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Abstract

State-space models (SSMs), such as Mamba (Gu
& Dao, 2023), have been proposed as alterna-
tives to Transformer networks in language mod-
eling, by incorporating gating, convolutions, and
input-dependent token selection to mitigate the
quadratic cost of multi-head attention. Although
SSMs exhibit competitive performance, their in-
context learning (ICL) capabilities, a remarkable
emergent property of modern language models
that enables task execution without parameter
optimization, remain underexplored compared
to Transformers. In this study, we evaluate the
ICL performance of SSMs, focusing on Mamba,
against Transformer models across various tasks.
Our results show that SSMs perform comparably
to Transformers in standard regression ICL tasks,
while outperforming them in tasks like sparse par-
ity learning. However, SSMs fall short in tasks
involving non-standard retrieval functionality. To
address these limitations, we introduce a hybrid
model, MambaFormer, that combines Mamba
with attention blocks, surpassing individual mod-
els in tasks where they struggle independently.
Our findings suggest that hybrid architectures of-
fer promising avenues for enhancing ICL in lan-
guage models.

1. Introduction

Modern large language models (LLMs) exhibit remarkable
in-context learning (ICL) capabilities, enabling them to
learn new tasks with a few demonstrations and without
further weight fine-tuning. Although the exact emergence
mechanism of these capabilities warrants further theoretical
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and empirical investigation (Chan et al., 2022; Wei et al.,
2022; Min et al., 2022b; Schaeffer et al., 2023), experiments
on larger Transformer-based models consistently demon-
strate that their ICL capabilities improve as training loss
reduces (Brown et al., 2020; Kaplan et al., 2020; Muen-
nighoff et al., 2023).

Meta-learning, or “learning to learn,” has been extensively
studied (Schmidhuber et al., 1997; Ravi & Larochelle, 2016)
and recently regained interest in the context of ICL, particu-
larly concerning Transformer models (Vaswani et al., 2017).
Garg et al. (2022), for example, proposed various ICL tasks,
such as learning linear regression, and evaluated the ability
of transformers to perform them when specifically trained
to do so. On the other hand, Min et al. (2022a) studied fine-
tuning language models to explicitly learn and perform ICL.
Following these footsteps, numerous research studies have
been dedicated to understanding the mechanics of Attention
that enable such meta-learning capabilities, either through
constructive arguments or extensive experimental investiga-
tion (Akyiirek et al., 2022; Liu et al., 2022; Bai et al., 2023;
Giannou et al., 2023; Li et al., 2023a; von Oswald et al.,
2023a;b; Yang et al., 2023a; Zhou et al., 2023).

As Transformer language models are currently the only
large models that have been reported to be capable of ICL
in practice, this raises the question:

Can attention-free models perform ICL?

This question holds merit, especially considering that sev-
eral recent studies have attempted to move beyond attention-
based networks due to their quadratic cost (Katharopou-
los et al., 2020; Zhai et al., 2021; Dao et al., 2022; Poli
et al., 2023; Peng et al., 2023; Sun et al., 2023; Yang et al.,
2023b). In this work, we focus specifically on state-space
models (SSMs), and particularly Mamba (Gu & Dao, 2023).
Mamba was recently demonstrated to be highly efficient
while achieving near state-of-the-art performance in stan-
dard pretraining language data sets, such as the Pile (Gao
et al., 2020), but at smaller model scales (e.g., up to 3 billion
parameters), surpassing transformers and other attention-
free architectures across various language and non-language
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Transformer Mamba MambaFormer
Linear regression v v v
Sparse linear regression v v v
2NN regression v v 4
Decision Tree v A 4
Ortho-outlier regression v A v
Many-outlier regression A v v
Sparse parity X v v
Chain-of-Thought I/O v 4 v/
Vector MQAR v X v

Table 1. Model performances on various ICL tasks. We label the
model’s performance with v if the model performs on par with
other baseline models, X if the model struggles to learn the task,
and A if the performance improves but with a performance gap
compared to other baseline models. Transformer fails in learning
sparse parity, showing performance no better than random guess-
ing, while Mamba suffers to accurately retrieve the value vector in
vector-valued MQAR. Our proposed MambaFormer performs on
par with other baseline models in all tasks.

tasks. However, ICL capabilities usually emerge at scales
beyond 3 billion parameters. As a result, the potential of
these attention-free models to perform ICL remains under-
explored, as testing such hypotheses usually requires scaling
beyond the 7 billion parameter level. Nonetheless, we can
still investigate small-scale ICL capabilities by specifically
training a model to perform in-context learning, following
the approach of Garg et al. (2022).

Contributions. In this study, we introduce a diverse set
of ICL tasks to evaluate the performance of Transformer
and various SSMs, including state-of-the-art models like
Mamba and S4 (Gu et al., 2022b). Our findings reveal that
most of these SSMs can effectively perform ICL, match-
ing the performance of Transformers across multiple tasks.
However, Mamba demonstrates some limitations in learn-
ing decision trees and retrieval tasks, but can outperform
Transformers in other complex ICL tasks, such as sparse
parity, where Transformer models struggle. Performance of
different models on each task is summarized in Table 1.

Since there seem to be tasks where either family of models
is better, we explore the impact of interleaving SSM blocks
with multi-head attention blocks, similar to (Gu & Dao,
2023). We introduce MambaFormer, a novel hybrid archi-
tecture that integrates Mamba and Attention layers, while
eliminating the need for positional encodings, as shown in
Figure 1. MambaFormer seems to leverage the strengths
of both Mamba and Transformers, exhibiting good perfor-
mance across all evaluated ICL tasks and simultaneously
learning sparse parity and retrieval. Moreover, we show
potential ICL language capabilities of these architectures by
conducting experiments on synthetic formal language ICL
datasets (Xie et al., 2021; Akyiirek et al., 2024).

Outputs

Training data

prompts:
(1, £(x1), %, ) IR i
Multi-Head
X; DX Attention
f~Dr

Inputs

Figure 1. MambaFormer is a hybrid architecture that replaces
MLP blocks within the transformer with Mamba blocks. Im-
portantly, the architecture starts with a Mamba block and does
not use positional encoding. In our ICL evaluations, we find that
MambaFormer consistently achieves a best-of-both-worlds per-
formance when compared to Transformer and Mamba.

We believe that our findings underscore the importance of
broadening the understanding of ICL beyond Transformers,
as significant progress has been made in the context of
attention-free architectures.

2. Related Work

Transformer-based in-context learning. The role of at-
tention in ICL has been the focus of both theoretical and
empirical research. Studies have primarily focused on meta-
learning (Ravi & Larochelle, 2016; Min et al., 2022a), where
one explicitly trains for ICL. Notably, Garg et al. (2022)
have examined transformers in in-context regression tasks,
from learning linear regression to learning decision trees.
Subsequent works have suggested that attention may mimic
various optimization algorithms (Akytirek et al., 2022; von
Oswald et al., 2023b; Dai et al., 2023). In fact, Ahn et al.
(2023); Mahankali et al. (2023) have provably shown that
the global minimum of the linear regression ICL objective
implements one step of preconditioned gradient descent for
one layer of linear attention.

While these settings might appear simplistic and detached
from language models, Bhattamishra et al. (2023) showed
that a frozen GPT-2 can implement the nearest neighbor
algorithm, drawing connections between the ICL in exist-
ing language models and the stylized setting of training
for ICL from random initialization. Furthermore, Olsson
et al. (2022) also empirically demonstrate that “induction
heads”, which are attention heads that solve a simple re-
trieval problem, correlate with ICL behavior, providing a
strong connection between retrieval and ICL.

Sub-quadratic architectures. The number of effective
floating point operations in an attention layer scales quadrat-
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ically with respect to the input sequence length. Numerous
approximations or alternative model architectures have been
proposed to overcome the quadratic dependence. These
range from approximating attention mechanisms (Beltagy
et al., 2020; Wang et al., 2020) to the development of novel
recurrent convolutional models such as structured state-
space models (Gu et al., 2022b).

S4 (Gu et al., 2022a) is a family of sequence models charac-
terized by a discretized state-space model

h, = Ah, ; + Bx;, 3 = Chy, (D

where h; represents the hidden state and (A, B, C) are
input-independent (transformed) parameters. The recur-
rence is expressible as a convolution, enabling near-linear
complexity using Fast Fourier Transform. Viewed in this
framework, Linear Transformers (Katharopoulos et al.,
2020), which employ linear attention without softmax, can
be seen as a variant of linear SSM.

Building upon this concept, H3 (Dao et al., 2022) integrates
an S4 with dual gated connections. The recent Mamba (Gu
& Dao, 2023) departs from the standard SSM by introduc-
ing a selection mechanism that makes (A, B, C) in Equa-
tion (1) dependent on the input x; allowing input-dependent
sequence mixing.

There are other notable attention-free models such as
Hyena (Poli et al., 2023), RWKV (Peng et al., 2023), Ret-
Net (Sun et al., 2023), and GLA (Yang et al., 2023b). De-
spite of state-of-the-art performance for models like Mamba,
Arora et al. (2023) have demonstrated that subquadratic
models still lag behind attention on multi-query recall tasks,
which is a generalization of the induction head task (Olsson
et al., 2022).

In their study, Xie et al. (2021) introduced a synthetic
language-based dataset for in-context learning, named
GINC, and demonstrated that both transformers and
LSTMs (Hochreiter & Schmidhuber, 1997) can perform
ICL. Notably, LSTMs outperformed transformers in ICL
accuracy on GINC, a finding similar to that found in Liu
et al. (2023) for their flip-flop language modeling task. More
recently, (Akyiirek et al., 2024) proposed a language-based
ICL benchmark for training models on formal languages
generated by random finite automata. Their results showed
that Transformers notably better than subquadratic models,
establishing a benchmark that effectively measures ICL in
language modeling.

3. Experimental Setup

We evaluate the ICL capabilities of SSMs and Transformers
by training each model from scratch on each specific task,
detailed in Section 3.1. Section 3.2 outlines the ICL and
related tasks investigated in our study. We provide a brief

summary of our tasks in the following Table 2.

3.1. Model Training for In-context Learning

We train models to learn a specific function class F in-
context. Training begins by generating random prompts:
selecting a function f € F from distribution Dr and sam-
pling a sequence of random inputs x1,...,xy € R?%i.i.d.
from Dy . Here, N and d represent the number of in-context
examples and the dimension of x;, respectively. These in-
puts create the prompt P = (x1, f(X1),...,Xn, f(xXN)).
We train the model fy, parameterized by 6, by minimizing
the expected loss over all prompts:

minEp
6

N-1
1 i

~ 2 fe(P), f(xi)) | ©)

i=1

where P? := (x1, f(x1),...,Xi, f(Xi),X;+1) and £(-,-) is
a loss function. Since f : R? — R, we append d — 1 zeros
to f(x) to match the dimensions. We use appropriate loss
functions for each task.

Model architecture. We primarily focus on SSMs, includ-
ing (1) Mamba (Gu & Dao, 2023), a state-of-the-art SSM
model with selection mechanism; (2) S4 (Gu et al., 2022a),
a linear time-invariant predecessor of Mamba; and (3) S4-
Mamba, a variant where Mamba’s input-dependent S6 is
replaced with input-independent S4, while maintaining the
same structure as Mamba. The primary differences between
the two S4 models lie in the application of multiplicative
gating and the module order.'

Training. We train each model by sampling a batch of ran-
dom prompts at each training step and updating the model
parameters using Adam optimizer (Kingma & Ba, 2014).
We use a batch size of 64 and trained for 500,000 iterations
(except for the vector MQAR task; see Appendix A.5).

Evaluation. We evaluate the model performance on in-
context learning using task and data distributions Dg
and Dy consistent to those during training. A func-
tion and a sequence of N inputs are sampled from Dr
and Dy, respectively, to generate a test prompt Piest =
(x1, f(x1),...,xn, f(xn)). We create 1,280 prompts and
measure the empirical mean of Eq. (2) across the prompts
for in-context learning performance.

Throughout our experiments, we keep the total number of
parameters of models roughly the same for each configu-
ration as explained in Appendix A.2. To plot the model
performance as the model capacity grows, we calculate the
total floating point operations (FLOPs) used for training the
model. The calculation for Transformer and Mamba can be
found in Appendix B, which are based on (Kaplan et al.,
2020; Gu & Dao, 2023).

"https://github.com/state-spaces/s4/blob/main/models/s4



Can Mamba Learn How To Learn? A Comparative Study on In-Context Learning Tasks

Table 2. Summary of ICL Tasks. All models are trained for 500,000 iterations (except for the vector MQAR; see Appendix A.S).

Task ‘ dim (d) points (N) Example/Function Sampling Task-specific
Linear regression 20 41 x,w ~ N(0,1;) -
Sparse Linear regression 20 101 x,w ~ N(0,1;), sparsity(w) < k k=3
2NN regression 20 101 WS), WZ(JQ) ~ N(0,1) -
Decision Tree 20 101 x, Leaf ~ N(0,1),non_leaf ~ {1, ...,d} depth =4
Orthogonal-outlier regression 20 101 x,w ~ N(0,1;),u,v ~ wt p=20.5
Many-outlier regression 20 512 x ~N(0,I) wp. 1—p,else (x,y) = (1,1) p=0.9
Sparse Parity 10 140 x ~ =1, 1}y =TT, x[j] k=2
Chain-of-Thought I/O 10 101 x ~ N(0,1Ig), W;; ~N(0,2/k), v ~ N(0,1) h=8
Vector-valued MQAR 20 128 k,v ~ Unif(§41) 32 k-v pairs

Model configurations and training implementation details
are provided in Appendix A.

3.2. In-context learning tasks

We provide an overview of the ICL and related tasks inves-
tigated in this study. Some tasks are adapted from (Garg
et al., 2022), and we follow the settings outlined in their
work. The tasks are summarized in Table 2.

3.2.1. LEARNING REGRESSION

For all regression tasks, in-context examples x; are sampled
from the Gaussian distribution A'(0,1;), where I is the
d x d identity matrix. We use the squared error loss for
model training.

Linear regression. We examine the class of linear func-
tions F = {f|f(x) = w'x,w € RY} where w is sampled
from the Gaussian distribution N'(0,I,). We set d = 20.

Sparse linear regression. The setting is identical to linear
regression except that after sampling w from N (0,1,), &
coordinates are randomly retained and the rest are set to
zero. We set k = 3.

Two-layer neural network. We consider the class of
two-layer ReLU neural networks F = {f|f(x) =
W@ (Whx)}, where W2 € RUh W) ¢ Rixd,
and o(-) = max(0, -) is the ReLU function. Each element
of the weight matrices is independently drawn from N'(0, 1).
We use d = 20 and h = 100.

Decision Tree We consider a full binary tree with a fixed
depth and input x € R¢. Leaf node values are sampled
from A/(0, 1), and the rest are sampled uniformly at random
from {1, ..., d}, functioning as indices of x. At a given non-
leaf node, we move to the right if z[;] > 0, where i is the
sampled index, and otherwise move to the left. y is the leaf
node value when the traversal terminates.

3.2.2. LEARNING WITH OUTLIERS

The problems that belong to this family adopt the basic
setting of the standard linear regression task. With a fixed
probability p, each pair of (x;, f(x;)) in the prompt is re-
placed with “dummy” vectors which are either out of the
training distribution, or confounders designed to increase
the complexity of the task. We test p € {0.5,0.9} as the
replacement probabilities for the tasks described below. Dur-
ing training, we do not compute the loss for the replaced
outliers.

For evaluation, however, the locations of the dummy vectors
were fixed to ensure that the models are evaluated on the
same number of in-context examples across batches. So we
evaluate the loss at the 50th clean in-context example, where
there is a clean example after every nine outliers for many-
outlier ICL and after every one outlier for orthogonal-outlier
ICL.

Orthogonal-outlier regression. Each pair of (x;, f(x;))
is randomly replaced with ((au+ b, v)/(a2 +b2), (a,u+
b,v)/(a2 + b2)), where u,v € wt. (u,v) := (wy —
proj,, (w1), wa — proj,, (wz)) and w; and wo are sampled
from NV(0,1;) and the coefficients a,, b, a,, b, are inde-
pendently sampled from N(0, 1).

Many-outlier regression. In this setting, x; and f(x;) are
randomly replaced with a d-dimensional vector of ones {1}¢
and an one-hot vector [1,0, . .., 0], respectively, with prob-
ability 90%. Here, we test longer sequences of N = 512,
where only 10% of the sequence yields useful information
about the true target vector.

3.2.3. LEARNING DISCRETE FUNCTIONS

Sparse parity. Following the setting from Bhattamishra
et al. (2023), we consider the class of functions F =
{f1f(x) = [1;es x:[s]}, where x;[j] denotes the j-th ele-
ment of the vector x; and S is a subset of {1,...,d} with
the size k. Each x; is sampled uniformly at random from
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{—1,1}4, and subset S of size k is randomly sampled from
the set {1, ..., d}. For this task, we train a model using the
cross-entropy loss and evaluate the model using a binary
indicator for accuracy, which assigns 1 to correct predictions
and O to incorrect ones.

3.2.4. LEARNING CHAIN-OF-THOUGHT

Chain-of-Thought-1/0. Following the setting from Li
et al. (2023b), we consider the class of two-layer ReLU
neural networks F = {f|f(x) = W®g(WDx)},
where W2 ¢ R>h W) ¢ RPX4 and ¢(-) is the
ReLU function. We set d = 10 and h = 8. We
additionally interleave the intermediate hidden feature
si = o (WWx;) in our input training sequence in a
Chain-of-Thought (CoT) style. Given the input sequence
(x1,81, f(X1), - ,XN,SN, [(XN), Xeest), the model is
evaluated on the final output prediction y based on the input
sequence and the intermediate layer prediction Sieg.

3.2.5. LEARNING RETRIEVAL

Vector multi-query associative recall. We test the
model’s ability to do multi-query associative recall (MQAR)
(Arora et al., 2023). While MQAR is not an ICL task,
model’s ability to do associative recall (AR) is highly re-
lated to model’s ability to learn in-context (Olsson et al.,
2022). To better measure the model’s ability to retrieve
information from context, we consider a variant of MQAR.
The keys and the values are vectors, which can be in-
terpreted as unique token embeddings. Specifically, the
model is given a sequence of key-value pairs of vectors
{ki,v1, ...k, vy}, where k;, v; € S are sampled uni-
formly from the unit d-sphere. The query consists of se-
quence of vectors {qy, ..., Q. }. For each query q;, there
exists some 1 < I < n such that q; = k;. The model must
learn to output v; associated with the query q; for each of
the queries, producing m outputs total. We train models
with mean squared error loss.

3.2.6. LEARNING FORMAL LANGUAGES

We conduct experiments using synthetic language bench-
marks designed to assess in-context learning (ICL) capabil-
ities within the language setting. Given that real language
ICL typically demands extensive datasets and computational
resources, these synthetic datasets act as useful proxy for
exploring language ICL. For detailed descriptions of their
construction and evaluation, we direct readers to the respec-
tive publications.

GINC dataset (Xie et al., 2021). Generative In-Context
learning (GINC) dataset is a small-scale language dataset
synthetically generated using a mixture of hidden markov
models. Its pretraining dataset contains approximately 10
million tokens and each trained model is evaluated on 2500

test-time prompts containing 0 to 64 examples. We train
and test our models using a vocabulary size of 100. We
additionally train LSTMs for this dataset, using the same
configurations as in prior work.

RegBench (Akyiirek et al., 2024). In-context Language
Learning (ICLL) RegBench is a synthetic regular language
benchmark created by randomly generating probabilistic
finite automata (PFA) with uniform transition probabili-
ties; multiple problem instances are produced that include
samples from each PFA. The models are evaluated using a
greedy-decoding accuracy metric, which assesses whether
each next token predicted by the model is valid under the
current regular language.

4. In-context Learning Capabilities of SSMs

In this section, we demonstrate that Mamba can be trained
from scratch to perform various ICL tasks. Furthermore,
we identify specific tasks in which one model performs
better than others and vice versa, given the same amount of
computation resources measured in terms of its total floating
point operations (FLOPs) used in training.

4.1. Mamba can in-context learn!

Finding 1: Mamba outperforms its simpler coun-
terparts, while performing as well as Transformer
on a range of ICL tasks.

In Figure 2, Mamba consistently outperforms its simpler
counterparts S4-Mamba and S4. For linear regression, the
gap between Mamba and S4-Mamba is much smaller than
that between S4-Mamba and S4. As the only difference
between Mamba and S4-Mamba is the input-dependent
selection mechanism, appropriate gating and stacking of
MLPs (i.e., difference between S4-Mamba and S4) seem
to be more significant for such tasks. In comparison, the
input-dependence of Mamba makes meaningful progress for
more complex tasks such as 2NN regression and learning
decision trees.

Mamba can also perform on par with Transformer even
as the total FLOPs scale up. This is surprising given that
Transformer and attention have been the focus of many
previous works for its unique ICL capability. Moreover,
Mamba tends to perform better in smaller parameter settings
when controlling for equal depth, i.e., keeping the number
of attention, MLP, and Mamba blocks equivalent.

4.2. Performance gaps in more complex ICL tasks

We also consider a family of more complex ICL tasks,
namely learning decision tree, sparse parity, outlier-robust
regression (Figure 7) and Chain-of-Thought (Figure 6). We
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Figure 2. Model performance on our suite of ICL tasks for Transformer, Mamba, S4-Mamba, and S4 where each color represents a
different architecture. For each architecture, the best performing model given the same amount of FLOPs is plottet (see Appendix A for
details on model configurations). Transparent points indicate earlier stages of training; plotted models are trained in between {100k, 300k,
500k} iterations. The descriptions of tasks can be found in Section 3.2.

elaborate on the performances of each model on each task
in our findings below.

Finding 2:  For outlier-robust regression, Mamba
outperforms Transformer in ignoring prevalent
fixed outliers, while Transformer is better when
the outliers are not fixed.

Orthogonal-outlier regression and many-outlier regression,
like other outlier tasks, focus on the model’s ability to learn
to ignore dummy vectors, either by the fact that the x; €
wt, or by the fact that y; is a vector instead of a zero-
padded scalar value. This explicitly requires the models to
look at previous input sequences and discover the properties
that distinguish the dummy vectors from training examples
while learning the class of functions the training prompt

represents.

For orthogonal-outlier regression task with a relatively short
sequence length of 101, Mamba does not perform as well as
Transformer given the same total FLOPs, though its learns
significantly better than S4 (Figure 7). However, for many-
outlier regression where we train on a sequence length of
512 and 90% all-ones replacement, Mamba outperforms
Transformers, especially in terms of its out-of-distribution

(OOD) accuracy where we evaluate each model on clean
sequences with no outliers at all. Recurrent models, such
as S4 and Mamba, seem to generalize well in such OOD
regime when the data is contaminated with many identical
outlier vectors. This is also in line with what Gu & Dao
(2023) reports: Mamba fares better in retrieval tasks of long
sequence lengths with a single retrieval key. These results
indicate that Mamba has no significant issue with filtering
out unnecessary information, while retaining the ability to
learn linear regression in-context.

Finding 3: For Chain-of-Thought-1/0, Mamba
shows comparable performance to Transformer.

Figure 2 and Figure 6 show that Mamba models are capable
of in-context learning in a chain-of-thought manner, show-
ing comparable performance to Transformer models across
the tested configurations. In smaller model configurations,
Mamba models exhibit superior performance compared to
Transformer models. However, as the model size increases,
Transformer models begin to surpass Mamba models. The
performance of Transformer models remains relatively sta-
ble across different problem sizes, while Mamba models’
performance is significantly influenced by the size of the
hidden layer. Specifically, Mamba models excel over Trans-
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former models at smaller problem sizes (i.e., smaller hidden
dimensions), but their advantage diminishes as the problem
size expands.

4.3. Challenges in parity and retrieval

We run vector MQAR on two settings: (1) 32 key-value
pairs with 16 queries and (2) 32 key-value pairs with 4
queries.

Finding 4: Mamba struggles to retrieve vectors
within its context in vector MQAR, a task Trans-
former can easily perform.

From Section 4.3, we can see that Mamba struggles to ac-
curately retrieve the vectors as the mean squared error for
retrieving normalized vectors are greater than 0.1 in all cases.
Since SSMs are limited by their hidden state dimension in
carrying information to predict the next token, they would
eventually be overwhelmed if the number of key-value pairs
within the context (not queries) increases substantially.

Note that the models trained with 16 queries have lower
test loss than models trained with 4 queries. We conjecture
that for a single sequence of data that represents an MQAR
task, each (q, v) pair can be thought of as a training sample.
Hence a sequence with 16 queries contains more training
samples than that of a sequence with 4 queries. This also
shows that having more queries does not necessarily make
the task harder. Notably, our setting is more challenging
than token-based MQAR, as we sample new random vectors
each batch. Similar findings on retrieval were observed
in Arora et al. (2023).

Finding 5: Mamba can in-context learn sparse
parity, a task Transformer cannot perform.

While Mamba fails on simple retrieval tasks such as MQAR,
the tables turn for the task of learning sparse parity (Fig-
ure 3). Transformer fails to do better than random guessing,
in line with evidence from prior work (Bhattamishra et al.,
2020; 2023; Hahn, 2020). We confirm this is the case for
Transformer sizes of embedding dimensions up to 768 and
up to 24 layers when trained for at most 1 million iterations.
However, Mamba succeeds in this task with ease, solving
sparse parity for (d, k) = (10, 2) with a network as small as
2 layers.

Even more surprisingly, S4-Mamba is able to solve parity as
well, showing comparable performance to that of Mamba;
this indicates that proper convolution or gating may be more
important than input-dependent selection for learning par-
ity. Given that only Transformer cannot perform better than
random, sequential computations of recurrent models seem
more advantageous for learning parity. Finally, our result

(a) 32 key-value pairs with 4 queries.

Embedding dimension 64 128

Mamba 8.64e-1 1.64e-1
Transformer w/o PE 1.14e-3  8.66e-5
Transformer w/ PE 5.17e-6 8.76e-7
MambaFormer 0.73e-5 3.37e-6
6 MambaBlocks + 1 Standard Hybrid 1.99¢-2  1.37e-2

(b) 32 key-value pairs with 16 queries.

Embedding dimension 64 128

Mamba 7.23e-1  1.50e-1
Transformer w/o PE 7.6le-5 5.55e-5
Transformer w/ PE 3.99¢e-5 2.46e-7
MambaFormer 1.03e-5 3.79e-7
6 MambaBlocks + 1 Standard Hybrid 1.54e-3  5.86e-5

Table 3. Test loss (mean squared error) on vector MQAR and re-
spective model configurations. We test Transformers with and
without Positional Encoding (PE). All models have 4 layers with
roughly the same number of parameters. We consider the “6
Mamba Blocks + 1 Standard Hybrid” model as 4 layers since 1
Mamba layer consists of 2 Mamba blocks as in Figure 4.

Sparse Parity ICL Evaluation

— Transformer

— sS4

0.9 S4-Mamba

0.8 = Mamba

Accuracy
o
~

0 20 40 60 80 100 120 140
in-context examples

Figure 3. Although Transformer struggles to learn the task, Mamba
and S4-Mamba can learn sparse parity of d = 10 and k = 2 (S4-
Mamba accuracy plot is hidden behind that of Mamba). Each
model is trained with an embedding dimension of 256 and depth of
12 layers (approximately 10M parameters) up to 500,000 iterations.
Transformer struggles to learn even up to an embedding dimension
of 768 and 24 layers and 1M iterations.

hints at that the initial (causal) convolution that Mamba pro-
vides before the attention layer may be crucial to solving
parities, a similar phenomenon observed for Vision Trans-
formers in computer vision tasks (Yu et al., 2022).

Any algorithm for learning parities requires either a super-
linear memory of w(d) or a super-polynomial number of
samples in d (Raz, 2016; Kol et al., 2017). While Trans-
former is known to have better memory than Mamba due
to its quadratic attention mechanism, our result on learning
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sparse parities brings forth the question on how different
architectures may utilize its memory differently in terms
of function approximation. We leave the theoretical and
empirical question of which architectural component allows
for learning parities as an avenue for further study.

5. The Advantage of Hybrid Architectures for
In-context Learning

In the previous section, we have observed that Transformers
perform better than SSMs in certain tasks such as learn-
ing decision trees or retrieval, while SSMs excel in others,
such as learning sparse parities or heavy-outlier linear re-
gression, possibly due to its recurrent nature. However,
can we achieve the best of both worlds without sacrificing
performance in our suite of ICL tasks?

We answer this in the affirmative; in this section, we investi-
gate two hybrid architectures that combine Transformer and
Mamba, namely Standard Hybrid and MambaFormer as
illustrated in Figure 4. Standard Hybrid is the architecture
of interleaving MHA and Mamba by replacing the MLP
block with Mamba. MambaFormer is nearly identical to
Standard Hybrid but with an additional Mamba block as
its initial layer. This removes the need of initial positional
encoding as a Mamba block’s recurrent nature encodes po-
sitional information.

Although many works have found that interleaving multi-
head attention and SSMs beneficial (Zuo et al., 2022; Mehta
et al., 2022; Pilault et al., 2023), interestingly Gu & Dao
(2023) have not found significant benefits of interleaving.

In the following results, however, we show that we can
indeed reach competitive performance in our suite of ICL
tasks by interleaving Attention and Mamba blocks. Mam-
baFormer achieves comparable performance to that of
Transformer or Mamba, while excelling in both sparse parity
and retrieval, tasks unsolvable by Transformer and Mamba,
respectively.

5.1. Simultaneously learning parities and retrieval

Finding 6: MambaFormer can in-context learn
sparse parity;, moreover, having the initial layer as
a Mamba block is significantly effective.

As highlighted in Bhattamishra et al. (2023); Barak et al.
(2022), learning sparse parity in-context seems to be dif-
ficult for Transformer and some SSMs like Hyena. Yet
interestingly, as seen in Figure 5, MambaFormer success-
fully learns parity as quickly as Mamba in terms of sample
complexity. While the Standard Hybrid model is also capa-
ble, it exhibits much worse sample efficiency.

We perform an ablation study by equipping Transformer
with an initial Mamba block without any positional en-
coding. Although this variant Transformer only has fewer
Mamba blocks than Standard Hybrid, it solves parity al-
most as efficiently as Mamba. Not only does this show us
that the order of layers in interleaving matters as shown in
Press et al. (2022), but also that Mamba can complement
Transformer without hurting performance in ICL. This re-
sult brings up intriguing differences between the function
learning capabilities of Attention and Mamba; we leave this
question up for further study.

Finding 7: MambaFormer can perform retrieval
as well as Transformer, closing the performance
gap between Mamba and Transformer.

The gap between Mamba and Transformer in vector MQAR
is likely due to the fact that Mamba (as an SSM) compresses
context into smaller states when generating output, while
the Attention mechanism in Transformer does not compress
the context. The amount of context SSMs store at each state
depends on the dimension of the hidden state that captures
the important information in the context. In contrast, at-
tention leverages all tokens in its input context, allowing
Transformers and hybrid models to conveniently retrieve cor-
responding key-value pairs through pairwise computations.
On the other hand, SSMs would eventually be overwhelmed
if the number of key-value pairs increases substantially.

To close the gap in the vector MQAR task between Mamba
and Transformer without sacrificing efficiency too much, we
add one attention layer within the Mamba layers. In particu-
lar, in a Mamba model of 4 layers (8 Mamba blocks stacked
homogeneously), we replace the middle two blocks with
Standard Hybrid (w/o positional embedding). As shown
in Section 4.3, Mamba model gains a significant improve-
ment in vector MQAR by having one Standard Hybrid. We
further test MambaFormer on the same task and find that
MambaFormer almost entirely closes the gap to transformer
in vector MQAR task.

5.2. All-in-one ICL performance

Finding 8: Both hybrid models perform as well
as Transformer and Mamba in our suite of ICL
tasks (or even better sometimes).

While MambaFormer succeeds in tasks that were deemed
difficult for either Mamba or Transformer, it also performs
equally well as Transformer and Mamba do in the rest the
ICL tasks. In Figure 8, we see that MambaFormer and
Standard Hybrid learn decision trees as well as Transformer
does and better than Mamba, even at larger parameter sizes.
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Figure 4. Model architectures. (a) and (b) are the standard Transformer and Mamba architectures. (c) denotes the hybrid architecture
of Mamba and Attention blocks, following the design proposed in Gu & Dao (2023). (d) depicts the proposed architecture, namely
MambaFormer, which replaces the Positional Encoding with a Mamba block. We denote 2 blocks of either Mamba, multi-head Attention,
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Figure 5. Median convergence time of learning parity over 5 ran-
dom seeds for max. 500k iterations, where 500k convergence time
signifies failed learning. Having the initial layer as Mamba is
essential for efficiently learning parities. Tested model configura-
tions are specified in Appendix A.

Surprisingly, MambaFormer efficiently learns linear regres-
sion more robustly even in the presence of noisy data in
Many-outlier regression and Orthogonal-outlier regression
(Figure 7). In particular, a small MambaFormer trained on
100k iterations (< 10'7 FLOPs) performs as well as models
trained with 5 times the number of FLOPs (Figure 7 left).

When evaluated with no outliers during test-time, Mam-
baFormer resembles Transformer and Standard Hybrid re-
sembles Mamba in terms of its out-of-distribution perfor-
mance, where Mamba easily learns linear regression when
there is only one outlier vector (Figure 7 top right) while
Transformer learns better when there is a subspace of outlier
vectors (Figure 7 bottom right).

In conclusion, we find the best of both worlds within our
diverse array of ICL tasks; a hybrid architecture that can
solve as difficult problems as retrieval and parity, while
performing on par with Transformer and Mamba in other
ICL tasks. Given our results, it will be interesting to see how
hybrid architectures perform in other kinds of ICL tasks,
especially in-context language benchmarks such as Xie et al.
(2021); Hahn & Goyal (2023); Akyiirek et al. (2024). In
turn, we explore formal language ICL capabilities in the
following subsection.

6. Discussion

In this work, we have provided a comprehensive investiga-
tion of in-context learning with state-space models (SSMs)
and contrasted them with the Transformer architecture. Our
study has revealed that SSMs, especially Mamba, are capa-
ble in-context learners. On the other hand, our evaluations
revealed that neither SSMs nor Transformers are great at all
tasks: SSMs struggle with decision tree and retrieval tasks
whereas Transformers struggle with sparse parity. This has
led us to the hybrid MambaFormer which achieves a best-
of-both-worlds performance on our ICL suite.

Future research directions include exploring (1) how the per-
formance on our ICL suite correlates with general language
modeling capabilities, such as perplexity on standard NLP
benchmarks, (2) developing more effective architectures by
integrating elements from transformers, SSMs, and gating
mechanisms, (3) identifying architectural features that con-
tribute to effective in-context learning, and (4) assessing the
impact of MambaFormer and other innovative architectures
on language modeling performance.
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A. Experimental Setup

In this section, we describe our experimental design and configured setup. Our code and detailed implementations can be
found in https://github.com/krafton—-ai/mambaformer—icl.

A.1. Model architectures

We focus on decoder-only Transformer models, particularly those from the GPT-2 family (Radford et al., 2019), Mamba (Gu
& Dao, 2023), and their hybrid variants, including Standard Hybrid and MambaFormer configurations. These models are
evaluated across a range of sizes, as detailed in Table 4. Transformer layers consist of a Multi-Head Attention (MHA) block
followed by a Multilayer Perceptron (MLP) block. Mamba models consist of two Mamba blocks per layer. The hybrid
variants merge these approaches, combining a single MHA block with a Mamba block. For MHA blocks, we use 8 number
of heads. Refer to Figure 4 for a visualization of the architectures considered.

A.2. Model training and configurations

Size group (# layers, embed dim) Transformer Mamba S4%*

Large {(12,768)} 86M 90M 88M
Medium {(8, 512), (32, 256)} 25M 27M 26M
Small {(4, 256), (16, 128)} 3M 3M M

X-Small {(2, 128), (8, 64), (32, 32)} 420K 460K 430K

S4-Mamba  Standard Hybrid MambaFormer

Large {(12,768)} 86M 74M 7™
Medium {(8, 512), (32,256)} 26M 22M 24M
Small {(4, 256), (16, 128)} 3M 3M 3.2M
X-Small {(2,128), (8, 64), (32, 32)} 430K 400K 480K

Table 4. The four size groups of model architectures we have used for our experiments. For each size group, we run various learning rates
in addition to training ‘narrower and deeper’ models of the same size and FLOPs. We keep the number of heads fixed at 8. We do not
train models deeper than 32 layers, as we have observed that accuracy is best in between 4 to 32 layers according to Appendix D. *For S4
models, the embedding dimensions were multiplied by a factor of 1.75 to match parameters.

We train all of our models on A100-SXM4-40GB GPUs for 500,000 training steps on all tasks, except for vector-valued
MQAR, in which the models were trained for 300,000 training steps. We use Adam optimizer (Kingma & Ba, 2014) with a
fixed learning rate. The default learning rate is set to 1le — 4. We also search various learning rates in {5e — 5, 2e — 4, 4e — 4}.
We observe that the training procedure is the most sensitive to choosing the right learning rate. In particular, as the number
of parameters of the models increases, the training procedure is prone to gradient explosions, especially in Mamba and
hybrid architecutres. Hence, we clip the gradient norm, with values in {5.0,10.0, 50.0}.

As for the train and test data, we fix the dimension of x to be 20, and fix the batch size to be 64. As suggested in Garg
et al. (2022), we also observe that curriculum is helpful in certain ICL tasks. We adopt a curriculum; every 2000 steps, we
increase both the dimension of x and the number of points within the input context.

For model configurations, we mainly follow the four size groups of Transformers listed below (Table 4). As explained in
Figure 4, we denote 2 blocks of Mamba, multi-head attention, or a feed forward network as 1 layer. This roughly aligns the
number of parameters in Transformer, Mamba and S4-Mamba. For Standard Hybrid and MambaFormer, we follow the
same design. This yields in models with less parameters from the lack of feed forward networks. However, both models
showed strong performance to other models and hence the model configurations were kept as is. For S4, however, we further
increase the embedding dimension by a factor of 1.75 to match the number of parameters of transformers.

As demonstrated, trading embedding dimension (narrow width) for additional layers (greater depth) allows for diverse model
configurations while maintaining the same total parameter count. We conducted an ablation study on linear regression to
explore the impact of width versus depth on ICL tasks and to identify the optimal configurations for peak performance,
given the same FLOPs. For the rationale behind our experimental choices in these configurations, refer to Appendix D as
detailed in Table 4 for ICL tasks. Furthermore, in Table 4, we also explore whether the choice of optimizers affect our
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results and alter our conclusions.

A.3. Chain-of-Thought-1/O settings

Table 5 presents the configurations for the Chain-of-Thought-1/O task using a 2-layer ReLU neural network, following the
setup described by Li et al. (2023b). In the model scale experiment, the input dimension d = 10 and hidden layer dimension
k = 8 are held constant while varying the model scale. Additionally, the hidden dimension & is varied among 4, 8, 16 while
fixing the model scale to small to identify the effect of problem scale.

Model #layers embed dim # heads (MHA)

standard 12 256 8
small 6 128 4
tiny 3 64 2

Table 5. Model configurations for Chain-of-Thought-I/O experiments in Figure 6.

Below, we include experimental results and figures discussed in Section 4.2.

=== tf _standard tf_small tf_tiny I tf, k=4 tf, k=8 s tf, k=16
== 1 mamba_standard == 1+ mamba_small mamba_tiny mamba, k=4 ==« mamba, k=8 == 1 mamba, k=16

CoT-I/O per model size CoT-1/O per problem difficulty

10t 10t
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_ 10 _ 10
o e
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o] o
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3 1071 S 10-1
ey o
(7] 1%}

1072 1072
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in-context examples in-context examples

Figure 6. Performance of Transformer and Mamba models on the Chain-of-Thought-I/O task. Experiments on varying the model size
(left) and varying the hidden dimension (right). Model configurations can be found in Appendix A Table 5.
A.4. Many-outlier regression settings

We run many-outlier regression on two size groups listed below in Table 6. The configurations below required multi-GPU
training due to its long context length of 1024 (N = 512).

Model size # of layers Embed dim # of heads (MHA)
Regular 6 512 8
Mini 4 256 8

Table 6. Model configurations for many-outlier regression ICL in Figure 7.

Below, we include experimental results and figures discussed in Section 4.2. Many-outlier model configurations is above,
while ortho-outlier model configurations are as described in Section 3 and Appendix A.2.
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Figure 7. (Left) Performance of various architectures on two robust linear regression tasks. More transparent points indicate earlier stages
of training; plotted models are trained in between {100k, 300k, 500k} iterations. (Right) Out-of-distribution performances when models
do not see outliers during test-time, i.e., standard linear regression. Task descriptions can be found in Table 2. Standard Hybrid and
MambaFormer are hybrid models of Transformer and Mamba defined in Section 5.

A.5. Vector-valued MQAR

The training set consists of 300,000 training samples. We train for 64 epochs with batch size of 64 and evaluate on a test set
of 3,000 samples. For each setting, we sweep with learning rates in np.logspace(-4, -2, 4) and report the best result among
all learning rates.
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A.6. Hybrid architecture in-context learning
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Figure 8. A suite of ICL tasks ran for Transformer, Mamba, and hybrid architectures where each color represents a different architecture.
More transparent points indicate earlier stages of training; plotted models are trained {100k, 300k, 500k} iterations. Standard Hybrid
and MambaFormer are hybrid models of Transformer and Mamba defined in Section 5.
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B. FLOPs Computation

Number of multiplications

QKYV projection 3LD?

Outer product and multiply V' 2L2D
Outer projection LD?

FFN with f fw_width=4 8LD?

Table 7. Number of multiplications in a Transformer block. L denotes the input sequence length and D denotes the hidden dimension of
the model.

Number of multiplications

Input projection 2LED?
SSM TLEDN +4LED
Output projection LED?

Table 8. Number of multiplications in a Mamba block. L, D are the same as Table 7. N represents the state size of the SSM and E/
denotes the expansion factor of the hidden dimension within each Mamba block. We assume EF = 2 and N = 16.

We count the number of multiplications in a Mamba block and a Transformer block in Table 7 and Table 8. We assume
batch size B = 1. To calculate FLOPs, we follow the similar methodology used in Kaplan et al. (2020); Muennighoff et al.
(2023) and multiply the number of multiplications by 6 to account for the multiply-accumulate cost in both forward and
backward pass. Note that a Standard Hybrid block is an attention block stacked with a Mamba block, so the number of
multiplications in a Standard Hybrid block is 10LD? + 2L? D, ignoring the linear terms.

C. In-context learning formal languages

Given the empirical strength in hybrid models, this section analyzes their performance on synthetic formal language
benchmarks, namely GINC and ICLL RegBench. We use these benchmarks as a proxy to measure language ICL capabilities.

GINC Parameters Train PPL (]) Valid PPL () ICL acc. (1)
LSTM 29M 3.53 3.71 96.4 + 0.6
Transformer 86M 4.06 4.14 842 +5.1
Mamba 90M 4.30 4.57 87.1+7.8
MambaFormer 7IM 4.22 4.77 79.6 + 3.8
Standard Hybrid 74M 4.18 4.65 85.0 £ 3.1

Table 9. GINC data has a vocab size of 100 and the ICL accuracy is evaluated at 64 examples, where each example has length 10. Each
model is trained with embedding size 768 and 12 layers, other than LSTM, which used embedding size 768, hidden layer size 768, and 6
layers. We include 90% confidence intervals for ICL accuracy. We follow the same training recipes as Xie et al. (2021).

Finding 9: Hybrid models perform as well as, or outperform, Transformer and Mamba in formal language ICL,
as exemplified in Tables 9 and 10.

On GINC, Mamba achieves the best ICL accuracy among non-LSTM models, though Transformer achieves lower perplexity.
Interestingly, Standard Hybrid performs on par with Transformer and Mamba, while MambaFormer performs slightly
worse than other models here. However, findings from Xie et al. (2021) indicate that LSTMs excel over Transformers on
GINC, even when accounting for different settings such as vocabulary size or the number of in-context examples. This
aligns with previous findings in which Transformers perform worse or comparably to LSTMs in many formal languages
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RegBench (trained 15 epochs) Train PPL (|) Valid PPL (|) Acc. (1)

LSTM 6.20 6.39 51.0
Transformer 4.20 4.17 92.6*
Mamba 5.59 5.69 69.4
MambaFormer 1.01 1.01 99.8
Standard Hybrid 1.01 1.01 99.9

RegBench (trained 120 epochs) Train PPL (}) Valid PPL (|) Acec. (1)

LSTM 3.33 4.37 73.5
Transformer 1.03 1.10 98.9
Mamba 3.12 3.32 87.8
MambaFormer 1.01 1.01 99.8
Standard Hybrid 1.01 1.01 99.9

Table 10. Perplexity (PPL) and greedy-decoding accuracy for RegBench after training each model 15 and 120 epochs. We use the same
models configurations as done in Akyiirek et al. (2024) and perform similar hyperparameter sweeps. See Section 3.2 for how accuracy is
measured. * denotes reported accuracy in Akyiirek et al. (2024).

considered (Bhattamishra et al., 2020; Deletang et al., 2022). Yet, Transformers are the de facto superior model for
language modeling, so it remains unclear how performance on this benchmark translates to real-world language ICL, where
Transformers typically outperform LSTMs.

On RegBench, which favors Transformers over attention-free models, Mamba indeed performs worse than Transformer,
consistent with previous findings. Notably, hybrid architectures excel on this benchmark, converging much faster both
Mamba and Transformer while achieving higher accuracy.

Given prior evidence that Standard Hybrid achieves lower perplexity in language modeling (Gu & Dao, 2023), our new
results suggest that hybrid models offer a promising direction for both language modeling and in-context learning on language
tasks. We hope these results and analysis demonstrate the potential of hybrid models for language-based applications of
ICL.

D. Exploring effects of width vs. depth in in-context learning

In this section, we empirically validate our experimental design and setup, detailed in Appendix A, through a comprehensive
comparison of wide and shallow networks versus deep and narrow networks, to investigate the effect of model design while
fixing the total number of FLOPs. Additionally, we investigate whether comparing different architectures with Adam only is
a fair comparison. We evaluate the choice of optimizers, specifically comparing Adam—used in our main experiments—with
AdamW (Loshchilov & Hutter, 2018) coupled with a linear warmup and cosine decay scheduler, which is the standard in
language model pretraining for Transformer-based models (Touvron et al., 2023).

Experiment settings. We conduct our ablation study on the task of linear regression. We explore four size groups of
models, each size group with four different configurations for width and depth as seen in Figure 10. We study the three
models of interest: Transformer, Mamba, and MambaFormer. For Transformer and MambaFormer, we keep the dimension
of each head constant at 16; for instance, a model with embedding dimension 256 has a total of 16 heads.

For the new optimizer, we use AdamW with the following hyperparameters: 51 = 0.9, 52 = 0.95. The final learning rate of
the cosine decay scheduler is equal to 10% of the predefined learning rate. We use linear warmup for the first 50,000 steps
of training, starting from 10% of the learning rate. For each model configuration, we choose the best performance out of
learning rates {5e — 5, le — 4,2e — 4}. The remaining experiment details are identical to those described in Section 3.
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Figure 9. Performance of Transformer, Mamba, and MambaFormer on linear regression ICL, using two different optimizers. The left side
shows results obtained using the Adam optimizer, while the right side shows results obtained using AdamW coupled with linear warmup
and cosine decay scheduler. We observe that Mamba and MambaFormer gain considerably more than Transformer when following the
new optimizer setup. See Appendix D for implementation details.

Finding 10: Shallow models struggle to learn regression, especially for Transformers. Very deep models also
struggle, but less so if sufficient width is provided.

For Transformers, we observe that 2-layer models struggle with learning linear regression, even after seeing 40 in-context
examples, regardless of depth (see Figure 10). It appears that Transformers have a minimum layer threshold to effectively
learn regression tasks. While less pronounced, a similar pattern is observed with Mamba; however, MambaFormer
demonstrates proficiency in learning regression with as few as 2 layers. Conversely, models that are excessively deep, with
128 layers, face difficulties in learning when their width is insufficient, and they also require significantly more training
time due to prolonged forward and backward passes. Consequently, exploring layer counts between 4 and 32 on other tasks
seems to be sufficient in identifying the optimal model configuration given fixed total FLOPs, as detailed in Table 4.

Finding 11: AdamW coupled with a scheduler improves performance, especially for larger models and for
Mamba and MambaFormer. Yet, our conclusion remains the same and is agnostic to the choice of optimizer.

As seen in Figure 9 and Figure 10, AdamW combined with a learning rate scheduler helps learning stronger models, as
one may expect from its wide adoption in large language model training. The benefits of the new optimizer increase with
model size across different architectures. However, we note that Mamba and MambaFormer gain more from AdamW plus a
scheduler compared to Transformer. Anecdotally, the learning rate schedule is particularly beneficial for training Mamba, as
deeper and larger Mamba models tend to experience gradient explosion issues.

The two primary conclusions from our work were: (1) Mamba is capable of performing ICL effectively, and (2) Mam-
baFormer successfully combines high performance with the best attributes of both Transformer and Mamba, sometimes even
surpassing them. Our empirical tests suggest that the choice of optimizer and scheduler does not fundamentally alter these
conclusions. In fact, our ablation study indicates that Mamba and MambaFormer might perform even better under these
conditions. Therefore, we decided to use the Adam optimizer in our main experiments, consistent with prior work (Garg
et al., 2022; Bhattamishra et al., 2023) on Transformer ICL.
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Figure 10. Performance of models with varying configurations on linear regression ICL eval at 40 examples. Each color of the legend
represents a model group of fixed total number of (non-embedding) parameters. The models differ in the number of layers, specifically 2,
8, 32, and 128 layers for each connected line, i.e., the model with the widest width has 2 layers, and the model with the narrowest width
has 128 layers. (Left) Adam optimizer as used in Section 3.1. (Right) AdamW with linear warmup and cosine decay.
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