by:

Me(t) = Ce[t] : De(t) H (1 - Ce’ [t] : De’(t))7 (3)

e'el,

where p.(t) = 1 indicates that link e successfully transmits a
packet at time slot ¢ and vice versa. We impose no structural
restriction on the set I, and thus capture a wide range of
practical wireless models including primary interference, k-
hop interference, and protocol interference. We assume that
the effective service rate is known to the local controller at
the end of time slot ¢. From the system perspective, this can
be attained by simply having the nodes actively listen to the
channel feedback and then send an acknowledgement to the
controllers upon successful packet transmission. In the case
that the link is successfully activated for transmission, i.e.
1e(t) = 1, yet there is no packet backlogged, the sending node
can transmit a dummy packet, which will be discarded right
upon its reception, to signal the channel for feedback.

As discussed in Section II, a complete algorithm for
distributed wireless SDN must also accommodate:

o SDN routing requirement: Traditional wireless network
routing schemes, including the throughput optimal Back
Pressure (BP) policy, admit hop-by-hop routing decisions
that are made along the way of packets’ traversal. However,
the SDN’s workflow requires the route per packet to be
established immediately upon the packet’s arrival at the
domain and fixed afterward throughout the packet’s intra-
domain traversal until exiting the domain.

o Limited control of physical queues: Prevalent optimal
control schemes such as BP heavily rely on the physical
queues of backlogged packets. While operations on
physical queues are well supported by traditional networks,
SDN’s switches lack logical capability for managing the
physical queues or distilling the statistics therein.

o Communication-efficient wireless controller synchroniza-
tion: the time allowed for synchronization is bounded by
the synchronization period 7.

o Inter-domain routing: the controllers must also reach con-
sensus for flow installations via periodic synchronization.

We refer to the above challenges as the SDN system id-
iosyncrasies, which are inter-dependent and additional to the
traditional network problem.

2) Inter-Controller Network: The inter-controller network
is separated from the underlying network infrastructure and
denoted by G. = (V,, E.), where V. is the set of controllers
and F. is the set of bi-directional controller-to-controller links.
Let N(D;) be the set of neighbours of controller D;. We
assume the inter-controller communication to be synchronous
and, for generality, operate on the time-scale independent of
that of the inter-switch network; the time is divided into frames
and, for clarity, we always refer to it as inter-controller time

frame, which also corresponds to a round of communication.
At any inter-controller time frame, each controller is allowed
to communicate with only its neighbours. Toward completing
certain inter-controller task (e.g. controller synchronization),
we characterize the communication complexity by the number
of rounds, i.e. inter-controller time frames, and the total number
of messages sent over all links during the entire execution time.
We assume the multi-port model, whereby each controller can
send to or receive from all of its neighbours simultaneously in
one inter-controller time frame.

B. Policy Space and Problem Statement

For any decision variable, we add the superscript 7 to
acknowledge that it is under the action of the policy m. An
admissible policy 7, which is mutually deployed by the m
controllers, executes the following actions at every time slot ¢:

¢ ROUTE COMPUTATION: Controller D; computes the route
T©(t) € T for any new packet in class ¢ € C that
arrives at its domain. All packets in class c arriving at the
network in the current time slot are prescribed such route
T()(t) throughout their deployment in the network.
o SCHEDULING: Based on Cg,[t] and Cg[t — 7], the
controller D; independently of other controllers activates
the link activation vector D, (t).
o PACKET TRANSMISSION: Switches transmit packets over
the activated links e € E; if DT (¢) = 1.
Denote by II the set of admissible policies, which can use all
past and future packet arrival information, under the distributed
wireless SDN setting. Let R(°)(¢) be the number of distinct
packets of class ¢ € C that have reached all of the destination
nodes i € D(°) by time t. We say that an arrival rate vector
X = {\(9}.cc is supported by policy 7 if under the action of
7 and for any ¢ € C, the destination nodes commonly receive
the distinct packets of class c at the rate of \(¢).

Definition 1. An arrival rate vector X = {\}.cc is
supported by policy 7 if under the policy w:
ROt
lim inf ® _ A9 VeecC,wpl )
— 00

Finally, we define the network-layer throughput region A to
be the set of all supportable arrival rate vectors, i.e.

(&)

Definition 2 (Throughput-optimality). A policy m € 1II is
throughput-optimal if it supports any arrival rate vector A €
int(A), i.e. in the interior of the throughput region.

A={xe R‘f' : 3 € II that supports A}

In this work, we aim to develop a control scheme for
the distributed wireless SDN that is throughput-optimal, and
simultaneously satisfies all the SDN system idiosyncrasies.

IV. OPTIMAL NETWORK CONTROL FOR DISTRIBUTED
WIRELESS SDN

In this section, we present a network control framework
for distributed wireless SDN, termed Distributed Universal
Max-Weight (DUMW), and establish its throughput-optimality.



A. Universal Max-Weight (UMW)

We first present the throughput-optimal Universal Max-
Weight (UMW) policy [5] which permits algorithmic structure
directly congruent with SDN routing requirement and leverages
easy-to-track virtual queues in place of physical queues.
However, the UMW policy in its original form is centralized in
nature, which is incompatible with inter-domain operations and
is not designed to deal with sophisticated dynamic networks.

1) Setting of UMW: The original setting of [5] assumes
the centralized view of the global NSI which changes every
time slot according to some prescribed Markov chain; this
is captured by our generalized model (in Section III-A) for
the case of m = 1 domain controller and step size of 7 = 1.
Under this setting, UMW utilizes the virtual queue process
Q(t) = {Qc(t) }ecr, which relaxes the precedence constraints
of multi-hop networks. Unlike the conventional physical queues,
in which the queue counter is incremented when physical
packets arrive at the edge in the current time slot, the virtual
queue of edge e is incremented upon a packet arrival as long
as its prescribed route passes through e. Formally, at time
slot t, for all A()(t) packets of class ¢ arriving at the source
node 5(©), UMW prescribes them a route 7 (¢) € 7€), along
which these packets are routed throughout their traversal in the
network. The number of packet arrivals to the virtual queue is:

)= A9M)1(ec T (), VYecE.  (6)
ceC
Then the virtual queue process evolves as:
Qe(t+1) = (Qe(t) + Ac(t) = pe(t)) ", Ve B, (7)

Utilizing the virtual queues, the UMW scheme performs routing
and dynamic scheduling on the physical network by solving
weighted min-cost and max-weight problems as follows.
Routing: For any class ¢ € C packet at time ¢, select route
T (t) € T that solves the weighted min-cost problem:

<ZQ€ eeT(c)>

Upon the arrival of a new packet, its route is immediately com-
puted according to (8) and fixed throughout execution, which
makes UMW compatible with the SDN routing requirement.
Scheduling: Denote by M € {0, 1}/”! the set of all admissi-
ble link activations. For x € M, we have z.z. = 0,Ve' € I,
i.e. no pair of interfering links can be simultaneously acti-
vated. The UMW policy selects the link activation vector
Dg(t) € {0,1}7] that solves the max-weight problem:

Dg(t) € argmax (Z Qc(t) - Ce[t] - xe>.
xeM cCE

2) Limitations of UMW: The analytical model of UMW
lacks the generality to readily be extended to distributed control.
The queue dynamics (7) cannot exemplify the distributed view
of the network, whereby each controller has only local network
statistics and information. Moreover, the scheduling algorithm
(9) requires the fresh global NSI Cg[t], which is not available

T (t) € argmin
T eT©

®)

)

to controllers in the distributed setting. The dependence on M
as above also cannot capture the inter-domain characteristics:
for example, even if a controller D; decides to activate link
e € F, i.e. x. = 1, it cannot control or even observe the
interfering links handled by other domains, i.e. the values
of z. for ¢’ € I. N {E \ E;}. On the other hand, our new
analytical characterization of effective service rate (3) in place
of M captures interference from inter-domain links.

B. The Virtual Queue Process of DUMW

We develop the Distributed UMW (DUMW) framework that
non-trivially extends UMW [5] to the distributed wireless SDN
setting. We hereby define some notations and formally present
our virtual queue dynamics. The set C of packet classes can
be decomposed into mutually exclusive sets C = UJ*,C; with
Ci = {c € C: 59 €V}, whereby any packet of class ¢ € C;
enters the network through the domain D;, which manages the
source node s(¢) of the packet. At any time slot ¢, a policy
7 prescribes any packet of class ¢ € C an admissible route
T©)(t) € T(). Controller D; is in charge of packets arriving
to its domain, i.e. class-c packets with ¢ € C;; consequently,
the controller D; computes the route 7(°)(¢) and keeps track
of the total virtual packet arrival from the classes ¢ € C;:

A7) =) A B)I(e € T¥), Vec E.  (10)
celC;
The total virtual packet arrivals from all classes are:
m
:ZA;”’(t), Ve € E. (11)

Recall from Section III-A1 that p7(t) is the effective service
rate of link e. At time ¢, the virtual queue for link e € F,
under the action of policy 7, would be incremented by A7 (t)
due to the routing decisions, and decremented by u7(t) due
to the scheduling decisions. However, since domain controller
D; only has information on AT(t) and, if e € E;, u7(t), the
controllers must exchange information to maintain the virtual
queues. Moreover, the exchange must be synchronized in order
for the controllers to make consistent routing decisions. To
model periodic synchronization, we allow the virtual queues to
be updated only at the synchronization points 7; (j = 1,2, ...),
and obtain the 7-step evolution of the virtual queue process as:

Tj+1—1
Qelrya) = (Qelr) + 3 1476 — 7 (0)])

Ti+1—1 m

DA

t=1; 1=1

O (Qury um t)])+,ve € E. (12)

It is notable that our virtual queue process generalizes that of
[5], whereby for m = 1 domain controller and step size of
7 = 1, the recursion (12) reduces to the queue dynamics (7) of
UMW. DUMW is then designed to stabilize the virtual queue
process {Q(t)}i>o for any arrival rate A € int(A).



C. Controller Synchronization and Virtual Queue Estimates

Controller synchronization helps maintaining the delayed
global NSI and virtual queue updates, all of which are required
for making DUMW’s dynamic routing and scheduling decisions.
At time slot 7;, the NSI changes to Cg[r;] triggering the
new synchronization round. Consequently, each controller D;
executes the SYNC operation (described below) in order to
exchange its fresh local NSI C'g, [7;] and local statistics required
for virtual queue update, and retrieve the information from the
last synchronization point 7;_; (computed by the past SYNC).

1) Algorithmic Development of SYNC: At the synchroniza-
tion point 7;, each controller observes its fresh local NSI
Cg,[7;] and has the past local statistics, comprised of virtual
arrival packets { A7 (q)} o _TJI 1, Ve € E and local service rates
{u’g(q)};j:;_}_l,Ve € E;. Besides exchanging the NSI, the
controllers initiate the calculation of Q(7;) for virtual queue
update. From (12), this requires the inter-controller global
computation of th;l_l pr(t) and 7 ZTfl ATi(t) for
all edges e € E. We first show how the controllers can
collaboratively deploy the MAX gossip protocol [6] for
maintaining the (delayed) view of the global NSI C[7;] and
computing > ;7 7,1 Me (t). At inter-controller time frame £,
each controller D; maintains clelk] and s [k] respectively as its
estimates of C.[7;] and th;_l pZ(t) for all e € E. Based
on its NSI and the local statistics, each controller D; initializes:

ci[0] = Cerj] - L(e € E), (13)
SO = (3 W) 1eeB). a4

These values represent controller D;’s local information with
respect to NSI and service rates. Now, observe that the global
NSI C.[7;] and th;il w7 (t) can be written respectively as:

T;—1

0] and Z ul(t

t=Tj-1

15)

) = max s.[0],

Celrj] = max c nax

i€[1,m]

since every ct[0] (resp. s:[0]) can be either O or the true value
Ce[7;] (resp. th;l_l w7 (t)). In order to distributedly compute
the global maximum, at every inter-controller time frame k,
each controller D; first sends c’[k — 1] and s'[k — 1] to all the
neighbours N (D;). After receiving the messages, D; proceeds
to update its estimates as c:[k] = maxh DreD;UN(D;) Chlk—1]
and s [k] = maxy.p, ep,un(D,) hk —1] forall e € E, i.e.
taking the max of its own value and all other neighbours. It
can be shown [6] that, after O(|V,|) rounds, each controller D,
has ¢t [k] and si[k] respectively as the exact values of C.[7;]
and ZT7 _]1 7(t). The process incurs O(|V,||E.|) messages.

We are now left with the inter-controller computation of
S S ;3-171 AT(t). Since each controller D; can locally

compute the vector a’ € ]lel of partial sums:

Tj*l
al = Z AT(t), Ye€ E,

t=Tj_1

(16)

this problem reduces to computing across all the m controllers
the global sum Y ! a’. We design the mechanism, termed
TREE-SUM, that finds the global sum precisely under the semi-
static wireless setting where controllers support unique node
identities, are capable of coordination, and have access to the
inter-controller topology G.. First, we designate a controller,
say D1, as the root controller and compute a spanning tree 7,
rooted at Dy, of the inter-controller topology G.. Let T, have
depth d. and denote by L; (i € [0, d.]) be the set of controllers
at the t” level. Second, all the controllers accumulate the result
until the root of the tree is reached. Formally, for [ =1 — d,
iteratively, every controller D; € Lq, ;41 sends a’ along the
tree to its “parent” controller D; € Lg,_; in the next level; D;
then adds up the received values to its original partial values:
Z aé)

:D;€N(Dj)NLg, —141

al + al + Ve ¢ E.

At the end of the d. inter-controller time frames, the root
controller D; will have a! as the exact value of the global
sum Yt ST le  AT*(t), which also takes d,. inter-controller
time frames. Finally, it broadcasts a' along the tree T, to all

the controllers. The total number of communication rounds is
2d. = O(|V.]), and the total number of messages is O(|E,|).

D. Inter-Domain Routing

In order to address the inter-domain flow installation, we
require every controller D; to compute the min-cost route
selection for any class c € C at time 7; as:

(ZQ@ Tj-1)

and accordingly install forwarding rules onto its local switches,
i.e. nodes V; C V. This means that even the packets of class
¢ ¢ C;, i.e. not entering the network through D;, are also
supported by D; for the flow installation on V;. Since every
controller D; maintains the mutual view of Q(7;_1), they can
obtain and solve the same problem (17). By imposing the same
deterministic tie-breaking rules for optimizing (17), we ensure
that all the controllers select the same routes T(C)(Tj). For
any time slot ¢ € (75, 7;11), we reuse the old routes computed
from the latest synchronization point, i.e. setting 7(°)(t) =
T(®)(1}),Vc € C, thereby requiring no flow installation.

T (1;) €

argmin
T()eT(e)

€€ T“’)), (17)

E. Inter-Domain Scheduling

The inter-domain scheduling problem can be characterized
as scheduling with heterogeneously delayed NSI. Though
sharing similarities with the literature [7], the system within
our interest is more generalized: [7] can be viewed as a
special case where every domain only has one node. We allow
every domain to handle an arbitrary set of nodes, thereby
imposing the hierarchical domain structure. Consequently,
decisions for nodes inside one domain can be inter-dependent
in our problem, which is distinctive from [7] where each node
makes independent decisions. We present our inter-domain
scheduling policy, termed SCHEDULE, in Algorithm 1. At time
slot ¢t € [r;,7j+1), each controller D; formulates the same



optimization problem from the common information, which
includes the delayed global NSI Cg[t — 7] and the virtual
queue Q(7;_1); under the same deterministic tie-breaking rule,
all the controllers obtain the mutual optimal solution x*. The
SCHEDULE algorithm is novel and the first optimal scheduling
policy for the setting of heterogeneously delayed NSI with
hierarchy. The only applicable algorithm in the literature [8]
does not leverage fresh local NSI and is thus sub-optimal.

Algorithm 1: SCHEDULE
Input: t, Di, CEl [t], OE[t — 7'], Q(Tj_l)
Output: Link activation vector D, (t) € {0, 1}/Z:! for
domain D;.
1 Form the view of fresh local NSI as C, [t] = yg, and
delayed global NSI as Cg[t — 7] = .
2 Define k. such that e € V},_ . Consider the binary vector
variable x = {z(e,&, @)}, ceqoayiErat} € {0 1}Mo
with My =377, |E;|2!E:]. Solve the optimization:

x* :argxmax{ Z P(Cglt] :5}012[1‘/_7'] = )X

Be{0,1}I1EI
Z QE(Tj—l)Bﬁx(e7 /BEk:c ) a) H (1 - ﬁE’x(elv /BEke, ’ a))}
3 ecE e'ele ‘
Set D.(t) = z*(e,vg,,a), Ve € E;.

4 Return the link activation vector Dg, (t)

FE. The DUMW Framework and Throughput-Optimality

We depict the full DUMW framework in Algorithm 2 and
proceed to establish the throughput-optimality of DUMW.

Algorithm 2: Distributed UMW (DUMW) framework

1 for t =1,...,T each domain D; do

2 ift=7;€T ={r,7,...,7x} then

3 Initialize c*[0],s%[0],a’[0] as in (13), (14), (16).
4 [Synchronization] Start the new round 7; and
retrieve from the previous round 7;_1:

CE[Tj_l},[J,,A) = SYNC(TJ‘,Di,Ci[O],Si[O},ai[O])

5 Update the virtual queues as (12).

6 [Flow installation] Solve for 7(¢)(1;),Vc € C
from (17) and install all such flows on V; C V.

7 end

8 [Routing] Reuse routes T (t) = T (r;),Vc € C.

9 [Scheduling] Activate the link activation vector:

Dg, (t) = SCHEDULE(t, Dy, Cr, [t], Cr[t — 7], Q(7j-1))

10 end

Theorem 1. DUMW is throughput-optimal.

Theorem 1 is derived by first deploying the Lyapunov drift
analysis in order to show that the virtual queue process under
DUMW is strongly stable for any arrival rate A € int(A),
ie. limsupg_, & Z]K:_Ol > ecr E[Qc(75)] < oo. The key
components of the proof leverage the bounded queue delay
and the optimality of our novel SCHEDULE algorithm to obtain
the strong stability of virtual queues, which provably implies the
stability of physical queues and thus the throughput-optimality.

V. NUMERICAL SIMULATION

In all simulations, we report the total average physical queue,
which differs from the virtual queue used by DUMW and
illustrates the number of packets backlogged in the system.
Our setting assumes fully-connected inter-controller topology
G, node-exclusive wireless interference constraints, unit link
capacity, and unicast traffic, specified by a source-destination
(s-d) pair with Poisson arrivals following the same packet
generation rate . For abbreviation, we denote the link statistics
by P.(alb) = P(C.[t] = a|C.[t — 7] = b) and consider the
dynamic network with P,(1]|0) = P.(1|1) = 0.5. We consider
the 2 x 3 grid decomposed into three domains (Figure 3)
with two s-d pairs (1, 6) and (5, 6), and 7 = 50 in order to
demonstrate the noticeable throughput gain of DUMW even
on this moderate scale.
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Fig. 3: The tested 2 x 3 grid is
decomposed into three domains.

Fig. 4: DUMW notably gains throughput
by leveraging fresh local NSI.

Throughput-optimality of DUMW: We consider the central-
ized UMW [5] as an unrealistic baseline. The only applicable
algorithm in the literature [8] only uses the delayed global NSI
Cg[t — 7] and is thus sub-optimal in throughput. As illustrated
in Figure 4, DUMW gains noticeable throughput improvement
compared to the literature by leveraging the fresh local NSI.
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