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Abstract—We consider a decentralized wireless network with
several source-destination pairs sharing a limited number of
orthogonal frequency bands. Sources learn to adapt their trans-
missions (specifically, their band selection strategy) over time, in
a decentralized manner, without sharing information with each
other. Sources can only observe the outcome of their own trans-
missions (i.e., success or collision), having no prior knowledge of
the network size or of the transmission strategy of other sources.
The goal of each source is to maximize their own throughput
while striving for network-wide fairness. We propose a novel fully
decentralized Reinforcement Learning (RL)-based solution that
achieves fairness without coordination. The proposed Fair Share
RL (FSRL) solution combines: (i) state augmentation with a semi-
adaptive time reference; (ii) an architecture that leverages risk
control and time difference likelihood; and (iii) a fairness-driven
reward structure. We evaluate FSRL in more than 50 network
settings with different number of agents, different amounts of
available spectrum, in the presence of jammers, and in an ad-hoc
setting. Simulation results suggest that, when we compare FSRL
with a common baseline RL algorithm from the literature, FSRL
can be up to 89.0% fairer (as measured by Jain’s fairness index)
in stringent settings with several sources and a single frequency
band, and 48.1% fairer on average.

I. INTRODUCTION

Future wireless applications and devices will increasingly
rely on Dynamic Spectrum Access (DSA) algorithms to effec-
tively manage limited spectrum resources. The significance
of DSA for next-generation networks has been highlighted
in the National Spectrum Strategy [1]. Extensive research
has been conducted on developing DSA algorithms that can
efficiently allocate frequency spectrum to wireless devices
while minimizing harmful interference (see surveys [2], [3]).
In recent years, Reinforcement Learning (RL) emerged as a
promising approach to enabling spectrum sharing in decen-
tralized communication networks (see recent survey [4]) with
sources/agents learning to make decisions over time by inter-
acting with the environment and with other sources/agents.
Related Work. Achieving fairness is a major challenge in RL-
based DSA [5]-[12]. Two common approaches to achieve fair
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allocation of resources are: (i) centralized training [5]-[8] in
which all RL agents train together using a reward structure that
captures network-wide fairness, thus allowing them to learn
to coordinate transmissions; or (ii) information sharing [9]-
[12] in which RL agents are allowed to share information
explicitly [9] or implicitly [10]-[12]. For example, the DARPA
Spectrum Collaboration Challenge allowed sources/agents to
explicitly share information about their future planned trans-
missions. Another example of explicit sharing is [9] that
considers a network in which, at the end of every time slot ¢,
the centralized Access Point shares information about the
outcomes of transmissions in all bands. An example of implicit
sharing is [10] in which agents that can sense transmissions
in every frequency band and identify their source.

Most relevant to this paper are [7], [8] which consider net-
works in which sources/agents can only observe the outcome
of their own transmissions. In [7], the authors consider RL
agents that first train offline in a centralized manner and then
train online in a decentralized manner. During offline training,
agents learn how to coordinate transmissions. During online
training, agents fine-tune their individual deep Q-networks
(DQN). In [8], the authors consider two distinct goals: max-
imizing throughput and achieving fairness. For maximizing
throughput, the authors consider RL agents that train in a
fully decentralized manner without sharing information. For
achieving fairness, the authors consider RL agents that train
in a centralized manner. Clearly, for both [7], [8], centralized
training is essential for achieving fairness.

Main Contributions. In this paper, we develop a fairness-
driven DSA algorithm for decentralized communication net-
works in which RL agents — called Fair Share Reinforcement
Learning (FSRL) agents — learn/train in a decentralized
manner without sharing information with each other, explicitly
or implicitly. Specifically, FSRL agents can only observe the
outcomes of their own transmissions (i.e., success or collision)
and they have no knowledge about the network size nor about
the prior/current/future actions taken by other FSRL agents. To
achieve fairness in a network setting with limited knowledge,
we propose FSRL agents that incorporate: (i) state augmen-
tation with a semi-adaptive binary time reference; (ii) an RL
architecture that leverages risk control [13] and time difference
likelihood [14]; and (iii) a novel reward structure tailored for
achieving fairness without coordination. We evaluate FSRL
in several network settings with different number of agents,
different amounts of available spectrum, in the presence of
jammers, and in an ad-hoc setting. Simulation results suggest
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Fig. 1: DSA network with 3 source-destination pairs denoted {1, 2, 3}
sharing 3 bands denoted {1,2,3}. In each slot ¢, each source m
transmits in band n or idles (i.e., “transmits” in band 0). Successful
transmissions are green. Collisions are red. Idle agents are white.

that, when we compare FSRL with a baseline RL-based DSA
algorithm from the literature [7], [8], FSRL can be up to 89.0%
fairer in settings with extremely scarce resources, and 48.1%
fairer on average, as measured by the Jain’s fairness index [15].
The remainder of this paper is organized as follows. In
Sec. II, we describe the communication network model. In
Sec. III, we propose FSRL agents, describing their state,
architecture, and reward. In Sec. IV, we present extensive
simulation results. Section V concludes this paper.

II. DECENTRALIZED COMMUNICATION NETWORK

We consider a wireless network composed of M source-
destination pairs sharing N orthogonal frequency bands. We
consider a broadcast channel' in which all sources can in-
terfere with each other. We assume that sources always have
packets to transmit and destinations are continuously listening
to all NV bands. Let a,,,(t) € {0,1,..., N} represent the action
taken by source m € {1,..., M} intime slot ¢t € {1,...,H},
where H is the time-horizon. Action a,,(t) = 0 indicates
that the source idles. Action a,,(t) = n indicates that the
source transmits a packet using band n € {1,...,N}. Let
om(t) € {—1,0,1} represent the outcome of the action taken
by source m in time slot ¢. The outcome o,,(t) is revealed
to each source at the end of slot ¢. If during slot ¢ the source
idles, then o,,,(t) = 0. If during slot ¢ only source m transmits
in band n, then its transmission is successful (o,,,(t) = 1) and
the associated destination sends a short acknowledgment to the
source using the same band. Otherwise, if two or more sources
transmit in the same band, then there is a packet collision
(o (t) = —1), the associated destinations cannot decode their
message, and no acknowledgment is sent. The transmission
outcome o,,(t) depends on the decisions a,,(t) taken by all
sources, as illustrated in Fig. 1. We assume that sources
cannot share information to coordinate transmissions.
Specifically, in time slot ¢, source m only knows historical
information about its own decisions {a,,(k)}r<; and out-
comes {0, (k) } <. Sources have no prior knowledge about
the network size M nor about the prior/current/future
actions taken by other sources.

ITII. FAIR SHARE REINFORCEMENT LEARNING (FSRL)

In this section, we describe our proposed solution to the
problem of multiple sources dynamically and independently
selecting actions aiming to maximize their own through-
put (i.e., rate of successful transmissions) while striving for

'A more complex ad-hoc channel model will be discussed in Sec. IV-D.

TABLE I: Augmented state s,,(t) of a FSRL agent at time ¢ = 27
(with binary time reference with modulo 16) for a network with
N = 2 frequency bands. MSB/LSB stands for Most/Least Significant
Bit.
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network-wide fairness. We use decentralized RL with each
source m running a separate FSRL agent responsible for
selecting actions a,,, (t) over time. Next we describe the agent’s
state, architecture, and reward.

A. Augmented State of the FSRL Agent

In time slot ¢, the FSRL agent associated with source m
selects an action a,, (t) utilizing historical information, namely
actions {a,,(t —T),...,a,(t — 1)} and outcomes {o,,(t —
T),...,0m(t—1)} from the previous T time slots, where T is
the temporal length. An example of historical information for
a particular agent, for 7" = 5, and using one-hot encoding to
represent a,, (t) is shown in the three bottom rows of Table 1.
Semi-adaptive Binary Time Reference. We augment the
FSRL agent’s state with a time reference counter which
represents time slot ¢ modulo 16, i.e., mod(t,16), allowing
the time reference to be represented using 4 bits. For example,
t = 27 gives mod(t — 1,16) = 10 which is represented by
(1010)5 in the top four rows in the last column in Table I.
Then, the augmented state at time ¢, i.e., S,,(t), is composed
of actions, outcomes, and binary time references from the
previous 7T time slots. Table I illustrates the augmented state
of a FSRL agent at time ¢ = 27. The augmented state is all
that a FSRL agent can observe before selecting an action.

By providing a time reference to FSRL agents, we aim
to facilitate their pursuit of transmission patterns. For
example, consider a scenario with two agents fairly sharing
a single band. Each agent should follow a pattern similar
to: transmit, idle, transmit, idle, and so on. With the binary
time reference, agent 1 could learn to ignore the three Most
Significant Bits (MSB) of the time reference, and transmit
when the Least Significant Bit (LSB) is 1 and idle when the
LSB is 0. The binary representation of the time reference
allows FSRL agents to ignore bits adaptively, which is
useful for a dynamic environment where the number of
agents in the network can change. The choice of mod(t, 16)
limits the length of the transmission pattern to 16. In contrast,
a value larger than 16 would enlarge the state space. In
Sec. IV-B, we compare the performance of our FSRL solution
with and without time reference and show that the time
reference significantly improves performance.

B. FSRL Network Architecture

The proposed architecture of FSRL agents is illustrated in
Fig. 2. This architecture is inspired by [7] which uses Dueling
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Fig. 2: Architecture of each FSRL agent which integrates Dueling
DQN with Distributional RL. Legend: B is the batch size, Q4 is the
quantile dimension, 7" is the temporal length, D, is the number of
hidden units, and D is the feature dimension.

Deep Q Network (DDQN). Recall that, as described in Related
Work in Sec. I, to achieve fairness, the DDQN solution [7]
relied on centralized training of all RL agents in the net-
work. In this paper, aiming to foster collaboration during
a fully decentralized training process, we enhance the
DDQN architecture with the Likelihood Hysteretic Implicit
Quantile Network (LH-IQN) proposed in [13], [14]. Next,
we briefly introduce the DDQN architecture used in [7], then
we describe our enhancements leveraging Implicit Quantile
Network, Dynamic Risk, and Time Difference Likelihood. For
reproducibility, we will share the code online prior to the
conference.

Dueling Deep Q-Networks. DDQNs extend the traditional Q-
learning framework by decomposing the Q-value function into
two components: the state value function and the advantage
function. The advantage layer and value layer can be seen on
the right side of Fig. 2. This separation allows the evaluation
of the importance of states independently of the actions, which
improves generalization across similar state-action pairs, espe-
cially when different actions lead to similar outcomes. When
compared with traditional Q-learning, DDQNs have shown
performance benefits [16] especially in environments with
large state-action spaces (similar to this paper).

Implicit Quantile Networks. Distributional RL extends tradi-
tional RL by modeling the entire distribution of future returns
instead of modeling only their expected value. Let the return
Z™(s,a) = r¢+37i1+7?r4 12+ . .. represent the cumulative
future reward under a given policy 7 from a given state-action
pair (s,a), where r; is the immediate reward provided by
the environment at time ¢ and v € (0,1] is the discount
factor. Unlike the immediate reward r;, which is a single
scalar value, the return distribution captures the variability
and uncertainty of future outcomes under a given policy 7.
Implicit Quantile Networks (IQN) build upon the principles of
Distributional RL by estimating the return distribution through
a quantile-based approach. Specifically, IQN approximates the
inverse cumulative distribution function of Z™ (s, a), denoted
as F'(s,a;7), for quantile fractions 7 ~ U([0,1]). Hence,
instead of estimating a single expected return Q™ (s,a) =
E[Z™(s,a)], IQN estimates a set of quantiles that collectively
represent the return distribution, thus providing a flexible

and expressive framework for modeling the diverse range of
possible outcomes associated with each action.

An important contribution of this paper is to propose
an RL architecture that integrates DDQN and IQN.
Specifically, our architecture is based on a quantile-based
distributional DDQN which models the return distribution
Z™(s,a) for each state s and action a. Next, we describe the
main steps of the FSRL architecture illustrated in Fig. 2.

The input to the FSRL architecture are: (i) the augmented
state s,,(t) € ZT*P, where D is the feature dimension;
and (ii) the set of sampled quantile fractions 7 € REX@ax1,
where each individual T ~ ([0, 1]), B is the batch size, and
Q4 represents the quantile dimension. The augmented state
8sm(t) is processed by an LSTM layer to encode temporal
dependencies, giving us h; = LSTM(s,,(t)) € RBXDn,
where D;, is the number of hidden units. The output h; is
then replicated across the quantile dimension and reshaped
which yields h, € RE*QaxDn,

Simultaneously, the set of sampled quantile fractions T are
adjusted using a risk-sensitive transformation, such as:

Tdistorted — W(T) =® ((b_l(T) + a) s (1

where W(7) is the Wang transformation [17], ® is the
standard normal cumulative distribution function (CDF), and
« is a risk parameter. A positive « corresponds to risk-
seeking behavior, while a negative « corresponds to risk-
averse behavior. This distortion modifies the network’s focus
on specific parts of the distribution, such as low or high
returns. Next, the distorted quantiles are transformed using
cosine embeddings

¢(Tdistoned) = COs (WTdistortedw) 5 (2)

with w € RP» and ¢(Tyisiorted) € REXQe*Pr This embed-
ding introduces periodicity, enhancing the representation of
the quantiles.

The distorted quantile embeddings ¢(Taistored) are then
element-wise multiplied with the reshaped LSTM output,
producing a joint representation

Zt = ¢(Tdistorted) © h; where z; € RBXQJXDh7 3)

which combines state and quantile information. The joint
representation z; passes through fully connected layers to
compute the value V'(s) and advantage A(s,a) as follows

V(s) = fo(z) € RB*@ax1 @
A(s, a) = fa(z) € RPXQaxIA &)

where f,(.) and f,(.) are fully connected networks, and |.A]
is the number of actions. The distribution of returns, denoted
as Z(s,a;7) € REXQaxIAl i obtained by combining value
and advantage components as follows

Z(s,a;7) = V(s) + <A<s,a> - ﬁ ZA@,@/)) G

where the mean advantage is subtracted to stabilize learning.



To minimize the Temporal Difference (TD) error, tradi-
tional DQN takes a state-action estimate from the target
network and a state-action (s¢,a;) from the current network
and minimizes TD as follows 6 = Q(s¢,a;) — Quarg With
Qurg = Tt + ’yQ(stH,w(stH)), where r; is the received
reward and + is the discount factor. Similarly, given samples
7,7 ~ U([0,1]), the distributional version of TD error is
defined as

Orr = Z(81,a157") = Ztarg(T) )

with Ziarg(T) = 14 +VZAT(SH1, 7(8t41)), where Z (s, ar; 1)
is given from (6) and Zr(st+1,w(st+1)) denotes the distri-
butional estimate of the next state under the greedy policy
defined as 7(s¢41) = argmax, Q(St41, a).

Finally, given the distributional TD error, the IQN loss
function is as follows

1 Qa Qa )
L(St,ap, T4, S141) = @ Z Zl)n (0773) ®)

i=1 j=1

where Qg is the total number of samples 7,7 ~ U([0,1])
used to estimate the loss, and the quantile regression loss is
given by
pr(6) = (7~ L) 2 ©)
where Hj, is the Huber Loss with threshold k [13, Sec. 2.2].
The update rule for the neural network weights and biases,
represented as 6, follows the equation 6 <— 6 — 1; VoL, where
¢ is the learning rate (dynamically adjusted according to (10),
discussed later), and VL is the gradient of the loss function £
with respect to 6. This process minimizes the loss by updating
the weights in the direction of the negative gradient. To ensure
stability during training, the target network with weights Oareet
is periodically updated to match the weights of the primary
network. This periodic update can be expressed as Oyarger < 0,
and is performed every N steps. The target network provides
fixed targets during loss computation, reducing instability
caused by rapidly fluctuating predictions from the primary
network.

Dynamic Risk. In settings with multiple FSRL agents that
have just recently started training, many transmissions may
result in collisions. In this case, agents may learn a distribution
of rewards that is heavily weighted towards negative values,
inducing a “risk-averse behavior,” e.g., remaining silent. By
judiciously modifying the sampling distribution of 7 and 7/,
it was shown in [13] that it is possible to emphasize higher
rewards, inducing ‘“risk-seeking behavior,” e.g., attempting
transmissions. This modification of sampled 7,7’ can be
achieved by adjusting « in (1) over time. In our simulations,
we start with a risk value a = 0.5 and decrease o over time
using a risk decay of 5e~%.

Time Difference Likelihood. TDL adjusts the network’s
learning rate u, over time. Intuitively, it reduces the learning
rate when it encounters agents that are in their exploration
phase. To detect exploratory actions by other agents, TDL
leverages samples from Z(s;, a;;7') and Zy4,4 to determine

the likelihood Lg that samples are from the same distribution.
Intuitively, a higher Lg indicates a good match between the
predicted and target distributions, while a lower Lg suggests
no overlap, reflecting poor model performance. The likelihood
Lg is used to influence the learning rate, allowing the model to
adjust its updates based on the similarity between distributions,
according to

max(f8,Ls) - @, if 0., . <0,
i :{ (B,Ls) - 1 V7! (10)

i, otherwise.

where i be the base learning rate (tuned for stationary envi-
ronments) and 3 is a threshold applied when Lg is too low to
prevent the learning rate from becoming excessively small.
This dynamic adjustment ensures that the learning process
remains efficient and avoids stagnation during optimization.
Details about the computation of Lg can be found in [14].
The combination of Dynamic Risk and Time Difference
Likelihood is expected to significantly improve sharing of
limited resources.

C. Fairness-driven Reward Structure of FSRL Agents

We propose a fairness-driven reward that does not require
information sharing among agents. Let the reward accrued by
FSRL agent m at the end of time slot ¢ be as follows

0.096 X (1 — w, (1)) + Cr(t) , if o (t) =1
—1.06 X wp,(¢) , if o (t) = —1

~0.06 , if 0, (t) =0 and 3 _, ; am(k) =0
0.0516 , otherwise

R,.(t) =

(11)
where W (t) is the band sharing term (described later in (13))
and

t—1

Win(t) = Xzt Lam () =am 1) (2 lom(R)))  (12)

is the weight associated with agent m during time slot ¢,
Iia,.(k)=a.(¢)} 18 the indicator function that is equal to 1 when
the band selected at a previous time slot k is the same as the
band selected in time slot ¢ and equal to O otherwise, and L is
the reward history length. We normalize w,,(¢) to the range
[0, 1].
Reward Weights. In time slot ¢, agent m selects band a,, ().
The weight w,,(t) increases with the number of successful
transmissions in the recent past, i.e., in previous time slots
ke {t—L,...,t — 1}, using the same band a,,(¢). The
term 2F~* emphasizes more recent events and de-emphasizes
older events. A high w,,(t) € [0,1] reduces the reward
0.096 x (1 —w,,(t)) associated with a successful transmission
at time ¢ and increases the penalty —1.06 x w,, (t) associated
with a collision. Intuitively, this should discourage agents from
transmitting uninterruptedly. A low w,,(t) has the opposite
effect, encouraging agents that have not transmitted much to do
so. Notice that agents that idle receive a small reward 0.0516,
but agents that are always silent receive a penalty —0.06.
The coefficients in (11) are obtained from hyper-parameter
tuning, as part of reward engineering. The selection of reward



coefficients plays a critical role in achieving desirable out-
comes. While, in theory, the reward should be derived directly
from the task, practitioners often find it necessary to create
more detailed rewards that guide the agent’s behavior [18].
In this paper, the reward coefficients in (11) were fine-
tuned to balance the agent’s incentives to transmit (in
the different bands) and to idle, allowing other agents
to transmit. Naturally, reward over-optimization and mis-
generalization [19] are key concerns. To demonstrate that
the reward (11) generalizes to diverse network settings, in
Sec. IV we simulate FSRL agents (always with the same
reward) in > 50 networks with different number of agents,
different amounts of available spectrum, in the presence
of jammers, and in an ad-hoc setting.

Band Sharing. The band-sharing term W, (¢) is defined as

0.08 :
\I/m(t) _ {(1+8N+5 +012) X Gy , if N > 1 (13)

0 , otherwise

where G, is a normalized geometric mean given by

V(B +D)(Bha+ 1) (BL v +1)

G =
maxy, { {/(Bh, + D(Bha+ 1. (Bhy+1)}
and B,ﬁm = Z;t_ 1, Wa..(k)=n} TEpresents the number of

times agent m transmitted in band n in the last L slots.
Notice that BL /L is the transmission rate of agent m
in band n. Natlirally, the transmission rate of agent m in
all bands is such that Zf:le BE /L < 1. The normalized
geometric mean’ G,, tends to be larger when the values
of B,L,w are similar. The normalized geometric mean uses
(Ber x+1) instead of B,Lm & to avoid persistent zeros. The band-
sharing term ¥, (¢) increases the reward R,,(¢) in (11) when
agents spread their transmissions in different bands. Figure 3
compares the transmissions of a single FSRL agent over time
slots ¢ in identical network settings in the presence/absence
of the band-sharing term (13). It is clear that the band-sharing
term W,, (¢) creates incentives for FSRL agents to spread their
transmissions. An important effect of band sharing is that it
makes the network more resilient to unintended interference or

jamming, as highlighted in the results presented in Sec. IV-C.

Agent Chosen band | Chosen band | Chosen band | Chosen band | Chosen band
9 at t-8 att-7 at t-6 att-5 att-4
1 4 8 4 3 4
(a) FSRL agent without band-sharing.
Agent Chosen band | Chosen band | Chosen band | Chosen band | Chosen band
9 att-8 att-7 att-6 att-5 att-4
1 1 4 5 2 3

(b) FSRL agent with band-sharing.

Fig. 3: Comparison of the transmissions from a FSRL agent in a
network with M = 5 agents and N = 5 bands. (a) Shows an FSRL
agent without the band-sharing term (13) in its reward (11). (b) Shows
an FSRL agent with a reward as in (11).

2For additional information on the relationship between different types of
mean, please refer to the “mean inequality chain”.

TABLE II: Hyper-parameters used in every experiment.

Parameter Value | Parameter Value
Learning Rate (jz) 5e~% | Epsilon Decay 8e~ 0
Epsilon 5e¢~2 | Risk Decay 5e~1
Risk Value («) 0.5 Temporal Length (T) 15
Buffer Size 1500 | Update Frequency 500
Reward History Length (L) 16 Minimum Epsilon 5e~3
Gamma (v) 0.9 Batch Size (B) 128
Quantile Dimension (Q4) 128

IV. EXPERIMENTS IN DIVERSE SCENARIOS

In this section, we perform an extensive evaluation of the
proposed decentralized RL-based solution described in Sec. III
in diverse scenarios. Specifically, in Sec. IV-A, we show that
FSRL achieves high performance in 54 network settings with
different number of agents M and bands N; in Sec. IV-B,
we compare the performance of FSRL with two baseline RL-
based DSA algorithms; in Sec. IV-C, we show that FSRL
agents can adapt to a jammer that enters and then leaves the
network; and in Sec. IV-D, we show that FSRL agents can
adapt to ad-hoc wireless scenarios.

Simulation metrics. We evaluate the DSA algorithms in terms
of throughput and fairness. The throughput (or success rate)
of agent m at time ¢ is measured by

t—1
1
CWi(t) = — I _ 14
' () W ; ” {om(k)=1} » (14)
=t— Wy

the standard deviation of agent throughput at the end of the

experiment is measured by
o =std{CV:(H)}, (15)

the network throughput at the end of the experiment is
measured by

1M
C==> C"(H). 16
¥ 2::1 ' (H) (16)
Naturally, in the broadcast channel model, we have

SM_CWi(H) < N and C € [0,1]. The network fairness

m=1"—"m
is measured using the Jain index [15]

[, o)

J = 2
MYl O ()]

(17)

with a higher J — 1 indicating a fairer outcome.

A. Several Network Settings

We perform experiments for every combination of number
of source-destination pairs M € {2,...,10} and number of
bands N € {1,...,10} with M > N. Notice that settings with
M < N have spare resources and therefore are less interesting.
Notably, FSRL uses the same ML architecture, reward
structure, and hyper-parameters described in Table II in
all 54 experiments. This showcases the capability of FSRL
to attain high throughput and fairness in several different
scenarios without having to fine-tune the ML solution.



The 54 experiments are conducted sequentially, without setting
random seeds. Experiment results are shown “as is,” without
replacing unfavorable results, highlighting the stability and
reliability of FSRL. Repeating the same experiment multiple
times and displaying averages and standard deviations is left
for future work.

Figure 4 displays the network fairness and throughput
metrics (15)-(17) of FSRL in all 54 experiments. It can be seen
that FSRL achieves high network throughput C' > 0.86 in all
settings, perfect fairness J = 1 in all settings with M = N,
almost perfect fairness J > 0.89 for all settings with N > 4,
and reasonable fairness J > 0.63 in all scenarios. The worst
fairness J = 0.63 occurs in the setting with M = 9 agents and
N = 2 bands. When FSRL is compared with a baseline RL
algorithm from the literature (see Table III) we observe that the
baseline achieves J = 0.22 which is the fairness associated
with 2 (out of the 9) agents uninterruptedly transmitting in
the 2 available bands and the remaining 7 agents staying
silent. This comparison highlights that even the worst case
scenario for FSRL still achieves reasonable fairness.

Figure 5 displays the evolution of the per agent throughput
(or success rate) C2%0(t) over time for three of the 54 exper-
iments. Notice that in all three settings the throughput of all
agents converge to similar values, leading to the high fairness
results shown in Figure 4. Figure 5 also displays the rate of
collisions per agent and the rate of idle slots per band, both of
which go to zero as time progresses, indicating that FSRL
achieves high throughput. Notably, FSRL agents achieve
high throughput and fairness in a fully decentralized
manner, without sharing information with each other.

B. Comparison with baseline DSA algorithms

An intuitive reward structure commonly used in the DSA
literature [7]-[10] is such that RL agents accrue a fixed
positive reward when their transmissions are successful and a
fixed negative reward when their packets collide. In Figure 6,
we compare FSRL with a solution similar to [7], [8] in which
RL agents use DQN and a reward structure called Collision
Penalty 1 (CP1) defined as follows

+3 ,if 0,,(t) =1 [succ. transm.]
ROPY(t) =4 1, if om(t) = —1 [collision] (18)
0 , otherwise [idle]

Figure 6 shows that DQN with CP1 quickly converges to an
unfair outcome in which one agent remains silent, i.e., starves,
throughout the experiment, while FSRL converges (after some
time) to a fairer outcome in which all agents learned to share
the resources. Table III compares the performance of DQN
with CP1, FSRL, and FSRL without binary time reference in
twelve network settings. The network throughput of FSRL is
on average 35.3% better than FSRL without time reference,
highlighting the importance of the time reference to the aug-
mented state described in Sec. III-A. The network throughput
of FSRL is on average 3.65% worse than DQN with CP1. The
fairness of FSRL is on average 48.1% better than DQN

TABLE III: Comparison of the network fairness .J and throughput C'
for three DSA algorithms

Setting DQN with CP1 | FSRL w/o time ref FSRL
M N J C J C J C
10 9 | 090 1.00 0.98 0.56 098  0.97
10 7 | 070 1.00 0.99 0.69 094 097
10 5 | 050 1.00 0.99 0.99 1.00  0.99
10 3 | 030 1.00 0.58 0.83 0.75 095
10 1 | 0.10 1.00 0.48 0.41 091 0.97
9 2 | 022 1.00 0.51 0.49 0.63 097
8 2 | 025 1.00 0.58 0.74 0.70  0.98
7 2 | 0.29 1.00 0.67 0.64 0.69 0.97
6 5 ] 083 1.00 0.99 0.59 094 0.87
6 1 | 0.17 1.00 0.79 043 0.71  0.99
5 4 | 0.75 1.00 0.99 0.60 093 0.96
2 2 | 0.50 1.00 0.99 0.52 1.00 1.00

with CP1, highlighting the benefits of the fairness-driven
reward structure discussed in Sec. III-C.

C. Time-Varying Conditions: Jamming Environment

To evaluate the capability of FSRL agents to adapt to time-
varying conditions, we consider a scenario in which a jammer
enters and then leaves the network. Notice that adapting to
a jammer that enters and remains in the network for a long
time is easier than adapting to a dynamic jammer. The jammer
in Fig. 7(a)/(b) enters at ¢t = 40k/t = 90k and occupies one
frequency band until time slot ¢ = 70k/t = 140k. As can be
seen from Fig. 7 and from additional experiments omitted due
to space limitation, FSRL agents maintain high throughput
and fairness before, during, and after the jamming episode.
The fairness-driven reward structure with a band sharing
term (13) provides incentives for agents to spread their
transmissions in different bands (as opposed to agents
transmitting in a single band), reducing the impact of
the jammer on any given agent, making it easier for the
network to converge to a new fair resource allocation.
Notice that the hyper-parameters of the FSRL agents re-
mained unchanged throughout the experiments, demonstrating
the adaptability of our method to dynamic environments. In
this section, FSRL uses the same ML architecture, reward
structure, and hyper-parameters described in Sec. IV with a
minimum epsilon of 0.01.

D. A More Complex Channel Model: Ad-Hoc Network

To evaluate the capability of FSRL agents to adapt to
channels models beyond broadcast, we consider an ad-hoc
network in which:

« agents only interfere with neighboring agents, i.e., agent
1 interferes with agent 2, agent ¢ interferes with both
agents i + 1 and ¢ — 1, Vi € {2,..., M — 1}, and agent
M interferes with agent M — 1;

e a transmission from agent i € {1,2,--- , M — 1} is
successful only if agent 7+ 1 can receive it without inter-
ference, and a transmission from agent M is successful
only if agent M — 1 can receive it without interference.

Hence, from this ad-hoc network model, we have that a
transmission from agent ¢ € {1,2...,M — 1} in band n is
successful only if neither agent ¢ 4+ 1 nor agent ¢ 4 2 transmit
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Fig. 4: Network throughput (16), standard deviation of agent throughput (15), and Jain’s fairness index (17) of FSRL associated with the

last W; = 500 time slots in diverse network settings with M € {2,...

, 10} source-destination pairs and N € {1,...,10} frequency bands,

with M > N. Notably, FSRL uses the same ML architecture, reward structure, and hyper-parameters in all 54 experiments.
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Fig. 5: Per agent throughput (or success rate) over time ¢ for three
(out of the 54) experiments displayed in Fig. 4.

in the same band n, and a transmission from agent M in
band n is successful only if neither agent M — 1 nor agent
M —2 transmit in the same band n. Notice that, in this section,
FSRL uses the same ML architecture, reward structure, and
hyper-parameters described in Sec. IV with an initial epsilon
of 0.4, an epsilon decay of le~%, and a minimum epsilon of
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Fig. 6: Comparison of FSRL with a commonly used ML architecture
and reward structure [7]-[10] in a network with M = 4 agents and
N = 3 bands.

0. FSRL seamlessly adapts to this new wireless channel
model, suggesting that it should also be able to adapt to
other more complex channel models.

In Fig. 8 and in additional experiments with M € {4, 5,6}
and N € {1,2} omitted due to space limitation, we can
see that FSRL agents learn to share the spectrum in this
ad-hoc scenario. Summing the per agent success rate (i.e.,
throughput) in the last 500 slots in Fig. 8a, we can see that
SM_ C0(R) 4 > N, indicating that FSRL agents
are taking advantage of the localized interference of ad-
hoc channels to transmit more often than in networks with
broadcast channels. In Fig. 8b, we show the transmission
patterns of the six agents. Notice that adding any transmissions
during idle slots would result in a collision.
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Fig. 7: Per agent throughput over time for two experiments in which
a jammer enters and then leaves the network.
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Fig. 8: Per agent throughput over time for two experiments in an ad-
hoc network in which agents only interfere with neighboring agents.

V. CONCLUSION

In this paper, we proposed a fairness-driven DSA algorithm
in which FSRL agents train in a decentralized manner without
sharing information with each other. We evaluate our DSA
algorithm in several network settings with different number
of agents, different amounts of available frequency bands, in
the presence of jammers, and in an ad-hoc setting. Simulation
results suggest that, when compared with a baseline algorithm
from the literature [7], [8], FSRL can be up to 89.0% fairer

in settings with extremely scarce resources, and 48.1% fairer
on average. Furthermore, simulation results show that FSRL
can achieve fairness in the presence of jammers and in ad-hoc
settings. Interesting extensions include consideration of pre-
training on the convergence times of FSRL and consideration
of unreliable wireless channels, source mobility, and time-
varying traffic loads.
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