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testbed in New York City (COSMOS) [17]. By enabling multimodal

pedestrian association, our approach enhances urban safety by

enabling faster, more accurate pedestrian responses. Our results

demonstrate an association accuracy of 75% with a latency of ≈39

milliseconds, highlighting the potential of our framework to im-

prove pedestrian safety and mobility in smart cities.

2 RELATED WORK

2.1 Human-Centric Sensing and Well-Being in
Urban Environments

Urban sensing technologies increasingly prioritize human well-

being, using multimodal data to enhance pedestrian safety and

mobility. Research highlights the bene�ts of walkability for public

health, tra�c safety, and urban livability [18]. Wearable sensors

provide real-time insights into pedestrians’ interactions with their

environment [2], allowing city planners to design safer and more

accessible spaces. Recent studies have leveraged multimodal urban

analytics, such as fusing environmental, physiological, and behav-

ioral data, to support human-centered smart cities [4, 25]. Our

work extends this paradigm by integrating visual and IMU data to

improve real-time pedestrian tracking and safety interventions.

2.2 Advanced AI Models for
Human-in-the-Loop Applications

Human-in-the-loopAI systems combine algorithmic decision-making

with user feedback, ensuring adaptability and trustworthiness in

safety-critical urban environments. Interactive learning frameworks

enable real-time adjustments based on pedestrian behavior, re�n-

ing models for tra�c control and safety [13]. Federated reinforce-

ment learning has been proposed to balance personalization and

fairness in urban applications [5], demonstrating e�ectiveness in

pedestrian-aware mobility planning. Our framework aligns with

these approaches by incorporating multimodal learning and on-

device processing to enhance safety in streetscape scenarios.

2.3 Context-Aware and Wearable Devices for
Urban Mobility

Wearable and smartphone-based sensors enable context-aware mo-

bility solutions, helping pedestrians navigate urban spaces safely.

For example, tactile feedback devices assist visually impaired users

with real-time path guidance [9]. IMU-based pedestrian localization

has also been explored for smartphone-assisted navigation in com-

plex environments [19]. These studies demonstrate the potential

of multimodal fusion for mobility enhancement, which our work

leverages by integrating visual, IMU, and environmental data to

improve pedestrian tracking accuracy.

2.4 Privacy and Ethical Considerations in
Human-Centric Urban Systems

Privacy-preserving urban sensing remains a critical challenge, par-

ticularly for real-time pedestrian tracking. Di�erential privacy

and cryptographic aggregation methods have been applied to pro-

tect personally identi�able information in crowd-sensing applica-

tions [8]. Federated learning approaches enable AI training across

distributed devices without centralized data collection, reducing

privacy risks while maintaining analytical utility. Ethical concerns

surrounding biometric surveillance have also led to the adoption of

on-device anonymization techniques [21]. Our system incorporates

these principles by anonymizing visual data at the edge and restrict-

ing API access to processed outputs to ensure privacy-preservation.

2.5 Existing Streetscape & Mobility-Focused
Solutions

Existing streetscape sensing solutions often rely on singular sensing

modalities, such as cameras or mobile devices, resulting in frag-

mented situational awareness. Early systems, like MetroSense [2],

pioneered the fusion of static and mobile sensors but faced scala-

bility challenges in real deployments. Subsequent analyses [1, 27]

highlight persistent fragmentation between infrastructure-based

and mobile sensing approaches, limiting their collective utility. Ar-

chitectural solutions like theModular Sensor System ([26]) provided

modular hardware interfaces but lacked software-level �exibility

for diverse urban applications. Furthermore, existing architectures

often rely on centralized processing, which signi�cantly increases

latency, limiting their real-time responsiveness for pedestrian safety

scenarios [24]. Lastly, privacy-preserving mechanisms in these sys-

tems often rely on post hoc, gateway-level anonymization [2, 26],

falling short of protecting data at the source.

Our framework addresses these limitations through a fully mod-

ular and distributed architecture that integrates visual and mo-

bile sensors via synchronization protocols and fusion techniques.

Distributed edge computing nodes within localized zones enable

real-time processing with minimal latency. Clearly de�ned APIs

support �exible, application-agnostic software composition, while

anonymization and secure data handling ensure privacy preserva-

tion at the edge.

2.6 Summary of Gaps and Contributions

Despite advancements, current multimodal urban sensing frame-

works face critical limitations:

• Modality Fragmentation: Existing systems rely on isolated

sensor modalities, limiting integrated situational awareness.

• High Latency: Centralized data processing approaches hinder

real-time responsiveness in dynamic urban environments.

• Rigid Architectures: Limited software modularity restricts

adaptability and scalability across diverse urban applications.

• Privacy Constraints: Centralized anonymization methods in-

adequately address edge-level data protection requirements.

To overcome these limitations, our sensing framework integrates

�xed andmobile modalities through standardized APIs, employs dis-

tributed edge processing to achieve low latency, provides modular

software-de�ned architectures for rapid application development,

and implements edge-level privacy preservation mechanisms. Our

approach signi�cantly advances multimodal urban sensing towards

real-time, privacy-conscious, and scalable streetscape applications.

3 SYSTEM ARCHITECTURE AND DESIGN
PRINCIPLES

We present a robust, scalable framework to support multimodal

pedestrian-safety and mobility applications in urban environments.
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(a) Sensing System Architecture tailored to Smart Streetscape Applications
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Figure 1: System Architecture and Framework Design

This framework integrates cameras, mobile IMU sensors, and wear-

ables, using edge computing for real-time data collection and anal-

ysis. By combining multiple data sources, the architecture delivers

low-latency responses, supports continuous operation, and pre-

serves user privacy.

3.1 Architectural Implications

Our experience with multimodal sensing applications on COSMOS

testbed informs several key design requirements. Applications such

as navigation or waypoint �nding require fusing heterogeneous

data (video, IMU, etc.) and performing cross-modal inference to link

sensor streams accurately. Adaptive tra�c signals and other respon-

sive services demand continuous operation with minimal latency.

We achieve this via redundant data pathways and distributed edge

nodes. Handling sensitive pedestrian data necessitates sandboxing

for privacy safeguards. We anonymize data at capture, transmit

securely, and restrict direct API access to only processed outputs.

4 DESIGN

Our system architecture is built upon a �ow from data capture to

application output, ensuring e�cient handling and processing of

the information generated by the sensors, as depicted in Figure 1a.

4.1 Hardware Level

Cameras are installed at roadside, each paired with an edge node

that performs initial tasks such as noise reduction, compression,

and partial analytics. Processed video frames are then streamed

over a �ber network to a shared pool of edge servers, where higher-

level computer vision pipelines (e.g., detection and tracking) run.

On the user side, mobile or wearable devices capture IMU data (e.g.,

motion, orientation) and, if available, physiological signals. These

data streams are published via an app gateway and message broker

so that relevant server-side services can subscribe to them.

4.2 Software Level

The Sensor Data Aggregator API is pivotal in our architecture,

subscribing to a message broker to collect pedestrian app data and

integrating it with both edge-processed soft sensor outputs and

hard sensor data. This fusion produces a comprehensive dataset

that represents the urban environment holistically.

The aggregated data is then forwarded to the Capture Service

API, which persists it in both structured and unstructured for-

mats. Structured data, comprising soft sensor outputs and mo-

bile/wearable readings, is stored in an RDBMS, while unstructured

data such as video frames is archived in blob storage. This segre-

gation is critical for privacy preservation, as it ensures sensitive

video content remains under stringent local controls. A caching

layer further accelerates access to frequently requested data.

The App Service API interfaces with non-sensitive data from

the RDBMS and cache, o�ering endpoints for application services.

It supports plug-and-play integration of diverse machine learning

models, logic modules, and analytical tools, enabling the system

to dynamically host various smart urban applications. One such

service (Section 5), demonstrate the architecture’s versatility.

User requests are routed through an app gateway via themessage

broker to the App Service API. After processing, the results are sent

back through the broker and delivered by the gateway to the user,

ensuring seamless and responsive service.

4.3 Software Sensor Framework

Our soft sensor framework is a computer vision pipeline designed

to extract features for smart urban applications. The process begins

by transforming the camera view (�̆ ) into a Bird’s Eye View (BEV,

�̃ ) for precise spatial analysis.

4.3.1 Perspective Transformation. Traditional perspective trans-

formation relies on knowing the camera’s intrinsic and extrinsic

parameters. The projection from 3D world coordinates X to 2D

image coordinates x is given by x = K[R | t]X, where K is the

intrinsic matrix, R the rotation matrix, and t the translation vector:
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