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Abstract—We consider a decentralized wireless network with
several source-destination pairs sharing a limited number of
orthogonal frequency bands. Sources learn to adapt their trans-
missions (specifically, their band selection strategy) over time, in
a decentralized manner, without sharing information with each
other. Sources can only observe the outcome of their own trans-
missions (i.e., success or collision), having no prior knowledge of
the network size or of the transmission strategy of other sources.
The goal of each source is to maximize their own throughput
while striving for network-wide fairness. We propose a novel fully
decentralized Reinforcement Learning (RL)-based solution that
achieves fairness without coordination. The proposed Fair Share
RL (FSRL) solution combines: (i) state augmentation with a semi-
adaptive time reference; (ii) an architecture that leverages risk
control and time difference likelihood; and (iii) a fairness-driven
reward structure. We evaluate FSRL in more than 50 network
settings with different number of agents, different amounts of
available spectrum, in the presence of jammers, and in an ad-hoc
setting. Simulation results suggest that, when we compare FSRL
with a common baseline RL algorithm from the literature, FSRL
can be up to 89.0% fairer (as measured by Jain’s fairness index)
in stringent settings with several sources and a single frequency
band, and 48.1% fairer on average.

I. INTRODUCTION

Future wireless applications and devices will increasingly

rely on Dynamic Spectrum Access (DSA) algorithms to effec-

tively manage limited spectrum resources. The significance

of DSA for next-generation networks has been highlighted

in the National Spectrum Strategy [1]. Extensive research

has been conducted on developing DSA algorithms that can

efficiently allocate frequency spectrum to wireless devices

while minimizing harmful interference (see surveys [2], [3]).

In recent years, Reinforcement Learning (RL) emerged as a

promising approach to enabling spectrum sharing in decen-

tralized communication networks (see recent survey [4]) with

sources/agents learning to make decisions over time by inter-

acting with the environment and with other sources/agents.

Related Work. Achieving fairness is a major challenge in RL-

based DSA [5]–[12]. Two common approaches to achieve fair
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allocation of resources are: (i) centralized training [5]–[8] in

which all RL agents train together using a reward structure that

captures network-wide fairness, thus allowing them to learn

to coordinate transmissions; or (ii) information sharing [9]–

[12] in which RL agents are allowed to share information

explicitly [9] or implicitly [10]–[12]. For example, the DARPA

Spectrum Collaboration Challenge allowed sources/agents to

explicitly share information about their future planned trans-

missions. Another example of explicit sharing is [9] that

considers a network in which, at the end of every time slot t,

the centralized Access Point shares information about the

outcomes of transmissions in all bands. An example of implicit

sharing is [10] in which agents that can sense transmissions

in every frequency band and identify their source.

Most relevant to this paper are [7], [8] which consider net-

works in which sources/agents can only observe the outcome

of their own transmissions. In [7], the authors consider RL

agents that first train offline in a centralized manner and then

train online in a decentralized manner. During offline training,

agents learn how to coordinate transmissions. During online

training, agents fine-tune their individual deep Q-networks

(DQN). In [8], the authors consider two distinct goals: max-

imizing throughput and achieving fairness. For maximizing

throughput, the authors consider RL agents that train in a

fully decentralized manner without sharing information. For

achieving fairness, the authors consider RL agents that train

in a centralized manner. Clearly, for both [7], [8], centralized

training is essential for achieving fairness.

Main Contributions. In this paper, we develop a fairness-

driven DSA algorithm for decentralized communication net-

works in which RL agents – called Fair Share Reinforcement

Learning (FSRL) agents – learn/train in a decentralized

manner without sharing information with each other, explicitly

or implicitly. Specifically, FSRL agents can only observe the

outcomes of their own transmissions (i.e., success or collision)

and they have no knowledge about the network size nor about

the prior/current/future actions taken by other FSRL agents. To

achieve fairness in a network setting with limited knowledge,

we propose FSRL agents that incorporate: (i) state augmen-

tation with a semi-adaptive binary time reference; (ii) an RL

architecture that leverages risk control [13] and time difference

likelihood [14]; and (iii) a novel reward structure tailored for

achieving fairness without coordination. We evaluate FSRL

in several network settings with different number of agents,

different amounts of available spectrum, in the presence of

jammers, and in an ad-hoc setting. Simulation results suggest
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To minimize the Temporal Difference (TD) error, tradi-

tional DQN takes a state-action estimate from the target

network and a state-action (st, at) from the current network

and minimizes TD as follows δ = Q(st, at) − Qtarg with

Qtarg = rt + γQ̂(st+1, π(st+1)), where rt is the received

reward and γ is the discount factor. Similarly, given samples

τ, τ ′ ∼ U([0, 1]), the distributional version of TD error is

defined as

δτ,τ ′ = Z(st, at; τ
′)− Ztarg(τ) (7)

with Ztarg(τ) = rt+γẐτ (st+1, π(st+1)), where Z(st, at; τ
′)

is given from (6) and Ẑτ (st+1, π(st+1)) denotes the distri-

butional estimate of the next state under the greedy policy

defined as π(st+1) = argmaxa Q(st+1, a).
Finally, given the distributional TD error, the IQN loss

function is as follows

L(st, at, rt, st+1) =
1

Qd

Qd
∑

i=1

Qd
∑

j=1

ρτi(δ
τi,τ

′

j ) (8)

where Qd is the total number of samples τ, τ ′ ∼ U([0, 1])
used to estimate the loss, and the quantile regression loss is

given by

ρτ (δ) = (τ − 1δ≤0)
Hk(δ)

k
(9)

where Hk is the Huber Loss with threshold k [13, Sec. 2.2].

The update rule for the neural network weights and biases,

represented as θ, follows the equation θ ← θ−µt∇θL, where

µt is the learning rate (dynamically adjusted according to (10),

discussed later), and ∇θL is the gradient of the loss function L
with respect to θ. This process minimizes the loss by updating

the weights in the direction of the negative gradient. To ensure

stability during training, the target network with weights θtarget

is periodically updated to match the weights of the primary

network. This periodic update can be expressed as θtarget ← θ,

and is performed every N steps. The target network provides

fixed targets during loss computation, reducing instability

caused by rapidly fluctuating predictions from the primary

network.

Dynamic Risk. In settings with multiple FSRL agents that

have just recently started training, many transmissions may

result in collisions. In this case, agents may learn a distribution

of rewards that is heavily weighted towards negative values,

inducing a “risk-averse behavior,” e.g., remaining silent. By

judiciously modifying the sampling distribution of τ and τ ′,

it was shown in [13] that it is possible to emphasize higher

rewards, inducing “risk-seeking behavior,” e.g., attempting

transmissions. This modification of sampled τ, τ ′ can be

achieved by adjusting α in (1) over time. In our simulations,

we start with a risk value α = 0.5 and decrease α over time

using a risk decay of 5e−4.

Time Difference Likelihood. TDL adjusts the network’s

learning rate µt over time. Intuitively, it reduces the learning

rate when it encounters agents that are in their exploration

phase. To detect exploratory actions by other agents, TDL

leverages samples from Z(st, at; τ
′) and Ztarg to determine

the likelihood LS that samples are from the same distribution.

Intuitively, a higher LS indicates a good match between the

predicted and target distributions, while a lower LS suggests

no overlap, reflecting poor model performance. The likelihood

LS is used to influence the learning rate, allowing the model to

adjust its updates based on the similarity between distributions,

according to

µt =

{

max(β,LS) · µ̄, if δτi,τ ′

j
≤ 0,

µ̄, otherwise.
(10)

where µ̄ be the base learning rate (tuned for stationary envi-

ronments) and β is a threshold applied when LS is too low to

prevent the learning rate from becoming excessively small.

This dynamic adjustment ensures that the learning process

remains efficient and avoids stagnation during optimization.

Details about the computation of LS can be found in [14].

The combination of Dynamic Risk and Time Difference

Likelihood is expected to significantly improve sharing of

limited resources.

C. Fairness-driven Reward Structure of FSRL Agents

We propose a fairness-driven reward that does not require

information sharing among agents. Let the reward accrued by

FSRL agent m at the end of time slot t be as follows

Rm(t) =



















0.096× (1− wm(t)) + Ψk(t) , if om(t) = 1

−1.06× wm(t) , if om(t) = −1

−0.06 , if om(t) = 0 and
∑t

k=t−L am(k) = 0

0.0516 , otherwise
(11)

where Ψk(t) is the band sharing term (described later in (13))

and

wm(t) =
∑t−1

k=t−L I{am(k)=am(t)}(2
k−t|om(k)|) (12)

is the weight associated with agent m during time slot t,

I{am(k)=am(t)} is the indicator function that is equal to 1 when

the band selected at a previous time slot k is the same as the

band selected in time slot t and equal to 0 otherwise, and L is

the reward history length. We normalize wm(t) to the range

[0, 1].

Reward Weights. In time slot t, agent m selects band am(t).
The weight wm(t) increases with the number of successful

transmissions in the recent past, i.e., in previous time slots

k ∈ {t − L, . . . , t − 1}, using the same band am(t). The

term 2k−t emphasizes more recent events and de-emphasizes

older events. A high wm(t) ∈ [0, 1] reduces the reward

0.096× (1−wm(t)) associated with a successful transmission

at time t and increases the penalty −1.06×wm(t) associated

with a collision. Intuitively, this should discourage agents from

transmitting uninterruptedly. A low wm(t) has the opposite

effect, encouraging agents that have not transmitted much to do

so. Notice that agents that idle receive a small reward 0.0516,

but agents that are always silent receive a penalty −0.06.

The coefficients in (11) are obtained from hyper-parameter

tuning, as part of reward engineering. The selection of reward





The 54 experiments are conducted sequentially, without setting

random seeds. Experiment results are shown “as is,” without

replacing unfavorable results, highlighting the stability and

reliability of FSRL. Repeating the same experiment multiple

times and displaying averages and standard deviations is left

for future work.

Figure 4 displays the network fairness and throughput

metrics (15)-(17) of FSRL in all 54 experiments. It can be seen

that FSRL achieves high network throughput C̄ ≥ 0.86 in all

settings, perfect fairness J̄ = 1 in all settings with M = N ,

almost perfect fairness J̄ ≥ 0.89 for all settings with N ≥ 4,

and reasonable fairness J̄ ≥ 0.63 in all scenarios. The worst

fairness J̄ = 0.63 occurs in the setting with M = 9 agents and

N = 2 bands. When FSRL is compared with a baseline RL

algorithm from the literature (see Table III) we observe that the

baseline achieves J̄ = 0.22 which is the fairness associated

with 2 (out of the 9) agents uninterruptedly transmitting in

the 2 available bands and the remaining 7 agents staying

silent. This comparison highlights that even the worst case

scenario for FSRL still achieves reasonable fairness.

Figure 5 displays the evolution of the per agent throughput

(or success rate) C500
m (t) over time for three of the 54 exper-

iments. Notice that in all three settings the throughput of all

agents converge to similar values, leading to the high fairness

results shown in Figure 4. Figure 5 also displays the rate of

collisions per agent and the rate of idle slots per band, both of

which go to zero as time progresses, indicating that FSRL

achieves high throughput. Notably, FSRL agents achieve

high throughput and fairness in a fully decentralized

manner, without sharing information with each other.

B. Comparison with baseline DSA algorithms

An intuitive reward structure commonly used in the DSA

literature [7]–[10] is such that RL agents accrue a fixed

positive reward when their transmissions are successful and a

fixed negative reward when their packets collide. In Figure 6,

we compare FSRL with a solution similar to [7], [8] in which

RL agents use DQN and a reward structure called Collision

Penalty 1 (CP1) defined as follows

RCP1
m (t) =











+3 , if om(t) = 1 [succ. transm.]

−1 , if om(t) = −1 [collision]

0 , otherwise [idle]

(18)

Figure 6 shows that DQN with CP1 quickly converges to an

unfair outcome in which one agent remains silent, i.e., starves,

throughout the experiment, while FSRL converges (after some

time) to a fairer outcome in which all agents learned to share

the resources. Table III compares the performance of DQN

with CP1, FSRL, and FSRL without binary time reference in

twelve network settings. The network throughput of FSRL is

on average 35.3% better than FSRL without time reference,

highlighting the importance of the time reference to the aug-

mented state described in Sec. III-A. The network throughput

of FSRL is on average 3.65% worse than DQN with CP1. The

fairness of FSRL is on average 48.1% better than DQN

TABLE III: Comparison of the network fairness J̄ and throughput C̄
for three DSA algorithms

Setting DQN with CP1 FSRL w/o time ref FSRL

M N J̄ C̄ J̄ C̄ J̄ C̄

10 9 0.90 1.00 0.98 0.56 0.98 0.97
10 7 0.70 1.00 0.99 0.69 0.94 0.97
10 5 0.50 1.00 0.99 0.99 1.00 0.99
10 3 0.30 1.00 0.58 0.83 0.75 0.95
10 1 0.10 1.00 0.48 0.41 0.91 0.97
9 2 0.22 1.00 0.51 0.49 0.63 0.97
8 2 0.25 1.00 0.58 0.74 0.70 0.98
7 2 0.29 1.00 0.67 0.64 0.69 0.97
6 5 0.83 1.00 0.99 0.59 0.94 0.87
6 1 0.17 1.00 0.79 0.43 0.71 0.99
5 4 0.75 1.00 0.99 0.60 0.93 0.96
2 2 0.50 1.00 0.99 0.52 1.00 1.00

with CP1, highlighting the benefits of the fairness-driven

reward structure discussed in Sec. III-C.

C. Time-Varying Conditions: Jamming Environment

To evaluate the capability of FSRL agents to adapt to time-

varying conditions, we consider a scenario in which a jammer

enters and then leaves the network. Notice that adapting to

a jammer that enters and remains in the network for a long

time is easier than adapting to a dynamic jammer. The jammer

in Fig. 7(a)/(b) enters at t = 40k/t = 90k and occupies one

frequency band until time slot t = 70k/t = 140k. As can be

seen from Fig. 7 and from additional experiments omitted due

to space limitation, FSRL agents maintain high throughput

and fairness before, during, and after the jamming episode.

The fairness-driven reward structure with a band sharing

term (13) provides incentives for agents to spread their

transmissions in different bands (as opposed to agents

transmitting in a single band), reducing the impact of

the jammer on any given agent, making it easier for the

network to converge to a new fair resource allocation.

Notice that the hyper-parameters of the FSRL agents re-

mained unchanged throughout the experiments, demonstrating

the adaptability of our method to dynamic environments. In

this section, FSRL uses the same ML architecture, reward

structure, and hyper-parameters described in Sec. IV with a

minimum epsilon of 0.01.

D. A More Complex Channel Model: Ad-Hoc Network

To evaluate the capability of FSRL agents to adapt to

channels models beyond broadcast, we consider an ad-hoc

network in which:

• agents only interfere with neighboring agents, i.e., agent

1 interferes with agent 2, agent i interferes with both

agents i + 1 and i − 1, ∀i ∈ {2, . . . ,M − 1}, and agent

M interferes with agent M − 1;

• a transmission from agent i ∈ {1, 2, · · · ,M − 1} is

successful only if agent i+1 can receive it without inter-

ference, and a transmission from agent M is successful

only if agent M − 1 can receive it without interference.

Hence, from this ad-hoc network model, we have that a

transmission from agent i ∈ {1, 2 . . . ,M − 1} in band n is

successful only if neither agent i+1 nor agent i+2 transmit
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