
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 9157–9170

November 12-16, 2024 ©2024 Association for Computational Linguistics

Efficient Sequential Decision Making with Large Language Models

Dingyang Chen

University of South Carolina

dingyang@email.sc.edu

Qi Zhang

University of South Carolina

qz5@cse.sc.edu

Yinglun Zhu

University of California, Riverside

yzhu@ucr.edu

Abstract

This paper focuses on extending the success

of large language models (LLMs) to sequen-

tial decision making. Existing efforts either

(i) re-train or finetune LLMs for decision mak-

ing, or (ii) design prompts for pretrained LLMs.

The former approach suffers from the computa-

tional burden of gradient updates, and the latter

approach does not show promising results. In

this paper, we propose a new approach that

leverages online model selection algorithms to

efficiently incorporate LLMs agents into se-

quential decision making. Statistically, our

approach significantly outperforms both tradi-

tional decision making algorithms and vanilla

LLM agents. Computationally, our approach

avoids the need for expensive gradient updates

of LLMs, and throughout the decision mak-

ing process, it requires only a small number of

LLM calls. We conduct extensive experiments

to verify the effectiveness of our proposed ap-

proach. As an example, on a large-scale Ama-

zon dataset, our approach achieves more than

a 6x performance gain over baselines while

calling LLMs in only 1.5% of the time steps.

1 Introduction

Sequential decision making addresses the problem

of adapting an agent to an unknown environment,

where the agent learns through a feedback loop

by repeatedly receiving contexts, selecting actions,

and observing feedback. This approach has been

widely applied in real-world scenarios, including

recommendation systems (Li et al., 2010; Agarwal

et al., 2016), healthcare (Tewari and Murphy,

2017; Svensson, 2023), and dialogue systems

(Li et al., 2016). With the significant success of

large language models (LLMs) in natural language

processing (Brown et al., 2020; Ouyang et al.,

2022; Achiam et al., 2023), an important next step

0.0 0.5 1.0

Time step ×10
6

0.0

0.1

0.2

0.3

A
ve
ra
g
e
re
w
ar
d

6x better

Standard decision making algorithm

LLM as decision making agent

Our approach

Figure 1: Performance comparison (higher is better) on

the AmazonCat-13K dataset. The decision making task

is to predict item tags based on textual descriptions. We

compare three approaches: (i) a standard decision mak-

ing algorithm, (ii) a pretrained LLM as decision making

agent, and (iii) our approach that balances the above

two methods. We defer further details to Section 4.

is to extend this success to sequential decision

making and enhance applications therein.

Existing efforts to leverage LLMs for sequential

decision making focus on two directions: (i) view-

ing decision making as sequence modeling and re-

training or finetuning large models to adapt them to

unknown environments (Chen et al., 2021; Zheng

et al., 2022; Reid et al., 2022; Sun et al., 2023;

Raparthy et al., 2023; Lee et al., 2024), and (ii)

utilizing prompt engineering and in-context learn-

ing to adapt pretrained large models to sequential

decision making problems (Krishnamurthy et al.,

2024). While the first approach usually achieves

promising empirical results, it is hindered by the

substantial computational burden associated with

re-training or finetuning large models, which often

contain hundreds of billions of parameters. The

second approach (Krishnamurthy et al., 2024), on

9157

the other hand, has demonstrated that most in-

context learning and prompt engineering methods

fail to effectively adapt LLMs to sequential deci-

sion making environments, except when employ-

ing the most advanced models (at the time), i.e.,

GPT-4 (Achiam et al., 2023), with sophisticated

prompt designs.

In this paper, we propose a new approach to ef-

ficiently incorporate large pretrained models into

sequential decision making environments, without

the need for expensive model re-training or finetun-

ing. We run experiments (see Fig. 1 and its caption

for settings) on the AmazonCat-13K dataset (Bha-

tia et al., 2016) and observe that:

• Vanilla LLMs as decision making agents exhibit

strong initial performance thanks to their signif-

icant commonsense knowledge and remarkable

reasoning ability. However, LLM agents fail to

show continuous improvements.

• Standard sequential decision making algorithms,

while performing poorly initially, continuously

learn to adapt to the environment and improve

their performance over time.

To take advantage of both methods, we adapt on-

line model selection algorithms (Auer et al., 2002;

Agarwal et al., 2017; Pacchiano et al., 2020) to

a framework that can automatically balance the

performance of LLM-powered policies/agents and

standard decision making algorithms. Initially, the

framework relies more on LLM-powered policies

to achieve good initial results. As standard decision

making algorithms begin to adapt to the environ-

ments, it gradually shifts towards these algorithms.

To our knowledge, this work presents the first result

in leveraging online model selection algorithms to

efficiently incorporate LLMs into sequential deci-

sion making. Our framework also offers several

compelling advantages:

• Statistical efficiency. It achieves superior perfor-

mance compared to vanilla LLM-powered poli-

cies and standard sequential decision making

algorithms. As shown in Fig. 1, our approach

achieves more than a 6x performance gain (0.336
vs. 0.054) compared to baselines.

• Computational efficiency. First, our approach

does not require expensive re-training or finetun-

ing of LLMs. Second, it can be implemented

with a small number of LLMs over the decision

making process. In our experiment, we show that

it calls LLMs in only 1.5% of the time steps.

• Plug-and-play compatibility. Our framework

can flexibly incorporate off-the-shelf pretrained

LLMs in a plug-and-play manner. Furthermore,

unlike existing methods that require advanced

models such as GPT-4 (Krishnamurthy et al.,

2024), our approach can leverage much smaller

language models (e.g., a model with 80 million

parameters) and achieve promising decision mak-

ing results.

2 Problem Setting

We focus on contextual bandits, a key problem in

sequential decision making that emphasizes the

fundamental challenge of balancing exploration

and exploitation (Lattimore and Szepesvári, 2020).

In contextual bandits, a learner interacts with an

unknown environment over T ∈ N
+ rounds. At

each round t ∈ [T], the learner receives a con-

text xt ∈ X (the context space), selects an action

at ∈ A (the action space), and then observes a

bounded loss ℓt(at) (sampled from an unknown

distribution), where ℓt : A → [0, 1] is the un-

derlying loss function. Contextual bandits can be

viewed as the simplest form of reinforcement learn-

ing where state transitions are abstracted away. Fol-

lowing the convention (Agarwal et al., 2012; Foster

et al., 2018; Foster and Rakhlin, 2020), we assume

that the learner has access to a function class F ¦
(X ×A → [0, 1]) to approximate an unknown true

loss function f⋆(x, a) = E[ℓt | xt = x, at = a].
Let Ã⋆(x) = argmina f

⋆(x, a) denote the opti-

mal policy with respect to the true expected loss

(i.e., always selecting an action that achieves the

smallest expected loss). The learner’s goal is to

choose a policy Ã = (Ã1, · · · , ÃT) to minimize the

cumulative regret, which is defined as Reg(T) :=
∑T

t=1 f
⋆(xt, Ãt(xt))− f⋆(xt, Ã

⋆(xt)).

We focus on the setting where the context space

and the action space are subspaces of the language

space, i.e., the learner interacts with an environ-

ment through textual contexts and actions, and ac-

tions that induce low loses are usually consistent

with commonsense knowledge and/or reasoning.1

1One can also prompt LLMs with numerical representa-
tions to get regression-style predictions (Garg et al., 2022).

2

9158

Therefore, our setting motivates leveraging pre-

trained large language models (LLMs) into contex-

tual bandits. Specifically, we consider a pretrained

LLM: prompt p 7→ output o, that maps a prompt p
to a textual response o (Brown et al., 2020; Ouyang

et al., 2022; Achiam et al., 2023). Since LLMs are

pretrained to acquire general knowledge about the

world, we expect the output ot ∼ LLM(p = xt)
of LLMs, when prompting LLMs with the context

xt (and other relevant information), would provide

informative guide for the decision making process.

Additional notation. For an integer n ∈ N, we

let [n] denote the set {1, . . . , n}. For a finite set

Z , we let unif(Z) denote the uniform distribution

over all the elements in Z . We use ei ∈ R
d to

denote the i-th canonical vector in R
d, i.e., its i-th

entry is 1 and the rest entries are 0.

3 Methods

We present our approach for efficiently incorporat-

ing LLMs into contextual bandits/decision making

in this section. We provide the algorithmic founda-

tion in Section 3.1 and various sampling strategies

in Section 3.2.

3.1 Efficient Decision Making with LLMs

At a high level, our framework utilizes an online

model selection algorithm to adaptively balance

the performance of two sets of base algorithms:

(i) standard contextual bandit algorithms, and (ii)

policies constructed based on off-the-shelf pre-

trained LLMs. Our framework achieves the best-

of-both-worlds by (i) efficiently extracting knowl-

edge stored in pretrained LLMs and (ii) leverag-

ing the long-term learning ability of standard con-

textual bandit algorithms. We construct LLM-

powered policies in Section 3.1.1 and introduce

the algorithmic framework in Section 3.1.2.

3.1.1 LLMs as Decision Making Agents

Since the outputs of LLMs are in the general lan-

guage space that may not align with any action in

the action set, we first provide an algorithm to con-

vert pretrained LLMs to decision making agents.

Algorithm 1 is designed to be compatible with

flexible choices of LLMs, embedding models,

and similarity measures. It prompts the LLM

with context x to obtain top-k most likely out-

puts oi and together with their likelihood qi:

Algorithm 1 Construct LLM-Powered Policies

Input: Context x, pretrained LLM, embedding

model g : language→ R
d, similarity measure

Sim : R
d × R

d → R, and hyperparameter

k ∈ N
+.

1: Prompt LLM with context x to obtain top-

k most likely outputs oi and likelihood qi:
{(o1, q1), · · · , (ok, qk)}.

2: Embed all actions {g(a) : a ∈ A} ¦ R
d and

LLM outputs {g(oi) : i ∈ [k]} ¦ R
d.

3: Get ai := argmaxa∈A Sim(g(oi), g(a)) for

each i ∈ [k].
4: Construct ÃLLM such that P(ÃLLM(x) = ai) =

qi/
∑k

j=1 qj .

{(o1, q1), · · · , (ok, qk)}.
2 For each embedded out-

put g(oi), it then measures its similarity between

each of the embedded action {g(a), a ∈ A}, and

find the one ai with the highest similarity. Finally,

we construct policy ÃLLM by mapping x into the

(multi) set {a1, · · · , ak} with weighted probability,

i.e., P(ÃLLM(x) = ai) = qi/
∑k

j=1 qj . The LLM-

powered policy uses the same policy ÃLLM for the

entire decision making process to avoid expensive

re-training/finetuning of LLMs.

3.1.2 Algorithmic Framework

In Algorithm 2, we present our framework to ef-

ficiently incorporate LLMs into contextual bandits.

Algorithm 2 leverages online model (expert) selec-

tion algorithms (Auer et al., 2002; Agarwal et al.,

2017; Pacchiano et al., 2020) to adaptively balance

standard contextual bandit algorithms and LLM-

powered policies. Compared to existing online

model selection algorithms, Algorithm 2 addition-

ally (i) incorporates Algorithm 1 to convert LLMs

into policies, and (ii) allows more flexible sampling

strategies to control the number of LLM calls (see

Section 3.2 for detailed discussion). At a high-

level, the sampling probability in Algorithm 2 is

designed to rely more on the set of LLM-powered

policies at the beginning, and then gradually tran-

sit to put more probability on standard contextual

bandit algorithms. By doing so, we aim to simulta-

neously achieve the following two objectives:

2Additional instructions or prior interaction history can
also be incorporated into the prompt design. When k = 1, we
only need to obtain the LLM output o, without computing the
likelihood q.

3

9159

Algorithm 2 Efficient Decision Making with

LLMs

Input: A set of contextual bandit algorithms

{ÃCB1 , · · · , ÃCBM1}, and a set of LLMs

{LLMM1+1, · · · , LLMM}.
1: Convert LLMs to {ÃLLMM1+1 , · · · , ÃLLMM }

using Algorithm 1.

2: Order all policies as {Ãi}Mi=1. Initialize sam-

pling strategy p1 = unif [M].
3: for t = 1, 2, . . . , T do

4: Receive contaxt xt.
5: Sample it ∼ pt.
6: Follow Ãit to play action at and observe

loss ℓt(at).
7: Update contextual bandit algorithms with

(xt, at, ℓt(at)).
8: Update sampling strategy pt+1 ← pt.

// We discuss detailed sampling strategies

updates in Section 3.2.

• Leveraging knowledge in LLMs. At the be-

ginning stage, we leverage LLMs to select more

informative data to warm start the learning pro-

cess, and help contextual bandit algorithms learn

better.

• Long-term adaptation to environments. In the

later stage, we leverage the long-term learning

ability of contextual bandit algorithms to mini-

mize losses in the long run.

3.2 Sampling Strategies

In this section, we discuss in detail how to up-

date the sampling strategy in Algorithm 2 (line 8).

We present simple, pre-determined sampling strate-

gies in Section 3.2.1 and learning-based sampling

strategies in Section 3.2.2.

3.2.1 Simple Pre-Determined Sampling

Strategies

We provide several simple, pre-determined sam-

pling strategies in this section. They are simple

and can be implemented without additional com-

putation overhead. They follow the basic idea of

putting more probability on LLM-powered poli-

cies at the beginning and gradually transiting prob-

ability to standard contextual bandit algorithms.

We use pLLMt to denote the total probability of

sampling LLM-powered policies, and use pCBt :=

1 − pLLMt to denote the total probability of sam-

pling standard contextual bandit algorithms. In the

following, we focus primarily on updating pLLMt

(and thus pCBt).3 We set 0 f pmin f pmax f 1 as

user-specified lower and upper bound on pLLMt .

• Polynomial decay. Let Cpoly and ³ be

two hyperparameters. We set pLLMt :=
min{pmax,max{pmin, Cpoly/t

³}}.

• Exponential decay. Let Cexp and ´ be

two hyperparameters. We set pLLMt :=
min{pmax,max{pmin, Cexp exp(−´t)}}.

Number of LLM calls. For these simple sam-

pling strategies, it’s easy to see the expected num-

ber of LLM calls equals to
∑T

t=1 p
LLM
t . One can

also easily tune hyperparameters to control the

number of LLM calls.

3.2.2 Learning-Based Sampling Strategies

While there exist many other learning-based sam-

pling strategies, we primarily use log-barrier on-

line mirror descent (OMD), also known as the

CORRAL update (Agarwal et al., 2017), to up-

date the sampling probability with respect to

importance-weighted losses incurred by base al-

gorithms.

Algorithm 3 Log-Barrier-OMD Update (Agarwal

et al., 2017)

Input: Learning rate ¸ > 0, previous distribution

pt, selected base algorithm index it, and the

incurred loss ℓt(at).
1: Construct an importance-weighted loss vector

ℓt :=
ℓt(at)
pt,it

eit ∈ R
M .

2: Find a constant ¼ ∈ [mini ℓt,i,maxi ℓt,i] such

that
∑M

i=1
1

1

pt,i
+¸(ℓt,i−¼)

= 1.

3: Return an updated distribution pt+1 such that
1

pt+1,i
= 1

pt,i
+ ¸(ℓt,i − ¼).

Algorithm 3 takes as input an initial learning rate

¸ > 0, previous sampling distribution pt, the index

it of selected base algorithm, and the incurred loss

ℓt(at). Algorithm 3 first constructs the standard

importance-weighted unbiased loss estimator for

3One can apply simple strategies (e.g., uniform allocation)
to allocate pLLMt (and pCBt) to individual policies.

4

9160

all base algorithms (line 1), and then follow log-

barrier online mirror descent to update the sam-

pling distribution with respect to the losses (line

3). The update requires a normalization constant

¼ (line 2), which can be approximated with nu-

merical root-finding algorithms such as the Brent’s

method (Zhang, 2011).

We sample from a smoothed version pt of the

sampling distribution pt to help contextual ban-

dit base algorithms explore at the beginning stage.

Specifically, we clip the (total) sampling probabil-

ity on LLMs pLLMt to 1 − pmin if the (total) sam-

pling probability on contextual bandits pCBt falls

below pmin, a user-specified hyperparameter.

Number of LLM calls. To control the number

of LLM calls, we can either early stop sampling

from LLM-powered policies in Algorithm 2 once

the budget B is used up, or further modify the

sampling strategy as

p̌LLMt := pLLMt ·

(

B −Nt

B

)

, p̌CBt := 1− p̌LLMt ,

(1)

where Nt represents the number of LLM calls used

up to time step t. Both approaches limit the number

of LLM calls to at most B.

4 Empirical Results

We conduct extensive experiments to examine the

effectiveness of our proposed framework. We

present experimental setups in Section 4.1, our

main results in Section 4.2, and ablation study in

Section 4.3. We defer additional experimental de-

tails to Appendix A. Code to reproduce all results

is available at https://github.com/dchen48/

DMwithLLM.

4.1 Experimental Setups

Datasets. We conduct experiments on two tex-

tual contextual bandit datasets, whose details are

summarized in Table 1. OneShotWikiLinks-311

(Singh et al., 2012; Vasnetsov, 2018) is a named-

entity recognition task where contexts are text

phrases preceding and following the mention text,

and actions are text phrases corresponding to the

concept names. AmazonCat-13K (Bhatia et al.,

2016) is an extreme multi-label dataset whose con-

texts are text phrases corresponding to the title and

content of an item, and actions are integers corre-

sponding to item tags. We construct binary loss for

each dataset, where selecting the correct actions

leads to a loss of 0, and incorrect actions results in

a loss of 1. In our experiments, we process data in

batches with a batch size of 32.

Table 1: Datasets used for experiments.

Dataset T |A|

OneShotWikiLinks-311 622000 311
AmazonCat-13K 1186239 13330

Baselines. We use SpannerGreedy (Zhu et al.,

2022a) as the contextual bandit baseline, which is

an efficient algorithm for textual decision making.

We use Algorithm 1 with k = 1 to construct the

LLM-powered policy baselines. We consider var-

ious LLM backbones, including Flan-T5 (Chung

et al., 2024), with sizes small (80M parameters),

base (250M parameters) and large (780M parame-

ters), and more recent models Gemma 2B (instruct)

(Team et al., 2024) and GPT-4o-mini (OpenAI,

2024a).

We implement our Algorithm 2 by combin-

ing the two types of baselines mentioned above.

In most of our experiments, we select LLM

backbones from the Flan-T5 model series;4 we

run additional experiments with Gemma 2B and

GPT-4o-mini to verify the efficacy of our method

when implemented with more advanced mod-

els. Unless otherwise noted, we implement Al-

gorithm 2 using Algorithm 3 and a smoothing pa-

rameter pmin = 0.2.

Evaluation metrics. We evaluate algorithms in

terms of both statistical and computational perfor-

mances. Statistically, following the convention in

contextual bandits, we measure the performance

in terms of the (average) reward, where one can

easily convert loss into reward rt(at) := 1−ℓt(at).
Computationally, since models used in contextual

bandit algorithms are relatively lightweight (we

empirically verify this in Section 4.2), we measure

the performance in terms of the number of LLM

4Our goal is not to examine the most advanced LLMs
or contextual bandit algorithms. Instead, we aim to verify
that Algorithm 2 can effectively balance contextual bandit
algorithms and LLMs policies, and outperform both of them
when applied individually.

5

9161

0 2 4 6

Time step ×10
5

0.00

0.05

0.10

0.15

A
ve
ra
g
e
re
w
ar
d

SpannerGreedy

Alg 2 w/ Flan-T5 small

Alg 2 w/ Flan-T5 base

Alg 2 w/ Flan-T5 large

Figure 2: Comparison of average reward on the

OneShotWikiLinks-311 dataset (higher is better). Our

Algorithm 2 is implemented with various sizes of

Flan-T5 model. The dashed lines represent the per-

formance of directly applying LLM-powered policy

ÃFlan-T5 (Algorithm 1) of corresponding sizes.

calls. Our results are averaged over 5 random runs;

shaded area in figures represents the standard error

of the mean.

4.2 Main Results

Statistical efficiency. Fig. 2 compares aver-

age reward achieved by various algorithms on

the OneShotWikiLinks-311 dataset. Our Algo-

rithm 2 significantly outperforms other baselines:

it achieves reward no smaller than 0.17131 no mat-

ter which Flan-T5 model is used; on the contrary,

even with the Flan-T5 large, LLM-powered pol-

icy ÃFlan-T5 only achieves reward 0.12423 and the

contextual bandit algorithm SpannerGreedy only

achieves reward 0.11773. The fact the Algorithm 2

with Flan-T5 small (yellow solid line) greatly out-

performs ÃFlan-T5-large (red dashed line) shows the

benefits of our algorithmic design. Note Flan-T5

small is nearly 10x smaller in parameter count com-

pared to Flan-T5 large.

Computational efficiency. To examine the com-

putational efficiency, we first run experiments to

compare the cost of ÃLLM selection versus the cost

of contextual bandit selection, in terms of the exe-

cution time. As shown in Table 2, all ÃLLM selec-

tions are considerably more expensive (from 52x to

159x more execution time) compared to contextual

bandit selection.

Table 3 presents the fraction of LLMs calls in

Algorithm 2 over the decision making process. Al-

Table 2: Cost ratio of ÃLLM selection and contextual ban-

dit selection, measure as the execution time of Flan-T5

models divided by the execution time of Spanner-

Greedy.

Small (80M) Base (250M) Large (780M)

52.16 79.49 159.20

gorithm 2 not only achieves higher reward (Fig. 2),

but also only calls LLMs in a small fraction (from

6% to 14%) of time steps. For comparison, directly

applying ÃFlan-T5 calls LLM at every time step.

Table 3: Fraction of LLM calls in Algorithm 2 over the

decision making process with Flan-T5 models and on

the OneShotWikiLinks-311 dataset.

Small (80M) Base (250M) Large (780M)

0.06177 0.10033 0.14381

To further improve computational efficiency, we

apply Eq. (1) or early stopping to limit the number

of LLM calls of our algorithm, and show results

in Table 4. Our results show that Algorithm 2

achieves slightly worse reward when limited to a

smaller number of LLM calls. However, Algo-

rithm 2 still outperform both baselines with an

upper bound B = 10000 on the number of LLM

calls, which is around 9x smaller compared to the

number of LLM calls used in the unconstrained

version of Algorithm 2.

Large-scale exhibition. We conduct a large-

scale experiment on the AmazonCat-13K dataset

that has more than 13k actions (around 42x larger

than the OneShotWikiLinks-311 dataset). With

Flan-T5 small model, as shown in Fig. 1, our Al-

gorithm 2 achieves more than a 6x performance

gain over baselines: our algorithm achieves reward

0.33603, yet both SpannerGreedy and ÃFlan-T5

achieves reward below 0.05424. Algorithm 2 calls

LLMs in only 1.5% of the time steps (17783.4
LLM calls on average over horizon 1186239).

Learning with more advanced LLMs. We run

additional experiments on the AmazonCat-13K

dataset with more advanced LLMs: Gemma 2B

and GPT-4o-mini. We show the results in Fig. 3.

When using Gemma 2B as the LLM backbone,

compared to baselines, our Algorithm 2 achieves

6

9162

0.0 0.5 1.0

Time step ×10
6

0.0

0.1

0.2

0.3

0.4

A
ve
ra
g
e
re
w
ar
d

5.82x better

SpannerGreedy

Alg 1 w/ Gemma 2B

Alg 2 w/ Gemma 2B (ours)

0.0 0.5 1.0

Time step ×10
6

0.0

0.1

0.2

0.3

0.4

2.47x better

SpannerGreedy

Alg 1 w/ GPT-4o-mini

Alg 2 w/ GPT-4o-mini (ours)

Figure 3: Performance comparison (higher is better) on the AmazonCat-13K dataset. Algorithm 2 incorporates

SpannerGreedy and Algorithm 1 as base algorithms. Left: Use Gemma 2B as the LLM backbone. Right: Use

GPT-4o-mini as the LLM backbone.

Table 4: Limit the number of LLM calls in Algorithm 2.

Experiments conducted with the Flan-T5 large model

and on the OneShotWikiLinks-311 dataset.

Algorithms # LLM calls Reward

SpannerGreedy N/A 0.11773
ÃFlan-T5-large 622000 0.12423
Algorithm 2 89448.6 0.17913

Algorithm 2
LLM calls Reward

w/ Eq. (1)

B = 10K 7669.2 0.16836
B = 20K 12084.4 0.17309

Algorithm 2 w/
LLM calls Reward

early stopping

B = 10K 10000 0.16774
B = 20K 20000 0.17508

a 5.82x performance gain and calls Gemma 2B

in only 1.62% of the time steps. When using

GPT-4o-mini as the LLM backbone, compared to

baselines, our Algorithm 2 achieves a 2.47x perfor-

mance gain and calls GPT-4o-mini in only 4.49%

of the time steps.5 These results show that our

5Due to computational constraints, we calculate the per-
formance of Algorithm 1 with Gemma 2B or GPT-4o-mini as
the average performance over the first 96000 time steps (the
first 3000 data batches with a batch size 32). These averaged
performances should be fairly accurate, as demonstrated by
the real-time average performance of the Flan-T5 small model
in Fig. 1, which appears to follow a nearly straight line.

Algorithm 2 not only works well with Flan-T5

models but also with more advanced models such

as Gemma 2B and GPT-4o-mini, highlighting the

broad compatibility of our algorithmic design.

4.3 Ablation Study

Probability updating strategies. We examine

the performance of various probability updating

strategies introduced in Section 3.2. Beyond the

log-barrier OMD update, we also include simple

pre-determined updating strategies: polynomial

decay and exponential decay (we set pmin = 0
and pmax = 0.8). For polynomial decay, we set

³ = 1 and select a Cpoly from set {1, 10, 100} that

achieves the highest reward. For exponential decay,

we select ´ ∈ {0.1, 0.01} and Cexp ∈ {1, 10, 100}
jointly that achieves the highest reward. Table 5

shows the results of various probability updating

strategies: while log-barrier OMD achieves better

reward, pre-determined updating strategies gener-

ally leads to a smaller number of LLM calls.

Table 5: Comparison of different probability updating

strategies. Experiments conducted with the Flan-T5

large model and on the OneShotWikiLinks-311

dataset. We record the final average reward.

Methods # LLM calls Reward

Polynomial decay 19419.8 0.17413
Exponential decay 14943.6 0.17259
Log-barrier OMD 89448.6 0.17913

7

9163

Smoothing strategy for Algorithm 3. In Algo-

rithm 3, we adopt the smoothing strategy that clip

the (total) sampling probability on LLMs pLLMt

to 1 − pmin if the (total) sampling probability on

contextual bandit algorithms pCBt falls below pmin.

By doing this, we help contextual bandit base al-

gorithms within Algorithm 2 better adapt to the

environment, especially at the beginning stage. We

compare our clipping-type smoothing strategy with

the mixing-type smoothing strategy proposed in

Agarwal et al. (2017): given a smooth parameter µ,

set pt := (1 − µ) · pt + µ · unif [M]. We present

the results in Table 6. Our result indicates that

smoothing Algorithm 3 is important and our clip-

ping strategy work betters than the mixing strategy.

Table 6: Comparison of different smoothing

strategies for Algorithm 3. Experiments con-

ducted with the Flan-T5 large model and on the

OneShotWikiLinks-311 dataset.

Methods # LLM calls Reward

No smoothing 618551.4 0.12386

Clipping (ours) # LLM calls Reward

pmin = 0.1 144201.2 0.17532
pmin = 0.2 89448.6 0.17913

Mixing # LLM calls Reward

µ = 0.05 151608.0 0.17449
µ = 0.1 149728.6 0.17288
µ = 0.2 189486.0 0.16691
µ = 0.4 248214.4 0.15862

5 Analyses

LLMs empower contextual bandit algorithms.

As shown in Fig. 2, Algorithm 2 consistently out-

performs its base algorithms. Since the LLM back-

bones in LLM-powered policies are never updated

(for efficiency reasons), we hypothesizes that our

Algorithm 2 empowers its bandit base algorithms

with the help of LLMs.

To test this hypothesis, we first plot the real-time

probability pCBt of Algorithm 2 sampling its contex-

tual bandit base algorithm (Fig. 4, left). Since pCBt
quickly increases its value to (around) 1 after the

initial learning stage, we know that the contextual

bandit base algorithm within Algorithm 2 plays

an important role after the initial stage. We then

plot the hypothetical performance of the contextual

bandit base algorithm within Algorithm 2 (as if it

were played at every time step). As shown in Fig. 4

(right), the contextual bandit base algorithm within

Algorithm 2 (solid black line) achieves much better

performance compared to the stand-alone contex-

tual bandit algorithm (0.17546 vs. 0.11773). Since

the main difference lies in the incorporation of data

selected by LLM-powered policy, this shows that

LLM selected data helps contextual bandit algo-

rithm learn better.

We also draw the hypothetical performance of

SpannerGreedy learned with purely LLM se-

lected data (solid purple line in Fig. 4 right),

which is worse than SpannerGreedy (0.06669
vs. 0.11773). This suggests that exploration in

contextual bandit algorithm is also important and

cannot be replaced with LLM selected data.

Algorithm 2 with multiple LLMs. We run Al-

gorithm 2 with two LLMs: Flan-T5 large and

Flan-T5 small. We compare this approach to Al-

gorithm 2 with either Flan-T5 large or Flan-T5

small. We use NS and NL to denote the number

of Flan-T5 large and Flan-T5 small calls, respec-

tively, and show the results in Table 7. Compared

to learning with a large model, learning with both

large and small models achieves slightly worse

reward,6 but also uses a slightly smaller number

of large model calls. Algorithm 2 relies more on

the large model (89224 calls) instead of the small

model (5833.4 calls on average), as it is designed

to automatically adapt to better base policies.

Table 7: Algorithm 2 with multiple LLMs. Experiments

conducted on the OneShotWikiLinks-311 dataset.

Flan-T5 models NS NL Reward

large + small 5833.4 89224.0 0.17813
large N/A 89448.6 0.17913
small 38424.0 N/A 0.17131

6 Related Work

Sequential decision making. Sequential deci-

sion making is rooted in rich theoretical founda-

6This may be due to the fact that balancing over more
models creates larger learning overheads.

8

9164

0 2 4 6

Time step ×10
5

0.2

0.4

0.6

0.8

1.0
P
ro
b
a
b
ili
ty

0 2 4 6

Time step ×10
5

0.00

0.05

0.10

0.15

A
ve
ra
g
e
re
w
ar
d

SpannerGreedy

CB in Alg 2 w/ Flan-T5 large

CB with Flan-T5 large data

Alg 2 w/ Flan-T5 large

Figure 4: Experiments with the Flan-T5 large model and on the OneShotWikiLinks-311 dataset. Left: Real-time

probability pCB
t

of sampling contextual bandit base algorithm in Algorithm 2. Right: Hypothetical performance of

the contextual bandit base algorithm within Algorithm 2 (black solid line) and hypothetical performance of the

contextual bandit algorithm learned with purely LLM selected data (solid purple line).

tions (Langford and Zhang, 2007; Agarwal et al.,

2014; Foster et al., 2021), and there is a long line of

work that develop efficient decision making algo-

rithms with general function approximation (Agar-

wal et al., 2012; Foster et al., 2018; Foster and

Rakhlin, 2020; Simchi-Levi and Xu, 2021; Zhu

et al., 2022a; Zhu and Mineiro, 2022; Rucker et al.,

2023; Zhang et al., 2024); in our experiments, we

include one such algorithm to textual environments.

Another line of work focus on developing online

model selection algorithms to balance the perfor-

mance of base algorithms (Auer et al., 2002; Agar-

wal et al., 2017; Pacchiano et al., 2020; Zhu and

Nowak, 2020, 2022; Marinov and Zimmert, 2021;

Zhu et al., 2022b; Dann et al., 2024). Compared

to previous online model selection approaches, we

further incorporate LLMs into the decision making

process.

LLMs for decision making. While there have

been many studies that leverage LLMs into super-

vised learning (Xie et al., 2021; Garg et al., 2022;

Akyürek et al., 2022), the understanding of how to

leverage LLMs into sequential decision making is

less developed. There exist two main approaches:

(i) view decision making as sequence modeling

and pretrain/finetune large models to adapt them to

unknown environments (Chen et al., 2021; Zheng

et al., 2022; Reid et al., 2022; Sun et al., 2023;

Raparthy et al., 2023; Lee et al., 2024), and (ii)

leverage prompt engineering and in-context learn-

ing to adapt pretrained large models to sequential

decision making problems (Krishnamurthy et al.,

2024). In this paper, we propose a new approach

that efficiently incorporates LLMs into sequential

decision making, addressing drawbacks of previ-

ous approaches.

7 Conclusion

In this paper, we study the problem of how to ef-

ficiently incorporate large language models into

contextual bandits, a key problem in sequential

decision making that emphasizes the fundamental

challenge of balancing exploration and exploita-

tion. We propose to use online model selection

algorithms to adaptively balance LLMs agents and

standard contextual bandit algorithms. Statistically,

our approach greatly outperforms stand-lone LLM-

powered policies and contextual bandit algorithms.

Computationally, our approach avoids the need for

expensive re-training or finetuning, and utilizes

only a small fraction of LLM calls throughout the

decision making process. Our framework is highly

flexible, allowing for the integration of various off-

the-shelf pretrained LLMs. In our experiments,

it delivers promising results even when using a

language model with only 80 million parameters.

9

9165

8 Limitations

Our current approach primarily addresses contex-

tual bandit problems, a specific case of reinforce-

ment learning that lacks state transitions. Although

it is possible to abstract away state transitions, treat-

ing an episode of reinforcement learning as a sin-

gle step in a contextual bandit and applying our

algorithms, we believe that more fine-grained treat-

ments are necessary to achieve better performance

in reinforcement learning. Moving forward, we

plan to extend our algorithms and analyses to gen-

eral reinforcement learning problems.

9 Acknowledgement

Dingyang Chen and Qi Zhang acknowledge fund-

ing support from NSF award 2154904.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong
Hoang, John Langford, Stephen Lee, Jiaji Li, Dan
Melamed, Gal Oshri, Oswaldo Ribas, et al. 2016.
Making contextual decisions with low technical debt.
arXiv preprint arXiv:1606.03966.

Alekh Agarwal, Miroslav Dudík, Satyen Kale, John
Langford, and Robert Schapire. 2012. Contextual
bandit learning with predictable rewards. In Artificial
Intelligence and Statistics, pages 19–26. PMLR.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Lang-
ford, Lihong Li, and Robert Schapire. 2014. Tam-
ing the monster: A fast and simple algorithm for
contextual bandits. In International Conference on
Machine Learning, pages 1638–1646. PMLR.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and
Robert E Schapire. 2017. Corralling a band of ban-
dit algorithms. In Conference on Learning Theory,
pages 12–38. PMLR.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2022. What learning
algorithm is in-context learning? investigations with
linear models. arXiv preprint arXiv:2211.15661.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. 2002. The nonstochastic multi-
armed bandit problem. SIAM journal on computing,
32(1):48–77.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal,
Y. Prabhu, and M. Varma. 2016. The extreme classi-
fication repository: Multi-label datasets and code.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. 2021. Decision
transformer: Reinforcement learning via sequence
modeling. Advances in neural information process-
ing systems, 34:15084–15097.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Chris Dann, Claudio Gentile, and Aldo Pacchiano. 2024.
Data-driven online model selection with regret guar-
antees. In International Conference on Artificial In-
telligence and Statistics, pages 1531–1539. PMLR.

Dylan Foster, Alekh Agarwal, Miroslav Dudik, Haipeng
Luo, and Robert Schapire. 2018. Practical contextual
bandits with regression oracles. In International
Conference on Machine Learning, pages 1539–1548.
PMLR.

Dylan Foster and Alexander Rakhlin. 2020. Beyond
UCB: Optimal and efficient contextual bandits with
regression oracles. In International Conference on
Machine Learning, pages 3199–3210. PMLR.

Dylan J Foster, Sham M Kakade, Jian Qian, and
Alexander Rakhlin. 2021. The statistical complex-
ity of interactive decision making. arXiv preprint
arXiv:2112.13487.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and
Gregory Valiant. 2022. What can transformers learn
in-context? a case study of simple function classes.
Advances in Neural Information Processing Systems,
35:30583–30598.

Google. 2024. Google Gemma-2b-instruct.
https://huggingface.co/google/gemma-2b-it.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster,
Cyril Zhang, and Aleksandrs Slivkins. 2024. Can
large language models explore in-context? arXiv
preprint arXiv:2403.15371.

John Langford and Tong Zhang. 2007. The epoch-
greedy algorithm for multi-armed bandits with side
information. Advances in neural information pro-
cessing systems, 20.

10

9166

Tor Lattimore and Csaba Szepesvári. 2020. Bandit
algorithms. Cambridge University Press.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chan-
dak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. 2024. Supervised pretraining can learn in-
context reinforcement learning. Advances in Neural
Information Processing Systems, 36.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep re-
inforcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. 2010. A contextual-bandit approach to per-
sonalized news article recommendation. In Proceed-
ings of the 19th international conference on World
wide web, pages 661–670.

Teodor Vanislavov Marinov and Julian Zimmert. 2021.
The pareto frontier of model selection for general
contextual bandits. Advances in Neural Information
Processing Systems, 34:17956–17967.

OpenAI. 2024a. Gpt-4o mini: advancing cost-efficient
intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/.

OpenAI. 2024b. Openai developer quickstart tutorial.
https://platform.openai.com/docs/quickstart.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup
Rao, Julian Zimmert, Tor Lattimore, and Csaba
Szepesvari. 2020. Model selection in contextual
stochastic bandit problems. Advances in Neural In-
formation Processing Systems, 33:10328–10337.

Sharath Chandra Raparthy, Eric Hambro, Robert
Kirk, Mikael Henaff, and Roberta Raileanu. 2023.
Generalization to new sequential decision mak-
ing tasks with in-context learning. arXiv preprint
arXiv:2312.03801.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu.
2022. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Mark Rucker, Yinglun Zhu, and Paul Mineiro. 2023.
Infinite action contextual bandits with reusable data
exhaust. In International Conference on Machine
Learning, pages 29259–29274. PMLR.

David Simchi-Levi and Yunzong Xu. 2021. Bypassing
the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathemat-
ics of Operations Research.

Sameer Singh, Amarnag Subramanya, Fernando
Pereira, and Andrew McCallum. 2012. Wikilinks:
A large-scale cross-document coreference corpus
labeled via links to Wikipedia. Technical Re-
port UM-CS-2012-015, University of Massachusetts,
Amherst.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Roge-
rio Bonatti, Furong Huang, and Ashish Kapoor.
2023. Smart: Self-supervised multi-task pretrain-
ing with control transformers. arXiv preprint
arXiv:2301.09816.

Hampus Gummesson Svensson. 2023. Sequential
Decision-Making for Drug Design: Towards Closed-
Loop Drug Design. Chalmers Tekniska Hogskola
(Sweden).

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Ambuj Tewari and Susan A Murphy. 2017. From ads
to interventions: Contextual bandits in mobile health.
Mobile health: sensors, analytic methods, and appli-
cations, pages 495–517.

Andrey Vasnetsov. 2018. Oneshot-wikilinks.
https://www.kaggle.com/generall/oneshotwikilinks.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2021. An explanation of in-context
learning as implicit bayesian inference. arXiv
preprint arXiv:2111.02080.

Mengxiao Zhang, Yuheng Zhang, Haipeng Luo, and
Paul Mineiro. 2024. Efficient contextual bandits
with uninformed feedback graphs. arXiv preprint
arXiv:2402.08127.

Zhengqiu Zhang. 2011. An improvement to the brent’s
method. International Journal of Experimental Al-
gorithms, 2(1):21–26.

Qinqing Zheng, Amy Zhang, and Aditya Grover. 2022.
Online decision transformer. In international con-
ference on machine learning, pages 27042–27059.
PMLR.

11

9167

Yinglun Zhu, Dylan J Foster, John Langford, and Paul
Mineiro. 2022a. Contextual bandits with large action
spaces: Made practical. In International Conference
on Machine Learning, pages 27428–27453. PMLR.

Yinglun Zhu, Julian Katz-Samuels, and Robert Nowak.
2022b. Near instance optimal model selection for
pure exploration linear bandits. In International Con-
ference on Artificial Intelligence and Statistics, pages
6735–6769. PMLR.

Yinglun Zhu and Paul Mineiro. 2022. Contextual ban-
dits with smooth regret: Efficient learning in contin-
uous action spaces. In International Conference on
Machine Learning, pages 27574–27590. PMLR.

Yinglun Zhu and Robert Nowak. 2020. On regret with
multiple best arms. Advances in Neural Information
Processing Systems, 33:9050–9060.

Yinglun Zhu and Robert Nowak. 2022. Pareto optimal
model selection in linear bandits. In International
Conference on Artificial Intelligence and Statistics,
pages 6793–6813. PMLR.

12

9168

A Other Details for Experiments

A.1 Datasets

OneShotWikiLinks (Singh et al., 2012; Vasnetsov, 2018) is a named-entity recognition task where

contexts are text phrases (English) preceding and following the mention text, and actions are text

(English) phrases corresponding to the concept names. OneShotWikiLinks-311 is a subset of this dataset

obtained by taking all actions with at least 2000 examples. We construct binary reward function that is an

indicator function for whether the action corresponds to the actual entity mentioned.

AmazonCat-13K (Bhatia et al., 2016) is an extreme multi-label dataset whose contexts are text phrases

(English) corresponding to the title and content of an item, and actions are integers corresponding to item

tags. We construct binary reward function that indicates whether (one of) the correct item tags is selected.

A.2 Models and Hyperparameters

A.2.1 Algorithm 1

We construct LLM-powered policies using Algorithm 1 and various LLM backbones, including Flan-T5

models of different sizes (Chung et al., 2024), Gemma 2B (instruct) (Team et al., 2024) and GPT-4o-mini

(OpenAI, 2024a). We use sentence transformer (Reimers and Gurevych, 2019) as the embedding model,

cosine similarity as the similarity measure, and hyperparameter k = 1. We provide the prompt design

used in line 1 of Algorithm 1 below.

OneShotWikiLinks-311. We only run experiments with Flan-T5 models on this dataset. Given the text

phrases preceding the mention text text_preceding, and following the mention text text_following,

we aim to predict the mention text. Let <extra_id_0> represent the masked token in Flan-T5 models

that needs to be filled in; we construct the prompt as:

question: text_preceding <extra_id_0>. text_following

AmazonCat-13K. We run experiments with Flan-T5 models, Gemma 2B and GPT-4o-mini on this

dataset. Given the title and content of an item, we aim to predict the associated label. We construct

prompts for different LLMs in the following.

• Flan-T5 models. We construct the prompt as:

Title: title

Content: content

Task: Predict the associated label.

• Gemma 2B. Following the template provided in Google (2024), we construct the prompt as:

<bos><start_of_turn>user

Title: title

Content: content

Task: Predict the item tag based on the content and title.<end_of_turn>

<start_of_turn>model

• GPT-4o-mini. Following the format provided in OpenAI (2024b), we construct system prompt as:

Predict the item tag based on the content and title.

and construct user prompt as:

Title: title

Content: content

13

9169

A.2.2 Other Models and Hyperparameters

For SpannerGreedy, we adapt the implementation and hyperparameters from Zhu et al. (2022a).

We use sentence transformer (Reimers and Gurevych, 2019) to embed contexts in R
1536 by con-

catenating text_preceding and text_following (OneShotWikiLinks-311) or title and content

(AmazonCat-13K). We use sentence transformer to embed actions in R
768 and then apply SVD to reduce

the dimensionality of actions to R
50. SpannerGreedy uses a bilinear function f(x, a) = ïϕ(a),Wϕ(x)ð

to make prediction, where ϕ(·) represents (pre-processed) embedding for contexts and actions. For Algo-

rithm 3, we set the learning rate ¸ = 0.05.

A.3 Other Details

We implement our code in PyTorch and run our experiments on NVIDIA Tesla V100 GPUs and NVIDIA

A100 GPUs. Our paper uses several scientific artifacts, and our usage follows their licenses.

14

9170

