
Published as a conference paper at ICLR 2025

CONSTRAINT-CONDITIONED ACTOR-CRITIC FOR
OFFLINE SAFE REINFORCEMENT LEARNING

Zijian Guo1, Weichao Zhou2, Shengao Wang1, Wenchao Li1,2
1Division of Systems Engineering, Boston University
2Department of Electrical and Computer Engineering, Boston University
{zjguo, zwc662, wsashawn, wenchao}@bu.edu

ABSTRACT

Offline safe reinforcement learning (OSRL) aims to learn policies with high re-
wards while satisfying safety constraints solely from data collected offline. How-
ever, the learned policies often struggle to handle states and actions that are not
present or out-of-distribution (OOD) from the offline dataset, which can result in
violation of the safety constraints or overly conservative behaviors during their
online deployment. Moreover, many existing methods are unable to learn poli-
cies that can adapt to varying constraint thresholds. To address these challenges,
we propose constraint-conditioned actor-critic (CCAC), a novel OSRL method
that models the relationship between state-action distributions and safety con-
straints, and leverages this relationship to regularize critics and policy learning.
CCAC learns policies that can effectively handle OOD data and adapt to varying
constraint thresholds. Empirical evaluations on the DSRL benchmarks show that
CCAC significantly outperforms existing methods for learning adaptive, safe, and
high-reward policies. The code is available at https://github.com/BU-DEPEND-
Lab/CCAC.

1 INTRODUCTION

Offline safe reinforcement learning (OSRL) seeks to learn policies that maximize rewards while
adhering to safety constraints solely based on offline datasets. OSRL brings together key aspects
of safe RL (Gu et al., 2024) and offline RL (Levine et al., 2020; Prudencio et al., 2023). It adds
constraints to ensure that the learned policy meets safety requirements (Lin et al., 2024; Cao et al.,
2024; Guo et al., 2024), while also learning from offline datasets to avoid expensive and potentially
hazardous online environment interactions (Bharadhwaj et al., 2020; Shi et al., 2021; Kondrup et al.,
2023; Zhou et al., 2023). However, it also inherits the challenges from these two areas.

A major challenge in offline RL is distribution shifts (Levine et al., 2020): the behavior of a pol-
icy trained offline can become unpredicatble when encountering states and actions unseen or out-
of-distribution (OOD) from the offline datasets during deployment. To mitigate this issue, many
existing offline reinforcement learning methods limit the policy’s deviation from the (unknown) be-
havior policy that generated the offline dataset or underestimate the critic’s value. (Lyu et al., 2022;
Kostrikov et al., 2021; Garg et al., 2023; Kumar et al., 2020). However, such approaches often result
in overly conservative policies. Additionally, the theoretical foundation of many offline RL methods
is based on the assumption that the offline dataset is collected with a single behavior policy. How-
ever, in real-world tasks, a dataset is more likely to be collected from multiple and diverse behavior
policies. For example, the training data for self-driving vehicles are often collected by multiple
human drivers whose policies are different from one another.

As for safe RL, a key challenge is the lack of adaptability to varying constraint thresholds after train-
ing (Liu et al., 2022). Here, “varying” means that during deployment, trained agents are assigned
a constraint threshold that may differ for each rollout or can change dynamically over time. This
limitation stems from the common adoption of a constrained optimization formulation (Xu et al.,
2022; Hong et al., 2024; Guan et al., 2024; Zheng et al., 2023), which typically involves a single,
fixed constraint threshold during training. However, in many real-world safety-critical applications,
the ability to adapt to different or even unseen constraint thresholds is essential. For example, a
self-driving vehicle must adjust its behavior to meet varying safety requirements, such as altering

1

https://github.com/BU-DEPEND-Lab/CCAC
https://github.com/BU-DEPEND-Lab/CCAC


Published as a conference paper at ICLR 2025

its speed in response to different speed limits on the road. While some existing methods tackle the
problem of varying constraint thresholds using supervised learning (Liu et al., 2023b; Zhang et al.,
2023b) or trajectory optimization (Lin et al., 2023), they are limited in their abilities to generalize to
potential unseen constraint thresholds between training and deployment.

In this work, we tackle these challenges simultaneously by learning a safe, high-reward policy from
offline datasets that can adapt to varying constraint thresholds while effectively managing distribu-
tion shifts. Our key idea is to model the distribution of states and actions and uncover the relation-
ships between behaviors and cost constraints from the offline dataset. We introduce a novel method
called constraint-conditioned actor-critic (CCAC), which combines a constraint-conditioned varia-
tional autoencoder (CVAE) and a constraint-conditioned classifier to learn this relationship. The
CVAE facilitates data augmentation by generating new training samples that align with the learned
behavior-constraint relationship across different constraint thresholds. Meanwhile, the constraint-
conditioned classifier identifies OOD data within the generated samples, allowing for a selectively
conservative update of the critics and actor. This structure enables CCAC to train a policy that can
effectively handle OOD data and adapt to varying constraint thresholds during online deployment.
Our main contributions are summarized as follows.

• We propose a novel approach for learning adaptive, safe, and high-reward policies in OSRL.
To our knowledge, this is the first value-based method that can achieve zero-shot adaptation
to varying constraints in the OSRL setting.

• We introduce a novel constraint-conditioned generative model and binary classifier for gen-
erating state-action pairs and detecting OOD data, respectively. We demonstrate that these
components can be used to effectively regularize the learning of both the critics and the actor.

• We conduct comprehensive experiments to show that (i) CCAC outperforms state-of-the-art
baselines both in safety and task performance by a large margin, and (ii) CCAC can achieve
high rewards while generalizing to varying constraint thresholds without re-training the policy.

2 RELATED WORK

Constraint satisfaction in RL. Many methods across different paradigms have been proposed to
achieve constraint satisfaction. In offline safe RL, most of the works formulate the problem as a con-
strained optimization problem, including primal-dual methods that optimize iteratively the primal
and dual problem (Xu et al., 2022; Hong et al., 2024) and stationary-distribution-correction-style
methods that train policies via importance sampling (Polosky et al., 2022; Lee et al., 2022). (Zheng
et al., 2023) breaks down the offline safe RL problem into separate components and solves them
individually. However, all of these methods require a fixed constraint threshold. Several works con-
vert the offline safe RL problem into sequential modeling and use transformers to learn conditioned
policies (Liu et al., 2023b; Zhang et al., 2023b). Although they can generalize to different cost
thresholds, they are sensitive to the rewards and costs they are conditioned on, e.g., combinations
of high rewards and low costs that do not exist in the dataset can degrade the performance. (Lin
et al., 2023) solves the offline safe RL problem from a trajectory optimization perspective, but it
assumes a single behavior policy and constrains its policy to stay close to the behavior policy. For
online safe RL, (Zhang et al., 2021; Sootla et al., 2022) learns policies by maximizing the reward
with constraint-related information included in the states. (Yao et al., 2024b) also learns constraint-
conditioned policies, but they consider constant thresholds. Moreover, it is nontrivial to tackle the
issue of distribution shifts when switching from an online to an offline setting.

Distribution shifts in offline (safe) RL. In the offline setting, a major challenge is to address the
distribution shifts caused by OOD states and actions. Various methods have been proposed to pe-
nalize the divergence between the learned policy and the behavior policy, using metrics such as
Maximum Mean Discrepancy (MMD) (Kumar et al., 2019), Fisher divergence (Kostrikov et al.,
2021) and KL divergence (Nair et al., 2020; Wu et al., 2019). Generative models, e.g., VAEs and
GANs, are frequently used to generate actions based on states (Kumar et al., 2019; Chen et al.,
2022; Wu et al., 2022; Zhang et al., 2023a; Liu et al., 2024) in order to regularize critics and policy
learning and similar techniques are adopted when considering safety (Xu et al., 2022). However, the
dependence of generating actions on the constraints is rarely explored. Although (Yao et al., 2024a)
consider distribution shift based on constraints, they still focus on a single constraint threshold.
While model-based RL methods can leverage learned dynamics models for prediction and planning

2



Published as a conference paper at ICLR 2025

to address state distribution shifts (Kidambi et al., 2021; Yu et al., 2020; Diehl et al., 2022; Cho
et al., 2024), the mitigation of OOD states effects is rarely explored in model-free methods. By
conditioning on the constraint, we are able to address the distribution shifts of both OOD states and
actions in a model-free manner.

3 PRELIMINARIES

CMDP and offline safe RL. We consider the Constrained Markov Decision Process (CMDP)
model (Altman, 1998) defined by the tuple (S,A, P, r, c, �, µ), where S is the state space, A is
the action space, P : S ⇥ A ⇥ S �! [0, 1] is the (unknown) transition function, r : S ⇥ A �!
[�Rmax, Rmax] is the reward function with Rmax the maximum reward, c : S ⇥A �! [0, Cmax] is
the cost function with Cmax the maximum cost, � is the discounted factor, and µ : S �! [0, 1] is the
initial state distribution. Let ⇡ : S ⇥A! [0, 1] denote the policy; ⌧ = {st, at, ct, rt}Tt=1 denote the
trajectory with maximum episode length T ; R(⌧) =

PT
t=1 �

trt denote the reward return of the tra-
jectory ⌧ ; and C(⌧) =

PT
t=1 �

tct denote the cost return. The goal is to find a policy that maximizes
the reward return while limiting the cost return to a threshold ✏ from a fixed dataset D = {⌧i}Ni=1:

max
⇡

E⌧⇠⇡
⇥
R(⌧)], s.t. E⌧⇠⇡

⇥
C(⌧)]  ✏. (1)

Actor-critic methods. The actor-critic methods (Haarnoja et al., 2018; Stooke et al., 2020) solve
Eq.(1) by maintaining two critics Qr, Qc to respectively approximate the the Q-value for the reward
Q⇡

r (s, a) ⌘ E⌧⇠⇡[R(⌧)] and Q-value for the cost Q⇡
c (s, a) ⌘ E⌧⇠⇡[C(⌧)] with ⌧ = {s, a, . . . }.

The critics Qr, Qc and actor ⇡ are updated in an alternating manner.

min
Qf

Es,a⇠D
⇥
(Qf (s, a)� T ⇡Qf (s, a))

2
⇤
, f 2 {r, c} (policy evaluation)

max
⇡

Es⇠D,a⇠⇡
⇥
Qr(s, a)

⇤
s.t. Es⇠D,a⇠⇡

⇥
Qc(s, a)

⇤
 ✏ (policy improvement)

(2)

The critics are updated via policy evaluation, by iterating the Bellman operator: T ⇡Qf (s, a) =
f(s, a)+�P⇡Qf (s, a), where f 2 {r, c} and P⇡ is the transition matrix associated with the policy:
P⇡Qf (s, a) = Es0⇠P,a0⇠⇡[Qf (s0, a0)]. The policy is improved by updating it towards actions that
maximize the expected Qr-values and whose Qc-values satisfy the constraint threshold.

4 CONSTRAINT-CONDITIONED ACTOR-CRITIC

In this section, we introduce our proposed method as illustrated in Figure 1. In Section 4.1, we
argue that the offline dataset can be viewed as collected by a behavior policy that chooses different
actions depending on the constraint threshold. Building on this perspective, we focus on learning
the dependence of the state-action pairs on the constraint thresholds within the offline dataset. In
particular, we treat the state-action pairs that violate cost constraints as OOD. In Section 4.2, we
introduce the constraint-conditioned VAE and constraint-conditioned classifier to model the OOD
state-action distribution. In Sections 4.3 and 4.4, we provide details on how we apply the learned
OOD distribution to regularize the learning of constraint-conditioned critics and actor to produce
safe and high-reward policies.

Figure 1: CCAC overview. During training, we sample (s, a, s0, r, c,) from the dataset and use
(s, a,) to train the CVAE and Classifier, which aim to learn a constraint-conditioned distribution of
OOD state-action pairs, ⌫(s, a|). Specifically, we generate pairs (ŝ, â) by sampling from the CVAE,
and the pairs with a classifier score above 0.5 are considered OOD. Then these OOD pairs, along
with the sampled (s, a, s0, c,), are used to update the cost critic, Qc(s, a|), while the sampled
(s, a, s0, r,) are used to update the reward critic, Qr(s, a|). Finally, the critics are employed to
update the policy ⇡(a|s,).

3



Published as a conference paper at ICLR 2025

4.1 RETHINKING THE OFFLINE DATASET: A CONSTRAINT-CONDITIONED PERSPECTIVE

As mentioned in Section 2, many metrics have been proposed to measure the distribution shifts of
states and actions in offline RL. However, those metrics often overlook the correlation between the
constraint thresholds and the state-action distribution. We argue that this correlation is a significant
aspect of offline datasets that can be exploited not only for characterizing the distribution shift but
also for learning adaptive policies. In our method, we define the varying constraint threshold at
each time-step t as the cost budget, denoted as t. Specifically, for each trajectory in the offline
dataset, we set the cumulative cost of that trajectory as its initial cost budget, i.e., 1 =

PT
t=1 ct.

The cost budget is then updated at each time-step based on the incurred cost, i.e., t+1 = t�ct, for
t = 1, 2, . . . , T �1. This formulation is similar to the notions of return-to-go (Chen et al., 2021) and
cost-to-go (Liu et al., 2023b). Compared with existing safe RL methods that use a constant threshold,
varying constraint thresholds provides better flexibility for the agent to adjust its behaviors, e.g.,
opting for more conservative actions as the cost budget decreases.

Considering the cost budget as the underlying cause of the behaviors in the dataset, the state-action
distribution in the offline dataset D = {⌧i}Ni=1 with ⌧ = {st, at, ct, rt,t}Tt=1 can be factorized
as d⇡D ()d⇡D (s|)⇡D(a|s,), where ⇡D(a|s,) is some constraint-conditioned behavior policy,
d⇡D () and d⇡D (s|) represent the distributions of encountered cost budgets and visited states by
following ⇡D, respectively. Given a cost budget , we consider a state-action pair (s, a) to be OOD
if taking the action a at the state s will lead to exceeding the cost budget , and otherwise (s, a)
is considered to be in-distribution (IND). Note that the OOD issue – when encountering states and
actions unseen in the dataset – is more nuanced in the offline safe RL setting due to the need to
ensure safety in addition to policy performance. Our treatment of regarding state-action pairs that
exceed the cost budget as OOD provides a means of incorporating safety constraints into the policy
optimization process. This enables the learned policy to avoid unsafe regions of the state-action
space even if they are within the dataset distribution, while also adapting to unseen and varying cost
budgets. As we will show in Section4.2 and Section 4.3, this is done through a novel data augmen-
tation and filtering process by a constraint-conditioned VAE and classifer, and an overestimation of
the cost critic respectively. In Section 4.4, we offer further insights on how this overestimation can
achieve a similar policy regularization effect as an underestimation of reward critic (Kumar et al.,
2020; Lyu et al., 2022) to mitigate the OOD issue in offline RL.

4.2 DATA GENERATION AND CLASSIFICATION

We aim to learn a constraint-conditioned policy ⇡(a|s,) that can satisfy the varying cost budget 
by favoring the IND state-action pairs while avoiding the OOD ones. Given a dataset, we can readily
classify the data as OOD or not based on a cost budget . However, empirical results in Section 5.3
indicate that directly learning such a policy from the offline dataset is often limited by the size of the
dataset. To overcome this, we propose to learn the OOD state-action distribution, which we denote
as ⌫(s, a|), and use it to augment the dataset. Specifically, we train a generative model to generate
diverse state-action pairs and train a binary classifier to identify OOD samples within the generated
data. For the generative model, we propose a constraint-conditional variational autoencoder (CVAE)
adapted from VAE (Kingma & Welling, 2013; Sohn et al., 2015), which models the distribution by
transforming an underlying latent manifold. The objective is to optimize the following evidence
lower bound (ELBO):

max
p,q

Es,a,⇠D

h
Ez⇠q(z|s,a,)

⇥
p(s, a|z,)

⇤
� �DKL

�
q(z|s, a,)||p(z|)

�i
(3)

where q(z|s, a,) is the encoder that maps the tuple of state, action, and cost budget into the latent
space, p(s, a|z,) is the decoder that reconstructs the vector in latent space back into state-action
pair, p(z|) is the prior distribution, typically set to N (0, I), and � is a hyperparameter. The first
term represents the reconstruction loss, and the second term is the KL-divergence between the en-
coder output and the conditional prior of z. Previous works (Fujimoto et al., 2018; Kumar et al.,
2019; Xu et al., 2022) also use conditional VAEs, i.e., VAEs conditioned on states, but they use
them for sampling actions solely and do not consider constraints.

To generate state-action pairs, we can randomly sample z from the prior distribution p(z|) and
pass them through the decoder. However, to determine which generated state-action pairs are OOD,
additional steps are needed. We propose to train a constraint-conditioned binary classifier h(s, a|)

4



Published as a conference paper at ICLR 2025

to distinguish IND and OOD state-action pairs using the binary-cross-entropy loss:

min
h

Es,a,⇠D

h
�y log

�
h(s, a|)

�
�(1� y) log

�
1� h(s, a|)

�i
(4)

where y is the label of the tuple (s, a,). We label a state-action pair sampled from datasets by
checking its cost budget. For example, during each training iteration, we randomly sample a batch
of (s, a,) and a cost budget ̄ from D. We then assign labels: y = 0 (IND) if   ̄ and y = 1
(OOD) otherwise. Additionally, we include reconstructed state-action pairs (ŝ, â) obtained from the
CVAE in the training of the classifier, assigning them the same labels as their original counterparts
(s, a,). This is based on two mild assumptions: (i) the reconstructed data should closely resemble
the real data, which is the goal of CVAE, and (ii) taking similar actions in similar states leads to a
similar number of constraint violations. The reconstructed data can be seen as small perturbations
of the original data. Consequently, the batch data for classifier training is augmented to include
both (s, a, ̄, y) and (ŝ, â, ̄, y), enhancing the effectiveness of the training process. Considering
h(s, a|k) as the probability of (s, a, k) being OOD, the OOD state-action pair distribution ⌫(s, a|)
can be proportional to Ez⇠p(z|)[p(s, a|z,)h(s, a|)].

4.3 CONSTRAINT-CONDITIONED CRITICS

Constraint-conditioned cost critic. To achieve safety, we aim to overestimate the cost critic of
OOD state-action pairs within bounds. Our choice is to learn a constraint-conditioned cost critic
that encourages the expected Qc-values under a particular distribution of state-action pairs, i.e., the
distribution of the OOD state-action pairs ⌫(s, a|), to be no less than a specified threshold ✏ while
minimizing the Bellman error, which yields the following objective:

min
Qc

Es,a,⇠D
⇥
(Qc(s, a|)� T ⇡Qc(s, a|))2

⇤
, s.t. Es,a⇠⌫,⇠D[Qc(s, a|)] � ✏ (5)

Intuitively, Qc-values of the state-action pairs that are well-supported by the data distribution
⇡D(s, a|), will be pushed down to comply with the Bellman backup by the Bellman error term.
Conversely, those OOD and unsafe state-action pairs’ Qc-values will be pushed up. The overestima-
tion can extend to IND state-action pairs that are near the boundary of IND and OOD, causing their
Qc-values to be higher than their true values. However, empirically, this does not show a noticeable
impact on performance as it tends to lead to a mildly conservative policy that avoids risky actions.

In order to solve Eq.(5), we use the primal-dual method (Chow et al., 2018; Stooke et al., 2020) by
introducing a dual variable, i.e., the Lagrangian multiplier �c, and transforming it into an uncon-
strained optimization problem:

max
�c�0

min
Qc

Es,a,⇠D
⇥
(Qc(s, a|)� T ⇡Qc(s, a|))2

⇤
� �c(Es,a⇠⌫,⇠D[Qc(s, a|)]� ✏) (6)

Now, we show that we can make Qc-values of the OOD state-action pairs greater than ✏ with appro-
priate �c when updating the cost critic by Eq.(5):
Theorem 4.1. For any ⌫(s, a|) with supp ⌫ ⇢ supp ⇡D, 8 2 D, (s, a) 2 Dood, by iterating

Eq.(5), the cost critic obtained Q̂⇡
c (s, a|) satisfies:

Q̂⇡
c (s, a|) = Q⇡

c (s, a|) +
�c

2
·
h
(I � �P⇡)�1 ⌫(s, a|)

d⇡D (s, a|)

i

where �c is the weight, Dood is the set that contains all the OOD data generated by ⌫(s, a|),
d⇡D (s, a|) = d⇡D (s|)⇡D(a|s,) is the marginal state-action distribution, and if we choose �c �
max{2maxs,a,

⇥d⇡D (s,a|)
⌫(s,a|)

⇤
(✏�Qc(s, a|)(I � �P⇡)), 0} then we can get Q̂⇡

c (s, a|) � ✏.

The proof can be found in Appendix A. Note that I � �P⇡ is the inverse of the state occupancy
matrix with non-negative entries and ⇡D(s, a|) > 0 since the behavior policies can be sub-optimal,
e.g., possible to violate constraints. One can set the constraint threshold ✏ to be greater than the
maximum value of  in the offline datasets to ensure that the Qc-values of OOD state-action pairs
are sufficiently overestimated.

Constraint-conditioned reward critic. We learn a constraint-conditioned reward critic by mini-
mizing the Bellman error without any additional terms:

min
Qr

Es,a,⇠D
⇥
(Qr(s, a|)� T ⇡Qr(s, a|))2

⇤
(7)

5



Published as a conference paper at ICLR 2025

Although directly applying the Bellman operator is known to suffer from OOD actions, overestimat-
ing the Qc-values can avoid this issue when learning the policy.

4.4 CONSTRAINT-CONDITIONED ACTOR

To maintain consistency with the reward and cost critics, we train a constraint-conditioned actor by
maximizing the reward while satisfying the constraints as follows.

max
⇡

Es,⇠D,a⇠⇡(a|s,)
⇥
Qr(s, a|)

⇤
, s.t. Es⇠D,a⇠⇡(a|s,)

⇥
Qc(s, a|)

⇤
 , 8 2 D (8)

Without conditioning s on , Eq.(8) simplifies to the standard policy improvement in Eq.(2) and
the constraint regarding the minimum  in D will dominate the other constraints. Although our
definition of OOD differs from the typical definition of OOD (unseen state-actions in the dataset),
our approach can still effectively mitigate this issue via the overestimation of Qc(s, a|) to achieve
policy regularization. By overestimating the Qc(s, a|), we can naturally avoid high-cost actions as
they will violate the constraint in Eq.(8). Additionally, this overestimation induces policy regulariza-
tion, which is a common approach in offline RL to address the OOD issue by penalizing deviations
of the learned policy from the behavior policy (Kumar et al., 2020; Lyu et al., 2022; Kostrikov
et al., 2021). For example, CQL (Kumar et al., 2020) applies a conservative (underestimation of)
Qr(s, a) to regularize the learned policy to stay close to the behavior policy. It is proved in Dual
RL (Sikchi et al., 2023) that adding such a constraint on value functions is equivalent to adding
a f -divergence between the learned policy and behavior policy. Leveraging the dual relationship
between Qr(s, a|) and Qc(s, a|) (Paternain et al., 2019), our method achieves a similar policy
regularization effect by overestimating Qc(s, a|), thereby keeping the learned policy close to the
behavior policy. Thus, when learning the Qr(s, a|), our method does not need an additional ex-
plicit regularization. Empirically, we validate this in Appendix D.4 by replacing the reward function
learning part in CCAC with an existing explicit regularization method.

Similar to solving Eq.(5), we also use the primal-dual method to solve Eq.(8):

min
�a�0

max
⇡

Es,⇠D,a⇠⇡
⇥
Qr(s, a|)

⇤
�

X

2D

�a()(Es⇠D,a⇠⇡
⇥
Qc(s, a|)

⇤
� ) (9)

where �a() are the Lagrangian multipliers, which are parameterized by networks and tuned auto-
matically. The overall method is summarized in Algorithm 1 in Appendix C.1. The training of OOD
generation and detection, and that of the RL components can be performed separately. We start by
training the CVAE and classifier till convergence. Then, we fix them and proceed to train the critics
and actor. Training all components simultaneously can cause instability, as an inadequately trained
OOD generation and detection module may produce incorrect OOD state-action pairs, ultimately
leading to the failure of the critics and actor training. During evaluation, the initial cost budget is set
arbitrarily for each rollout and updated at every time-step based on the costs incurred on the fly. A
well-trained policy is expected to adjust its behavior accordingly.

5 EXPERIMENTS

In this section, we evaluate our method in multiple tasks to answer the following questions:

Q1 Can CCAC learn safe and high-reward policies from offline datasets?
Q2 Can CCAC achieve zero-shot adaption to different cost budgets?
Q3 What is the importance of the OOD detection component in CCAC?

Tasks. The Bullet-Safety-Gym (Gronauer, 2022) and Safety-Gymnasium (Ji et al., 2023)
are public benchmarks that include a variety of continuous robot locomotion control tasks commonly
used in previous works (Chow et al., 2019; Zheng et al., 2023; Liu et al., 2023b) and DSRL (Liu et al.,
2023a), a comprehensive benchmark specialized for offline safe RL, provides the offline datasets.
We consider three tasks: Run, Circle, and Velocity and multiple types of robots: Ant,
Ball, Car, Drone, Hopper, and HalfCheetah. In the Run task, agents earn rewards
for achieving high speeds between two boundaries but face penalties if they cross the boundaries or
exceed an agent-specific velocity threshold. In the Velocity task, agents also receive rewards for

6



Published as a conference paper at ICLR 2025

Taks Metric BC-safe CQL-Saute BCQ-Lag BEAR-Lag CPQ COptiDICE VOCE CDT TREBI FISOR Ours
Reward " 0.36±0.32 1.95±0.94 0.5±0.1 2.07±0.75 0.89±0.15 1.76±0.24 2.61±1.27 0.91±0.09 0.78±0.23 0.76±0.06 0.97±0.01

Ball-Run
Cost # 2.08±3.63 9.26±6.33 0.35±1.15 16.23±1.72 2.09±2.96 11.59±1.58 12.74±7.58 0.92±0.31 2.19±4.14 0.0±0.0 0.27±0.19

Reward " 0.96±0.03 0.93±0.04 0.84±0.01 1.0±0.01 0.97±0.01 0.95±0.03 0.98±0.01 1.0±0.0 0.97±0.03 0.73±0.18 0.95±0.04
Car-Run

Cost # 1.06±2.04 0.67±1.24 2.63±1.48 6.47±5.87 0.0±0.0 0.0±0.0 9.41±5.82 0.91±0.72 2.34±1.47 2.37±2.96 0.19±0.27

Reward " 0.56±0.33 0.2±0.11 1.21±0.34 1.09±0.38 0.04±0.1 0.35±0.26 -0.0±0.0 0.82±0.29 0.11±0.13 0.16±0.13 1.01±0.26
Ant-Circle

Cost # 3.5±5.73 0.0±0.0 19.09±7.64 17.06±9.64 0.0±0.0 15.55±21.06 0.0±0.0 6.75±4.71 7.95±12.99 0.0±0.0 0.55±1.57

Reward " 0.62±0.19 0.65±0.13 0.93±0.13 1.08±0.15 0.93±0.04 0.92±0.08 0.0±0.01 0.91±0.05 0.73±0.1 0.26±0.14 0.87±0.03
Ball-Circle

Cost # 1.67±1.52 0.02±0.18 8.95±2.64 11.22±1.67 2.25±3.18 9.1±1.85 12.96±5.12 2.11±1.0 1.8±1.19 0.0±0.0 0.0± 0.0

Reward " 0.38±0.27 0.54±0.26 0.69±0.32 1.06±0.08 0.69±0.38 0.59±0.1 0.19±0.1 0.88±0.05 0.52±0.13 0.25±0.16 0.85±0.04
Car-Circle

Cost # 0.58±1.46 2.84±3.8 11.74±7.67 15.04±2.79 7.57±9.32 10.95±5.69 1.56±2.59 1.59±1.52 1.12±2.92 0.0±0.0 0.73±1.95

Reward " 0.82±0.16 0.15±0.1 1.38±0.03 1.27±0.05 0.83±0.1 0.59±0.05 0.0±0.0 0.94±0.03 0.68±0.14 0.62±0.12 0.82±0.11
Drone-Circle

Cost # 1.32±1.49 2.49±7.06 19.07±1.2 14.88±1.84 3.66±4.64 2.62±2.13 0.0±0.0 1.44±0.85 5.89±3.93 0.06±0.34 0.07±0.54

Reward " 0.98±0.06 -0.09±0.33 0.93±0.22 -1.06±0.0 -0.63±0.5 1.05±0.01 -1.02±0.0 1.02±0.02 0.59±0.18 0.78±0.04 0.9±0.05
Ant-Velocity

Cost # 0.53±0.35 1.0±0.53 15.94±11.08 0.0±0.0 0.9±1.55 11.09±2.85 0.0±0.0 0.59±0.32 0.9±0.48 0.0 ± 0.0 0.58±0.15

Reward " 0.9±0.04 0.54±0.54 1.08±0.04 1.06±0.01 1.79±0.02 0.69±0.05 -0.01±0.18 1.01±0.01 0.46±0.06 0.86 ± 0.02 0.96±0.04HalfCheetah-
Velocity Cost # 0.6±0.63 1.28±0.42 59.17±23.48 29.82±15.74 97.81±0.21 0.0±0.0 0.0±0.0 1.18±0.69 0.05±0.13 0.0 ± 0.0 0.79±0.2

Reward " 0.25±0.26 0.09±0.11 0.51±0.3 0.5±0.02 0.39±0.27 0.15±0.17 0.15±0.21 0.58±0.38 0.61±0.3 0.16 ± 0.07 0.89±0.02Hopper-
Velocity Cost # 0.6±0.87 3.02±3.05 13.53±5.64 18.91±1.12 15.31±14.65 5.99±5.97 2.07±3.1 1.05±0.77 8.52±9.58 0.0 ± 0.0 0.32±0.23

Reward " 0.66±0.35 0.55±0.7 0.89±0.35 0.9±0.84 0.66±0.68 0.78±0.46 0.32±1.03 0.9±0.21 0.6±0.28 0.51±0.3 0.91±0.11
Average

Cost # 1.14±2.39 2.29±4.48 16.72±18.89 14.4±10.23 14.4±30.48 7.43±9.29 4.31±6.61 1.84±2.51 3.42±6.55 0.27±1.24 0.39±0.94

Table 1: Evaluation results of the normalized reward and cost. The agents are trained using the
whole dataset. The cost threshold is 1 (the cost budget is 5 for Run and Circle tasks and 10 for
Velocity task). The percentages of safe trajectories in the datasets are as follows: 4.9%, 28.6%,
5.9%, 5.5%, 6.8%,9.1%, 9.3%, 9.7%, 5.8% for the tasks listed from top to bottom. ": the higher the
reward, the better. #: the lower the cost (up to 1), the better. Each value is averaged over 20 episodes
and 3 seeds. Bold: Safe agents. Gray: Unsafe agents. Blue: Safe agent with the highest reward.

moving forward but incur costs if they exceed a specified velocity threshold. In the Circle task,
agents are rewarded for moving in a clockwise circular pattern but are constrained within a safe re-
gion smaller than the radius of the target circle. This setup of conflicting rewards and costs requires
the agents to balance their trade-off (Liu et al., 2022; Guo et al., 2024), which is challenging since
pursuing high rewards can lead to constraint violations, while conservative policies yield safety but
lower rewards. More details of the environments can be found in Appendix B.

Metrics. Our evaluation metrics include normalized cumulative reward and cost:

Rnormalized =
R⇡ �Rmin,

Rmax, �Rmin,
Cnormalized =

C⇡


where R⇡ and C⇡ are the evaluated cumulative reward and cost of a policy ⇡, respectively, and
Rmax, and Rmin, are the maximum and minimum cumulative reward of the trajectories that sat-
isfy the cost budget  in the offline dataset D. For convenience, we will abbreviate normalized
cumulative reward as reward and cumulative cost as cost. A policy is safe if Cnormalized  1.

Baselines. We compare CCAC with the following baselines: 1) BC-safe: behavior cloning that
imitates only safe trajectories in the datasets. 2) CQL-Sauté: a state-augment-based method that
we adapt from Sauté (Sootla et al., 2022) and CQL (Kumar et al., 2020). 3, 4) BCQ-Lagrangian
(BCQ-Lag) and BEAR-Lagrangian (BEAR-Lag): Lagrangian-based methods built upon BCQ (Fu-
jimoto et al., 2018) and BEAR (Kumar et al., 2019) respectively. 5) CPQ (Xu et al., 2022): a Q-
learning-based method that treats OOD actions as unsafe and learns policy from safe actions. 6) Cop-
tiDICE (Lee et al., 2022): a stationary distribution correction based method. 7) VOCE (Guan et al.,
2024): a probabilistic-inference-based method that learns conservative critics. 8) CDT (Liu et al.,
2023b): a Decision-Transformer based method that learns conditioned policies. 9) FISOR (Zheng
et al., 2023): a diffusion-based method that learns a feasibility-guided policy. 10) TREBI (Lin et al.,
2023): a diffusion-based method that uses trajectory optimization. See Appendix C for implemen-
tation details. For CQL-Sauté, CDT, TREBI, and our method, an initial cost budget is assigned for
each rollout and then updated based on the incurred costs. For the rest of the baselines, we use the
cost budget to refer to the constant cost threshold used for training and evaluation.

5.1 CAN CCAC LEARN SAFE AND HIGH-REWARD POLICIES FROM OFFLINE DATASETS?

The evaluation results for different trained policies are presented in Table 1. The training curves
are included in Appendix D.1. Our method demonstrates the best performance compared to the

7



Published as a conference paper at ICLR 2025

baselines in terms of reaching the highest reward in most of the tasks while maintaining safety. We
can also observe that high rewards usually come with high costs and vice versa, which highlights
their trade-off. The baseline methods either suffer from significant constraint violations or yield
sub-optimal returns. The results of BC-safe and CQL-Sauté indicate that, due to distribution shifts,
merely mimicking the safe data or maximizing the reward critic of cost-augmented states cannot
achieve safety. The Lagrangian-based baselines fail to behave safely on most tasks, which suggests
that directly applying the primal-dual method in the offline setting can hardly work well without
regularizing the OOD state-action pairs. Though CPQ considers the OOD actions during training,
the OOD states at test time can still result in constraint violations. COptiDICE and VOCE oscillate
between overly conservative and overly aggressive since the trajectories in the dataset are collected
from diverse behavior policies, potentially leading to biased estimations of the critics. FISOR ex-
hibits conservative behaviors as it considers hard constraint instead of soft constraint. TREBI strug-
gles to maintain safety as it restricts its learned policy to remain close to the behavior policy, despite
the behavior policy being suboptimal.

Distribution shifts. To assess the effect of OOD states and actions, we use different percentages of
data to train policies and then evaluate their performance. Less training data makes it more chal-
lenging to train the policies and implies a larger distribution shift during evaluation. The evaluation
results are shown in Figure 2. Appendix B.2 also includes a visualization of the offline datasets. We
can observe that most methods exhibit an increase in costs and a decrease in rewards as the percent-
age of training data decreases. Our method, on the other hand, continues to satisfy the constraints
and achieve high rewards, showcasing its robustness against distribution shifts.

Figure 2: Evaluation results of reward and cost in Run and Circle tasks with different percentages
of datasets being used for training. The dashed line represents the normalized cost threshold.

Figure 3: Results of alignment with different cost budgets. The agents are trained using the whole
dataset. The top-row plots show the evaluated reward and the bottom-row plots show the evaluated
cost. The solid line and the light shade area represent the mean and mean ± standard deviation. The
dashed line represents the scenario where the evaluated cost matches the cost budget.

5.2 CAN CCAC ACHIEVE ZERO-SHOT ADAPTION TO DIFFERENT COST BUDGETS?

One major advantage of our method is the ability to adapt to varying cost budgets without the need
for re-training. To illustrate this, we set different cost budgets for evaluation rollouts to obtain the
results in Figure 3. We compare our method with CQL-Sauté, CDT, and TREBI, since all other
baselines cannot adapt to different cost budgets without re-training. The results reveal a strong cor-

relation between the actual and target cost for our method. We can also observe that the actual

8



Published as a conference paper at ICLR 2025

cost of our method is consistently below the cost budget even when the budget is small, whereas
CDT fails to ensure safety despite achieving higher rewards in some cases. Moreover, our method
achieves better zero-shot adaptation by optimizing towards safe actions using constraint-conditioned
critics and actor built with simple MLP models, unlike CDT and TREBI, which relies on the sequen-
tial modeling abilities of transformer architectures and planning capacities of the diffusion models,
respectively, to mimic the trajectories in the dataset.

Figure 4: Results of cumulative reward and cost over time. The cost budget is 5 (increased to 10 at
t = T/2) for Run and Circle tasks and 10 (increased to 20 at t = T/2) for velocity tasks.

To further evaluate the adaptability to manage unseen cost budgets, we construct two more challeng-
ing scenarios: (1) we manually assign an increased cost budget at a certain time-step during eval-
uation and examine if the agents can respond to the change accordingly. Note that all the training
data encounters a gradually decreasing cost budget as the cost budget is updated as t+1 = t � ct.
Figure 4 shows the cumulative reward and cost over time. We can observe that our method can adapt
to changes in the cost budget without compromising rewards or safety satisfaction, while other base-
lines either violate constraints or suffer a notable drop in rewards. (2) We build a modified dataset
by removing all the safe trajectories whose cumulative cost is smaller than a certain threshold. We
re-train the agents and evaluate them using an unseen cost budget that is set to be half of this thresh-
old. The average evaluation results are presented in Table 2, with the detailed results for each task
provided in Appendix D.3. Additionally, for CQL-Sauté, CDT, and our method, we evaluate differ-
ent additional unseen cost budgets that are all smaller than the threshold, and the adaptation results
are shown in Figure 10. The results show that our method consistently attains high rewards while
maintaining safety, whereas all baselines either fail to ensure safety or exhibit overly conservative
behavior, highlighting our method’s better adaptability and robustness to distribution shifts. On the
other hand, the adaptability to unseen cost budgets is also linked to the so-called “stitching” abil-
ity (Kumar et al., 2022). Despite the removal of safe trajectories, certain sub-trajectories within the
unsafe ones can still be safe. The results suggest that our method is able to exploit these better than
the existing techniques.

Tasks Metric CQL-Sauté BCQ-Lag BEAR-Lag CPQ COptiDICE VOCE CDT TREBI FISOR CCAC(ours)
Reward " 0.55±0.44 1.51±0.91 1.88±1.03 0.95±0.03 1.38±0.5 1.65±1.07 0.99±0.02 0.82±0.19 0.74±0.08 0.96±0.03

Run
Cost # 5.23±6.26 19.85±12.76 23.56±7.99 1.92±2.66 6.27±6.29 9.35±8.95 1.34±0.74 2.12±2.36 0.54±1.90 0.23±0.27

Reward " 0.4±0.33 1.11±0.31 1.13±0.21 0.64±0.42 0.63±0.25 0.06±0.11 0.91±0.17 0.43±0.25 0.27±0.18 0.79±0.24
Circle

Cost # 6.88±9.15 15.61±6.1 13.19±6.18 3.73±6.43 9.82±10.57 10.05±15.53 2.58±2.49 3.53±8.26 0.17±0.76 0.17±0.79

Reward " 0.44±0.43 0.78±0.37 0.18±0.8 0.41±1.15 0.65±0.36 -0.41±0.44 0.88±0.24 0.45±0.24 0.47±0.26 0.86±0.2
Velocity

Cost # 2.08±3.23 27.26±29.75 20.1±25.76 35.18±44.66 6.94±7.22 0.0±0.0 2.91±2.87 1.07±2.52 0.08±0.27 0.38±0.2

Reward " 0.45±0.4 1.09±0.58 0.98±0.93 0.63±0.75 0.8±0.47 0.26±0.96 0.91±0.19 0.51±0.28 0.44±0.27 0.85±0.21
Average

Cost # 4.91±7.33 20.44±19.33 17.8±16.46 13.81±30.22 8.07±8.85 6.54±12.1 2.41±2.45 2.41±6.0 0.22±1.05 0.25±0.56

Table 2: Average evaluation results of the normalized reward and cost of agents trained on datasets
with safe trajectories removed. The cost threshold is 1 (the cost budget is 5 for Run and Circle
tasks and 10 for Velocity tasks). Each value is averaged over 20 episodes and 3 seeds. Bold:
Safe agents. Gray: Unsafe agents. Blue: Safe agent with the highest reward.

5.3 WHAT IS THE IMPORTANCE OF THE OOD DETECTION COMPONENT IN CCAC?

9



Published as a conference paper at ICLR 2025

Figure 5: Ablation study: average
performance of CCAC and its vari-
ants in Run and Circle tasks.

To assess the importance of the OOD detection part in our
method, i.e., the CVAE and the classifier, we first conduct an
ablation study by constructing three variants of our method as
shown in Figure 5, where “w/ CVAE” and “w/ offline data”
mean that the OOD data used to train the cost critic are either
sampled from the CVAE and identified by the classifier, or ob-
tained from the offline datasets based-on cost budgets; “w/o
CVAE” and “w/o offline data” mean the absence of these el-
ements. Note that CVAE(w/ CVAE & w/o offline data) is the
CVAE(ours) in the remaining tables and figures. We can ob-
serve that when using both the generated OOD data and OOD
offline data, the performance does not change much since the
OOD distribution ⌫(s, a|) that the CVAE aims to approxi-
mate covers the OOD offline data. The result also shows that
the limited OOD offline data only offers limited benefits in
learning the critics and policies. The CVAE and classifier are
essential components as their removal leads to substantial in-
creases in cost and moderate drops in rewards. The CVAE
enables the generation of diverse data not present in the offline
dataset, and the classifier can determine which of these generated samples are OOD.

Figure 6: Ablation study: Qc-values plots. The solid line and the light shade area represent the mean
and mean ± standard deviation, respectively. The dashed line denotes the Qc-value thresholds.

We also evaluate the Qc-values for both the IND and OOD state-action pairs. For a cost budget
, we sample state-action pairs whose cost-to-go satisfies the threshold from the offline dataset and
compute Es,a⇠D[Qc(s, a|)] as IND Qc. Next, we generate state-action pairs using the CVAE,
identify the OOD samples using the classifier, and compute Es,a⇠⌫ [Qc(s, a|)] as OOD Qc. The
results are shown in Figure 6. We can observe that the IND Qc satisfies the threshold while OOD
Qc exceeds the threshold. The results are consistent with Eq.(5) which aims to overestimate the Qc-
values of OOD state-action pairs while minimizing the Qc-values of IND state-action pairs. This
indicates the effectiveness of the data generation and detection components in our method.

6 CONCLUSION

We propose a novel method called CCAC that leverages the constraint information to guide policy
learning and deployment with the support of constraint-related data generation and OOD detection.
Empirical results demonstrate that CCAC excels in learning a safe and high-reward policy across
multiple offline safe RL tasks, whereas prior works either show overly conservative behaviors or
struggle to meet safety requirements. Notably, CCAC can adapt to different or even unseen cost
budgets without re-training and consistently maintain safety and achieve high rewards. The ablation
study highlights the critical role of data generation and OOD detection in our method. A bottleneck
of our method could be the data generation and OOD detection component when the dimension
of state-action increases. However, we show a feasible direction by integrating such techniques
to regularize critics and policy training. Future works will investigate the incorporation of more
advanced data generation and OOD detection techniques and the possibility of offline-to-online
finetuning to further improve policy performance since the offline dataset can be sub-optimal.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their invaluable feedback and constructive sug-
gestions. This work was supported in part by the U.S. National Science Foundation under grant
CCF-2340776.

ETHICS STATEMENT

This work does not present any significant ethical concerns. All experiments were carried out in
simulated environments, preventing any risk to real-world systems. The focus on offline datasets
ensures the avoidance of potentially dangerous and unsafe interactions during policy learning, pro-
moting safety and responsible practices in reinforcement learning.

REPRODUCIBILITY STATEMENT

The datasets used are provided from a publicly available benchmark that uses simulated dynamical
control environments, ensuring that the experimental setup can be reproduced. Details about the
experimental setup, including parameters, models, evaluation metrics, and implementations, are
provided in the appendix and supplementary materials to facilitate the reproduction of our findings.

REFERENCES

Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian approach
and dual linear program. Mathematical methods of operations research, 48(3):387–417, 1998.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and Ani-
mesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

Chenyang Cao, Zichen Yan, Renhao Lu, Junbo Tan, and Xueqian Wang. Offline goal-
conditioned reinforcement learning for safety-critical tasks with recovery policy. arXiv preprint

arXiv:2403.01734, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Yuan Gao, Jianhao Wang, Wenzhe Li, Bin Liang, Chelsea
Finn, and Chongjie Zhang. Latent-variable advantage-weighted policy optimization for offline rl.
arXiv preprint arXiv:2203.08949, 2022.

Minjae Cho, Jonathan P How, and Chuangchuang Sun. Out-of-distribution adaptation in offline rl:
Counterfactual reasoning via causal normalizing flows. arXiv preprint arXiv:2405.03892, 2024.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint

arXiv:1901.10031, 2019.

Christopher Diehl, Timo Sievernich, Martin Krüger, Frank Hoffmann, and Torsten Bertram. Um-
brella: Uncertainty-aware model-based offline reinforcement learning leveraging planning, 2022.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. corr abs/1812.02900 (2018). arXiv preprint arXiv:1812.02900, 2018.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

11



Published as a conference paper at ICLR 2025

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. 2022.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theory and applications, 2024.

Jiayi Guan, Guang Chen, Jiaming Ji, Long Yang, Zhijun Li, et al. Voce: Variational optimization
with conservative estimation for offline safe reinforcement learning. Advances in Neural Infor-

mation Processing Systems, 36, 2024.

Zijian Guo, Weichao Zhou, and Wenchao Li. Temporal logic specification-conditioned decision
transformer for offline safe reinforcement learning. In Proceedings of the 41st International Con-

ference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
17003–17019. PMLR, 21–27 Jul 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-

ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kihyuk Hong, Yuhang Li, and Ambuj Tewari. A primal-dual-critic algorithm for offline constrained
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
280–288. PMLR, 2024.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. arXiv preprint arXiv:2305.09304, 2023.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel : Model-
based offline reinforcement learning, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Flemming Kondrup, Thomas Jiralerspong, Elaine Lau, Nathan de Lara, Jacob Shkrob, My Duc
Tran, Doina Precup, and Sumana Basu. Towards safe mechanical ventilation treatment using deep
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 15696–15702, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline rein-
forcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Haohong Lin, Wenhao Ding, Zuxin Liu, Yaru Niu, Jiacheng Zhu, Yuming Niu, and Ding Zhao.
Safety-aware causal representation for trustworthy offline reinforcement learning in autonomous
driving. IEEE Robotics and Automation Letters, 2024.

Qian Lin, Bo Tang, Zifan Wu, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
Wang. Safe offline reinforcement learning with real-time budget constraints. In International

Conference on Machine Learning, pp. 21127–21152. PMLR, 2023.

12



Published as a conference paper at ICLR 2025

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
policy regularization for offline reinforcement learning. arXiv preprint arXiv:2405.19909, 2024.

Zuxin Liu, Zijian Guo, Zhepeng Cen, Huan Zhang, Jie Tan, Bo Li, and Ding Zhao. On the
robustness of safe reinforcement learning under observational perturbations. arXiv preprint

arXiv:2205.14691, 2022.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement
learning. arXiv preprint arXiv:2306.09303, 2023a.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-

ference on Machine Learning, pp. 21611–21630. PMLR, 2023b.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711–1724,
2022.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained re-
inforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

Nicholas Polosky, Bruno C Da Silva, Madalina Fiterau, and Jithin Jagannath. Constrained of-
fline policy optimization. In International Conference on Machine Learning, pp. 17801–17810.
PMLR, 2022.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on

Neural Networks and Learning Systems, 2023.

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for au-
tonomous driving with safety and exploration enhancement, 2021.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang,
and Haitham Ammar. Sauté rl: Almost surely safe reinforcement learning using state augmenta-
tion. In International Conference on Machine Learning, pp. 20423–20443. PMLR, 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022.

Yihang Yao, Zhepeng Cen, Wenhao Ding, Haohong Lin, Shiqi Liu, Tingnan Zhang, Wenhao Yu,
and Ding Zhao. Oasis: Conditional distribution shaping for offline safe reinforcement learning.
arXiv preprint arXiv:2407.14653, 2024a.

13



Published as a conference paper at ICLR 2025

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. Advances in

Neural Information Processing Systems, 36, 2024b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization, 2020.

Jing Zhang, Chi Zhang, Wenjia Wang, and Bingyi Jing. Constrained policy optimization with ex-
plicit behavior density for offline reinforcement learning. In Thirty-seventh Conference on Neural

Information Processing Systems, 2023a.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning, 2023b.

Yang Zhang, Bo Tang, Qingyu Yang, Dou An, Hongyin Tang, Chenyang Xi, Xueying LI, and Feiyu
Xiong. BCORLE($\lambda$): An offline reinforcement learning and evaluation framework for
coupons allocation in e-commerce market. In Advances in Neural Information Processing Sys-

tems, 2021.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Feasibility-guided safe offline reinforcement learning. In The Twelfth International Confer-

ence on Learning Representations, 2023.

Gaoyue Zhou, Liyiming Ke, Siddhartha Srinivasa, Abhinav Gupta, Aravind Rajeswaran, and Vikash
Kumar. Real world offline reinforcement learning with realistic data source. In 2023 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 7176–7183, 2023.

14



Published as a conference paper at ICLR 2025

A PROOF OF THEOREM 4.1

Proof. Let Qk
c denote the true Q-function at iteration k and Q̂k

c denote the k-th Q-function obtained
by solving Eq.(5). Qk+1

c is related to the previous Qk
c : Qk+1

c = T ⇡Qk
c . By introducing the La-

grangian multiplier �c, Eq.(5) becomes Eq.(6), then take the derivative of Eq.(6) w.r.t. Qc and set it
to 0, we obtain the following expression for Q̂k+1

c in terms of in terms of Q̂k
c :

Q̂k+1
c (s, a|) = T Q̂k

c (s, a|) +
�c

2
· ⌫(s, a|)
⇡D(s, a|)

, 8k (10)

Note that we only sample  once from D, so the  ⇠ D in the objective and constraint in Eq.(5)
are the same and will cancel out in Eq.(10). Since ⌫(s, a|) � 0, �c � 0, ⇡D(s, a|) > 0, at each
iteration Q̂k+1

c (s, a|) � Q̂k
c (s, a|). Now, let’s examine the fixed point of Eq.(10):

Q̂⇡
c (s, a|) = T Q̂⇡

c (s, a|) +
�c

2
· ⌫(s, a|)
⇡D(s, a|)

= c+ �P⇡Q̂⇡
c (s, a|) +

�c

2
· ⌫(s, a|)
⇡D(s, a|)

= Q⇡
c (s, a|)(I � �P⇡) + �P⇡Q̂⇡

c (s, a|) +
�c

2
· ⌫(s, a|)
⇡D(s, a|)

= Q⇡
c (s, a|) + �P⇡[Q̂⇡

c (s, a|)�Q⇡
c (s, a|)] +

�c

2
· ⌫(s, a|)
⇡D(s, a|)

) Q̂⇡
c (s, a|) = Q⇡

c (s, a|) +
�c

2
(I � �P⇡)�1 ⌫(s, a|)

⇡D(s, a|)
We set �c � 0 since we don’t want to underestimate the Qc-values. When Q⇡

c (s, a|) > , it means
that the state-action pairs are OOD, e.g., unsafe to take the actions in the states, then we want to
overestimate Q̂⇡

c (s, a|), the choice of �c that guarantee Q̂⇡
c (s, a|) � ✏ is given by:

�c � 2(✏�Q⇡
c (s, a|))(I � �P⇡)

h⇡D(s, a|)
⌫(s, a|)

i

) �c � 2max
s,a,

(✏�Q⇡
c (s, a|))(I � �P⇡)

h⇡D(s, a|)
⌫(s, a|)

i

We show that the Qc-values of OOD state-action pairs can be overestimated to exceed the threshold.

B ENVIRONMENTS DETAILS

B.1 REWARD AND COST FUNCTIONS

We use the Bullet-safety-gym (Gronauer, 2022) and Safety-Gymnasium (Ji et al., 2023)
for this set of experiments. We consider three tasks: Run, Circle, and Velocity and multiple
types of robots: Ant, Ball, Car, Drone, Hopper, and HalfCheetah.

In the Run task, agents receive rewards for high-speed movement between two safety boundaries.
However, they incur penalties when they either cross these boundaries or surpass a velocity threshold
that is specific to different types of robots. In the Velocity task, agents also receive rewards for
moving forward but incur costs if they exceed a specified velocity threshold. The reward and cost
function are defined as:

r(st) = ||xt�1 � g||2 � ||xt � g||2
c(st) = 1(|y| > ylim or ||vt||2 > vlim)

where st = [xt, yt, vx, vy], r is the radius of the circle, and xlim specifies the range of the safety
region. In the Circle task, agents gain rewards for circular motion in a clockwise direction but
are required to remain inside a designated safe area, which is smaller than the circumference of the
intended circle. The reward and cost functions are defined as:

r(st) =
�ytvx + xtvy

1 + ||
p
x2
t + y2t � r|

c(st) = 1(|x| > xlim)

15



Published as a conference paper at ICLR 2025

where ylim is the safety boundary and vlim is the velocity limit. Since the cost function is the indicator
function so the cost-to-go represents the number of constraint violations.

B.2 OFFLINE DATASET VISUALIZATION

The dataset cost-reward plots for tasks Ball-Run, Car-Run, Ant-Circle, Ball-Circle,
Car-Circle, and Drone-Circle, are shown in Figure 7. Analyzing the figures provided, we
can generally discern an increasing trend for the reward in relation to the cost. In other words, as cost
increases, so too might the reward return, underscoring the inherent trade-off between reward and
cost. This phenomenon aligns with findings discussed in previous works (Liu et al., 2023b; 2022;
Guo et al., 2024). We utilize the data density filter in Liu et al. (2023a) to evaluate the algorithms’
ability to perform under different levels of data availability, e.g., less training data means a larger
distribution shift during evaluation, and assess their generalization capabilities. We also use the
partial data filter to filter out some specific trajectories, as shown in Figure 8. For Run and Circle
tasks, the safe trajectories whose cumulative cost is smaller than 10 are removed. For Velocity
tasks, the safe trajectories whose cumulative cost is smaller than 20 are removed.

Figure 7: Illustration of the offline dataset. Each row shows reward versus cost for varying data
percentages. Each column represents an environment. Each point denotes a collected trajectory
with corresponding episodic reward and cost values.

C IMPLEMENTATION DETAILS

C.1 OUR METHOD

We present the full algorithm of our method in Algorithm 1. There are two sets of components that
need training: the first includes the RL components, i.e., the critics and the policies; the second in-
cludes the data generation components, i.e., the CVAE and the classifier. Directly training all these
components simultaneously would make it difficult to converge since, at the beginning of training,
the poor-quality OOD data generated by the CVAE and a weak classifier that cannot correctly iden-
tify OOD samples would lead to an erroneous update of the critics and policies, especially the cost
critic. Therefore, we train these two sets of components separately. We first train the CVAE and
classifier for M iterations until convergence. Then we perform policy training which follows the
standard training procedure for deep RL methods: at each iteration, we sample a batch of data, up-
date critics, update the actor, update the target critics, and so on. To create OOD samples, we sample
randomly in the latent space, z, and use the CVAE decoder to produce state-action pairs. These gen-
erated pairs are then fed into the classifier, which outputs the probability, h(s, a|), of being OOD.
We classify the pair as OOD if h(s, a|) exceeds a threshold of 0.5. For evaluation, we first specify
an initial cost budget 1, and then this cost budget is updated autoregressively based on constraint

16



Published as a conference paper at ICLR 2025

Figure 8: Illustration of the offline dataset with partial data removed. Each point denotes a collected
trajectory with corresponding episodic reward and cost values.

violations t+1 = t � ct. Then, we compute the cumulative cost
PT

t=1 ct and compare it with the
initial cost budget. A smaller cumulative cost means safety is achieved.

Algorithm 1 Cost-Conditioned Actor-Critic (CCAC)
Require: offline data D

1: // CVAE and Classifier Training
2: Initialize encoder p', decoder q⇢, and classifier h 
3: for t = 0, ...,M do
4: Sample a batch of data (s, a,) ⇠ D and a cost threshold ̄
5: Update encoder p' and decoder q⇢ by Eq.(3)
6: Get reconstructed state-action pairs (ŝ, â) via CVAE
7: Assign the labels y for each state-action pair based on  and ̄
8: Update classifier h by Eq.(4)
9: end for

10: // Policy Training
11: Initialize reward critic ensemble {Qri(s, a|)}ni=1 and cost critic ensemble {Qci(s, a|)}ni=1,

actor ⇡✓, Lagrangian multiplier �c and �a(), target networks {Q0
ri}

n
i=1 and {Q0

ci}
n
i=1 with

�0
ri  �0

ri and �0
ci  �0

ci
12: for t = 0, ..., N do
13: Sample a batch as data (s, a, r, c,, s0) ⇠ D
14: (Optional) Perform one iteration of CVAE and classifier training
15: Sample the same size of z ⇠ p(z|) conditioned on the  in the batch
16: Generate state-action pairs (ŝ, â) ⇠ p'(s, a|z,)
17: Assign labels to (ŝ, â) using the classifier
18: Update cost critics and �c by Eq.(6) and reward critics by Eq.(7)
19: Update actor and �a() by Eq.(9)
20: Update target cost critic: �0

c  ↵�c + (1� ↵)�0
c

21: Update target reward critic: �0
r  ↵�r + (1� ↵)�0

r
22: end for

17



Published as a conference paper at ICLR 2025

C.2 HYPERPARAMETERS

For BCQ-Lag, BEAR-Lag, CPQ, COptiDICE and CDT, we use the OSRL1 implementation and we
implement our method in this framework. We adopt the CQL-Sauté from this CQL implementa-
tion2. For VOCE3, FISOR4, and TREBI5, we use their official implementations. For value-based
baselines, we use Gaussian policies with mean vectors given as the outputs of neural networks,
and with variances that are separate learnable parameters. The policy networks and Q networks for
all experiments have two hidden layers with ReLU activation functions. The KP ,KI and KD are
the PID parameters Stooke et al. (2020) that control the Lagrangian multiplier for the BCQ-Lag and
BEAR-Lag. For each task, the update steps is the same for all the methods. For fair comparisons, we
use the same model structure for the critics and policies for all the value-based methods. However,
CDT and FISOR take advantage of more expressive transformers and diffusion models, making it
difficult to make fair comparisons: CDT uses a Transformer model to take a sequence of states and
actions as input, whereas our method only takes in current state; FISOR uses a ResNet-based diffu-
sion model as its policy network, whereas ours is a simple MLP. When switching from the diffusion
model to an MLP architecture, FISOR results in significant performance degradation. Therefore, we
report results based on their original design and default hyperparameters. BCQ-Lag and BEAR-Lag
employ VAE to generate actions, while our method uses CVAE to generate state-action pairs. The
constraint threshold is 5 across all the tasks. The hyperparameters that are not mentioned are in their
default value for baselines. The hyperparameters used in the experiments are shown in Table 3.

Parameter Ball-Run Car-Run Ant-Circle Ball-Circle Car-Circle Drone-Circle Velocity
Actor hidden size [256, 256]
Critic hidden size [256, 256]

VAE/CVAE hidden size [512, 512, 64, 512, 512]
Episode length 100 200 500 200 300 300 1000
[KP ,KI ,KD] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag

Batch size 512 1024 512 512 512 512 2048
Training steps 2e5 1e5 2e5 2e5 2e5 3e5 2e5

� 0.99
Actor learning rate 1e-4
Critic learning rate 1e-3

VAE/CVAE learning rate 1e-3
Critic ensemble 4

Table 3: Hyperparameters for value-based methods (including our method).

D MORE EXPERIMENT RESULTS

D.1 TRAINING CURVES

The training curves of our method and the baseline methods are presented in Figure 9. We evaluate
the methods at regular training intervals, which is optional, and the interaction data is not added
to the offline dataset used to train the methods. These curves follow the trends observed in online
model-free safe RL methods, where costs typically start high and decrease over time, while rewards
begin low and increase. In the offline setting, data collection is not needed and training safety is
ensured due to the offline datasets. After convergence, our method consistently remains below the
cost threshold and achieves high rewards, while other baselines either struggle to satisfy constraints
or suffer from conservatism. Note that for our method, the constraint threshold is only used during
evaluation; during training, the method is unaware of the threshold under which it will be evaluated.
As mentioned in section 5, we consider the scenarios where pursuing rewards aggressively will lead
to significant costs and excessive demand for safety will lead to low rewards. In our experiments,
for Circle task, traveling along the circle will get high rewards but will enter unsafe regions; for
Run task, driving as far as possible will get high rewards but will exceed the speed limits. On the
other hand, the agents can simply take no actions and stand still to achieve safety. The training
curves reveal such a trade-off between rewards and costs. For example, BCQ-Lag, BEAR-Lag, and

1https://github.com/liuzuxin/OSRL
2https://github.com/young-geng/CQL
3https://github.com/guanjiayi/voce
4https://github.com/ZhengYinan-AIR/FISOR
5https://github.com/qianlin04/Safe-offline-RL-with-diffusion-model

18



Published as a conference paper at ICLR 2025

Figure 9: Training curves. The dashed line represents the cost threshold, which is 5 for Run and
Circle tasks and 10 for Velocity tasks. The solid line and the light shade area represent the
mean and mean±standard deviation. The interaction data is not added to the offline dataset.

COptiDICE often attain high rewards across various tasks, but this is accompanied by elevated costs.
While FISOR ensures safety, it yields low rewards, achieving only about half of what our method
can achieve. In contrast, our method can balance the rewards and costs as we analyzed in sections 5.

Sample efficiency. We can also observe that in certain environments, such as Car-Run and Drone-
Circle, CCAC takes more steps to converge. However, it is important to note that we are working in
the offline safe RL setting where training occurs solely on a fixed offline dataset Taking more steps to
converge does not imply additional safety violations as there is no interaction with the environment
during training. Besides, evaluation during training is optional, and Figure 9 is provided solely as
a reference to illustrate the training progress. Furthermore, while sample efficiency is valuable, a
method that achieves efficiency at the expense of safety may be less meaningful. Figure 9 shows that
although some baselines converge faster, such as FISOR in Car-Run and BCQ-Lag in Drone-Circle,
they either fail to achieve high rewards or cannot maintain safety after convergence. In contrast, our
method consistently achieves both high reward and safety after convergence.

19



Published as a conference paper at ICLR 2025

D.2 COMPLETE RESULTS FOR DIFFERENT DATA PERCENTAGES

The detailed evaluation results for different dataset percentages are presented in Table 4. For base-
lines, we focus on BC-safe, CQL-Sauté, and FISOR. BC-safe helps gauge the difficulty of a task.
If mimicking the safe actions in the datasets achieves both safety and high rewards, then the task
is relatively easy. CQL-Sauté is adopted from (Sootla et al., 2022) by combining the conservatism
estimation technique of (Kumar et al., 2020) into the offline setting. This baseline also employs the
cost-to-go, like our method, but focuses solely on maximizing rewards. FISOR is the only baseline
method evaluated that ensures safety. The results show that our method and FISOR consistently
stay within the cost threshold across all tasks, with our method displaying higher rewards in all
tasks. We can also observe that in most tasks, rewards decrease, costs increase, and variance rises as
the percentage of data being used to train the methods decreases, as less training data typically leads
to greater distribution shifts during testing. FISOR achieves this through its conservative approach
while we achieve this by data augmentation and OOD detection.

Ball-Run Car-Run Ant-Circle Ball-Circle Car-Circle Drone-Circle Average
Methods

Reward " Cost # Reward " Cost # Reward " Cost # Reward " Cost # Reward " Cost # Reward " Cost # Reward " Cost #

Ours (p = 1.0) 0.97±0.01 0.27±0.19 0.95±0.04 0.19±0.27 1.01±0.26 0.55±1.57 0.87±0.03 0.0±0.0 0.85±0.04 0.73±1.95 0.82±0.11 0.07±0.54 0.91±0.14 0.3±1.09

Ours (p = 0.75) 0.97±0.01 0.27±0.19 0.95±0.02 0.13±0.1 1.0±0.33 0.66±1.62 0.87±0.05 0.0±0.0 0.84±0.05 0.85±2.7 0.79±0.18 0.0±0.0 0.9±0.17 0.32±1.33

Ours (p = 0.5) 0.96±0.07 0.33±0.19 0.97±0.01 0.3±0.77 0.9±0.38 0.83±1.75 0.88±0.02 0.0±0.0 0.85±0.05 0.96±3.0 0.76±0.19 0.68±2.09 0.89±0.19 0.52±1.72

Ours (p = 0.25) 0.94±0.03 0.39±0.25 0.93±0.01 0.36±0.23 0.83±0.37 0.93±2.51 0.82±0.04 0.22±0.34 0.87±0.04 1.1±2.35 0.72±0.19 0.96±4.33 0.84±0.21 0.66±2.22

FISOR (p = 1.0) 0.67±0.19 0.0±0.0 0.78±0.12 0.0±0.0 0.15±0.14 0.0±0.0 0.25±0.11 0.0±0.0 0.25±0.17 0.0±0.0 0.63±0.10 0.0±0.0 0.45±0.28 0.0±0.0

FISOR (p = 0.75) 0.68±0.23 0.0±0.0 0.83±0.08 0.0±0.0 0.16±0.14 0.0±0.0 0.37±0.11 0.0±0.0 0.21±0.21 0.0±0.0 0.68±0.21 0.0±0.0 0.49±0.31 0.0±0.0

FISOR (p = 0.5) 0.58±0.17 0.0±0.0 0.72±0.19 0.0±0.0 0.16±0.12 0.0±0.0 0.39±0.14 0.0±0.0 0.31±0.22 0.0±0.0 0.69±0.11 0.0±0.0 0.47±0.26 0.0±0.0

FISOR (p = 0.25) 0.58±0.12 0.0±0.0 0.74±0.12 0.02±0.03 0.16±0.13 0.0±0.0 0.41±0.11 0.0±0.0 0.25±0.20 0.0±0.0 0.74±0.12 0.0±0.0 0.48±0.26 0.0±0.0

BC-safe (p = 1.0) 0.36±0.32 2.08±3.63 0.96±0.03 1.06±2.04 0.56±0.33 3.5±5.73 0.62±0.19 1.67±1.52 0.38±0.27 0.58±1.46 0.82±0.16 1.32±1.49 0.62±0.33 1.7±3.21

BC-safe (p = 0.75) 0.46±0.39 3.66±4.8 0.94±0.07 0.11±0.43 0.57±0.27 4.26±4.5 0.59±0.17 1.68±1.73 0.43±0.3 1.53±3.14 0.78±0.24 1.46±1.91 0.63±0.32 2.12±3.46

BC-safe (p = 0.5) 0.6±0.69 3.63±5.13 0.84±0.15 0.44±0.69 0.57±0.26 4.66±5.19 0.59±0.2 2.32±1.89 0.42±0.27 1.09±4.9 0.77±0.22 2.01±1.75 0.63±0.38 2.36±4.01

BC-safe (p = 0.25) 0.61±0.82 5.09±7.17 0.78±0.2 0.31±0.54 0.5±0.29 4.37±5.47 0.54±0.22 1.73±1.86 0.32±0.29 1.29±6.04 0.67±0.22 3.29±3.07 0.57±0.43 2.68±4.97

CQL-Sauté (p = 1.0) 1.95±0.94 9.26±6.33 0.93±0.04 0.67±1.24 0.2±0.11 0.0±0.0 0.65±0.13 0.02±0.18 0.54±0.26 2.84±3.8 0.15±0.1 2.49±7.06 0.74 ± 0.73 2.55 ± 5.28

CQL-Sauté (p = 0.75) 1.48±0.8 6.56±5.34 0.97±0.01 0.85±1.38 0.21±0.13 0.0±0.0 0.69±0.06 0.04±0.14 0.51±0.19 1.92±4.66 0.21±0.1 4.02±5.75 0.68±0.56 2.23±4.45

CQL-Sauté (p = 0.5) 1.63±0.56 8.47±4.2 0.95±0.04 1.84±2.12 0.2±0.14 0.32±2.36 0.67±0.05 0.02±0.09 0.43±0.19 2.1±5.34 0.17±0.11 2.82±6.54 0.68±0.56 2.6±4.94

CQL-Sauté (p = 0.25) 1.97±1.09 12.44±4.95 0.95±0.02 0.1±0.11 0.21±0.12 0.8±3.68 0.67±0.08 1.11±2.48 0.52±0.18 0.87±3.11 0.16±0.08 3.21±7.21 0.75±0.76 3.09±6.0

Table 4: Evaluation results of the normalized reward and cost under different data percentages. The
cost threshold is 1. p = 1.0/0.75/0.5/0.25 means 100%, 75%, 50%, and 25% of the offline data is
used during training respectively. ": the higher the reward, the better. #: the lower the cost (up to
the threshold 1), the better. Each value is averaged over 20 episodes and 3 seeds. Bold: Safe agents
whose normalized cost is smaller than 1. Gray: Unsafe agents.

D.3 ADAPTATION RESULTS OF UNSEEN COST BUDGETS

We train the agents using the dataset shown in Figure 8 with safe trajectories being removed.
During evaluation, the cost budget is set to be [3, 4, 5, 6, 7, 8, 9] for Run and Circle tasks and
[3, 6, 9, 12, 15, 18] for Velocity tasks. The adaptation results are shown in Figure 10. We can
observe that our method is capable of adapting to different unseen cost budgets while the baselines
either struggle to maintain safety or display overly conservative behaviors, resulting in low rewards.

Table 5 shows the detailed results of Table 2. The agents are also trained using the dataset shown
in Figure 8. For evaluation, the cost budget is 5 for Run and Circle tasks and 10 for Velocity
tasks. It is important to note that for CQL-Sauté, CDT and our method, during training, they have no
access to the cost budget that will be used to evaluate them. In contrast, for the rest of the baselines,
although they are trained using the same cost budget as evaluation, the safe trajectories are removed,
requiring them to display some sort of adaptability to learn safe policies from unsafe datasets. Com-
pared with the results in Table 1, where the agents are trained using the whole dataset, we can
observe that the number of safe agents decreases, and most of the methods achieve higher costs
since the remaining dataset consists of unsafe trajectories with higher costs. However, our method
still achieves the best performance among all the methods in terms of safety and high rewards.

20



Published as a conference paper at ICLR 2025

Figure 10: Results of adaptation to different unseen cost budgets. The agents are trained on a dataset
where safe trajectories with cumulative costs smaller than a certain threshold are removed. The top-
row plots show the evaluated reward and the bottom-row plots show the evaluated cost. The solid
line and the light shade area represent the mean and mean±standard deviation. The dashed line
represents the scenario where the evaluated cost matches the cost budget.

Taks Metric CQL-Saute BCQ-Lag BEAR-Lag CPQ COptiDICE VOCE CDT FISOR CCAC(ours)

Reward " 0.18±0.33 1.98±1.1 2.88±0.18 0.96±0.03 1.87±0.13 2.37±1.13 0.98±0.02 0.74±0.03 0.99±0.02
Ball-Run

Cost # 5.93±8.39 10.36±7.27 16.82±1.28 2.73±3.19 12.55±0.61 12.55±8.84 1.59±0.81 0.34±1.30 0.47±0.19

Reward " 0.93±0.04 1.04±0.02 0.89±0.33 0.95±0.02 0.89±0.02 0.93±0.02 0.99±0.02 0.74±0.10 0.93±0.01
Car-Run

Cost # 4.53±2.62 29.34±9.62 30.29±5.93 1.12±1.64 0.0±0.0 6.15±7.85 1.09±0.56 0.74±2.33 0.0±0.0

Reward " 0.13±0.11 1.27±0.29 1.14±0.34 0.01±0.03 0.36±0.27 0.0±0.0 0.87±0.32 0.09±0.08 0.76±0.45
Ant-Circle

Cost # 0.84±2.63 19.98±6.82 17.03±8.59 0.0±0.0 15.17±17.76 0.0±0.0 5.32±3.58 0.0±0.0 0.19±0.64

Reward " 0.68±0.13 0.99±0.13 1.13±0.11 1.0±0.11 0.94±0.06 0.0±0.01 0.96±0.04 0.31±0.13 0.86±0.03
Ball-Circle

Cost # 5.97±3.97 11.42±2.81 11.24±1.34 5.0±5.35 10.2±1.64 32.56±12.79 2.0±0.5 0.0±0.0 0.0±0.0

Reward " 0.68±0.31 0.81±0.28 1.0±0.1 0.96±0.07 0.62±0.05 0.26±0.04 0.85±0.08 0.26±0.18 0.8±0.04
Car-Circle

Cost # 10.36±8.03 11.68±5.17 10.11±6.66 9.21±8.1 11.83±5.71 7.65±9.3 1.54±0.97 0.0±0.0 0.45±1.39

Reward " 0.13±0.1 1.37±0.02 1.24±0.05 0.59±0.24 0.58±0.1 0.0±0.0 0.95±0.03 0.44±0.12 0.76±0.11
Drone-Circle

Cost # 10.34±13.65 19.38±1.21 14.39±1.78 0.73±4.08 2.08±1.86 0.0±0.0 1.45±0.79 0.70±1.39 0.03±0.26

Reward " 0.1±0.16 0.7±0.34 -0.72±0.48 -0.96±0.14 1.05±0.01 -1.02±0.0 0.99±0.0 0.47±0.12 0.71±0.24
Ant-Velocity

Cost # 0.41±0.52 17.82±9.51 0.0±0.0 0.0±0.0 10.83±5.37 0.0±0.0 1.14±0.59 0.0±0.0 0.39±0.2

Reward " 1.01±0.01 1.09±0.07 1.08±0.01 1.83±0.08 0.69±0.02 -0.2±0.01 0.98±0.03 0.77±0.02 0.96±0.06
HalfCheetah-Velocity

Cost # 0.71±0.09 52.22±39.86 54.14±13.19 97.88±0.19 0.0±0.0 0.0±0.0 2.28±1.85 0.0±0.0 0.3±0.16

Reward " 0.2±0.14 0.54±0.35 0.17±0.22 0.35±0.16 0.21±0.15 0.01±0.01 0.65±0.32 0.15±0.05 0.91±0.14
Hopper-Velocity

Cost # 5.11±4.14 11.73±4.62 6.16±7.75 7.66±7.56 9.98±7.41 0.0±0.0 5.32±3.41 0.25±0.43 0.44±0.19

Reward " 0.45±0.4 1.09±0.58 0.98±0.93 0.63±0.75 0.8±0.47 0.26±0.96 0.91±0.19 0.44±0.27 0.85±0.21
Average

Cost # 4.91±7.33 20.44±19.33 17.8±16.46 13.81±30.22 8.07±8.85 6.54±12.1 2.41±2.45 0.22±1.05 0.25±0.56

Table 5: Complete evaluation results of the normalized reward and cost of agents trained on datasets
with partial data removed. The cost threshold is 1 (the cost budget is 5 for Run and Circle tasks
and 10 for Velocity task). ": the higher the reward, the better. #: the lower the cost (up to 1),
the better. Each value is averaged over 20 episodes and 3 seeds. Bold: Safe agents. Gray: Unsafe
agents. Blue: Safe agent with the highest reward.

D.4 EVALUATING POLICY REGULARIZATION VIA IQL INTEGRATION

To evaluate whether our method achieves a similar policy regularization effect, we construct the
following experiment. We adopt an existing method, IQL (Kostrikov et al., 2021), which learns
Qr(s, a) and V (s) by using expectile regression with a SARSA-style objective to avoid sampling
OOD actions; thus, the learned Qr(s, a) represents the value of the behavior policy. Then we replace
Eq.(7) with IQL for learning Qr(s, a|), while keeping all other components unchanged. The results
in Table 6 demonstrate that integrating IQL has little impact on performance, which provides further

21



Published as a conference paper at ICLR 2025

support that the overestimation of Qc(s, a|) discourages OOD actions in a manner similar to policy
regularization (without the direct regularization of Qr(s, a|)).

Task Metric CCAC(in Table 1) CCAC(IQL)

Ball-Run Reward " 0.97 ± 0.01 0.98 ± 0.03
Cost # 0.27 ± 0.19 0.47 ± 0.19

Ball-Circle Reward " 0.87 ± 0.03 0.84 ± 0.02
Cost # 0.0 ± 0.0 0.0 ± 0.0

Car-Circle Reward " 0.85 ± 0.04 0.8 ± 0.05
Cost # 0.73 ± 1.95 0.96 ± 2.29

Ant-Velocity Reward " 0.9 ± 0.05 0.87 ± 0.02
Cost # 0.58 ± 0.15 0.44 ± 0.11

HalfCheetah-Velocity Reward " 0.96 ± 0.04 0.99 ± 0.02
Cost # 0.79 ± 0.2 0.3 ± 0.23

Average Reward " 0.91 ± 0.07 0.9 ± 0.08
Cost # 0.47 ± 0.93 0.43 ± 1.07

Table 6: Evaluation results of the normalized reward and cost. ": the higher the reward, the better.
#: the lower the cost (up to 1), the better. Each value is averaged over 20 episodes and 3 seeds.

22


	Introduction
	Related Work
	Preliminaries
	Constraint-Conditioned Actor-Critic
	 Rethinking the Offline Dataset: A Constraint-Conditioned Perspective 
	Data Generation and Classification
	Constraint-Conditioned Critics
	Constraint-Conditioned Actor

	Experiments
	Can CCAC learn safe and high-reward policies from offline datasets?
	Can CCAC achieve zero-shot adaption to different cost budgets?
	What is the importance of the OOD detection component in CCAC?

	Conclusion
	Proof of Theorem 4.1
	Environments Details
	Reward and cost functions
	Offline dataset visualization

	Implementation Details
	Our method
	Hyperparameters

	More Experiment Results
	Training curves
	Complete results for different data percentages
	Adaptation results of unseen cost budgets
	Evaluating Policy Regularization via IQL Integration


