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Abstract

Urban environments pose significant challenges to pedestrian safety
and mobility. This paper introduces a novel modular sensing frame-
work for developing real-time, multimodal streetscape applications
in smart cities. Prior urban sensing systems predominantly rely
either on fixed data modalities or centralized data processing, re-
sulting in limited flexibility, high latency, and superficial privacy
protections. In contrast, our framework integrates diverse sensing
modalities, including cameras, mobile IMU sensors, and wearables
into a unified ecosystem leveraging edge-driven distributed ana-
lytics. The proposed modular architecture, supported by standard-
ized APIs and message-driven communication, enables hyper-local
sensing and scalable development of responsive pedestrian applica-
tions. A concrete application demonstrating multimodal pedestrian
tracking is developed and evaluated. It is based on the cross-modal
inference module, which fuses visual and mobile IMU sensor data
to associate detected entities in the camera domain with their corre-
sponding mobile device. We evaluate our framework’s performance
in various urban sensing scenarios, demonstrating an online asso-
ciation accuracy of 75% with a latency of ~39 milliseconds. Our
results demonstrate significant potential for broader pedestrian
safety and mobility scenarios in smart cities.
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1 INTRODUCTION

The rapid urbanization and rising population necessitate new ap-
proaches to pedestrian safety and mobility. In the U.S., 83% of the
population resides in urban areas, reaching 89% by 2050 [18]. Glob-
ally, 56.9% of people lived in urban areas in 2022, with projections
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indicating an increase to 68% by 2050 [23]. These trends underscore
the need for advanced urban safety and mobility solutions.

Urban environments pose complex challenges, particularly pedes-
trian safety at intersections. In 2022, 1,705 pedestrian were killed
at intersections in the U.S., accounting for 23% of total pedestrian
fatalities [6]. Many existing urban sensing systems lack real-time re-
sponsiveness, multimodal data integration, and privacy safeguards,
limiting their effectiveness. Addressing these issues requires a novel
approach that fuses advanced sensing, real-time processing, and
privacy protection to improve urban mobility and safety.

This paper introduces Streetscape applications, a new class of
real-time, hyper-local urban intelligence solutions. A streetscape
comprises the road, buildings, and public spaces that shape a street’s
character. Streetscape applications enhance pedestrian experiences
by integrating diverse sensors—including cameras, mobile IMUs,
wearables, and edge computing units—to monitor and respond to
urban dynamics. These systems improve road safety, traffic effi-
ciency, public security, accessibility, and environmental monitoring.
Given the challenges of pedestrian safety and intersection risks,
streetscape applications provide a novel solution by delivering real-
time, hyper-local intelligence.

A robust sensing infrastructure integrating advanced networking
and distributed sensing is essential for streetscape applications [16].
Existing solutions typically focus on single-modality sensing with-
out integration of multiple sources, centralized processing with
high latency and limited responsiveness, and rigid architectures
with limited plug-and-play capabilities, while struggling to bal-
ance real-time data analytics and privacy. Our proposed sensing
framework uniquely addresses these limitations by seamlessly in-
tegrating multiple sensing modalities into a coherent multimodal
ecosystem, leveraging distributed edge computation and analytics
to deliver low-latency responsiveness, providing a highly mod-
ular and flexible architecture driven by standardized APIs, and
embedding edge-driven privacy-preserving mechanisms through
anonymization at data capture and secure local data handling.

We demonstrate preliminary capabilities of our framework through
an application for cross-modal matching between mobile IMU sen-
sors and pedestrian camera detections. A multimodal model learns
an affinity matrix to match pedestrians’ mobile phones with their
corresponding traces in the camera domain. This representative
application enables diverse urban intervention scenarios such as
extending crosswalk signals for mobility-impaired individuals or
providing navigation assistance for visually impaired pedestrians.

Our framework is evaluated in multiple urban sensing scenarios,
including a controlled parking lot and a city-scale mobile wireless
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testbed in New York City (COSMOS) [17]. By enabling multimodal
pedestrian association, our approach enhances urban safety by
enabling faster, more accurate pedestrian responses. Our results
demonstrate an association accuracy of 75% with a latency of ~39
milliseconds, highlighting the potential of our framework to im-
prove pedestrian safety and mobility in smart cities.

2 RELATED WORK

2.1 Human-Centric Sensing and Well-Being in
Urban Environments

Urban sensing technologies increasingly prioritize human well-
being, using multimodal data to enhance pedestrian safety and
mobility. Research highlights the benefits of walkability for public
health, traffic safety, and urban livability [18]. Wearable sensors
provide real-time insights into pedestrians’ interactions with their
environment [2], allowing city planners to design safer and more
accessible spaces. Recent studies have leveraged multimodal urban
analytics, such as fusing environmental, physiological, and behav-
ioral data, to support human-centered smart cities [4, 25]. Our
work extends this paradigm by integrating visual and IMU data to
improve real-time pedestrian tracking and safety interventions.

2.2 Advanced Al Models for
Human-in-the-Loop Applications
Human-in-the-loop Al systems combine algorithmic decision-making
with user feedback, ensuring adaptability and trustworthiness in
safety-critical urban environments. Interactive learning frameworks
enable real-time adjustments based on pedestrian behavior, refin-
ing models for traffic control and safety [13]. Federated reinforce-
ment learning has been proposed to balance personalization and
fairness in urban applications [5], demonstrating effectiveness in
pedestrian-aware mobility planning. Our framework aligns with
these approaches by incorporating multimodal learning and on-
device processing to enhance safety in streetscape scenarios.

2.3 Context-Aware and Wearable Devices for
Urban Mobility

Wearable and smartphone-based sensors enable context-aware mo-
bility solutions, helping pedestrians navigate urban spaces safely.
For example, tactile feedback devices assist visually impaired users
with real-time path guidance [9]. IMU-based pedestrian localization
has also been explored for smartphone-assisted navigation in com-
plex environments [19]. These studies demonstrate the potential
of multimodal fusion for mobility enhancement, which our work
leverages by integrating visual, IMU, and environmental data to
improve pedestrian tracking accuracy.

2.4 Privacy and Ethical Considerations in
Human-Centric Urban Systems

Privacy-preserving urban sensing remains a critical challenge, par-
ticularly for real-time pedestrian tracking. Differential privacy
and cryptographic aggregation methods have been applied to pro-
tect personally identifiable information in crowd-sensing applica-
tions [8]. Federated learning approaches enable Al training across
distributed devices without centralized data collection, reducing
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privacy risks while maintaining analytical utility. Ethical concerns
surrounding biometric surveillance have also led to the adoption of
on-device anonymization techniques [21]. Our system incorporates
these principles by anonymizing visual data at the edge and restrict-
ing API access to processed outputs to ensure privacy-preservation.

2.5 Existing Streetscape & Mobility-Focused
Solutions

Existing streetscape sensing solutions often rely on singular sensing
modalities, such as cameras or mobile devices, resulting in frag-
mented situational awareness. Early systems, like MetroSense [2],
pioneered the fusion of static and mobile sensors but faced scala-
bility challenges in real deployments. Subsequent analyses [1, 27]
highlight persistent fragmentation between infrastructure-based
and mobile sensing approaches, limiting their collective utility. Ar-
chitectural solutions like the Modular Sensor System ([26]) provided
modular hardware interfaces but lacked software-level flexibility
for diverse urban applications. Furthermore, existing architectures
often rely on centralized processing, which significantly increases
latency, limiting their real-time responsiveness for pedestrian safety
scenarios [24]. Lastly, privacy-preserving mechanisms in these sys-
tems often rely on post hoc, gateway-level anonymization [2, 26],
falling short of protecting data at the source.

Our framework addresses these limitations through a fully mod-
ular and distributed architecture that integrates visual and mo-
bile sensors via synchronization protocols and fusion techniques.
Distributed edge computing nodes within localized zones enable
real-time processing with minimal latency. Clearly defined APIs
support flexible, application-agnostic software composition, while
anonymization and secure data handling ensure privacy preserva-
tion at the edge.

2.6 Summary of Gaps and Contributions

Despite advancements, current multimodal urban sensing frame-
works face critical limitations:

e Modality Fragmentation: Existing systems rely on isolated
sensor modalities, limiting integrated situational awareness.

e High Latency: Centralized data processing approaches hinder
real-time responsiveness in dynamic urban environments.

e Rigid Architectures: Limited software modularity restricts
adaptability and scalability across diverse urban applications.

e Privacy Constraints: Centralized anonymization methods in-
adequately address edge-level data protection requirements.

To overcome these limitations, our sensing framework integrates
fixed and mobile modalities through standardized APIs, employs dis-
tributed edge processing to achieve low latency, provides modular
software-defined architectures for rapid application development,
and implements edge-level privacy preservation mechanisms. Our
approach significantly advances multimodal urban sensing towards
real-time, privacy-conscious, and scalable streetscape applications.

3 SYSTEM ARCHITECTURE AND DESIGN
PRINCIPLES

We present a robust, scalable framework to support multimodal
pedestrian-safety and mobility applications in urban environments.
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Figure 1: System Architecture and Framework Design

This framework integrates cameras, mobile IMU sensors, and wear-
ables, using edge computing for real-time data collection and anal-
ysis. By combining multiple data sources, the architecture delivers
low-latency responses, supports continuous operation, and pre-
serves user privacy.

3.1 Architectural Implications

Our experience with multimodal sensing applications on COSMOS
testbed informs several key design requirements. Applications such
as navigation or waypoint finding require fusing heterogeneous
data (video, IMU, etc.) and performing cross-modal inference to link
sensor streams accurately. Adaptive traffic signals and other respon-
sive services demand continuous operation with minimal latency.
We achieve this via redundant data pathways and distributed edge
nodes. Handling sensitive pedestrian data necessitates sandboxing
for privacy safeguards. We anonymize data at capture, transmit
securely, and restrict direct API access to only processed outputs.

4 DESIGN

Our system architecture is built upon a flow from data capture to
application output, ensuring efficient handling and processing of
the information generated by the sensors, as depicted in Figure 1a.

4.1 Hardware Level

Cameras are installed at roadside, each paired with an edge node
that performs initial tasks such as noise reduction, compression,
and partial analytics. Processed video frames are then streamed
over a fiber network to a shared pool of edge servers, where higher-
level computer vision pipelines (e.g., detection and tracking) run.
On the user side, mobile or wearable devices capture IMU data (e.g.,
motion, orientation) and, if available, physiological signals. These
data streams are published via an app gateway and message broker
so that relevant server-side services can subscribe to them.

4.2 Software Level

The Sensor Data Aggregator API is pivotal in our architecture,
subscribing to a message broker to collect pedestrian app data and
integrating it with both edge-processed soft sensor outputs and
hard sensor data. This fusion produces a comprehensive dataset
that represents the urban environment holistically.

The aggregated data is then forwarded to the Capture Service
API, which persists it in both structured and unstructured for-
mats. Structured data, comprising soft sensor outputs and mo-
bile/wearable readings, is stored in an RDBMS, while unstructured
data such as video frames is archived in blob storage. This segre-
gation is critical for privacy preservation, as it ensures sensitive
video content remains under stringent local controls. A caching
layer further accelerates access to frequently requested data.

The App Service API interfaces with non-sensitive data from
the RDBMS and cache, offering endpoints for application services.
It supports plug-and-play integration of diverse machine learning
models, logic modules, and analytical tools, enabling the system
to dynamically host various smart urban applications. One such
service (Section 5), demonstrate the architecture’s versatility.

User requests are routed through an app gateway via the message
broker to the App Service APL After processing, the results are sent
back through the broker and delivered by the gateway to the user,
ensuring seamless and responsive service.

4.3 Software Sensor Framework

Our soft sensor framework is a computer vision pipeline designed
to extract features for smart urban applications. The process begins
by transforming the camera view (I) into a Bird’s Eye View (BEV,
I) for precise spatial analysis.

4.3.1 Perspective Transformation. Traditional perspective trans-
formation relies on knowing the camera’s intrinsic and extrinsic
parameters. The projection from 3D world coordinates X to 2D
image coordinates x is given by x = K[R | t]X, where K is the
intrinsic matrix, R the rotation matrix, and t the translation vector:



HumanSys *25, May 6-9, 2025, Irvine, CA, USA

Salami Pargoo et al.

Figure 2: Perspective transformation workflow using satellite and camera imagery. Left to right: (1) Original satellite image, (2)
Original camera image, (3) Extracted background, (4) Area segmentation, (5) Histogram-equalized satellite image, (6) Histogram-
equalized camera image, (7) Feature matching between satellite and camera images.

1 0 0 0
K[R | 1] Jg‘ ; Cx g 0 cosf, —sinf, 0
= y Cy ; he |
o 0 1 0 0 sinf, cosf, .
0 0 0 1
yielding the transformation matrix:
T=K[R|t], TeR>*4

Since acquiring exact camera parameters is often impractical,
our system employs automatic inverse perspective mapping using
satellite imagery (I ~ I). By matching at least four corresponding
feature points between I and I, we estimate a reduced-order planar
transformation:

TeR¥S, T:I->1
4.3.2  Pre-Calibration Enhancements. To improve feature matching
between the camera view and satellite imagery, we perform:
e Background Extraction: We stabilize I by iteratively estimat-

ing a static background B?:

Bt = (1-aS(I")B'"! + aS(IHI,
where the confidence score is:
S(I*) = min (l, 1_Mt),

with motion intensity:

. |ft_Bt—1|
M= 255

¢ Histogram Equalization: We adopt the methods in [14, 20] to
perform color correlation-based histogram matching to align the

intensity distributions of I and I by solving;
axg minyy 3 d(M(HE (K), HE (K)),
where HIC (k) and Hlf(k) denote channel histograms.

e Area Segmentation: We segment I into regions {fi}?:l and
calibrate each with its own transformation T;:

Ti - pi = pi-
4.3.3 Auto-Calibration. To ensure robust alignment without man-
ual intervention, we apply the Affine Scale-Invariant Feature Trans-

form (ASIFT) to detect keypoints in both I and I. Formally, we
compute:

{Fodi)}Y, = ASIFT() and  {(xi.di)}Y, = ASIFT(]),

where X; and X; are keypoint coordinates and J,-, d; are descrip-
tor vectors. Nearest-neighbor matching produces candidate pairs
{(x, % (i) )}. To remove outliers, we use RANSAC to estimate the
transformation matrix:

T=argmax ) 5(11xi - Tl
i

where §(-) equals 1 if the error is below a threshold and 0 otherwise.
This matrix T encapsulates the homography between the camera
and satellite views.

4.3.4 Object Detection and Tracking. For detection, we use YOLOV8
fine-tuned on public (COCO, VisDrone, SDD) and proprietary datasets
to robustly detect pedestrians and vehicles under varying condi-
tions. For tracking, we employ the OC-SORT algorithm [3] with an
Observation-Centric Re-Update (ORU) mechanism:

2 = Trajvirtual(ztl, Zt2, t), <t <ty

Additional modifications, such as shadow tracking and adjusted
hit thresholds, ensure continuous tracking despite occlusions.

4.3.5 Trajectory and 3D Bounding Box. Pedestrian positions in the
camera view are calculated as:
5 _ (x1 +x7

P Tay2_0~1(92_yl))s
where (x1,y1) and (x7, y2) define the bounding box. The region
i is determined by i = f(§) and the BEV position is computed as:
p=Ti p.
Trajectories are recorded as:
Traf’ = {(p',0) :t € Ty}, Traj’ = {(p' 1) : t € Ty, ).
A fixed-size ground plane bounding box (scaled by anthropomet-
ric ratios) is rotated using the pedestrian’s heading angle:
0 = arctan 2(y2 — Y3, X2 — x1).
The final 3D bounding box Bsp is generated by extruding the
base to 90% of the original height.
4.3.6  Pose Estimation. We estimate 2D poses using RTMPose [10]
on detected bounding boxes:
KéD = Mop (I, by),
and lift them to 3D using MotionBERT [28]:
K;D = M3D(K§D)'
Kalman filtering is applied to refine 3D pose trajectories, enhanc-
ing robustness in real-world applications.

Figure 1b summarizes the software sensor framework and its
key processing steps.

5 APPLICATION

We illustrate how our multimodal association approach supports
real-time pedestrian safety and mobility in a streetscape envi-
ronment. Specifically, we detail the methodology for cross-modal
matching, implementation considerations, and evaluation of asso-
ciation accuracy.
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Figure 3: An overview of our multimodal association architecture, where LSTM-based feature extractors process phone (LSTMp)
and camera (LSTMy) data. Their concatenated outputs form a permutation-based feature ensemble, which is compressed into
an affinity matrix via a dimension-reduction module. Extra row and column are appended to handle unmatched entities,

yielding A, for robust phone-camera correspondence.

5.1 Methodology

Our approach fuses bird’s eye view trajectories detected in the
camera domain with phone IMU data to associate each detected
pedestrian in the video stream with a corresponding mobile device.
Inspired by [7, 11] and outlined in Figure 3, we use two bidirectional
LSTMs to extract spatiotemporal embeddings: one from trajectory
sequences, another from IMU signals. We concatenate these embed-
dings to form a permutation cubic, then apply a 1x1 CNN stack to
produce a 2D affinity matrix, where each entry indicates the likeli-
hood of a pedestrian-phone match. A final step appends extra rows
and columns to handle unmatched entities, allowing for scenarios
with varying pedestrian counts.

5.2 Implementation

We conducted experiments in a controlled parking lot simulat-
ing a small-scale city streetscape. An RTSP camera as part of the
testbed overlooked the area. Five participants were recruited and
instructed to carry their smartphones by hand while walking freely.
Each smartphone logged accelerometer and gyroscope data at 100
Hz. The overhead camera recorded video at 30 fps, capturing each
participant’s bounding box and consequently bird’s eye view tra-
jectories as they moved. All data were resampled at 30 Hz.

Model Details. Our cross-modal matching model includes Bidi-
rectional LSTMs (2 layers, hidden dimension = 32) for both camera
bounding-box sequences and phone IMU streams. A CNN com-
pression network consisting of 1x1 convolutions reduces the fused
embeddings into a single-channel affinity matrix. Training used
a batch size of 32, a learning rate of 0.001, for 100 epochs. We
apply cross-entropy losses on the affinity matrix, augmented by
consistency terms to penalize mismatches.

5.3 Evaluation

We measure association accuracy by comparing the predicted pedes-
trian-phone matches against ground-truth labels from manual an-
notation. Over a 3-second (90-frame) sliding window, our model
achieves an online matching accuracy of 75%, effectively linking
each participant’s smartphone to its corresponding bounding box.
The appended row/column mechanism also helps minimize false
matches, especially when pedestrians leave or re-enter the camera’s

field of view. Overall, these results demonstrate the feasibility of
real-time cross-modal matching in urban streetscape applications,
enabling hyper-local interventions (e.g., adaptive crosswalks) that
improve pedestrian safety and mobility.

To quantitatively substantiate the practical feasibility of our edge-
driven framework for real-time streetscape applications, we explic-
itly measured several performance metrics. Our distributed edge
processing pipeline achieved an average end-to-end latency of ~39
ms, from sensor capture (camera frame acquisition and IMU mea-
surement) through data processing to final association output. This
represents a substantial improvement compared to prior centralized
frameworks with latencies of ~100 ms or higher [12, 15, 22]. Individ-
ual video frames were processed in ~22 ms on average, comfortably
supporting real-time responsiveness at 30 frames per second (fps)
video capture rates. Our implementation demonstrated a through-
put capability of handling at least 10 concurrent pedestrian—device
associations per edge node without noticeable performance degra-
dation, indicating scalability for realistic urban pedestrian densities.

6 CONCLUSION

In this paper, we presented a multimodal approach for cross-modal
association in urban streetscapes, focusing on pedestrian-phone
matching. Our framework fuses camera detections with mobile
IMU data via bidirectional LSTMs and a CNN-based compression
module, producing an affinity matrix that encodes match proba-
bilities. Experiments in a controlled parking lot demonstrated a
75% online matching accuracy, highlighting the feasibility of real-
time deployments for pedestrian safety and mobility in smart city
environments. By integrating robust unmatched-dimension han-
dling and end-to-end training, our approach scales to real-world
conditions where participants move dynamically.

Future extensions of our framework will focus on advancing
core capabilities to fully enable human-centered urban sensing.
Specifically, we plan to provide services for multimodal data syn-
chronization algorithms; implement robust multicamera fusion to
address occlusion challenges; and expand our distributed edge com-
puting capabilities to achieve high throughput with minimal latency.
Additionally, we will integrate advanced privacy-preserving meth-
ods such as differential privacy directly at the edge, ensuring robust
data security and regulatory compliance. Ultimately, this work lays
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Figure 4: Visualization dashboard displaying live video, IMU streams, 3D bounding boxes, trajectories (camera and BEV views),
and 2D/3D pedestrian poses, all processed via low-latency edge computing.

a foundation for scalable smart streetscape application development
in real-world scenarios to deliver hyper-local intelligence for safer
and more adaptive urban infrastructures.
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