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ABSTRACT

Recent advances in Visual Language Models (VLMs) have
significantly enhanced video analytics. VLMs capture com-
plex visual and textual connections. While Convolutional
Neural Networks (CNNs) excel in spatial pattern recogni-
tion, VLMs provide a global context, making them ideal for
tasks like complex incidents and anomaly detection. How-
ever, VLMs are much more computationally intensive, posing
challenges for large-scale and real-time applications. This
paper introduces EdgeCloudAl a scalable system integrat-
ing VLMs and CNNs through edge-cloud computing. Edge-
CloudAlI performs initial video processing (e.g., CNN) on
edge devices and offloads deeper analysis (e.g., VLM) to the
cloud, optimizing resource use and reducing latency. We
have deployed EdgeCloudAI on the NSF COSMOS testbed
in NYC. In this demo, we will demonstrate EdgeCloudAI's
performance in detecting user-defined incidents in real-time.
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Figure 1: The NSF COSMOS testbed’s geo-distributed cameras and
edge-cloud servers facilitate practical evaluation [3, 19].
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Figure 2: The left side displays the COSMOS camera’s view of a road
construction scene. The right side showcases the EdgeCloudAI UI
for querying detected incidents and anomalies.

1 INTRODUCTION

Recent advances in Visual Language models (VLMs) [1]
have significantly enhanced the potential of video analyt-
ics. Convolutional Neural networks (CNNs) have long been
the backbone of various video analytics applications. CNNs
are proven to be highly effective for tasks like image classi-
fication and object detection, where understanding spatial
relationships is key [20, 22]. On the other hand, VLMs often
incorporate Vision Transformers (ViTs) [27], which extend
the transformer architecture to image processing by dividing
images into patches and treating them as sequences of tokens.
This allows VLMs to model complex connections between
textual and visual data, potentially capturing global context
more effectively than CNNs. This makes them well-suited
for tasks that require understanding the semantic meaning
of images, such as complex incident or anomaly detection.
Compared to CNNs, VLMs are much more computation-
ally expensive, and they need a significant amount of power,
GPU capacity, and memory. This makes their application
in large-scale and real-time scenarios challenging. By in-
tegrating VLMs and CNNs through distributed edge/cloud
computing, it is possible to leverage their complementary
strengths. This approach enhances performance while main-
taining scalability and cost-effectiveness. Cloud computing
is much more computationally powerful and has more ca-
pacity than edge servers, therefore it is suitable for running
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Figure 3: EdgeCloudAl pipeline architecture and its multi-phase process to detect user-defined incidents.

large VLMs. Edge servers have enough capacity for running
CNNs or smaller VLMs. In this paper, we design and develop
a scalable and effective system for edge-cloud integration of
VLMs and CNNs. We refer to this system as EdgeCloudAL
Main objective. EdgeCloudAI’s main purpose is to enables
scalable, low-latency, and cost-effective detection of com-
plex incidents for applications in traffic management and
transportation, industrial anomaly detection, and safety.
Key ideas. EdgeCloudAlI leverages CNNs on edge to reduce
the cost and latency of querying VLMs in the cloud. Edge-
CloudAlI performs initial processing on the edge device to
determine whether to send key frames to the cloud for deeper
analysis with large VLMs. It also optimizes the video’s config-
uration, such as resolution, bitrate, and frame rate, to balance
detection performance with minimal cloud costs and latency.
Several methods have been explored to enhance CNN-
based video analytics performance, including selective learn-
ing [2, 8, 11, 24], online adaptation [4, 9, 10, 23], distributed
inference [15, 17, 25, 26], and online filtering [16, 18, 29]. A
few studies have used edge-cloud distributed computing to
improve VLMs and LLMs (Large Language Models) and lower
their cost and computation overhead. EdgeShard [28] parti-
tions LLMs into multiple shards and allocates them to several
edge devices and cloud servers. A dynamic token-level col-
laboration between small language models (SLMs) and LLMs
inference on edge and cloud is proposed by [5]. In [13], split
learning is used to support distributed training and inference
of LLMs. Unlike previous work, EdgeCloudAl is a function-
ing real-time system-deployed in COSMOS testbed-capable
of responding to users’ queries. It incurs lower overhead than
previous approaches by leveraging lightweight traditional
computer vision methods to reduce VLMs’ costs and latency
while maintaining their overall accuracy.
Demo. We deployed EdgeCloudAI on NSF COSMOS testbed
in New York City (NYC) (see Figure 1) [19] to evaluate its
performance in realistic settings. We will demonstrate Edge-
CloudAT’s real-time performance using COSMOS cameras,
illustrating how users can request and receive notifications
for certain incidents (see Figure 2).

2 EDGECLOUDAI ARCHITECTURE

EdgeCloudAl is designed to reduce the frequency and size
of cloud queries (i.e., VLM’s queries) to optimize end-to-
end latency and costs. Cloud providers often offer pay-as-
you-go pricing, meaning you only pay per task or query
rather than a fixed fee. Cloud servers may be geographically
distant from data sources and connected via lower capacity
links, resulting in higher network latency. In contrast, edge
devices are located closer to data sources, typically connected
through more reliable, higher capacity links. Edge devices
are cost-effective, often available at a one-time purchase
cost that amortizes over time. Considering these trade-offs,
EdgeCloudAlI employs the following multi-phase process to
detect user-defined incidents (see Figure 3):
Phase 0: light-weight processing. The real-time video
stream undergoes lightweight processing on the connected
edge device to assess scene changes using methods such
as background subtraction [21], optical flow [6], or a small
neural net [12]. In this phase, EdgeCloudAl decides if video
content changes require further analysis.
Phase 1: CNN processing. If phase 0 indicates a potential
scene change, CNN models on the edge device are invoked
to verify the presence of key components (e.g., objects or
gestures) related to the incident of interest. If confirmed,
a short video segment is prepared for transmission to the
cloud, which hosts a large VLM (e.g., LLaVA.v1.6 34b [14])
for more in-depth analysis (i.e., phase 2).
Phase 2: VLM processing. If phase 2 is triggered, to en-
hance accuracy and ensure low latency, irrelevant parts of
the video segment’s frames are cropped out before sending
them to the cloud. Additionally, the video segment may be
downsampled based on video quality and object size to re-
duce data size, network latency, tokens size, and processing
time. The cloud’s response is subsequently processed by an
SLM at the edge, ensuring that only informative notifications
are sent to the user.

As an example, assume that EdeCloudAl is asked to look
for construction (see Figure 2). First, the system performs
lightweight processing to identify movement and changes in



the scene. Once such changes are detected, the CNN models
verify the presence of key construction-related elements,
such as workers, trucks, excavators, or other tools. If these
elements are identified, irrelevant parts of the image, such
as the background, are cropped out. A video segment with
optimized resolution and frame rate is then sent to the cloud
for further verification. Users are then notified accordingly.

3 DEMONSTRATION

We deployed EdgeCloudAl on the COSMOS testbed using
its traffic cameras in NYC along with one of its edge servers
equipped with an Nvidia A100 GPU. We used gpt-4o [7] as
the large VLM in the cloud. EdgeCloudAI consumes between
5-7% of the edge GPU capacity. The average weekly cost
of cloud querying does not exceed 10$ per camera when
running 24/7. In this demonstration, we will showcase the
real-time performance of EdgeCloudAl to detect user-defined
incidents and notify the user accordingly.
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