
The Streetscape Application Services Stack (SASS):
Towards a Distributed Sensing Architecture for Urban

Applications

Navid Salami Pargoo1,∗, Mahshid Ghasemi2, Shuren Xia1, Mehmet Kerem Turkcan2,
Taqiya Ehsan1, Chengbo Zang2, Yuan Sun1, Javad Ghaderi2, Gil Zussman2, Zoran

Kostic2, Jorge Ortiz1,∗
1WINLAB, Rutgers University, New Jersey, USA

2Columbia University, New York, USA

Email:{navid.salamipargoo,shuren.xia,taqiya.ehsan,ys820,jorge.ortiz}@rutgers.edu;

{mahshid.ghasemi,mkt2126,cz2678,jg3465,gil.zussman,zk2172}@columbia.edu

Abstract

As urban populations grow, cities are becoming more com-

plex, driving the deployment of interconnected sensing sys-

tems to realize the vision of smart cities. These systems

aim to improve safety, mobility, and quality of life through

applications that integrate diverse sensors with real-time

decision-making. Streetscape applications—focusing on chal-

lenges like pedestrian safety and adaptive tra�c manage-

ment—depend on managing distributed, heterogeneous sen-

sor data, aligning information across time and space, and

enabling real-time processing. These tasks are inherently

complex and often di�cult to scale. The Streetscape Appli-

cation Services Stack (SASS) addresses these challenges

with three core services: multimodal data synchronization,

spatiotemporal data fusion, and distributed edge computing.

By structuring these capabilities as clear, composable ab-

stractions with clear semantics, SASS allows developers to

scale streetscape applications e�ciently while minimizing

the complexity of multimodal integration.

We evaluated SASS in two real-world testbed environ-

ments: a controlled parking lot and an urban intersection

in a major U.S. city. These testbeds allowed us to test SASS

under diverse conditions, demonstrating its practical applica-

bility. The Multimodal Data Synchronization service reduced

temporal misalignment errors by 88%, achieving synchroniza-

tion accuracy within 50 milliseconds. Spatiotemporal Data

Fusion service improved detection accuracy for pedestrians

and vehicles by over 10%, leveragingmulticamera integration.

The Distributed Edge Computing service increased system

throughput by more than an order of magnitude. Together,

these results show how SASS provides the abstractions and

performance needed to support real-time, scalable urban ap-

plications, bridging the gap between sensing infrastructure

and actionable streetscape intelligence.

* Corresponding authors.

1 INTRODUCTION

With rapid urbanization, cities are evolving into complex,

sensor-rich environments, equipped with a vast array of sen-

sors, actuators, and communication infrastructure [5]. These

urban settings are essentially large-scale distributed systems,

generating massive data streams that present new opportuni-

ties for streetscape applications focused on enhancing safety,

accessibility, and overall urban livability [44]. Streetscape ap-

plications address high-impact, real-time challenges, such as

improving pedestrian safety at intersections—critical given

that in the United States alone, intersections were the site

of 1,705 pedestrian fatalities in 2022, representing 23% of

all pedestrian deaths that year [8]. By leveraging advanced

sensing and computing capabilities, these applications can

respond to the immediate needs of urban environments, mak-

ing interactions within cities safer and more context-aware.

Yet, despite the increasing instrumentation available in smart

city testbeds, creating e�ective urban applications remains

challenging due to the lack of a uni�ed framework that of-

fers consistent abstractions and controlled access to shared

resources [28].

Current urban systems tend to be isolated, vertically inte-

grated stacks that are tightly bound to speci�c hardware and

software con�gurations. They often fail to integrate diverse

data sources, resulting in fragmented information and limited

situational awareness. Applications tailored to one environ-

ment are di�cult to adapt to others, which severely limits

scalability and reusability across di�erent urban settings.

Additionally, privacy concerns are frequently overlooked,

hindering user trust and adoption. These siloed systems of-

ten lack high-level programmability and enforceable access

controls, making it hard to bridge the gap between appli-

cation policies and low-level system operations. Without

consistent abstractions and robust access controls, develop-

ers are left with ad-hoc solutions rather than a dependable,

1

a
rX

iv
:2

4
1
1
.1

9
7
1
4
v
2

[c

s.
N

I]

1
3
 J

a
n
 2

0
2
5

Salami Pargoo et al.

standardized approach to harness the potential of smart city

infrastructure [41].

To address these challenges, we introduce the Streetscape

Application Services Stack (SASS), a structured frame-

work that supports the development of complex urban appli-

cations. SASS tackles the limitations of previous frameworks

by providing a modular, distributed application stack de-

signed speci�cally for smart cities. With an SDK and a set of

APIs, SASS abstracts the complexity of underlying hardware

and software con�gurations, enabling developers to work

with diverse urban sensors and components as manageable,

composable units.

SASS is built to meet the speci�c demands of urban ap-

plications, which require precise multimodal data synchro-

nization, spatiotemporal data fusion, and low-latency edge

computing. It synchronizes data streams from heterogeneous

sensor types, integrates spatially distributed data over time,

and performs edge-based processing to reduce latency and

conserve bandwidth. By o�ering these core services as mod-

ular, composable components, SASS simpli�es the creation

and deployment of applications in dynamic urban environ-

ments, enabling �exible and robust solutions that adapt to

varied infrastructure setups.

We evaluated SASS’s performance across di�erent real-

world testbeds: a controlled parking lot and a city-scale mo-

bile wireless testbed in New York City (COSMOS) [27]. These

evaluations con�rm SASS’s ability to support scalable, high-

performance urban applications by providing the necessary

modular components and architectural support.

The key contributions of this work are as follows:

• Introduction of the Streetscape Application Services

Stack: SASS provides a novel, modular framework with

standardized abstractions and controlled resource access,

addressing the programmability and portability gaps in

existing urban systems. Through its SDK and APIs, SASS

facilitates application development in complex urban set-

tings.

• Architectural Design for Core Urban Application

Properties:We identify three critical properties for urban

applications—multimodal synchronization, spatiotempo-

ral data fusion, and low-latency edge processing—and de-

sign specialized services to support them. These services

provide a scalable foundation that simpli�es data syn-

chronization, integration, and real-time processing across

diverse urban sensors.

• Implementation of Advanced Application Services:

We present three specialized services: Multimodal Sensor

Synchronization, Multicamera Detection, and Distributed

Edge Processing. These services introduce new techniques,

including a two-stage event-based synchronization algo-

rithm, a neural network-based multicamera fusion model,

and a decay-based dynamic scheduling algorithm.

While existing smart city frameworks have tackled aspects

of urban sensing and processing, they typically lack the mod-

ularity and composable abstractions necessary for handling

the complexity of diverse, distributed urban sensors at scale.

SASS addresses these limitations by providing a structured,

service-oriented framework tailored to the demands of real-

time, multimodal streetscape applications. By bridging the

gap between low-level sensor management and high-level

application logic, SASS enables scalable and adaptable solu-

tions across various urban testbeds. In the following section,

we examine prior work on urban sensing frameworks and

multimodal data processing, outlining the key challenges

that have in�uenced SASS’s design.

2 RELATED WORK

The Streetscape Application Services Stack (SASS) distin-

guishes itself as a novel system architecture that integrates

multimodal data synchronization, spatiotemporal data fu-

sion, and edge computing, addressing critical gaps in real-

time, distributed urban applications. In this section, we con-

trast SASS capabilities with existing work across three prin-

cipal application domains.

2.1 Multimodal Data Synchronization

In urban environments, e�ective data synchronization across

diverse sensor modalities is essential for applications requir-

ing coordinated interpretation of events. Early e�orts include

Spinello et al.’s work on pedestrian detection and tracking

using 2D and 3D laser range �nders and cameras [31], and

Piadyk et. al’s StreetAware dataset [25] which employed mul-

timodal integration for pedestrian tracking, while GruMon

leveraged smartphones to detect pedestrian clusters [29].

More recently, Sukel et al. advanced audio-visual data fusion

for micro-event classi�cation in urban spaces [32].

SASS builds on these foundations by o�ering a robust

Data Synchronization Service that aligns diverse data streams

with advanced timestamp alignment and bu�ering, crucial

for high-precision applications such as assistive navigation

and emergency response coordination. By providing aMulti-

modal Data API, SASS enables developers to access synchro-

nized data streams seamlessly, meeting the timing require-

ments of urban intelligence systems.

2.2 Spatiotemporal Data Fusion

Spatiotemporal fusion across distributed sensors is pivotal

for applications that monitor dynamic urban patterns over

time and space. Studies by Brunetti et al. and Tian et al.

illustrate the e�ectiveness of multi-sensor setups for tracking

urban pedestrian movement [6, 36]. However, limitations in

these systems, particularly regarding scalability and cross-

location adaptability, remain.

2

The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications

SASS overcomes these challenges by employing a dedi-

cated Data Fusion Engine to aggregate sensor data based on

proximity and spatial parameters. These components enable

continuous, high-resolution pedestrian and vehicle tracking

necessary for adaptive tra�c optimization and surveillance,

allowing SASS to deliver robust monitoring with minimal

latency across urban scales.

2.3 Edge Computing for Real-Time Data
Processing

Edge computing has been explored for smart city applica-

tions to reduce latency and improve data e�ciency, as demon-

strated by Shi et al. and Yu et al. in tra�c and event monitor-

ing contexts [30, 43]. Nonetheless, scalability and resource

management in edge infrastructures present ongoing tech-

nical challenges, particularly for urban deployments that

require adaptive, low-latency responses.

SASS extends real-time processing capabilities for smart

cities through its Edge Computing and Distributed Processing

Services, which facilitate localized data analysis for applica-

tions such as adaptive signal control. The Resource Manage-

ment Layer further optimizes computational resources across

nodes, providing reliable real-time data handling. SASS’ e�-

cient Communication Middleware ensures high-speed data

exchange, making it ideal for large-scale, latency-sensitive

applications.

2.4 Privacy-Preserving Techniques in
Urban Applications

As urban systems handle increasingly sensitive data, privacy-

preserving mechanisms are critical. Liu et al. propose a

privacy-preserving approach using multi-armed bandits for

IoT [16], while Miao et al. use crowd-sensing techniques to

protect user privacy [18]. Federated learning [13, 17] and

blockchain [39] have also shown promise in decentralized

data security.

SASS incorporates a privacy-focused architecture, com-

bining edge-based anonymization and server-side measures,

addressing privacy requirements in pedestrian tracking appli-

cations. This design allows SASS to meet regulatory privacy

standards, which is critical for secure and compliant urban

deployments.

2.5 Pedestrian Safety and Mobility
Applications

There has been extensive research focusing on pedestrian

safety, such as WheelShare for accessible routing [12] and

Ghost-Probe for blind spot detection [45]. Barón et al. studied

urban walkability factors [3, 4], which impact pedestrian

experiences in urban areas.

Through components like theMultimodal Synchronization

Module, SASS advances applications for real-time safety in-

terventions, making it particularly valuable for pedestrian

detection, health monitoring, and emergency response. This

integration of safety and mobility features in a single frame-

work represents a signi�cant contribution to urban intelli-

gence.

2.6 IoT and Big Sensor Data Systems for
Smart Cities

General IoT frameworks, including MACeIP and REIP, have

enhanced urban system management [20, 26], while the

Smart City Framework promotes interoperability in trans-

portation [37]. SASS surpasses traditional systems by fo-

cusing on smart streetscape with an emphasis on real-time

pedestrian and tra�c monitoring. Its modular architecture

allows tailored, low-latency analytics for applications like

adaptive tra�c control and emergency response.

3 FRAMEWORK DESIGN

To clarify the design of the Streetscape Application Services

Stack (SASS), we introduce three real-world applications

that emerged from smart city testbed initiatives. These ap-

plications highlight the speci�c needs and challenges of

streetscape applications, framing the requirements that SASS

is designed to meet.

3.1 Motivating Applications

Waypoint Finding for Navigation Application: This applica-

tion assists visually impaired individuals in navigating urban

areas by providing real-time guidance. It combines data from

multiple sources, such as GPS, cameras, and wearable de-

vices, to o�er accurate directions and obstacle avoidance.

The application relies on multimodal data synchronization

to ensure guidance is both accurate and responsive to the

user’s immediate surroundings [14].

Adaptive Tra�c Signal for Extended Cross Time Applica-

tion: This application aims to improve pedestrian safety by

dynamically adjusting tra�c signal timings to accommodate

individuals with varying mobility needs, like the elderly or

those with disabilities. It depends on spatiotemporal data

fusion from cameras and wearables to detect pedestrians and

estimate crossing times, requiring low-latency processing at

the edge to adjust signals in real-time [9, 19].

Pedestrian and Vehicle Detection for Urban Analytics Ap-

plication: This application monitors pedestrian and vehicle

�ows across multiple intersections to support urban plan-

ning and safety analysis. It integrates data from distributed

sensors, requiring spatiotemporal fusion to accurately track

movement. Edge computing is used to handle high data vol-

umes and enable real-time analytics [10, 11, 33, 42].

3

Salami Pargoo et al.

Each of these applications relies on integrating and pro-

cessing data from diverse, distributed sensors in real-time to

deliver hyper-local, context-aware services. They all require

the ability to synchronizemultimodal data, fuse spatiotemporal

information, and process data at the edge to meet performance

requirements.

3.2 Architectural Implications

Our experience developing applications on COSMOS testbed

highlighted the need for shared services and higher-level

abstractions to streamline development and reduce repeated

work. Building each application independently revealed re-

curring challenges, such as managing heterogeneous data,

synchronizing data streams, and ensuring low-latency pro-

cessing. These challenges, which we observed across urban

applications in the literature, are foundational for streetscape

environments [2, 28, 41].

From this analysis, we identi�ed three properties that are

essential to address the multimodal, distributed nature of

urban environments:

• Multimodal Data Synchronization: Synchronizing data

from di�erent sensor types in time is essential for coher-

ent analysis and processing. Without proper alignment,

data fusion can produce misleading or incorrect results.

Applications that rely on this property include assistive

navigation for visually impaired users [14] and emergency

response systems that need precise, real-time situational

data [21, 22].

• Spatiotemporal Data Fusion: Integrating data across

time and spatial locations is essential for capturing and

analyzing dynamic events and patterns in the urban land-

scape. Applications like multi-camera pedestrian tracking

[15] and tra�c �ow optimization [34] depend on this ca-

pability to interpret movement and detect changes across

di�erent areas.

• Edge Computing and Distributed Processing: Process-

ing data close to the source reduces latency and lowers

bandwidth usage, which is needed to support real-time

applications. Distributed processing improves scalability

by balancing computation across multiple devices. This

property is central to real-time analytics in tra�c man-

agement systems [10] and adaptive tra�c signal control

[9].

These core properties informed SASS’s architectural de-

sign. To support scalable, e�cient urban applications, SASS

provides services and abstractions that address these com-

mon needs. By focusing on multimodal data synchronization,

spatiotemporal data fusion, and edge computing, SASS en-

ables developers to build applications that integrate data

seamlessly, perform real-time analysis, and leverage edge re-

sources, while reducing the inherent complexity of streetscape

development.

4 SYSTEM ARCHITECTURE DESIGN AND
IMPLEMENTATION

SASS is a modular framework designed to handle the unique

demands of urban applications by providing scalable tools for

development, deployment, and management. Structured into

distinct layers and services, SASS abstracts core complexities

and o�ers comprehensive support for building urban data-

driven applications.

4.1 Overall System Architecture

The SASS architecture consists of six main parts (see Fig-

ure 1): (1) Hardware Layer, (2) API Suite, (3) Data Storage,

(4) Runtime Environment, (5) APP Gateway, and (6) Smart

Streetscape Applications. Each layer has a de�ned role that

contributes to e�cient, scalable, and secure data processing

and application support.

The Edge Hardware Layer acts as the system’s base,

comprising testbed sensors, actuators, and edge nodes for

localized data capture and command execution. Sensors and

actuators communicate with medium nodes over MQTT and

RTSP to relay raw data and receive commands, and medium

nodes further link these devices with software services. Edge

nodes execute high-compute tasks and process data near

its source to reduce latency. This setup also includes mo-

bile and wearable citizen sensors, such as IMUs and GPS,

adding diverse data to the system without being restricted

to proprietary infrastructure.

Data Storage manages both structured and unstructured

data, supporting relational databases for structured sensor

data and con�gurations, and blob storage for unstructured

data such as videos and images. A cache server temporarily

stores frequently accessed data to enhance I/O performance.

The API Suite in SASS consists of four key APIs that

enable seamless interaction between applications and the

system’s underlying services. TheMultimodal Data API

is designed to synchronize and fuse data from a variety of

sources, providing coherent and aligned inputs for applica-

tions. It also ensures privacy compliance by applying access-

based data distillation mechanisms. This API is particularly

critical for applications relying on diverse sensor modalities

to deliver accurate and integrated outputs.

The Control API facilitates actuator interactions, ensur-

ing transaction integrity through an action queue and roll-

back mechanisms. By managing command consistency and

recovering from partial failures, this API maintains the sta-

bility and reliability of actuator operations, enabling robust

system control.

4

The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications

Figure 1: SASS system architecture with core services for multimodal data synchronization, spatiotemporal fusion,

and edge computing. Key subsystems support device management, data routing, and distillation, while the Control

API ensures transaction reliability with rollback and action queues. The App Gateway secures access through

authentication and auditing, and the Runtime Environment manages resources across edge nodes and various

sensor types.

The Data Capture API supports the acquisition and stor-

age of both raw and processed data from various sensors

and applications. It streams collected data into a central-

ized database, simplifying its integration into multimodal

fusion work�ows and analytical pipelines, which enhances

system-wide data accessibility.

Finally, the Resource Directory API manages the regis-

tration and monitoring of IoT devices. It provides developers

and users with a uni�ed interface to track device status and

e�ciently manage resources. This API enhances operational

oversight and ensures the e�ective deployment of connected

devices across the system.

The Runtime Environment on edge nodes integrates

with Git for app version control, ensuring nodes stay synchro-

nized with the latest versions and allowing quick rollbacks if

issues arise. It provides the necessary infrastructure for edge

computing and distributed processing, handling resource

management and network coordination to streamline task

execution.

The App Gateway secures access to SASS’s services, con-

trolling entry points with authentication and access control.

By segmenting the runtime environment, the Gateway pre-

vents unauthorized data access and maintains user privacy.

Comprehensive logging and auditing support traceability

and system monitoring.

At the top, Smart Streetscape Applications make use

of SASS services and data to address urban challenges. Ap-

plications can directly interact with citizens or support city

agencies by securely sharing data for urban planning and

public safety.

4.2 Core Services

SASS Core Services is the backbone for managing IoT devices

in urban settings, with a modular framework that facilitates

device registration, secure access, and real-time data �ow

management.

4.2.1 Key Components and Methodology. Core Services con-

sists of several key components that together ensure secure

and e�cient urban IoT management.

The User Management and Access Control compo-

nent manages access through a role-based system using

JSON Web Tokens (JWT). Each token encodes user roles

and permissions, enforcing access control across all requests.

Permissions are assigned based on user roles and validated

at each request to secure sensitive data.

The Resource Directory registers and monitors devices,

storing attributes like device type, location, and access meth-

ods. Using SQLAlchemy ORM, a polymorphic base class

manages diverse device types, allowing easy extension for

future devices. Device-speci�c tokens authenticate status

5

Salami Pargoo et al.

{"device_id":"camera-001","type":"sensor","location":{

↩→ "latitude":40.00,"longitude":-70.00,"description":

↩→ "Alpha St."},"capabilities":["video_stream","

↩→ detect","track"],"data_format":"H.264",

↩→ "access_methods":{"api_endpoint":"https://generic-

↩→ endpoint.org/","protocols":"RTSP"},"status":"

↩→ online","last_sync_timestamp":"2024-11-07T13

↩→ :24:02.0923","registration_timestamp":"2024-08-05

↩→ T11:19:31.5754","owner":"Testbed"}

(a) Device Registration Information

{"timestamp":"2024-11-07T13

↩→ :49:53.6500",

↩→ "activity_type":"rollback",

↩→ "details":{"device_id":"

↩→ sensor-001",

↩→ "old_version_id":"e4a7e88b-

↩→ f32b4cf5-fca31f3f",

↩→ "new_version_id":"c0aa938e

↩→ -0c8d4c39-ca4c6681"}}

(b) Rollback Log (Version Control)

{"timestamp":"2024-10-05T21

↩→ :19:45.3932",

↩→ "activity_type":"update

↩→ ","details":{

↩→ "device_id":"sensor-001

↩→ ","status":"maintenance

↩→ ","last_sync_timestamp"

↩→ :"2024-10-05T21

↩→ :19:45.388"}}

(c) Device Status Log

Figure 2: Illustrative examples of the JSON-based data format used in SASS for device management andmonitoring.

updates, while version histories provide tracking and opera-

tional visibility.

The Data Capture component acquires data from sen-

sors, performing initial �ltering, cleaning, and compression.

Data is tagged with metadata such as location and times-

tamps, then directed to the Multimodal Data API for further

processing or stored in SASS’s database.

A Data Distillation pipeline balances data utility and

privacy using anonymization, aggregation, and temporal de-

lay techniques. Anonymization uses cryptographic hashing

and location generalization, aggregation provides summary

statistics, and temporal delay prevents real-time tracking

by adding a time bu�er. Future work includes exploring dif-

ferential privacy and federated learning to enhance privacy

protections.

The Logging and Auditing component tracks system

activities like device registrations and data access, storing

logs in JSON format with categorized timestamps and event

types. This logging framework supports troubleshooting and

compliance by providing a complete interaction history.

Version Control and Rollback leverages a UUID-based

snapshot system that simpli�es rollbacks by storing each con-

�guration as a complete state, ensuring that administrators

can easily restore previous con�gurations if needed.

The Transaction Manager acts as an intermediary be-

tween applications and actuators, ensuring control com-

mands are accurately executed. TheActionQueue sequences

commands to prevent con�icts and includes an auto-rollback

mechanism for error handling, restoring stable con�gura-

tions when necessary. Integration testing ensures reliable

operation across system components.

4.2.2 System Workflow. Core Services handle device regis-

tration, data �ow, control operations, authentication, con-

�guration management, and monitoring through a series of

streamlined processes.

Applications interact with SASS through JWT-based au-

thentication, obtaining temporary tokens that encode access

permissions. When a device registers, it submits attributes

like location and capabilities (see Figure 2a), and after vali-

dation, the system generates a device token for secure com-

munication. Device status and con�guration changes are

logged, with rollback versions stored in the version control

system. IoT devices transmit data and accept control com-

mands through secure channels.

For data �ow, devices send status updates and data through

secure channels authenticated by device tokens. Data Cap-

ture manages incoming data, tagging it with metadata, syn-

chronizing streams, and storing data in the system. For con-

trol operations, applications initiate commands through the

TransactionManager, which translates commands into actuator-

friendly formats, sequences them in the Action Queue, and

handles auto-rollback if errors occur (see Figure 2b). Control

activities are logged, providing traceability (see Figure 2c).

4.3 Multimodal Data Synchronization
Services

The Multimodal Data Synchronization Service aligns streams

from sensors with varying rates, formats, and time accura-

cies, ensuring consistency across data sources, especially in

real-time applications.

Incoming edge sensor data streams are timestamped using

NTP tomaintain accuracy across devices, with clock drift cor-

rected using a Kalman �lter. Timestamp corrections are cal-

culated as:)corrected =)local +Δ)o�set +Δ)drift ·ΔC , where)local
is the device’s local timestamp, Δ)o�set is the �xed time o�set

between clocks, Δ)drift is the drift rate, and ΔC is the elapsed

time since the last synchronization. For mobile and wearable

data, SASS supports both on-device NTP synchronization

and alternative methods to reduce battery and bandwidth de-

mands. Prede�ned and custom synchronization algorithms,

such as Dynamic Time Warping (DTW), allow developers to

tailor alignment methods to speci�c applications.

Adaptive bu�ering manages inconsistent latencies by ad-

justing bu�er sizes based on observed data arrival times:

� = max(�min, V · farrival) where �min is the minimum bu�er

6

The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications

Figure 6: A set of corresponding points from the street-

level cameras’ perspective and the top-level view per-

spective is used to train CoordinateTransformNet.

hyper inference [1] reduces computational overhead. Bound-

ing boxes and class probabilities are generated in each cam-

era’s coordinate system. Detected coordinates are then trans-

formed using CoordinateTransformNet, a lightweight neural

network trained using a set of point pairs to map each per-

spective into a uni�ed top-down view (Figure 6) To further

re�ne detections, we apply a Euclidean distance threshold

for de-duplication. If the distance between detections from

di�erent cameras falls below this threshold, they are treated

as duplicates, and we use con�dence-weighted averaging to

maintain data accuracy.

5.3 Distributed Edge Computing for
Real-Time Data Processing

Edge processing is necessary for low-latency applications in

urban environments. This application service uses SASS’s

Edge Computing and Distributed Processing Services to pro-

cess data at the network edge with minimal latency. The

objective is a real-time processing pipeline that detects and

tracks pedestrians, estimates trajectories and poses, and visu-

alizes results on a dashboard. Our setup included mobile IMU

sensors and a high-resolution camera in two testbed environ-

ments: the controlled parking lot and a dynamic intersection

in COSMOS testbed.

IMU readings and camera frames are captured and pro-

cessed in parallel. For mobile sensor data, only IMU readings

from individuals within the target area are used, determined

by location metadata. Frames from edge cameras undergo

object detection via YOLOv8 [35]. We enhance tracking con-

tinuity using the OC-SORT algorithm with shadow tracking

for unmatched tracks [7]. Trajectories, 3D bounding box,

and 2D poses are estimated, with results displayed on a dash-

board for spatial analysis. Bounding boxes and 2D poses

are then fed to MotionBERT [46] for 3D pose estimation,

with a Kalman �lter applied to smooth keypoint trajecto-

ries. Processed data streams are visualized on an interactive

dashboard.

6 IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of the men-

tioned application services developed using SASS.We further

evaluate each service based on speci�c performance metrics

demonstrating how SASS enables robust, high-performance

urban applications across diverse, sensor-rich environments.

6.1 Multimodal Sensor Synchronization

The development of our synchronization application ser-

vice was signi�cantly facilitated by the Multimodal Data

Synchronization Services provided by SASS. By leveraging

these services, we abstracted away the complexities associ-

ated with precise timestamping, clock synchronization, data

bu�ering, and alignment across heterogeneous sensor modal-

ities. This allowed us to focus on high-level synchronization

logic and algorithm development, resulting in an e�cient

and robust synchronization method integrated within the

SASS architecture.

The Multimodal Data Synchronization Services within

SASS o�ered core functionalities that streamlined the devel-

opment process. SASS ensured consistent time references

across edge sensors by implementing precise timestamping

mechanisms and clock synchronization protocols. The services

also applied clock drift correction to adjust local timestamps.

The services managed variations in data arrival times and

sampling rates through adaptive bu�ering and resampling

mechanisms. By dynamically adjusting bu�er sizes based on

real-timemonitoring of data arrival variability, the system ac-

commodated network delays and processing latencies with-

out signi�cant impact on synchronization accuracy. SASS

provided a library of prede�ned algorithms for data synchro-

nization, including DTW and HMM, which allowed us to

utilize these algorithms directly without implementing them

from scratch. By utilizing these components, we e�ciently

implemented our novel, user-de�ned two-stage synchroniza-

tion algorithm outlined in Section 5.1. SASS simpli�ed the

development by handling low-level data management tasks,

providing reusable algorithms, supporting scalability for the

addition of more sensors and modalities, and improving per-

formance by adaptively bu�ering the data stream.

To further evaluate the e�ectiveness of our synchroniza-

tion method, we conducted experiments in our controlled

parking lot environment, collecting over an hour of data

from various sensors. Eight individuals performed walking

and hand-raising/dropping gestures while holding a mobile

phone and wearing a wristband. We �rst evaluated the per-

formance of our gesture detection algorithms in both the

visual and IMU data streams.

In the vision domain, a gesture template was created us-

ing DTW-based Barycenter Averaging (DBA), which main-

tained the intrinsic temporal dynamics without distorting

9

Salami Pargoo et al.

Figure 7: Gesture Samples (Left), their Arithmetic Av-

erage w/o Temporal Variations (Middle), and the DTW

Barycenter Average w/ Temporal Dynamics used as the

Template (Right)

key trends (Figure 7). The DTW distance threshold was set

to 0.8, and the algorithm was applied using sliding windows

of 4 seconds. In the IMU domain (mobile devices and wrist-

bands), Features such as mean, variance, standard deviation,

Signal Magnitude Area (SMA), and entropy were extracted

from the accelerometer and gyroscope signals. The HMM

was trained over multiple iterations to maximize the like-

lihood of observing the feature sequence given the model.

The precision, recall and F1-score were calculated for both

domains and reported in Table 1.

After detecting synchronization events in both modalities,

we applied our synchronization method to align the data

streams. We quanti�ed the e�ectiveness of our synchroniza-

tion using Mean Absolute Error (MAE), Root Mean Square

Error (RMSE), and Mean Time O�set (MTO) between the

ground truth event start times and the predicted start times

from the synchronized data streams. The initial discrepan-

cies between sensor streams averaged approximately 400

ms due to unsynchronized clocks and network delays. After

applying our synchronization method, these discrepancies

decreased to less than 50 ms, representing an 88% reduc-

tion in temporal misalignment. The results are detailed in

Table 2. The signi�cant reduction in synchronization error

demonstrates the e�ectiveness of our method and the critical

role of SASS’s Multimodal Data Synchronization Services

in achieving precise alignment across heterogeneous sensor

modalities.

6.2 Multicamera Detection

Our multicamera detection application service greatly bene-

�ted from the Spatiotemporal Data Fusion Services o�ered

by SASS. These services simpli�ed the process of data acquisi-

tion, processing, and integration, allowing us to concentrate

on high-level data fusion algorithms and application logic.

As a result, we achieved a streamlined and resilient detection

system, seamlessly embedded within the SASS framework.

The Spatiotemporal Data Fusion Services within SASS

provided core functionalities that streamlined the develop-

ment process. Fusion Work�ow Engine, at the core of these

services, orchestrates the fusion process by managing data

Table 1: Event Detection Accuracy: Camera (IMU)

Event Type Recall Precision F1

Gesture Event 0.64 (0.61) 1.00 (0.92) 0.78 (0.73)

Non-Event 1.00 (1.00) 0.91 (0.98) 0.95 (0.99)

Table 2: Performance Metrics (Seconds) by Modality

Modality MAE RMSE MTO

Camera (IMU) 0.054 (0.032) 0.069 (0.039) 0.033 (0.006)

Average 0.04323 0.0545 0.0197

�ow between each component, enabling real-time fusion. It

�rst yields time-aligned frames from cameras overlooking

the area of interest. This is done using the location data and

synchronized timestamps embedded in the metadata of the

input data stream provided by Data Capture API. The �ex-

ibility of SASS in supporting multiple abstraction levels of

fusion (early, intermediate, and late), allowed us to apply an

intermediate fusion work�ow by utilizing bounding box and

con�dence features obtain from raw sensor data processed

by object an detection model.

To transform the coordinates from each camera’s per-

spective into a uni�ed top-down view, we integrated our

custom neural network, CoordinateTransformNet, into the

Fusion Algorithms Library provided by the Spatiotemporal

Data Fusion Services. Instead of relying on the built-in in-

verse perspective calibration, this choice demonstrated the

modular architecture and adaptability of the framework by

allowing developers to integrate custom fusion algorithms

tailored to speci�c application needs. Finally, the Fusion

Work�ow Engine handled integrating the custom processes

into its overall work�ow as part of a larger, adaptable fusion

pipeline. By abstracting these computational complexities,

SASS enabled the e�cient deployment of our multicamera

detection service.

To further assess the impact of multi-camera integration

on detection accuracy, we conducted experiments using a

dataset of 900 images captured simultaneously from three

cameras as illustrated in Figure 6 (two street-level cameras

on �rst and second �oors and one high-altitude view cam-

era on 12th). To further enhance detection accuracy, we �ne-

tuned the object detection model using a manually annotated

dataset recorded from the same high-altitude camera [38].

As a result, the detection results from the 12th �oor camera

can be considered a reliable ground truth. We performed

object detection using the YOLOv9e model [40] on the street-

level cameras. The detection results were transformed using

10

The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications

Acknowledgments

This work was supported by the National Science Founda-

tion (NSF) and Center for Smart Streetscapes (CS3) under

NSF Cooperative Agreement No. EEC-2133516, NSF Grant

CNS-2148128, NSF Grant CNS-2038984, and corresponding

support from the Federal Highway Administration (FHWA).

References
[1] Fatih Cagatay Akyon, Sinan Onur Altinuc, and Alptekin Temizel.

2022. Slicing Aided Hyper Inference and Fine-tuning for Small Object

Detection. 2022 IEEE International Conference on Image Processing

(ICIP) (2022), 966–970.

[2] Eiman Al Nuaimi, Hind Al Neyadi, Nader Mohamed, and Jameela

Al-Jaroodi. 2015. Applications of big data to smart cities. Journal of

Internet Services and Applications 6, 1 (2015), 1–15.

[3] Alejandro Barón, Cristina Aranda, and Antonio Estepa. 2018. In-

vestigating the walking accessibility, usability, and UX for a blind

user of michelin-starred restaurants’ websites. IEEE Access 6 (2018),

30770–30781.

[4] Nicole Barón, Stephanie Romero, Christiane Schönfeld, and Vera

Pavlakovich-Kochi. 2018. Walkability and safety around elementary

schools: Economic and ethnic disparities. Journal of transport & health

10 (2018), 236–245.

[5] Simon Elias Bibri and John Krogstie. 2017. Smart sustainable cities of

the future: An extensive interdisciplinary literature review. Sustainable

cities and society 31 (2017), 183–212.

[6] Antonio Brunetti, Domenico Buongiorno, Gianpaolo F Trotta, and

Vitoantonio Bevilacqua. 2018. Computer vision and deep learning

techniques for pedestrian detection and tracking: A survey. Neuro-

computing 300 (2018), 17–33.

[7] Jinkun Cao, Jiangmiao Pang, Xinshuo Weng, Rawal Khirodkar, and

Kris Kitani. 2023. Observation-centric sort: Rethinking sort for robust

multi-object tracking. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 9686–9696.

[8] Insurance Institute for Highway Safety (IIHS). [n. d.]. Pedestrian Fa-

tality Statistics. https://www.iihs.org/topics/fatality-statistics/detail/

pedestrians. Accessed: 2024-06-24.

[9] Yongjie Fu and Xuan Di. 2023. Federated Reinforcement Learning for

Adaptive Tra�c Signal Control: A Case Study in New York City. In

2023 IEEE 26th International Conference on Intelligent Transportation

Systems (ITSC). IEEE, 5738–5743.

[10] Mahshid Ghasemi, So�a Kleisarchaki, Thomas Calmant, Levent Gür-

gen, Javad Ghaderi, Zoran Kostic, and Gil Zussman. 2022. Real-time

camera analytics for enhancing tra�c intersection safety. In Proceed-

ings of the 20th Annual International Conference on Mobile Systems,

Applications and Services. 630–631.

[11] Mahshid Ghasemi, Zoran Kostic, Javad Ghaderi, and Gil Zussman.

2021. Auto-SDA: Automated video-based social distancing analyzer.

In Proceedings of the 3rd ACM workshop on hot topics in video analytics

and intelligent edges. 7–12.

[12] Anhong Guo, Andrew Payne, and Stacy Kuznetsov. 2018. WheelShare:

Crowd-sourced surface classi�cation for accessible routing. In Proceed-

ings of the 20th International ACM SIGACCESS Conference on Computers

and Accessibility. 414–416.

[13] Hongyu Guo, Yaochu Ren, Shuai Liu, Qian Chen, Xiaodong Li, and

Jing Xu. 2021. Multi-device federated learning: Challenges, methods,

and future directions. IEEE Wireless Communications 28, 3 (2021),

144–152.

[14] Gaurav Jain, Basel Hindi, Zihao Zhang, Koushik Srinivasula, Mingyu

Xie, Mahshid Ghasemi, Daniel Weiner, Sophie Ana Paris, Xin

Yi Therese Xu, Michael Malcolm, et al. 2024. StreetNav: Leverag-

ing street cameras to support precise outdoor navigation for blind

pedestrians. In Proceedings of the 37th Annual ACM Symposium on

User Interface Software and Technology. 1–21.

[15] Joao Paulo Lima, Rafael Roberto, Lucas Figueiredo, Francisco Simoes,

and Veronica Teichrieb. 2021. Generalizable multi-camera 3d pedes-

trian detection. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition. 1232–1240.

[16] Yufeng Liu, Jiawen Chen, and Shan Huang. 2020. Privacy-preserving

collaborative learning for multiarmed bandit in IoT. IEEE Internet of

Things Journal 7, 11 (2020), 11175–11186.

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-e�cient learning of

deep networks from decentralized data. Arti�cial intelligence and

statistics (2017), 1273–1282.

[18] Chao Miao, Lu Su, Wenjun Jiang, Yaliang Li, and Mengdi Tian. 2019.

Privacy-preserving truth discovery in crowd sensing systems. ACM

Transactions on Sensor Networks (TOSN) 15, 4 (2019), 1–32.

[19] ZhaobinMo,Wangzhi Li, Yongjie Fu, Kangrui Ruan, and Xuan Di. 2022.

CVLight: Decentralized learning for adaptive tra�c signal control

with connected vehicles. Transportation research part C: emerging

technologies 141 (2022), 103728.

[20] Truong Thanh Hung Nguyen, Phuc Truong Loc Nguyen, Monica

Wachowicz, and Hung Cao. 2024. MACeIP: A Multimodal Ambient

Context-enriched Intelligence Platform in Smart Cities. arXiv preprint

arXiv:2409.15243 (2024).

[21] Audrey Olivier, Matt Adams, Sevin Mohammadi, Andrew Smyth, Kath-

leen Thomson, Timothy Kepler, and Monish Dadlani. 2022. Data ana-

lytics for improved closest hospital suggestion for EMS operations in

New York City. Sustainable Cities and Society 86 (2022), 104104.

[22] Audrey Olivier, Sevin Mohammadi, Andrew W Smyth, and Matt

Adams. 2023. Bayesian neural networks with physics-aware reg-

ularization for probabilistic travel time modeling. Computer-Aided

Civil and Infrastructure Engineering 38, 18 (2023), 2614–2631.

[23] François Petitjean, Germain Forestier, Geo�rey I Webb, Ann E Nichol-

son, Yanping Chen, and Eamonn Keogh. 2014. Dynamic time warping

averaging of time series allows faster and more accurate classi�cation.

In Data Mining (ICDM), 2014 IEEE International Conference on. IEEE,

470–479.

[24] François Petitjean, Alain Ketterlin, and Pierre Gançarski. 2011. A

global averaging method for dynamic time warping, with applications

to clustering. Pattern Recognition 44, 3 (2011), 678–693.

[25] Yurii Piadyk, Joao Rul�, Ethan Brewer, Maryam Hosseini, Kaan Ozbay,

Murugan Sankaradas, Srimat Chakradhar, and Claudio Silva. 2023.

Streetaware: A high-resolution synchronized multimodal urban scene

dataset. Sensors 23, 7 (2023), 3710.

[26] Yurii Piadyk, Bea Steers, Charlie Mydlarz, Mahin Salman, Magdalena

Fuentes, Junaid Khan, Hong Jiang, Kaan Ozbay, Juan Pablo Bello, and

Claudio Silva. 2022. REIP: A Recon�gurable Environmental Intelli-

gence Platform and Software Framework for Fast Sensor Network

Prototyping. Sensors 22, 10 (2022), 3809.

[27] Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis,

Dan Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zo-

ran Kostic, Xiaoxiong Gu, et al. 2020. Challenge: COSMOS: A city-scale

programmable testbed for experimentation with advanced wireless.

In Proc. ACM MobiCom.

[28] Eduardo Felipe Zambom Santana, Ana Paula Chaves, Marco Aurelio

Gerosa, Fabio Kon, and Dejan S Milojicic. 2017. Software platforms

for smart cities: Concepts, requirements, challenges, and a uni�ed

reference architecture. ACM Computing Surveys (Csur) 50, 6 (2017),

1–37.

13

Salami Pargoo et al.

[29] Rijurekha Sen, Youngki Lee, Kasthuri Jayarajah, Archan Misra, and

Rajesh Krishna Balan. 2018. GruMon: Fast and accurate group moni-

toring for heterogeneous urban spaces. In Proceedings of the 16th ACM

Conference on Embedded Networked Sensor Systems. 51–63.

[30] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016.

Edge Computing: Vision and Challenges. IEEE Internet of Things

Journal 3, 5 (2016), 637–646.

[31] Luciano Spinello, Kai O Arras, Rudolph Triebel, and Roland Siegwart.

2010. People detection in 3D point clouds using distant and height

layered grids. 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (2010), 3545–3550.

[32] Maarten Sukel, Stevan Rudinac, andMarcelWorring. 2019. Multimodal

classi�cation of urban micro-events. Proceedings of the 27th ACM

International Conference on Multimedia (2019), 1455–1463.

[33] Yuan Sun, Navid Salami Pargoo, Peter Jin, and Jorge Ortiz. 2024. Opti-

mizing Autonomous Driving for Safety: A Human-Centric Approach

with LLM-Enhanced RLHF. In Companion of the 2024 on ACM In-

ternational Joint Conference on Pervasive and Ubiquitous Computing.

76–80.

[34] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong Yang, Stan

Birch�eld, Shuo Wang, Ratnesh Kumar, David Anastasiu, and Jenq-

Neng Hwang. 2019. City�ow: A city-scale benchmark for multi-target

multi-camera vehicle tracking and re-identi�cation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

8797–8806.

[35] Juan Terven and Diana Cordova-Esparza. 2023. A comprehensive

review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv preprint

arXiv:2304.00501 (2023).

[36] Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2019.

Pedestrian detection aided by deep learning semantic tasks. CVPR

(2019).

[37] Vlasios Tsiatsis, Pramod Anantharam, Payam Bamanga, Martin Fis-

cher, Frederik Ganz, Muhammad Imran Ali, Gabi Nechifor, Daniel

Keuper, Alexandra Muldoon, Konstantinos Kokkinos, Christian Sailer,

Dan Paul, and Ralf Torjus. 2016. Smart City Framework: Real-Time

IoT Stream Processing and Large-Scale Data Analytics for Smart City

Applications. Technical Report. European Commission.

[38] Mehmet Kerem Turkcan, Sanjeev Narasimhan, Chengbo Zang,

Gyung Hyun Je, Bo Yu, Mahshid Ghasemi, Javad Ghaderi, Gil Zussman,

and Zoran Kostic. 2024. Constellation Dataset: Benchmarking High-

Altitude Object Detection for an Urban Intersection. arXiv preprint

arXiv:2404.16944 (2024).

[39] Anil Vangala, Ashok Kumar Das, Neeraj Kumar, and Mamoun Alazab.

2021. Blockchain-enabled certi�cate-based authentication for smart

energy systems. IEEE Transactions on Industrial Informatics 17, 6 (2021),

4450–4461.

[40] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. 2024. Yolov9:

Learning what you want to learn using programmable gradient infor-

mation. arXiv preprint arXiv:2402.13616 (2024).

[41] Pengjun Wu, Zhanzhi Zhang, Xueyi Peng, and Ran Wang. 2024. Deep

learning solutions for smart city challenges in urban development.

Scienti�c Reports 14, 1 (2024), 5176.

[42] Tong Wu, Navid Salami Pargoo, and Jorge Ortiz. 2023. Multi-sensor

Fusion for In-cabin Vehicular Sensing Applications. In Proceedings of

the 22nd International Conference on Information Processing in Sensor

Networks. 332–333.

[43] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie

Lin, and Xinyu Yang. 2017. A survey on the edge computing for the

Internet of Things. IEEE access 6 (2017), 6900–6919.

[44] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista,

and Michele Zorzi. 2014. Internet of things for smart cities. IEEE

Internet of Things journal 1, 1 (2014), 22–32.

[45] Yue Zhang, Jiaqi Gu, Zhiqian Cao, Kaigui Xu, Xuan Gao, and Prasant

Mohapatra. 2020. Ghost-Probe: Detecting Vehicle Blind Spots for

Pedestrian Safety. In Proceedings of the 18th Conference on Embedded

Networked Sensor Systems. 529–541.

[46] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne Wu, and

Yizhou Wang. 2023. Motionbert: A uni�ed perspective on learning

human motion representations. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision. 15085–15099.

14

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Multimodal Data Synchronization
	2.2 Spatiotemporal Data Fusion
	2.3 Edge Computing for Real-Time Data Processing
	2.4 Privacy-Preserving Techniques in Urban Applications
	2.5 Pedestrian Safety and Mobility Applications
	2.6 IoT and Big Sensor Data Systems for Smart Cities

	3 FRAMEWORK DESIGN
	3.1 Motivating Applications
	3.2 Architectural Implications

	4 SYSTEM ARCHITECTURE DESIGN AND IMPLEMENTATION
	4.1 Overall System Architecture
	4.2 Core Services
	4.3 Multimodal Data Synchronization Services
	4.4 Spatiotemporal Data Fusion Services
	4.5 Edge Computing and Distributed Processing Services

	5 APPLICATIONS METHODOLOGY
	5.1 Multimodal Data Synchronization
	5.2 Spatiotemporal Data Fusion
	5.3 Distributed Edge Computing for Real-Time Data Processing

	6 IMPLEMENTATION AND EVALUATION
	6.1 Multimodal Sensor Synchronization
	6.2 Multicamera Detection
	6.3 Distributed Edge Processing

	7 CONCLUSION
	Acknowledgments
	References

