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Abstract

Identification and analysis of symmetrical pat-

terns in the natural world have led to significant

discoveries across various scientific fields, such

as the formulation of gravitational laws in physics

and advancements in the study of chemical struc-

tures. In this paper, we focus on exploiting Eu-

clidean symmetries inherent in certain coopera-

tive multi-agent reinforcement learning (MARL)

problems and prevalent in many applications. We

begin by formally characterizing a subclass of

Markov games with a general notion of symme-

tries that admits the existence of symmetric op-

timal values and policies. Motivated by these

properties, we design neural network architec-

tures with symmetric constraints embedded as an

inductive bias for multi-agent actor-critic meth-

ods. This inductive bias results in superior perfor-

mance in various cooperative MARL benchmarks

and impressive generalization capabilities such as

zero-shot learning and transfer learning in unseen

scenarios with repeated symmetric patterns.

1. Introduction

It is widely believed by scientists that the organization and

operation of our universe follow certain symmetry patterns

and principles. These symmetry structures in physics lead

to profound implications, such as the existence of conserva-

tion laws. When done properly, artificial intelligence (AI)

can and has already benefited tremendously from exploit-

ing these symmetries, with perhaps the most well-known

example of convolutional neural networks (CNNs) being

translation invariant to the input images (Goodfellow et al.,

2016). Symmetries have also been identified and exploited

for single-agent reinforcement learning (RL), where sym-
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metric state-action pairs essentially define a homomorphism

from the original Markov decision process (MDP) to a

smaller abstract MDP (Ravindran & Barto, 2001), which has

been recently shown to be effective for deep single-agent

RL (Van der Pol et al., 2020; Wang et al., 2022a; Zhao et al.,

2022b; Mondal et al., 2022; Nguyen et al., 2023).

In this paper, we are interested in cooperative multi-agent

reinforcement learning (MARL) problems, where symmetry

structures are also prevalent and often exist in two forms.

The first form is permutation invariance which exists if

agents are homogenous in terms of their effects on state

dynamics and reward function, which has been well-studied

in prior works, including both formalisms (Nguyen et al.,

2017; Yang et al., 2018; Chen et al., 2022) and algorithmic

techniques such as actor parameter sharing (Lowe et al.,

2017; Rashid et al., 2020b; Chen et al., 2022), permutation-

invariant centralized critics (Liu et al., 2020), and mean-

filed approximation (Yang et al., 2018). We focus on the

second form of Euclidean symmetries, including transfor-

mations of translation, rotation, and reflection, which exist

if the MARL problem is situated in an Euclidean space.

Intuitively, MARL problems exhibit Euclidean symmetries

whenever coordinate frames are used to provide references

for the agents and their environment, because Euclidean

transformations can be simply viewed as being applied to

the reference frames, without changing the essence of the

agents and environment. We are particularly dealing with

3D Euclidean, i.e., E(3), multi-agent symmetries, which are

prevalent in applications grounded in the physical world.

Although prevalent, multi-agent Euclidean symmetries are

relatively underexplored, including only van der Pol et al.

(2022) and Yu et al. (2023) as the prior work we know of.

Although sharing the same motivation, prior work falls short

of providing “genuine” E(3) multi-agent symmetries in the

sense that their Euclidean equivariance is only preserved

for rotations of discrete angles in {k ∗ 360◦/n}n−1
k=0 , which

degenerates to the cyclic symmetries of Cn, a subgroup

of E(2) that is only 2D. We identify challenges that have

prevented prior work from exploiting continuous E(3) multi-

agent symmetries and highlight our solutions as the three-

fold contribution of this work:

(i) The first challenge is to find problem representations that

1



E(3)-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning

are suitable to describe E(3)-symmetries that are distributed

among multiple agents. We first rigorously formulate a

subclass of Markov games (MGs) (Shapley, 1953), group-

symmetric MGs, that describes multi-agent symmetries by

mathematical group transformations performed on states,

actions, and agents’ observations. With E(3) being the spe-

cial case, we use 3D point clouds to represent states, actions,

and observations in a way that conveniently accommodates

all transformations in E(3).

(ii) The second challenge is to develop architectures that

are capable of exploiting continuous E(3)-symmetries. We

prove several main properties of group-symmetric MGs,

including symmetries in the value functions of symmetric

policies and the existence of an optimal policy/value that

is group-symmetric. As a key difference from prior work,

we exploit those properties by leveraging steerable message

passing neural networks (Thomas et al., 2018; Geiger &

Smidt, 2022; Brandstetter et al., 2022) as the actor-critic

architecture for MARL under the centralized training and de-

centralized execution (CTDE) paradigm, which are capable

of preserving equivariance under all E(3) transformations.

(iii) As a result, our method achieves superior sample effi-

ciency and generalization performance in a range of bench-

mark MARL tasks that exhibit continuous E(3)-symmetries

but were not accommodated by prior work.

2. Related Work

In single-agent RL, the exploitation of symmetries has been

originally formulated by Ravindran & Barto (2001) to re-

duce the redundancies in state and action spaces. Recent

work mostly focuses on the combination of symmetries and

deep RL. Some works (Laskin et al., 2020; Yarats et al.,

2021) utilize data augmentation, where an image-based ob-

servation undergoes transformation such as rotation and

translation, to improve data efficiency. This approach mostly

focuses on the invariant value functions with respect to the

transformed input. Instead of generating more data through

symmetric transformations which increases computation

time, Van der Pol et al. (2020) build equivariant neural

policies that directly support Cn symmetries of discrete ro-

tations. Wang et al. (2022b) extend Cn symmetries to more

general continuous SO(2) symmetries that support equivari-

ancy in translation and rotation in 2D. A recent work (Chen

et al., 2023) considers a more general continuous E(3) sym-

metries in 3D space that additional supports equivariancy in

reflection.

Multi-agent symmetries are currently underexplored. Some

work (Liu et al., 2020; Chen et al., 2022) focus on the

permutation invariance of homogeneous agents, and build

permutation invariant value functions for better sample and

computation efficiency. The work by Li et al. (2021) consid-

ers symmetries specific to multi-agent pathfinding problems

to reduce the search space. A recent work by van der Pol

et al. (2022) considers Cn symmetries in MARL by extend-

ing the framework in the single-agent counterpart. However,

it does not provide motivation as to why such symmetries

result in equivariant actors and critics, and implementation-

wise, their homomorphism network has an input size that

scales with |Cn|. Instead, our work focuses on continuous

E(3) multi-agent symmetries, and the implementation has

the input size of the original observation dimension and still

preserves equivariance for any continuous angle.

Yu et al. (2023) share the same motivation of exploiting

Euclidean symmetries for cooperative MARL. Our key dif-

ferences lie in methodology and theoretical results. Our

work uses point cloud representations to characterize contin-

uous E(3) symmetries, which facilitates the incorporation

of E(3)-equivariant neural networks, while Yu et al. (2023)

use traditional flat vector representations, which are not

compatible with equivariant neural networks and they turn

to data augmentation which is a less principled method. Our

theoretic results state the main properties of symmetric MGs.

Besides the optimal value equivalence property included in

Yu et al. (2023), we include theoretical results pertaining to

observation-based policies, which are unique to multi-agent

settings and provide theoretical justification for equivariant

multi-agent actor-critic methods.

This work focuses on Euclidean symmetries commonly seen

in practice, e.g., position and velocity in 3D space. Special

neural architectures have been proposed to directly incorpo-

rate geometric inductive bias. Some works (Satorras et al.,

2021; Schütt et al., 2021; Jing et al., 2020; Le et al., 2022)

preserve equivariancy by equivariant operations in the orig-

inal 3D Euclidean space. In contrast, other works lift the

physical quantities from 3D space to higher-dimensional

spaces for more expressive power, either through Lie al-

gebra (Finzi et al., 2020) or spherical harmonics (Thomas

et al., 2018) and message passing (Brandstetter et al., 2022),

which we adopt for actor-critic architectures.

3. Preliminaries

3.1. Cooperative Markov Games

We use the framework of cooperative Markov game (MG)

(Shapley, 1953) to formulate our cooperative multi-agent

setting, which consists of N agents indexed by i ∈ N :=
{1, ..., N}, state space S , joint action space A = A1×· · ·×
AN factored into local action spaces, transition function

P : S×A → ∆(S), (team) reward function r : S×A → R,

and initial state distribution µ ∈ ∆(S), where we use ∆(X )
to denote the set of probability distributions over X . The

MG evolves in discrete time steps: at each time step t,
all agents are in some state st ∈ S and each agent i ∈ N
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chooses its local action ait ∈ Ai, forming a joint action at =
(a1t , ..., a

N
t ) ∈ A that induces a transition to a new state

at the next time step according to the transition function,

i.e., st+1 ∼ P (·|st, at), and the team reward signal rt :=
r(st, at). The state s0 ∼ µ at time step 0 is drawn from the

initial state distribution.

Full and partial observability. For ease of exposition, we

will assume the agents can fully observe the states until

Section 4, and our methods (Section 5) and experiments

(Section 6) accommodate the partial observability setting.

We shall consider a more general notion of full observ-

ability than directly observing the raw state: each agent

i ∈ N has access to a function oi : S → Oi that maps the

state space to its local observation space Oi. The agents

effectively fully observe the state if and only if oi is bijec-

tive. We will use the notion of o = {oi}i∈N and write

o(s) :=
(

o1(s), ..., oN (s)
)

∈ O := ×i∈N∆(Oi). The MG

is therefore defined by tuple ïN ,S,A, P, r, oð.

Policies and values. The general, state-based joint policy,

π : S → ∆(A), maps from the state space to distributions

over the joint action space. As the size of action space

A grows exponentially with N , the commonly used joint

policy subclass is the product policy, π = (π1, · · · , πN ) :
S → ×i∈N∆(Ai), which is factored as the product of lo-

cal policies πi : S → ∆(Ai), π(a|s) =
∏

i∈N πi(ai|s),
each mapping the state space only to the action space of an

individual agent. Define the discounted return from time

step t as Rt =
∑∞

l=0 γ
lrt+l. For agent i, product pol-

icy π = (π1, ..., πN ) induces a value function defined as

Vπ(st) = Est+1:∞,at:∞∼π[Rt|st], and action-value function

Qπ(st, at) = Est+1:∞,at+1:∞∼π[Rt|st, at]. Following pol-

icy π, agent i’s cumulative reward starting from s0 ∼ µ is

denoted as Vπ(µ) := Es0∼µ[Vπ(s0)]. Under full observabil-

ity, a state-based local policy can translate from and to an

observation-based policy with νi(oi(s)) = πi(s) and the

corresponding observation-based product policy and its val-

ues are denoted as ν(o(s)) = (ν1(o1(s)), ..., νN (oN (s))),
Qν , Vν , respectively.

3.2. Groups and Transformations

Mathematical symmetry means a type of invariance: a prop-

erty of an object remaining unchanged after some trans-

formation. This notion of symmetry can be formally de-

scribed by invariant functions. A function f : X → Y
is invariant under transformation operator T : X → X if

f (T [x]) = f(x) for any x ∈ X . More generally, function

f : X → Y is equivariant under transformation operators

T : X → X and T ′ : Y → Y if f (T [x]) = T ′ [f(x)] for

any x ∈ X . Most often, a symmetric object is invariant

to not only one transformation but a set of transformations.

Such a set of symmetry transformations often forms a (math-

ematical) group G, which is a set of elements equipped

with a binary operator satisfying the group axioms of clo-

sure, associativity, identity, and inverse (Dummit & Foote,

1991). For function f to be equivariant to group G, there

exists transformation operators Tg and T ′
g , called group ac-

tions, associated with each group element g ∈ G, such that

f (Tg[x]) = T ′
g [f(x)] for any x ∈ X .

The Euclidean group E(3). We are mostly interested in

group E(3) that comprises the group actions of translations,

rotations, reflections, and finite combinations of them in 3D.

Therefore, it has as its subgroups the 3D translation group

T(3), and the orthogonal group O(3) for 3D rotations and

reflections. The group actions of O(3) can implemented by

multiplying square matrices, called representation matrices.

For example, for the group element of g = (α, β, γ) that

rotates a 3D vector x = x ∈ R
3 by α, β, and γ, about x-, y-,

and z- axes respectively, the rotation can be represented by

matrix multiplication as Tg[x] = Rα,β,γx, where Rα,β,γ ∈
R

3×3 is the 3D rotation matrix.

4. Markov Games with Euclidean Symmetries

With the notions introduced, we are ready to define group-

symmetric MGs by asking the transition, reward, and obser-

vations functions to be equivariant under group actions, as

stated in Definition 4.1.

Definition 4.1 (G-symmetric MG). Consider MG

ïN ,S,A, P, r, oð and a (mathematical) group G equipped

with group actions {Lg : S → S,Ks
g : A → A, Is,ag :

R → R, Hs
g : O → O}g∈G. The MG is G-symmetric if,

for any s, s′ ∈ S , a ∈ A, and g ∈ G, we have

P (s′|s, a) = P
(

Lg[s
′] | Lg[s],K

s
g [a]

)

,

r
(

Lg[s],K
s
g [a]

)

= Is,ag [r(s, a)] , o (Lg[s]) = Hs
g [o(s)]

i.e., P , r, and o are equivariant to the group actions.

Definition 4.1 is general enough to accommodate arbitrary

symmetries in MGs. For example, choosing the group ac-

tions to be permutations of N (i.e., G = S(N)) can describe

permutation invariance between homogenous agents (Liu

et al., 2020; Chen et al., 2022).

Moreover, these group actions in general are allowed to

depend on the state and/or the action. In this work, we

focus on the special case of 3D Euclidean symmetries in

MGs, i.e., G = E(3), where the group actions are Euclidean

transformations and do not depend on the state or the action.

For ease of exposition, we will ground our discussion with

a running example of Cooperative Navigation, a popular

cooperative multi-agent benchmark task (Lowe et al., 2017).

MPE’s Cooperative Navigation and its symmetries. In

Cooperative Navigation of Multi-Agent Particle Environ-

ment (MPE) (Lowe et al., 2017), a popular MARL bench-

mark, N agents move as a team to cover N landmarks in a
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Figure 1: Illustration of Cooperative Navigation (N = 3) and its Euclidean symmetries.

2D space. The landmarks are randomly initialized at the be-

ginning of an episode and fixed throughout the episode. The

reward functions determine the reward for all agents accord-

ing to the distances between all agents and the landmarks

to encourage coverage, as well as penalties to discourage

collisions if any. Under full observability, the observation

of an agent contains its own absolute location and velocity,

the relative locations and velocities of all other agents, and

the relative locations of all the nearest landmarks. Figure

1 (left) shows the case where N = 3 and illustrates the

rotational symmetry therein. The states and actions can be

represented as 2D vectors under a global reference frame

(e.g., agent i’s position, xi), whereas each agent’s observa-

tion is 2D vectors referenced to its local frame (e.g., agent

i’s velocity relative to agent j, v
j
i = vi − vj). Upon a

rotation of all entities, which is shown in Figure 1 (left) as

a rotation of the reference frames, the states, actions, and

observations are rotated accordingly, yet the essence of the

entities remain unchanged, and therefore the transition, re-

ward, and observation functions are equivariant/invariant.

Similarly, it is easy to see that Cooperative Navigation also

exhibits translational and reflectional symmetries, as shown

in Figure 1 (middle and right, respectively). Further, it is

straightforward to extend these symmetries from 2D to 3D,

thus making Cooperative Navigation E(3)-symmetric.

With the intuition from Cooperative Navigation, we now for-

mally define E(3)-symmetric MGs in Definition 4.2, where

we will represent states and observations as 3D point clouds

and specify the corresponding group actions applied to them.

Definition 4.2 (E(3)-symmetric MGs). MG

ïN ,S,A, P, r, oð is E(3)-symmetric if the following

conditions hold.

(i) A state is a 3D point cloud consisting of agents N and

other uncontrollable entities M, i.e., s = {(xv, fv)}v∈V ,

where V = N ∪M is the set of all entities, xv ∈ R
3 is the

3D position vector of entity v with feature vector fv ∈ R
dv .

(ii) The local action spaces are Euclidean spaces, i.e., ai ∈

Ai = R
d
ai , ∀i ∈ N .

(iii) Agent i’s observation is represented by a 3D point

cloud consisting of the entities in its own view, oi(s) =
{(xi

v, f
i
v)}v∈V where x

i
v ∈ R

3 is the 3D position vector of

entity v with feature vector f iv ∈ R
d
fi
v , both relative to i.

The MG’s P and o are equivariant and r is invariant to the

E(3) group actions in Definition 4.1 that are specified as

follows:

(iv) Under translation, the state is transformed with

only the entities’ positions being translated, i.e., s =
{(xv, fv)}v∈V →g s = {(xv+tg, fv)}v∈V where tg ∈ R

3

is the 3D translation for g ∈ T(3), while actions and obser-

vations remain unchanged.

(v) Under rotations or reflections, all vectors in states, lo-

cal actions, and observations are transformed according

to their respective group representations. For example,

the state transforms as s = {(xv, fv)}v∈V →g s =
{(Dx

gxv,D
f
gfv)}v∈V where D

x
g and D

f
g are the representa-

tion matrices of g ∈ O(3) for the vector spaces of xv and

fv , respectively.

In essence, Definition 4.2 requires the states and observa-

tions to be represented as 3D point clouds with the entities

being the points with corresponding features, which are

transformed according to Euclidean symmetries that are in-

tuitively just changes of the reference frames. The actions

can be understood as features associated with the subset of

agents that also are transformed accordingly. In the example

of Cooperative Navigation, the point feature vector for an

entity v ∈ V includes its entity type to differentiate from

agent vs landmark, which in our experiments is represented

by a one-hot vector of two classes, fv ∈ R
2; the action of

agent i ∈ N includes its velocity, ai = vi ∈ Ai = R
3 with

dummy z values.

Examples of E(3)-symmetric MGs. Besides Cooperative

Navigation, all other scenarios in MPE are E(3)-symmetric.
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Further, by Definition 4.2, any MG involving multiple enti-

ties interacting in a 2D/3D space is E(3)-symmetric, which

includes many real-world applications that are grounded in

physical words, such as multi-robot systems, video games,

materials design, etc. Two other domains in our experiments

that exhibit E(3)-symmetric are the continuous control tasks

in DeepMind Control Suite and game scenarios in StarCraft

Multi-Agent Challenge, both being popular MARL bench-

marks, with more details presented with our experiments.

We give more examples of E(3)-symmetric MGs in the

appendix.

We would like to remark that, in Definition 4.2 that applies

to the MARL benchmarks, an agent’s observation uses a

local reference frame with the agent’s position as the origin

and with its orientation aligned with the global reference

frame. So the agent’s own reference frame is the same as the

global one up to a position shift, and that is the fundamental

reason why observations, just like states, are transformed

under rotations/reflections. It is also straightforward to ex-

tend this definition (and the method) to the case where local

reference frames have orientations different from the global

reference frame, with several key points in doing so: 1) An

agent’s local orientation should be part of its features and

therefore part of the global state. Precisely, in Definition

4.2, the orientation should be included in feature vector fv,

where v is the vertex in the state Euclidean graph corre-

sponding to the agent; 2) Upon a rotation, this orientation

in feature vector fv should be rotated accordingly; and 3)

If the observation is represented using the local reference

frame, then it is often invariant to rotations, since the local

reference frame is also rotated.

We are now ready to derive the main properties of group

symmetric MGs: since the transition, reward, and obser-

vation functions are group-symmetric, if the policy is also

group-symmetric, then we can expect its value functions

are invariant under the group actions. For example, under

a rotation angle α if all agents in Cooperative Navigation

always choose their velocities with the same rotation angle

α, then the policy value remains unchanged. Definition 4.3

formally states this requirement in general G-symmetric

MGs for both state-based and observation-based policies.

Definition 4.3 (G-invariant MG policies). Let π : S →
∆(A) be a state-based policy in a G-symmetric MG. We

say π is G-invariant if it is invariant to the group ac-

tions of G, i.e., for any s ∈ S, a ∈ A, and g ∈ G,

π(a|s) = π(Ks
g [a] | Lg[s]). Similarly, an observation-

based policy ν : O → ×i∈N∆(Ai) is G-invariant if

ν(a|o(s)) = ν(Ks
g [a] | H

s
g [o(s)]) for any s ∈ S, a ∈ A,

and g ∈ G.

Under the CTDE paradigm and bijective observation func-

tions, the value functions of an observation-based product

policy ν can directly condition on states, i.e., Vν(s) and

Qν(s, a). We list the properties for observation-based G-

invariant product policies and their state(-action) value func-

tions in Theorem 4.4 below, which justifies how our method

will exploit these properties under the CTDE paradigm.

Theorem 4.4 (Main properties of G-symmetric MGs, proof

in the appendix). For a G-symmetric MG,

(i) The optimal values are G-invariant, V∗(s) = V∗(Lg[s]),
Q∗(s, a) = Q∗(Lg[s],K

s
g [a]).

(ii) There exists an observation-based policy ν that are

G-invariant and optimal, Vν(s) = V∗(s), Qν(s, a) =
Q∗(s, a).

Further, for a G-invariant observation-based policy ν,

(iii) Its value function is G-invariant: for any s ∈ S,

a ∈ A, and g ∈ G, Vν(s) = Vν(Lg[s]), Qν(s, a) =
Qν(Lg[s],K

s
g [a]).

(iv) Similarly, if ν is parameterized by θ as νθ and differen-

tialble, then ∇θνθ(a|o(s)) = ∇θνθ(K
s
g [a] | o(Lg[s])).

Theorem 4.4 extends prior works on properties in single-

agent symmetric MDPs (Ravindran & Barto, 2001; Rezaei-

Shoshtari et al., 2022), and we are the first to take care of

the distributed nature of the symmetries in MGs to make a

rigorous proof. Theorem 4.4 establishes the properties our

method will exploit next.

5. E(3)-Equivariant Multi-Agent Actor-Critic

The properties stated in Theorem 4.4 naturally prompt us

with the idea of adopting group-invariant architectures for

cooperative MARL. In this work, we consider multi-agent

actor-critic methods, such as MADDPG (Lowe et al., 2017)

and MAPPO (Yu et al., 2022). Specifically, properties (i)

and (ii) in Theorem 4.4 suggests that we can reduce the

search of optimality within group-invariant functions for ac-

tors and critics. Moreover, properties (iii) and (iv) imply that

group-invariant actors enjoy symmetric policy gradients:

∇θπθ(a|s) ·Qπθ
(s, a)

=∇θπθ(K
s
g [a] | Lg[s]) ·Qπθ

(Lg[s],K
s
g [a])

which suggests that the optimization landscape is symmetric

and therefore can be more efficiently optimized via gradient-

based search (Zhao et al., 2022a; 2023).

This idea is further motivated by our empirical analysis

that finds emergence of group-invariancy in traditional

actor-critic architectures that have no guaranteed invariancy.

Specifically, we train the agents in Cooperative Navigation

(N = 3) via MADDPG with MLP-based actors and critics.

Figure 2 plots the degree of the (observation-based) actors,
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{νi}i∈N , being invariant to rotations and translations, re-

spectively, during training. For rotations, we select a finite

set of angles, A = {30◦, 60◦, · · · , 330◦}, and quantify the

corresponding invariancy measure in state s as

1
|A|N

∑

i,α∈A cos
(

rotα[ν
i(oi(s)], νi(oi(rotα[s]))

)

(1)

where rotα[·] performs the rotation by α and cos(·, ·) mea-

sures the cosine similarity. We measure the translation

invariancy similarly.

5.1. E(3)-Equivariant Message Passing

In this work, we implement E(3)-equivariant/invariant actor-

critic architectures with E(3)-equivariant message passing

neural networks (E3-MPNNs) (Thomas et al., 2018; Geiger

& Smidt, 2022; Brandstetter et al., 2022), a type of graph

neural networks that process 3D Euclidean graphs, graphs

where vertices are located at 3D positions, as an E(3)-
equivariant function. Formally, an input Euclidean graph

is represented as a tuple Gin = (V, E ,x, f in) where V is

a set of vertices with 3D positions xv ∈ R
3, E ¦ V × V

is a set of edges, and f
in is a set of feature vectors, each

associated with a vertex or an edge. The backbone of E3-

MPNNs is E(3)-equivariant message passing layers, de-

noted as E3-MP(·), maps the input Euclidean graph to

an output Euclidean graph by updating only the feature

set, Gout = (V, E ,x, fout), in an E(3)-equivariant man-

ner, E3-MP(T in
g [Gin]) = T out

g [E3-MP(Gin)] for g ∈ E(3),

where T in
g and T out

g include Euclidean transformations (i.e.,

translation, rotation, etc.) applied to the vertices and fea-

tures in the input and output graph, respectively. After the

message passing layers, E3-MPNNs produce the final output

y ∈ Y using a graph readout layer, E3-Readout(·), which

is also E(3)-equivariant, E3-Readout(T out
g [Gout]) =

TY
g [E3-Readout(Gout)] for g ∈ E(3). This ensures over-

all equivariancy from the input graph to the final output.
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Training Step (1e6)
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Figure 2: Emergence of rotation- and translation-invariancy

in MLP actors trained on 3-agent Cooperative Navigation.

5.2. Integration Into Multi-Agent Actor-Critic Methods

In order to use E3-MPNNs for multi-agent actor-critic archi-

tectures, we need to first represent state s, state-action pair

(s, a), and observation oi(s) as Euclidean graphs for cen-

tralized state-value critic V (s), action-value critic Q(s, a),
and observation-based actor νi(oi(s)), respectively. This is

straightforward for E(3)-symmetric MGs, because by Defi-

nition 4.2 the states and observations are represented as 3D

point clouds which can be directly cast into 3D Euclidean

graphs if edges are added. In our experiments, we use some

heuristics to add edges, e.g., each vertex is connected with

all others as a complete graph or with a fixed number of its

nearest neighbors. For a state-action pair, we simply treat

the actions as additional feature vectors of individual agent

vertices. Figure 3 illustrates the E(3)-equivariant action-

value critic and observation-based actor for MADDPG.

We below highlight several implementation considerations.

More details are provided in the appendix.

SEGNN. For our actor-critic architecture, we employ steer-

able E(3) equivariant GNNs (SEGNNs), a recently devel-

oped E3-MPNN architecture that has superior performance

on supervised learning tasks in computational physics and

chemistry (Brandstetter et al., 2022). SEGNNs split the

input set of feature vectors into vertex feature vectors and

edge feature vectors, f in = (fnode, f edge), which comprises

so-called steerable feature vectors concatenated by (2l+1)-
dimensional vectors with l = 0, 1, ..., often representing

properties of the nodes (i.e., vertices) and edges. For exam-

ple, in Cooperative Navigation, the node feature vector of

agent i is fnodei = [vi, ∥vi∥ ,ai, ∥ai∥ , node type], which

is the concatenation of (2l + 1)-dimensional vectors with

l ∈ {0, 1}.

Observability. We adopt the paradigm of centralized train-

ing and decentralized execution, where the centralized

critic can fully observe the state, while the local actors

are observation-based with partial observability in general.

For instance, in Cooperative Navigation, the velocities of

other agents are not observable.

Our method and experiments are restricted to memory-less,

Action-value E3 critic ' ç,ç

E3-MP#!,# ç,ç
$, )

E3Readout

'($, ))

*$($)

Observation-based E3 actor +$ ç

E3-MP E32Readout

+$ *$ $

#% ç

Figure 3: Architectures for E(3)-equivariant MADDPG.
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non-recurrent actor-critic architectures even under partial

observability. This is because realizing group-equivariancy

in recurrent neural networks needs further technical treat-

ments, which is left for future work.

To enforce uniform dimensionality required by SEGNN, we

handle missing quantities for certain nodes due to partial

observability by padding dummy vectors of zeros.

6. Experiments

Environments. We choose the popular cooperative MARL

benchmarks of MPE, MuJoCo continuous control tasks

(MuJoCo tasks), including the 2D ones from Tassa et al.

(2018) and 3D ones from Chen et al. (2023) with single-

and multi-agent variations, and StarCraft Multi-Agent Chal-

lenge (SMAC) (Samvelyan et al., 2019) to evaluate the ef-

fectiveness of our E(3)-equivariant multi-agent actor-critic

methods described in Section 5. Specifically, there are three

task scenarios chosen in MPE, Cooperative Navigation, Co-

operative Push, and Predator and Prey, where the collective

goals of the controllable agents are to navigate the land-

marks, push a ball to a target location, and catch all the

preys, respectively. In MuJoCo tasks, we consider the repre-

sentative tasks of cartpole, single- and multi-agent reacher,

single- and multi-agent swimmer, multi-agent 3D hopper,

and multi-agent 3D walker. The tasks vary in the degree

of E(3) symmetries. In SMAC, the selected scenarios are

8m vs 9m with hard difficulty and 6h vs 8z with super

hard difficulty. These tasks exhibit different levels of E(3)-
symmetries. All MPE and MuJoCo tasks exhibit perfect

E(3)-symmetries. SMAC, however, only exhibits imperfect

E(3)-symmetries due to two reasons: 1) the uncontrollable

enemies in SMAC tasks might be E(3)-symmetric, which

might break the symmetries for the overall MG, and 2) an-

other reason is that the navigation actions are categorical in

four Cartesian directions, which limit the actions’ expres-

siveness for E(3)-symmetries.

Baselines. In MPE, we choose MADDPG as the framework

of the algorithms. We consider the classic implementation

of both actor and critic by MLPs as the baseline. Another

baseline (Liu et al., 2020) achieving state-of-the-art perfor-

mance in MPE implements the critic by a graph convolu-

tional neural network (GCN) that has no guarantee of being

E(3)-invariant. Our algorithms incorporate E(3)-invariancy

in critic and/or actor by SEGNN-based implementations.

We denote the algorithms in the format of [critic type, ac-

tor type], with the baselines being [MLP, MLP] and [GCN,

MLP], and our algorithms [SEGNN, SEGNN] and [SEGNN,

MLP]. In MuJoCo tasks, we also apply MADDPG as the un-

derlying framework of our algorithms. Similar to the case in

MPE, the baselines are denoted as [MLP, MLP] and [GCN,

MLP], and ours is denoted as [SEGNN, SEGNN]. For fair

comparison, the input graph for the GCN-based critic is

the same as that of the SEGNN-based one. In SMAC, the

framework of the algorithms is MAPPO, where both actor

and critic are commonly implemented by recurrent neural

networks (RNNs) to incorporate trajectory-level informa-

tion. However, group-equivariancy in RNNs needs further

technical treatments so here we focus on non-recurrent MLP-

based baselines, denoted as MAPPO-[MLP, MLP]. Another

popular baseline we consider is QMIX (Rashid et al., 2020a)

with recurrency, i.e., the value function is implemented by

an RNN. Due to the categorical nature of SMAC’s action

space, our algorithm only incorporates E(3)-invariancy in

the critic, denoted as MAPPO-[SEGNN, MLP].

For fair comparison, all the algorithms have comparable

amounts of parameters than those of the baselines, with the

details in Appendix G. Our code is publicly available at

https://github.com/dchen48/E3AC.

Results overview. The MPE results show that the SEGNN-

based critic and/or actor outperforms the baselines by a

significant margin. Further, since the SEGNN-based archi-

tecture can deal with point clouds with an arbitrary number

of points, the capability of zero-shot learning and transfer

learning is empirically verified in MPE. Moreover, the emer-

gence of invariancy of the baselines is found in all scenarios

of MPE. In the MuJoCo tasks, the SEGNN-based archi-

tecture performs similarly to the MLP-based baseline in

cartpole, consistent with the fact that the symmetries therein

are relatively sparse. In all the other selected tasks with

inherently heavier E(3)-symmetries, SEGNN-based archi-

tectures achieve noticeable improvements over the baseline.

In SMAC, the experiments show that even the environment

only partially satisfies the requirements of E(3)-symmetric

MGs, our SEGNN-based architecture can still be better

performed in 6h vs 8z. However, in SMAC, there is no ob-

vious emergence of invariancy in MLP-based architectures,

consistent with its limited E(3)-symmetries.

6.1. Results on MPE

Performance. In MPE, Figure 4 shows the learning curves

comparing our SEGNN-based architecture described in Sec-

tion 5 against the baselines of MLP- and GCN-based archi-

tecture. The result clearly illustrates the effectiveness of

the SEGNN-based algorithm. Specifically, by only using

the SEGNN-based critic, i.e., [SEGNN, MLP] shown in

the green curve, the learned architecture has already out-

performed the baselines [GCN, MLP] and [MLP, MLP],

shown in the blue and orange curves, respectively, in all

scenarios in MPE. There is further performance boosting in

Push N3, Prey N3, Navigation N6, and Prey N6 if we also

use SEGNN-based actor, i.e., [SEGNN, SEGNN] shown

with the red curves.

Zero-shot/transfer learning. Since SEGNN-based archi-

tectures can deal with point clouds of variable numbers of
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Figure 4: Performance comparison on MPE.

points, it is a natural question if they can perform well in

different scenarios with similar setups, i.e., zero-shot learn-

ing. To answer this question, we test the performance of the

SEGNN-based actors learned in 3-agent tasks for the corre-

sponding 6-agent tasks. The performance is normalized by

linear mapping according to the performance of [SEGNN,

SEGNN], whose initial performance is set to 0, and the

final performance is set to 1. The result is averaged across

all seeds and scenarios, plotted in Figure 5. At step 0, the

performance of SEGNN-based architecture learned in the 3

agents’ scenarios (black curve) is close to the final perfor-

mance of [MLP, MLP] and that of [GCN, MLP] after train-

ing 0.75e6 steps. This empirically proves its good capability

of zero-shot learning. Further, we can continue training the

SEGNN-based architecture learned in 3 agents’ scenarios in

the corresponding 6 agents’ scenarios to show its capability
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Figure 5: Performance of zero-shot and transfer learning.

of transfer learning. Its effectiveness of transfer learning is

empirically verified by the transferred architecture’s faster

convergence rate than the non-transferred counterpart.

Emergence of Euclidean invariancy. The GCN- and MLP-

based architectures are by construction neither invariant to

rotations nor translations with arbitrary weights. However,

they may gradually adapt to have such abilities after training

with a large number of data with invariant transformation, as

shown in some previous works on data augmentation (Perez

& Wang, 2017) and contrastive learning (Chen et al., 2020).

The measurements of Euclidean invariancy are defined simi-

larly to Equation (1), with details in Appendix E.1 for MPE

and E.3 for SMAC.

As illustrated in Figure 9 in the appendix, the actor trained

with a SEGNN-based critic demonstrates the highest in-

crease of rotation- and translation-invariancy, followed by

those trained with GCN- and MLP-based critics. In con-

trast, there is no improvement in rotation- and translation-

invariancy for both GCN- and MLP-based critics. This

underscores the necessity of a SEGNN-based critic with

inherent invariancy.

6.2. Results on (Multi-Agent) MuJoCo Tasks

Point cloud representations. MuJoCo tasks have Eu-

clidean symmetries since they involve 3D robotic control.

Here we choose several representative ones: cartpole (bal-

ance, sparse), single- and multi-agent reacher (hard), single-

and multi-agent swimmer with two links, and 3D variants

of multi-agent hopper and walker modified from the single-

agent counterparts from Chen et al. (2023). Note our method

subsumes the single-agent setting as the special case of

N = 1: we treat the single-agent tasks just like the multi-

agent tasks, except that only one vertex in the point cloud

has an action space to be controllable (because it’s single-

agent), while all other vertices are non-controllable entities.

This is contrastively different from standard methods for

these single-agent tasks (i.e., [MLP, MLP] baseline) where

all state variables are cluttered into a single vector.

The goals and the levels of E(3)-symmetries of the selected

scenarios are described in detail in Appendix C.2. The state

contains physical attributes in R
3, e.g., Cartesian coordi-

nates, velocities, and angles of the robots’ sub-components.

The corresponding state-based point cloud in each task is

described in detail in Appendix D.2.

Performance. The performance of the algorithms in Mu-

JoCo tasks are shown in Figure 6. The selected tasks have

different levels of symmetry, ranging from 2D (cartpole,

reacher, and swimmer) to 3D (hopper and walker). The task

cartpole (balance, sparse) only has rotation equivariancy of

rot180◦ with respect to the z axis. Due to the lack of sym-

metries, we do not see much difference for SEGNN-based
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Figure 6: Performance comparison on MuJoCo tasks.

architectures against the baseline of [MLP, MLP]. The other

2D tasks, single- and multi-agent reacher, and single- and

multi-agent swimmer inherently have stronger 2D rotation

and translation equivariancy. Compared to the baseline of

[MLP, MLP], our method [SEGNN, SEGNN] shows both

faster convergence rate and better performance in single-

and multi-agent reacher, and a faster convergence rate in

single- and multi-agent swimmer. Due to gravity, which

always points in the negative direction of the z axis, the

3D tasks, multi-agent hopper and walker, also have 2D ro-

tation and translation equivariancy in the xy plane which

is utilized by our method [SEGNN, SEGNN] to have supe-

rior performance compared to the baseline of [MLP, MLP].

In all the selected tasks, the baseline of [GCN, MLP] per-

forms the worst, even if it uses the same input graph as the

[SEGNN, SEGNN]. This illustrates the benefit of exploiting

the inductive bias of Euclidean symmetries to reduce the

search space of the neural networks’ parameters.

6.3. Results on SMAC

Performance. The scenarios in SMAC (Samvelyan et al.,

2019) are competitive in nature, so the invariancy of the
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Figure 7: Performance comparison on SMAC.

game breaks due to the non-invariant behaviors of the un-

controllable enemies. Another possible reason for breaking

invariancy is that the categorical actions in SMAC are not

Euclidean spaces, as required by E(3)-symmetric Markov

game. Therefore, we may not observe the big increase in

performance as the ones shown in MPE, especially in the

non-competing ones navigation and push. We indeed see a

mixed of performance in Figure 7 that the SEGNN-based

critic helps learn a better-performing actor in 6h vs 8z but

not in 8m vs 9m.

Emergence of Euclidean invariancy. As illustrated in Fig-

ure 10 in the appendix, there is no obvious emergence of

the rotation-invariancy for both actor and critic. This can

be caused by the competitive nature of the scenarios, where

we also see a decrease in actors’ translation-invariancy in

competitive scenarios Prey N3 and Prey N6. Another possi-

ble reason is the categorical nature of the actions, e.g., the

move directions {north, south, east, west} are only rotation-

equivariant to multiples of 90◦ instead of arbitrary angles.

7. Conclusion

We have developed formalisms and methods for exploiting

symmetric structures in cooperative multi-agent reinforce-

ment learning, with a focus on 3D Euclidean symmetries.

Specifically, we have formulated the novel notion of group-

symmetric Markov games and derived its key properties

that admit group-symmetric optimal values and policies.

Consistent with these properties, we have discovered the

emergence of Euclidean symmetries in vanilla MLP-based

multi-agent actor-critic architectures. Then, we have devel-

oped E(3)-equivariant message passing actor-critic architec-

tures that specifically suit group-symmetric Markov games,

which results in superior sample efficiency and generaliza-

tion capabilities in most benchmark MARL tasks.

We observe two limitations of this work. First, the proposed

method requires knowledge and annotation of strict sym-

metries inherent in the multi-agent task, which might not

be easily available. This prompts future work of automatic

discovery of symmetries, which can even be approximate.

Second, we are restricted to memory-less, non-recurrent

architectures in this work even under partial observability.
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Schütt, K., Unke, O., and Gastegger, M. Equivariant mes-

sage passing for the prediction of tensorial properties

and molecular spectra. In International Conference on

Machine Learning, pp. 9377–9388. PMLR, 2021.

Shapley, L. S. Stochastic games. Proceedings of the national

academy of sciences, 39(10):1095–1100, 1953.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.

d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,

A., et al. Deepmind control suite. arXiv preprint

arXiv:1801.00690, 2018.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,

Kohlhoff, K., and Riley, P. Tensor field networks:

Rotation-and translation-equivariant neural networks for

3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and

Welling, M. Mdp homomorphic networks: Group sym-

metries in reinforcement learning. Advances in Neural

Information Processing Systems, 33:4199–4210, 2020.

van der Pol, E., van Hoof, H., Oliehoek, F. A., and Welling,

M. Multi-agent MDP homomorphic networks. In In-

ternational Conference on Learning Representations,

2022. URL https://openreview.net/forum?

id=H7HDG--DJF0.

Wang, D., Walters, R., and Platt, R. So (2)-equivariant

reinforcement learning. In International Conference on

Learning Representations, 2022a.

Wang, D., Walters, R., and Platt, R. SO(2)-equivariant

reinforcement learning. In International Conference

on Learning Representations, 2022b. URL https:

//openreview.net/forum?id=7F9cOhdvfk_.

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang,

J. Mean field multi-agent reinforcement learning. In

International Conference on Machine Learning, pp. 5571–

5580. PMLR, 2018.

Yarats, D., Kostrikov, I., and Fergus, R. Image augmentation

is all you need: Regularizing deep reinforcement learning

from pixels. In International Conference on Learning

Representations, 2021. URL https://openreview.

net/forum?id=GY6-6sTvGaf.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,

and Wu, Y. The surprising effectiveness of ppo in cooper-

ative multi-agent games. Advances in Neural Information

Processing Systems, 35:24611–24624, 2022.

Yu, X., Shi, R., Feng, P., Tian, Y., Luo, J., and Wu, W. Esp:

Exploiting symmetry prior for multi-agent reinforcement

learning. In ECAI 2023, pp. 2946–2953. IOS Press, 2023.

Zhao, B., Dehmamy, N., Walters, R., and Yu, R. Sym-

metry teleportation for accelerated optimization. In Oh,

A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),

Advances in Neural Information Processing Systems,

2022a. URL https://openreview.net/forum?

id=MHjxpvMzf2x.

Zhao, B., Ganev, I., Walters, R., Yu, R., and Dehmamy, N.

Symmetries, flat minima, and the conserved quantities of

gradient flow. In The Eleventh International Conference

on Learning Representations, 2023. URL https://

openreview.net/forum?id=9ZpciCOunFb.

Zhao, L., Zhu, X., Kong, L., Walters, R., and Wong, L. L.

Integrating symmetry into differentiable planning with

steerable convolutions. In The Eleventh International

Conference on Learning Representations, 2022b.

11



E(3)-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning

A. Proof of Theorem 4.4

We first prove property (iv) in Section A.1 and then properties (i), (ii), and (iii) in Section A.2.

A.1. Proof of Property (iv)

This property can be directly derived by the definition of G-invariant MG policies. For state-based G-invariant policy π:

∇θπθ(a|s) = lim
∆θ→0

πθ+∆θ(a|s)− πθ(a|s)

∆
= lim

∆θ→0

πθ+∆θ(K
s
g [a] | Lg[s])− πθ(K

s
g [a] | Lg[s])

∆
= ∇θπθ(K

s
g [a] | Lg[s])

where the second equality holds because we assume πθ is G-invariant for any θ. The similar statement holds for observation-

based G-invariant policy ν.

A.2. Proof of Properties (i), (ii), and (iii)

These properties can be established by extending the notion of single-agent MDP homomorphism and its properties to MGs.

Definition A.1 (MG homomorphism). An MG homomorphism (l, ks, hs) is a surjective map from an MG ïN ,S,A, P, r, oð

onto an abstract MG ïN ,S,A, P , r, oð by surjective maps l : S → S, ks : A → A, and hs : O → O = O
1
× · · · × O

N
,

such that

r(s, a) = r(l(s), ks(a)) ∀s ∈ S, a ∈ A (2)

P ([s′]l|s, a) = P (l(s′)|l(s), ks(a)) ∀s, s′ ∈ S, a ∈ A (3)

o(l(s)) = hs(o(s)) ∀s ∈ S. (4)

Definition A.2 (Policy lifting in MG homomorphisms). We define policy lifting for state-based and observation-based

policies separately, assuming full observability:

• State-based MG policy lifting. Let π↑ : S → ∆(A) and π : S → ∆(A) be two state-based policies in the actual and

abstract MGs, respectively. We say π↑ is a lift of π, denoted as π↑ = lift(π), if
∑

a∈k
−1

s (a) π↑(a|s) = π(a|l(s)) for

any s ∈ S and a ∈ A.

• Observation-based MG policy lifting. Let ν↑ = {νi↑ : Oi → ∆(Ai)}i∈N and ν = {νi : O
i
→ ∆(A

i
)}i∈N be

two observation-based policies in the actual and abstract MGs, respectively. We say ν↑ is a lift of ν, denoted as

ν↑ = lift(ν), if
∑

a∈k
−1

s (a) ν↑(a|o(s)) = ν(a|hs(o(s))) for any s ∈ S and a ∈ A.

Theorem A.3 (Value equivalence in MG homomorphisms). Consider an MG homomorphism (l, ks, hs) from MG M =
ïN ,S,A, P, r, oð with bijective observation functions to abstract MG M = ïN ,S,A, P , r, oð. We have

V∗(s) = V ∗(l(s)), Q∗(s, a) = Q∗(l(s), ks(a)) for any s ∈ S, a ∈ A. (5)

For a state-based abstract policy π with its lift π↑, we have

Vπ↑
(s) = V π(l(s)), Qπ↑

(s, a) = Qπ(l(s), ks(a)) for any s ∈ S, a ∈ A. (6)

For an observation-based abstract policy ν with its lift ν↑, we have

Vν↑
(o(s)) = V ν(hs(o(s))), Qν↑

(s, a) = Qν(hs(o(s)), ks(a)) for any s ∈ S, a ∈ A. (7)

Proof of Theorem A.3. For state-based policies, we use similar proof techniques for single-agent MDP homomorphisms

(Ravindran & Barto, 2001; Rezaei-Shoshtari et al., 2022). Under bijective observation functions, we can prove (7) by first

translating them into state-based policies and then applying (6).

Proof of properties (i) and (iii). We first establish that a G-symmetric MG induces a MG homomorphism, where G-

invariant MG policy can be viewed as lifted from the induced abstract MG. Then, properties (i) and (iii) directly follow from

Theorem A.3.
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Specifically, consider a G-symmetric MG as defined in Definition 4.1. Define maps (l, ks, hs) as follows, such that the

state-action-observation tuples in the same orbit under G map to the same abstraction:

l(s) = l(Lg[s]), ks(a) = kLg [s](K
s
g [a]), hs(o(s)) = hLg [s](o(Lg[s])) = hLg [s](H

s
g [o(s)])

for any s ∈ S, a ∈ A, g ∈ G. It is easy to verify that maps (l, ks, hs) are surjective and satisfy conditions (2), (3), and (4) in

Definition A.1, and therefore maps (l, ks, hs) induce an MG homomorphism. Property (i) then directly follows from (5) and

the assumption that observation functions are bijective.

Under this an MG homomorphism, a state-based G-invariant policy induces an abstract policy, π(a|s) = π(Ks
g [a] | Lg[s]) =

π(a|s), where (s, a) = (l(s), ks(a)) = (l(Lg[s]), kLg [s](K
s
g [a])). Because Ks

g [·] is reversible via Ks
g−1 [·], ks is actually

bijective. To see this, we can pick an arbitrary state-action pair in every state-action orbit as the canonical state-action pair

for that orbit, then the mapping of any state-action pair can be done via two steps, from the state-action pair to the canonical

state-action pair and then to the abstraction, with both steps being bijective. Thus, we have
∑

a′∈k
−1

s (a) π(a
′|s) = π(a|s) =

π(a|s), and therefore π is a lift policy from π. Property (iii) for π then directly follows from (6). Under bijective observation

functions, we can similarly derive property (iii) for state-based G-invariant policy ν from (7).

Proof of property (ii). Such a state-based policy π can be induced from the optimal G-invariant value function. Letting Q∗

be the optimal action-value function that is G-invariant, the existence of which has been proved as property (i), which induces

a deterministic optimal state-based policy π∗ as the greedy policy with respect to Q∗, i.e., π∗(s) = argmaxa Q∗(s, a)
for any s ∈ S. Since Q∗ is G-invariant, it is easy to see that π∗ is also G-invariant, Ks

g [π∗(s)] = π∗(Lg[s]). Such an

observation-based policy ν can be similarly derived.

B. Examples of Group-Symmetric MGs

B.1. E(3)-Symmetric MGs

It is quite common that in the 3D physical world, entities’ positions and some other physical quantities are described

with respect to an arbitrary reference whose change has no impact on the behaviors of the entities. Such scenarios can be

described as an E(3)-symmetric MGs. Examples include traffic with vehicles, team sports, surveillance with drones, and

games such as SMAC and MPE.

Below we highlight three MARL benchmark games to show the generality of E(3)-symmetric MGs.

Multi-Agent MuJoCo Tasks. In a Multi-Agent MuJoCo task, a given single robotic agent is split into several sub-parts

(agents). Each (sub-part) agent can be viewed as a point in the 3D point cloud, with the its centroid as the 3D position. The

E(3)-equivariant features can be velocities, forces, etc, and the E(3)-intvariant features can be id, unit type, etc. The actions

are the forces applied to each sub-parts.

Google Research Football (GRF) In GRF, each unit in the field, such as a player and a ball can be viewed as a point in

the 3D point cloud, with E(3)-equivariant features such as the velocity and E(3)-invariant features such as the unit type.

The actions are categorical, with movement actions and some other non-movement actions such as shooting and passing.

The non-movement actions are E(3)-invariant. If the player can move to any direction, i.e., the movement actions are

continuous, then the game satisfies the requirement of the action space in (ii). The scenarios in GRF are competitive where

the (uncontrollable) enemies are viewed as part of the environment. The game is an E(3)-symmetric MGs if the enemies’

policies are E(3)-invariant.

SMAC In SMAC, each unit in the combat can be view as a point in the 3D point cloud, with dummy z coordinate. There are

some competitive scenarios in SMAC, where the controllable agents are fighting against some (uncontrollable) enemies

which are viewed as part of the environment. Therefore, similar to GRF, whether the game is an E(3)-symmetric MGs

or not depends on the E(3)-invariancy of the uncontrollable enemies’ policies. The actions are also categorical including

movement actions and some other E(3)-invariant non-movement actions such as attacking.

B.2. SN -Symmetric MGs

Besides the Euclidean transformation, the permutation is another common transformation in the physical world. Intuitively,

for homogeneous entities with the same exact behaviors, permute them will have no impact. Such multi-agent symmetries

can be captured by the symmetric group SN with permutations as the group actions. The Homogeneous MGs, which

is SN -symmetric MGs under our definition, is formallly defined by the work (Chen et al., 2022) with the permutation
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transformation defined on state, action, observation, and the transition and the reward function. Enforcing permutation-

invariancy has been found beneficial by (Chen et al., 2022; Liu et al., 2020). Our definition of the G-symmetric MGs is

general enough to cover it.

The examples include MPE tasks with homogeneous agents, SMAC scenarios with homogeneous ally units, team sports

with homogeneous players (assume players have the same capabilities), traffic with homogeneous vehicles, and surveillance

with homogeneous drones.

C. Experiment Details

Below we describe in general notation of states and observations in scenarios in MPE and SMAC.

C.1. MPE

Multi-Agent Particle Environment (MPE) with the efficient implementation by (Liu et al., 2020) is a classical benchmark

with homogeneous agents for multi-agent reinforcement learning, each of which has versions with N = 3, 6 agents,

respectively. These MPE environments can be cast as E(3)-Symmetric MGs, where we have dummy z coordinate. Below

we describe the general form of state and observation in all scenarios of MPE, and the corresponding state-action based

point cloud and observation-based point cloud which are processed by SEGNN-based critic and actor, respectively, and also

the details of each scenarios in MPE.

Notation We denote the set of agents, landmarks, and preys, which are basic units in scenarios of MPE, as N a = {1, ..., Na},

N l = {Na + 1, ..., N l}, and N p = {Na + N l + 1, ..., N + N l + Np}, where Na, N l, and Np are the number of

agents, landmarks and preys, respectively. Here only the agents are controllable so Na = N . We have the set of nodes

V = N a ∪ N l ∪ N p. The absolute positions associated with N a,N l and N p are {xi}i∈Na , {xv}v∈N l and {xv}v∈Np ,

respectively. The absolute velocities associated with N a and N p are V a = {vi}i∈Na and V p = {vv}v∈Np , respectively.

The landmarks are fixed, so the associate velocities is V l = {0}i∈N l . Let V = V a ∪ V l ∪ V p, which is the set of velocities

associated with the set of nodes V .

State The state consists of the positions x of the set of entities N , with the associated features f = {fv = vv}v∈V . The state

is therefore a point cloud {(xv, fv)}v∈V , which satisfies the requirement (i) of E(3)-symmetric MGs.

Observation The agent i’s local observation consists of the relative positions xi = {xi
i = xi} ∪ {xi

v = xv − xi}v∈N\{i}

of the set of entities N , with the associated (relative) features f i = {f ii = vi} ∪ {f iv = 0}v∈V\{i}. (Other agents’ velocities

are not observable). The agent i’s local observation is therefore a point cloud {(xi
v, f

i
v)}v∈V from agent i’s perspective,

which satisfies the requirement (iii) of E(3)-symmetric MGs.

Action The local action spaces are absolute velocities, and are therefore Euclidean spaces which satisfies the requirement of

(ii). Denote the set of actions for the controllable agents as Aa = {ai}i∈Na .

The details of each scenarios in MPE is as the following.

Cooperative Navigation: The collective goal of agents is to cover all the landmarks. There are two versions with N l = 3, 6
landmarks for N = 3, 6 agents, respectively. There are no preys so Np = 0.

Cooperative Push: The collective goal of agents is to push a large ball to a target position. There are two versions with

N l = 2, 2 landmarks for N = 3, 6 agents, respectively. There are no preys so Np = 0.

Predator-and-Prey: The collective goal of slowly moving agents (predators) is to capture some fast moving preys. The

preys are pre-trained and controlled by the environment. There are Np = 1, 2 preys and N l = 2, 3 landmarks (blocks) for

N = 3, 6 agents (predators), respectively.

C.2. MuJoCo Continuous Control Tasks

We choose several representative tasks with different levels of symmetries from the MuJoCo continuous control tasks,

including the 2D ones from (Tassa et al., 2018) and 3D ones from (Chen et al., 2023) with single- and multi-agent variations:

cartpole (balance, sparse), single- and multi-agent reacher (hard), single- and multi-agent swimmer with two links, and

multi-agent variants of 3D hopper and walker. The details of the state, observation, and action in the selected scenarios are

as the following.
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Cartpole (balance, sparse): the goal of cartpole is to balance a pole connecting to cart moving in the x axis. It has

rotation-equivariancy of rot180◦ with respect to the z axis and no translation-invariancy along the x axis because the agent is

tasked to balance the cart and the pole around the origin (x = 0), not around some arbitrary position. The state contains

the position of the cart, pole, and the origin, and the velocity of the cart and the pole. This task is fully observable, so the

observation is the same as the state. The action is the 1D force acted on the cart on the x (horizontal) axis.

Single-agent reacher (hard): the goal of single-agent reacher is to control a robot with two links to reach a target. The second

link (root, arm) can move around a hinge fixed at the root (origin), and the first link (hand, finger) can move around a hinge

at the end of the second link. This task has rotation-equivariancy in the x, y plane, and no translation-invariancy due to the

hinge fixed at the origin. The state contains the positions of the target, finger, hand, arm, and root, and the velocities of

the finger, hand, arm, and root. This task is fully observable, so the observation is the same as the state. The action is the

torques applied to the two links. The target is generated randomly between circles whose centers are located at the origin

with radius 0.05 and 0.2, respectively.

Multi-agent reacher: the multi-agent reacher has the same goal as the single-agent reacher. The state is the same as the

single-agent reacher. This task is partially observable. Agent 1 controlling the the first link can observe its own id, and the

positions of the target, finger, and hand, and the velocities of the finger and hand. Agent 2 controlling the second link can

observe its own id, and the positions of the target, arm, and root, and the velocities of the arm and root. The actions are the

torques applied on the two links for agent 1 and agent 2, respectively.

Single-agent swimmer: the goal of single-agent swimmer is to control a robot with two controllable links to move to a target.

It is similar to the single-agent reacher, except that the second link is not fixed at the origin. This task has both rotation- and

translation-invariancy in the xy plane. The state is the positions of the target, nose (in the front of the swimmer’s head),

and the first joint, the velocities and the angular velocities of the swimmer’s bodies, and the joint angles. This task is fully

observable, so the observation is the same as the state. The actions are the torques applied on the two controllable links. The

target is generated randomly inside a square box whose center is located at the origin with width=height=0.3.

Multi-agent swimmer: the multi-agent swimmer has the same goal as the single-agent swimmer. The state is the same as the

single-agent swimmer. We split the robot into two agents, with agent 1 controlling the first link, and agent 2 controlling the

second link. This task is fully observable, so the observation is the same as the state, except that each agent can also observe

their own ids. The actions are the torques applied on the two links for agent 1 and agent 2, respectively.

Multi-agent hopper 3D (3 shin): the goal of multi-agent hopper is to control a robot with 3 body parts (torso, thigh, foot)

to reach a target position. This task has both rotation- and translation-invariancy in the xy plane. The state contains the

positions of the target, torso, thigh, and foot, the velocities of the torso, thigh, foot, the rotation axes of the thigh and foot,

and the gravity which is a constant (0,0,-9.81). Agent 1 control the thigh, and agent 2 control the foot. This task is fully

observable, so the local observation is the same as the state, except that each agent can also observe their own ids. The

actions are the torques applied on thigh for agent 1 and the torques applied on foot for agent 2, respectively.

Multi-agent walker 3D (3 left leg right foot): the goal of multi-agent walker is to control a robot with 5 body parts (torso,

right thigh, right shin, left thigh, left shin) to reach a target position. This task has both rotation- and translation-invariancy

in the xy plane. The state contains the positions of the target, torso, right thigh, right shin, left thigh, and left shin, the

velocities of the torso, right thigh, right shin, left thigh, and left shin, the rotation axes of the right thigh, right shin, left thigh,

and left shin, and the gravity which is a constant (0,0,-9.81). Agent 1 control the right thigh, and agent 2 control the right

shin. This task is fully observable, so the local observation is the same as the state, except that each agent can also observe

their own ids. The actions are the torques applied on the right thigh for agent 1 and the torques applied on right shin for

agent 2, respectively.

C.3. SMAC

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) has become one of the most popular MARL

benchmarks. All scenarios in SMAC can be described by E(3)-symmetric Markov games in a similar way to MPE. We

choose the Hard scenario 8m vs 9m and Super Hard scenario 6h vs 8z to evaluate our proposed algorithm, which has 8

agents and 6 agents, respectively.

Notation We denote the set of controllable ally agents and uncontrollable enemies, which are basic units in scenarios of

SMAC, as N a = {N + 1, ..., Na} and N e = {Na + 1, ..., Na +Ne}, where Na and Ne are the number of agents and

enemies, respectively. Here only agents are controllable and so Na = N . We have the set of nodes V = N a ∪ N e. The
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absolute positions associated with N a and N e are {xi}i∈Na and {xv}v∈N e , respectively.

The local action spaces of the controllable ally agents are categorical, which is the union of the set of move directions, attack

enemies, stop and no operation, i.e., Ai = {north, south, east, west} ∪ {attack[enemy id]}enemy id∈N e ∪ {stop, no-op}.

The health associated with N a and N e are Ha = {hi}i∈N and He = {hv}v∈N e , respectively. The cooldown of the

weapons associated with N a and N e which is not applicable are CDa = {cdi}i∈N and CDe = {0}v∈N e , respectively.

The shield associated with N a and N e are SHa = {shi}i∈N and SHe = {shv}v∈N e , respectively. Let H = Ha ∪He,

CD = CDa ∪ CDe, SH = SHa ∪ SHe, which are the sets of health, cooldown, and shield of the allies’ and enemies’

agents associated with the set of nodes V .

State The state consists of the positions x of the set of entities N , with the associated features f = {fv = (hv, cdv, shv)}v∈V .

The state is therefore a point cloud {(xv, fv)}v∈V , which satisfies the requirement (i) of E(3)-symmetric MGs.

Observation Agent i’s observation oi(s) only contains information of itself and some other observable entities, denoted

as Vi ¦ V . The information of the non-observable entities are padded as 0. From agent i’s perspective, denote the

visibility of the entities as V Ii = {viv = 1}v∈Vi ∪ {viv = 0}v∈V\Vi , and denote the set of (one-hot) move directions

∈ {north, south, east, west} as MDi = {mdi} ∪ {0}v∈V\{i}. (only its own move direction is observable). Then, oi(s)
consists of the relative positions xi = {xi

i = 0} ∪ {xi
v = xv − xi}v∈N\{i} of the set of entities N , with the associated

(relative) features f
i = {f i

i = (agent id = i,mdi, vii = 1, ∥xi
i∥ = 0,xi

i = 0, hi, shi} ∪ {f i
v = (agent id = 0,mdv =

0, viv, ∥x
i
v∥,x

i
v, hv, shv)}v∈V\{i}. (Other entities’ ids are not observable, so padded as 0). The agent i’s local observation

is therefore a point cloud {(xi
v, f

i
v)}v∈V from agent i’s perspective, which satisfies the requirement (iii) of E(3)-symmetric

MGs.

Action Each agent i’s action space is categorical, which is the union of the sets of move directions, attack enemies, stop and

no operation, i.e., Ai = {north, south, east, west} ∪ {attack[enemy id]}enemy id∈N e ∪ {stop, no-op}. Obviously, Ai is not

a Euclidean space and therefore does not satisfy the requirement of (ii).

The details of the two scenarios in SMAC we test our algorithm is as the following.

8m vs 9m: 8 controllable ally agents of type Marines are fighting against 9 uncontrollable enemies of type Marines. Shield

is not applicable for Marines so both SHa and SHe are ∅.

6h vs 8z: 6 controllable ally agents of type Hydralisks are fighting against 9 uncontrollable enemies of type Zealots. Shield

is not applicable for Hydralisks so SHa = ∅.

D. Implementation Details

As described in 5.1, the input to SEGNN is an input Euclidean graph is represented as a tuple Gin = (V, E ,x, f in) where V
is a set of vertices with 3D positions xv ∈ R

3, E ¦ V ×V is a set of edges, and f
in is a set of feature vectors, each associated

with a vertex or an edge. Precisely, the input feature f
in can be further decomposed into node feature, node attribute, and

edge attribute, i.e., f in = (fnodefeature, f
node
attribute, f

edge
attribute). Note that in MPE and SMAC, entities are in a 2D world, so we pad

the dummy z coordinate of 0 for them to be in a 3D space whenever applicable, e.g. velocities, positions, etc.

Below we describe in details, whichever applicable, how to represent state s, state-action pair (s, a), and observation oi(s) as

Euclidean graphs for centralized state-value critic V (s), action-value critic Q(s, a), and observation-based actor νi(oi(s)),
respectively, in MPE, MuJoCo tasks, and SMAC.

D.1. MPE

In MPE, we build our architecture based on MADDPG, where the critic is based on state and action pair and therefore we

construct state-action based Euclidean graph processed by E(3)-invariant critic. We also construct an observation-based

Euclidean graph processed by an E(3)-equivariant actor.

State-action based Euclidean graph Based on the information in the state s = {(xv, fv)}v∈V , V and x have already

been well-defined. The graph E is densely connected, i.e., E = {(v1, v2) : v1 ∈ V , v2 ∈ V , v1 ̸= v2}. We can

pad the dummy 0 action for non-controllable entities, i.e., landmarks and preys, to have actions for all entities: A =
{ai}i∈Na ∪ {0}v∈N l ∪ {0}v∈Np . We can then design the node feature f

node
feature, node attribute f

node
attribute, and edge attribute

f
edge
attribute based on the information in the input features f in = f = {vv}v∈V and actions A. The node feature of each node

consists of its own absolute velocity, the l2 norm of its own absolute velocity, its own action, and l2 norm of its own action.
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Figure 8: Illustration of state-action based point cloud and observation-based point cloud for a scenario in MPE with agent,

landmark and prey.

Specifically, fnodefeature = {[vv, ∥vv∥ ,av, ∥av∥]}v∈V . We can specify the E(3)-equivariancy of both absolute velocities and

actions, and E(3)-invariancy of the associated l2 norms in SEGNN to preserve physical constraints. The node attribute is

the set of node types ∈ {agent, landmark, prey}, i.e., fnodeattribute = {[node type(v)]}v∈V . The node types are E(3)-invariant.

The edge attribute is the set of relative positions, i.e., f
edge
attribute = {[xv1 − xv2

]}(v1,v2)∈E , which is E(3)-equivariant.

Observation-based Euclidean graph The relative positions in the observation can be restored to the absolute location, i.e.,

x
i = {xi

i = xi}∪{xv−xi}v∈N\{i} −→ {xi
i = xi}∪{xv−xi+xi}v∈N\{i}. Then we can generate the observation-based

point cloud in almost the same way, with two differences. The first difference is that due to partial observability, the velocities

of other agents and preys are not available, so we have V a = {vi} ∪ {0}j∈N\{i} and V p = {0}Np . Another difference is

that the observation-based point cloud does not condition on actions, so correspondingly the node features do not contain

action related elements and is only velocity related, i.e., fnodefeature = {[vv, ∥vv∥]}v∈V .

D.2. MuJoCo Continuous Control Tasks

In MuJoCo continuous control tasks, we build our architecture based on MADDPG, where the critic is based on state

and action pair and therefore we construct state-action based Euclidean graph processed by E(3)-invariant critic. We also

construct an observation-based Euclidean graph processed by an E(3)-equivariant actor. Note that the input to both our

architecture and the MLP-based baselines contains the same information. Below we specify the state-action based Euclidean

graph and the observation-based Euclidean graph for all the selected tasks. For all the point sets defined below, the graph E
is densely connected, i.e., E = {(v1, v2) : v1 ∈ V , v2 ∈ V , v1 ̸= v2}. The node attribute is the set of node types, where

each point in the point set has its own node type in all the selected MuJoCo tasks. The node types are E(3)-invariant. The

edge attribute is the set of relative positions, i.e., f
edge
attribute = {[xv1

− xv2
]}(v1,v2)∈E , which is E(3)-equivariant.

cartpole (Balance Sparse) State-action based Euclidean graph: the point set V = {origin, cart}. For pointcart, the

node feature f
node,cart
feature = {[vj , ∥vj∥]}j∈{cart,pole} ∪ {[xpole, ∥xpole∥]} ∪ {a, ∥a∥}. For pointorigin, the node feature

f
node,origin
feature = {0}. The node attribute is the node type: ∀i ∈ V , fnodeattribute = [node type(i)]. Observation based Euclidean

graph: it is the same as the state-action based Euclidean graph, except that action is not included in the node feature.

Single-agent reacher (hard) State-action based Euclidean graph: the point set V = {target, finger}. For pointfinger, the

node feature f
node,finger
feature = {[vj , ∥vj∥]}j∈{finger,hand,arm,root}∪{[xj , ∥xj∥]}j∈{hand,arm,root}}∪{a, ∥a∥}. For pointtarget,

the node feature f
node,target
feature = {0}. The node attribute is the node type: ∀i ∈ V , fnodeattribute = [node type(i)]. Observation

based Euclidean graph: it is the same as the state-action based Euclidean graph, except that action is not included in the

node feature.

Multi-agent reacher (hard) The state-action based Euclidean graph is the same as the single-agent reacher. For agent

1 controlling the green part in reacher in Figure 6, the point set is V = {target, finger}. The node feature f
node,finger
feature =
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{idagent 1} ∪ {[vj, ∥vj∥]}j∈{finger,hand} ∪ {[xj, ∥xhand∥]}} ∪ {a1, ∥a1∥}. For pointtarget, the node feature f
node,target
feature =

{0}. For agent 2 controlling the yellow part in reacher in Figure 6, the point set is v = {target, arm}. The node feature

f
node,arm
feature = {idagent 2} ∪ {[vj, ∥vj∥]}j∈{arm,root} ∪ {[xj, ∥xroot∥]}} ∪ {a2, ∥a2∥}. For pointtarget, the node feature

f
node,target
feature = {0}.

Single-agent swimmer State-action based Euclidean graph: the point set V = {target, nose, first joint}. For pointnose, the

node feature f
node,nose
feature = {[vj , ∥vj∥ , ωj , ∥ωj∥]}j∈{bodies}∪{[θj ]}j∈{joints}∪{a, ∥a∥}. For pointtarget and pointfirst link,

the node features are {0}. The node attribute is the node type: ∀i ∈ V, fnodeattribute = [node type(i)]. Observation based

Euclidean graph: it is the same as the state-action based Euclidean graph, except that action is not included in the node

feature.

Multi-agent swimmer The state-action based Euclidean graph is the same as the single-agent swimmer. The observation-

based Euclidean graphs for both agents are the same as the state-action based Euclidean graph, except that action is not

included in the node feature and their own ids are included in the node feature which are E(3)-invariant.

Multi-agent hopper State-action based Euclidean graph: the point set V = {target, torso, thigh, foot}. For the

for noncontrollable components target and torso, we set the dummy action of {0}. For i ∈ V , the node fea-

ture f
node,i
feature = [vi, ∥vi∥ ,xi, ∥xi∥ , , rotation axis i, ∥rotation axis i∥ ,ai, ∥ai∥]. The node attribute is the node type:

∀i ∈ V, fnodeattribute = [node type(i)]. Observation based Euclidean graph: it is the same as the state-action based Euclidean

graph, except that action is not included in the node feature and their own ids are included in the node feature which are

E(3)-invariant.

Multi-agent walker State-action based Euclidean graph: the point set V = {target, torso, right thigh, right shin, left thigh,

left shin}. For the for noncontrollable components {target, torso, left thigh, left shin}, we set the dummy action of {0}. For

i ∈ V , the node feature f
node,i
feature = [vi, ∥vi∥ ,xi, ∥xi∥ , , rotation axis i, ∥rotation axis i∥ ,ai, ∥ai∥]. The node attribute is

the node type: ∀i ∈ V , fnodeattribute = [node type(i)]. Observation based Euclidean graph: it is the same as the state-action

based Euclidean graph, except that action is not included in the node feature and their own ids are included in the node

feature which are E(3)-invariant.

D.3. SMAC

In SMAC, we build our architecture based on MAPPO, where the critic is based on state only and therefore we construct

state based Euclidean graph processed by E(3)-invariant critic. The action space in SMAC is categorical and therefore we

use a traditional MLP-based actor to process the observation.

State based Euclidean graph Based on the information in the state s = {(xv, fv)}v∈V , V and x have already been

well-defined. The graph E is a nearest neighbor graph degree k, i.e., E = {(v1, v2) : v1 ∈ V, v2 ∈ V, v1 ∈ neighbor(v2, k)}.

We can then design the node feature f
node
feature, node attribute f

node
attribute, and edge attribute f

edge
attribute based on the information

in the input features f
in = f = {vv}v∈V . The node feature of each node consists of its health, cooldown, and shield.

Specifically, fnodefeature = {[hv, cdv, shv]}v∈V . All quantities in node features are E(3)-invariant. The node attribute is the

set of node types ∈ {[Team,Type]}Team∈{ally, enemy},Type∈{Marines, Hydralisks, Zealots}, i.e., fnodeattribute = {[node type(v)]}v∈V . The

node types are E(3)-invariant. The edge attribute is the set of relative positions, i.e., f
edge
attribute = {[xv1

− xv2
]}(v1,v2)∈E ,

which is E(3)-equivariant.
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E. Supplementary Results

E.1. Invariancy Measure in MPE

In MPE, the metrics for measuring invariancy for actor and critic in terms of rotation and translation are defined in the

following:

InvariancyrotQ = − 1
|A|

∑

α∈A |Q(s, a)−Q(rotα[s], rotα[a])| (8)

InvariancytranslQ = − 1
|L|

∑

l∈L |Q(s, a)−Q(transll[s], transll[a])| (9)

Invariancyrotν = 1
|A|N

∑

i∈N

∑

α∈A cos
(

rotα[ν
i(oi(s)], νi(oi(rotα[s]))

)

(10)

Invariancytranslν = 1
|L|N

∑

i∈N

∑

l∈L cos
(

transll[ν
i(oi(s)], νi(oi(transll[s]))

)

(11)

,where rotα[·] and transll[·] performs the rotation by α and translation by l, respectively, and cos(·, ·) measures the

cosine similarity. A is the list of angles which we use [30◦, 60◦ · · · , 330◦], L is the list of translations which we use

[(−lx, 0), (−0.5lx, 0), (0.5lx, 0), (lx, 0)] for translations along x axis and [(0,−ly), (0,−0.5ly), (0, 0.5ly), (0, ly)] for trans-

lations along y axis (the size of the map is lx by ly, where lx = ly = 1, 1.5, 1 for the scenarios of push, navigation,

and prey, respectively). We calculate these four metrics by averaging over state and observation collected in different

time steps in 200 episodes. The ranges of those metrics are not important. By construction, the larger the values of

InvariancyrotQ , InvariancytranslQ , Invariancyrotν , and Invariancytranslν are, the closer the behaviors the non-SEGNN-based

architecture are compared to those of the SEGNN-based architecture, which has the largest possible values for those metrics,

in terms of their invariancy to the corresponding transformations.
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E.2. The Emergence of Invariancy in MPE.

As illustrated in Figure 9, the GCN-based critic with permutation invariancy has better rotation- and translation-invariancy

than the MLP-based one for the whole training process. One possible reason is that for certain configurations of the state,

permutation invariancy is a special type of Euclidean invariancy, e.g., 6 agents whose positions are in a circle with 60◦

between adjacent ones, which displays a rotation-invariancy of rot60◦ . However, there is no increase in rotation- and

translation-invariancy for both GCN- and MLP-based critics, which may explain why actors learned with SEGNN-based

critics have better performance. On the other hand, the actor learned with a SEGNN-based critic emerges better rotation-

and translation-invariancy than the MLP and GCN baselines. The actor learned with a GCN-based critic achieves similar

rotation-invariancy but worse translation-invariancy than the one learned with an MLP-based critic. Note that the translation-

invariancy for actors is initially high, because in the observation only the agent’s own position is absolute and can be

modified by translation, whereas all other values are relative and translation-invariant. The randomly initialized actors will

therefore output similar actions.
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Figure 9: The emergence of invariancy and equivariancy in non-SEGNN-based critic and actor, respectively, in MPE.
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E.3. Invariancy Measure in SMAC

The critic used by MAPPO is a value function, so the invariancy for critic is defined in terms of V instead of Q. The action

of controllable ally agents in SMAC is categorical, so we use KL divergence instead of cosine similarity to measure the

difference between two probability distributions. The action is the union of the set of move directions, attack enemies, stop

and no operation, i.e., Aa = {north, south, east, west} ∪ {attack[enemy id]}enemy id∈N e ∪ {stop, no-op}. Under rotation,

only move directions will be changed. Its hard to measure how the move direction will change for an arbitrary rotation

angle, so we only consider (counter clockwise) rotation angles of [90◦, 180◦, 270◦], which will roll the move direction

accordingly. For example, for a (counter clockwise) rotation angle of 90◦, move to the north will change to move to the

west. The translation for actor is already achieved in scenarios in SMAC due to the missing of absolute positions in the

observation, so it is not included here.

Invariancyrot
V

= − 1

|A|

∑

α∈A |V (s)− V (rotα[s])| (12)

Invariancytransl
V

= − 1

|L|

∑

l∈L |V (s)− V (transll[s])| (13)

Invariancyrotν = 1

|A|N

∑

i∈N

∑

α∈A KL
(

rotα[ν
i(·|oi(s)], νi(·|oi(rotα[s]))

)

(14)

, where rotα[·] and transll[·] performs the rotation by α and translation by l, respectively, and KL(·, ·) measures the

KL divergence. A is the list of angles which we use [90◦, 180◦, 270◦], L is the list of translations which we use

[(−lx, 0), (−0.5lx, 0), (0.5lx, 0), (lx, 0)] for translations along x axis and [(0,−ly), (0,−0.5ly), (0, 0.5ly), (0, ly)] for trans-

lations along y axis (the normalized size of the map is lx by ly , where lx = ly = 1 for the scenarios in SMAC. We calculate

these four metrics by averaging over state and observation collected in different time steps in 32 episodes. The ranges of

those metrics are not important. By construction, the larger the values of Invariancyrot
V

, Invariancytransl
V

, and Invariancyrotν

are, the closer the behaviors the non-SEGNN-based architecture are compared to those of the SEGNN-based architecture,

which has the largest possible values for those metrics, in terms of their invariancy to the corresponding transformations.
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E.4. The Emergence of Invariancy and Equivariancy in SMAC.

As illustrated in Figure 10, there is no obvious emergence of the rotation-invariancy for both actor and critic. This can be

caused by the competitive nature of the scenarios in SMAC, where we also see a decrease in actors’ translation-invariancy

in competitive scenarios Prey N3 and Prey N6, as shown in the appendix. Another possible reason is that some of the

categorical actions, the move directions {north, south, east, west}, are only rotation-equivariant to multiples of 90◦ instead

of arbitrary angles and therefore break the overall invariancy of the game.
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Figure 10: The emergence of invariancy and equivariancy in non-SEGNN-based critic and actor, respectively, in SMAC.
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F. Hyperparameters

F.1. MPE

Table 1: Hyperparameters for MPE

Hyperparameter Value

Episode length 25

Number of training episodes 60000

Discount factor 0.95

Batch size from replay buffer for [MLP, MLP] and [GCN, MLP] 1024

Batch size from replay buffer for [SEGNN, MLP] and [SEGNN, SEGNN] 128

Actor’s learning rate for [MLP, MLP] and [GCN, MLP] 1e-4

Acror’s learning rate for [SEGNN, MLP] in ordered scenarios 3e-4,3e-4,1e-4,3e-4,3e-4,3e-4

Acror’s learning rate for [SEGNN, SEGNN] in ordered scenarios 1e-4,3e-4,3e-5,3e-5,3e-4,3e-4

Critic’s learning rate for [MLP, MLP] and [GCN, MLP] 1e-3

Critic’s learning rate for [SEGNN, MLP] in ordered scenarios 1e-3,3e-4,1e-3,1e-3,1e-3,1e-3

Critic’s learning rate for [SEGNN, SEGNN] in ordered scenarios 1e-3,1e-3,1e-3,1e-3,1e-3,1e-3

Actor’s and critic’s learning rates for transfer learning in Navigation 2e-4,1e-3

Actor’s and critic’s learning rates for transfer learning in Push 3e-5,1e-3

Actor’s and critic’s learning rates for transfer learning in Prey 3e-4,1e-3

Graph used by SEGNN for 6h vs 8z complete graph

#episodes per evaluation 200

#seeds 5

The

ordered scenarios are: Navigation N3, Navigation N6, Push N3, Push N6, Tag N3, Tag N6.

Unless specified, the mentioned hyperparameter is applied to all scenarios in MPE.

Actors’ learning rates are searched in [1e-4, 3e-5, 1e-5].

Critics’ learning rates are searched in [1e-3, 3e-4, 1e-4].

F.2. The MuJoCo Continuous Control Tasks

Table 2: Hyperparameters for 2D tasks (cartpole, reacher, swimmer) in the MuJoCo tasks

Hyperparameter Value

Episode length 1000

Number of training steps 1.1e6

Discount factor 0.99

Batch size 256

Acror’s learning rate for [MLP, MLP] and [GCN, MLP] 1e-4

Acror’s learning rate for [SEGNN, SEGNN] 5e-5

Critic’s learning rate for [MLP, MLP] and [GCN, MLP] 1e-4

Critic’s learning rate for [SEGNN, SEGNN] 5e-5

Graph used by SEGNN in all 2D tasks complete graph

#episodes per evaluation for cartpole (balance, sparse) 20

#episodes per evaluation for single- and multi-agent reacher 10

#episodes per evaluation for single- and multi-agent swimmer 100

#seeds for cartpole (balance, sparse), single-agent reacher, and single-agent swimmer 5

#seeds for multi-agent reacher, and multi-agent swimmer 10

Unless specified, the mentioned hyperparameter is applied to all the tasks and the algorithms.

The hyperparameters except SEGNN’s learning rates are the default ones used by (Rezaei-Shoshtari et al., 2022)
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Table 3: Hyperparameters for 3D tasks (hopper, walker) in the MuJoCo tasks

Hyperparameter Value

Episode length 1000

Number of training steps 1.1e6

Discount factor 0.99

Batch size 256

Acror’s learning rate 3e-4

Critic’s learning rate 3e-4

Graph used by SEGNN in all 3D tasks complete graph

#episodes per evaluation 10

#seeds 5

Unless specified, the mentioned hyperparameter is applied to all the tasks and the algorithms.

The hyperparameters are the default ones used by (Chen et al., 2023)
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F.3. SMAC

Table 4: Hyperparameters for SMAC

Hyperparameter Value

Episode length 400

Number of training steps 2e7

Discount factor 0.99

#Rollout threads 8

#Training threads 1

PPO epoch for 8m vs 9m, 6h vs 8z 5,10

# mini-batch for 8m vs 9m, 6h vs 8z 1,4

The degree of nearest neighbor graph used by SEGNN for 8m vs 9m 4

The degree of nearest neighbor graph used by SEGNN for 6h vs 8z 13 (complete graph)

Acror’s learning rate for all algorithms 5e-4

Critic’s learning rate for all algorithms 5e-4

#episodes per evaluation 32

#seeds 5

Unless specified, the mentioned hyperparameter is applied to both 6h vs 8z and 8m vs 9m.

The hyperparameters are the default ones used by the original MAPPO (Yu et al., 2022)
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G. Number of Parameters in Neural Networks

G.1. MPE

MPE

Alg/Env Navigation N3 Navigation N6 Push N3 Push N6 Prey N3 Prey N6

MLP (critic) 22913 38273 22145 32129 23681 39809

GCN (critic) 37505 40577 36993 38529 38017 41089

SEGNN (critic) 33791 33791 42344 42344 42344 42344

MLP (actor) 18690 20226 18434 19202 18946 20482

SEGNN (actor) 40553 40553 48532 48532 48532 48532

G.2. The MuJoCo 2D Continuous Control Tasks

The MuJoCo 2D continuous control tasks

Alg/Env Cartpole Reacher Multi-agent Reacher Swimmer Multi-agent Swimmer

MLP (critic) 70401 74497 74497 71937 71937

GCN (critic) 37505 40065 40065 38529 38529

SEGNN (critic) 33911 34169 34169 43193 43193

MLP (actor) 70145 74242 71425 71682 71937

GCN (actor) 36993 39426 38273 37890 38273

SEGNN (actor) 32694 39234 34003 48971 43124

G.3. The MuJoCo 3D Continuous Control Tasks

The MuJoCo 3D continuous control tasks

Alg/Env Hopper Walker

MLP (critic) 81665 90881

GCN (critic) 72705 73217

SEGNN (critic) 51781 69329

MLP (actor) 80387 88838

GCN (actor) 72963 74246

SEGNN (actor) 67511 134508

G.4. SMAC

SMAC

Alg/Env 6h vs 8z 8m vs 9m

MLP (critic) 12529 12727

SEGNN (critic) 33811 33765
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H. Computing Resources

The code is implemented by PyTorch, and runs on NVIDIA Tesla V100 GPUs with 32 CPU cores. For MPE, a single run

with [MLP, MLP], [GCN, MLP], [SEGNN, MLP], [SEGNN, SEGNN] takes approximately 2 hours, 3 hours, 7 hours, 10

hours to run, respectively. For the MuJoCo continuous control tasks, [MLP, MLP] takes approximately 3 hours to run,

[GCN, MLP] takes approximately 5 hours to run, and [SEGNN, SEGNN] takes approximately 4 days to run. For SMAC,

[MLP, MLP] and [SEGNN, MLP] takes approximately 8 hours and 4 days to run, respectively.
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