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Abstract

Krylov subspace methods are a ubiquitous tool for computing near-optimal rank k approxi-
mations of large matrices. While “large block” Krylov methods with block size at least k give the
best known theoretical guarantees, block size one (a single vector) or a small constant is often
preferred in practice. Despite their popularity, we lack theoretical bounds on the performance
of such “small block” Krylov methods for low-rank approximation.

We address this gap between theory and practice by proving that small block Krylov methods
essentially match all known low-rank approximation guarantees for large block methods. Via a
black-box reduction we show, for example, that the standard single vector Krylov method run
for t iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov
method with block size ` � k run for O(t/`) iterations, up to a logarithmic dependence on the
smallest gap between sequential singular values. That is, for a given number of matrix-vector
products, single vector methods are essentially as e↵ective as any choice of large block size.

By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove
that the dependence on the smallest singular value gap can be eliminated if the input matrix
is perturbed by a small random matrix. Further, we show that single vector methods match
the more complex algorithm of [Bakshi et al. ‘22], which combines the results of multiple block
sizes to achieve an improved algorithm for Schatten p-norm low-rank approximation.

1 Introduction

Krylov subspace methods have been studied since the 1950s and remain our most reliable algorithms
for approximating eigenvectors and singular vectors of large matrices. Krylov methods access a
matrix A via repeated matrix multiplications (each considered an iteration of the method) either
with a single vector or a block of vectors. There has been significant interest in analyzing how many
iterations are required to obtain accurate eigenvector or singular vector approximations. Classic
work studies both single vector [Kaniel, 1966, Paige, 1971] and block methods [Cullum and Donath,
1974, Kahan and Parlett, 1976, Saad, 1980, Saad, 2011].

More recently, there has been interest in analyzing Krylov subspace methods specifically for
the downstream task of low-rank approximation. Since the top k singular vectors can be used
to obtain an optimal rank-k approximation, the goal is to understand how many iterations are
required to compute approximate singular vectors that yield a near-optimal rank-k approximation
[Rokhlin et al., 2009, Halko et al., 2011b, Woodru↵, 2014]. This problem di↵ers from classical work
because convergence to the actual top singular vectors is su�cient but not necessary for obtaining
an accurate low-rank approximation [Drineas and Ipsen, 2019].

Prototypical single vector and block Krylov methods for low-rank approximation are shown in
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Algorithm 1 Single Vector Krylov Method for Low-Rank Approximation

input: Matrix A 2 Rn⇥d. Target rank k. Starting vector x 2 Rn. Number of iterations t.
output: Orthogonal matrix Q 2 Rn⇥k.

1: Compute an orthonormal basis Z for K = [x, (AA|)x, (AA|)2x, . . . , (AA|)tx ].
2: Compute Uk, the k top eigenvectors of M = Z|AA|Z
3: return Q = ZUk.

Algorithm 2 Block Krylov Method for Low-Rank Approximation

input: Matrix A 2 Rn⇥d. Target rank k. Starting block B 2 Rn⇥`. Number of iterations t.
output: Orthogonal matrix Q 2 Rn⇥k.

1: Compute an orthonormal basis Z for K = [B, (AA|)B, (AA|)2B . . . , (AA|)tB ].
2: Compute Uk, the k top eigenvectors of M = Z|AA|Z
3: return Q = ZUk.

Algorithm 1 and Algorithm 2.1 For an n⇥d input A, both methods returns an n⇥k orthogonal Q
so that the rank-k matrix QQ|A is a good approximation to A. Ideally, it is nearly as good as A’s
optimal rank k approximation, Ak, which is given via projection onto A’s top k singular vectors.2

1.1 Large block methods and gap-free bounds

Most recent work on Krylov methods for low-rank approximation focuses on “large block” methods,
where ` in Algorithm 2 is chosen to be � k [Rokhlin et al., 2009, Halko et al., 2011a, Gu, 2015, Musco
and Musco, 2015, Tropp, 2018, Yuan et al., 2018, Drineas et al., 2018, Tropp, 2018]. In this
regime, block methods are known to quickly converge to a near-optimal low-rank approximation.

For example, in just O

✓
log(n/")p

(�k��`+1)/�k

◆
iterations, Algorithm 2 initialized with an i.i.d. random

Gaussian matrix B 2 Rn⇥` with block size ` � k, achieves with high probability the bound

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ (1)

for any " > 0 and k ·k⇠ being either the Frobenius or spectral norm [Musco and Musco, 2015]. That
is, convergence is linear with a rate depending on the square root of the relative gap from the k

th

singular value, �k, to the (`+ 1)st singular value, �`+1. Even for ` mildly larger than k, this gap is
often quite large. For example, [Halko et al., 2011b] recommends setting ` = k + 5 or k + 10.

Beyond such spectrum dependent guarantees, another advantage of large block Krylov methods
is that they enjoy gap-independent bounds, which do not involve any terms depending on A’s
spectrum. For example, a now standard result is that Algorithm 2 achieves Equation (1) in just
O( 1p

"
log(n" )) iterations [Musco and Musco, 2015].3 Further, this bound is essentially optimal among

all methods that access A only through matrix-vector products [Simchowitz et al., 2018, Bakshi

1
Algorithms 1 and 2 are examples of the simplest possible implementations of Krylov methods for low-rank

approximation. In practice, various optimizations like the Lanczos recurrence are often applied, and additional care

is necessary to ensure that the orthogonal basis for the Krylov subspace K in computed in a numerically stable way

[Saad, 2011]. While an important topic, this paper is not focused on the numerical stability of Lanczos methods. All

derivations assume computation in the Real RAM model of arithmetic.
2
For simplicity, we focus on computing an approximate left singular vector subspace spanned by Q 2 Rn⇥k

. If we

instead care about computing right singular vectors, Algorithms 1 and 2 can be applied to A|
instead.

3
Randomly initialized block power method with block size k gives a similar bound, but with a suboptimal 1/"

rather than 1/
p
" dependence on the error [Rokhlin et al., 2009, Halko et al., 2011b].
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Figure 1: Comparison of the number of matrix-vector products needed for Krylov iteration to
converge to an accurate rank 50 approximation under di↵erent block sizes. The left figure uses
a matrix with singular values decaying polynomially; the middle figure uses a matrix from the
SuiteSparse library; the right figure uses a worst-case matrix from the literature. See Section 6.5
for more details. In the first two plots, single vector Krylov outperforms large block methods. Even
in the adversarially chosen hard instant on the right, it does not perform much worse.

and Narayanan, 2023]. Bounds where the iteration complexity does not depend on properties of A,
are called “universal” guarantees [Urschel, 2021]. Universal bounds are useful in applications where
properties like large spectral gaps cannot be ensured, but where worst-case accuracy guarantees
are still desired [Hegde et al., 2016, Li et al., 2017, Soltani and Hegde, 2018].

In contrast to large block sizes, it is impossible to prove gap-independent guarantees for single
vector or small block Krylov iteration. To see why, consider A 2 Rk⇥d that is all zeros, except that
Aii = 1 for i = 1, . . . , k. I.e., A =

⇥
Ik 0

⇤
. where Ik denotes the k ⇥ k identity matrix. If we run

Algorithm 2 on this matrix with block size ` < k, then it can be checked that the Krylov subspace
K will have rank ` < k, and thus any low-rank approximation obtained from the subspace cannot
be near-optimal. In general, bounds for small block methods must depend inversely on the gaps
between sequential singular values. In the above example, these gaps are equal to 0.

1.2 Main contribution: the virtue of small block Krylov methods

The inability of single vector and small block Krylov methods to o↵er gap-independent bounds has
been a point of concern for the use of these methods in computing low-rank approximations [Li
et al., 2017, Musco and Musco, 2015, Li and Zhang, 2015]. At the same time, in practice, low-rank
approximation is frequently solved using iterative eigensolvers based on single vector or small block
methods. Such methods are the standard in MATLAB, Julia, Python, and essentially all languages
used for matrix computations [Lehoucq et al., 1998, Mathworks, 2023, SciPy Community, 2023].
These methods often perform very well, converging quickly to good low-rank approximations. In
fact, in our experience, they typically outperform large block methods in terms of the number of
matrix-vector products required to achieve a desired level of accuracy – see Figure 1.4

The main goal of this paper is to explain this phenomenon. We ask:

4
The number of matrix-vector products used by an algorithm does not necessarily translate directly into the

computational cost of the algorithm. For example, in many computing systems, it is faster to multiply a matrix A
by a block of k vectors all at once, than to multiply by k vectors chosen in sequence. Nevertheless, matrix-vector

products are still a valuable measure of complexity for many problems where they dominate other runtime costs.
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For low-rank approximation, when and why do small block Krylov methods require the
same or fewer matrix-vector multiplications than large block Krylov methods?

We answer this question in a strong way by proving that small block methods nearly match or
even improve on all known theoretical guarantees on the convergence of large-block methods for
low-rank approximation. In particular, up to a logarithmic dependence on the smallest gap between
singular values, the trade-o↵ between accuracy and number of matrix-vector products achieved by
small block methods matches the trade-o↵ achieved by large block methods. Since there are a
variety of guarantees known for large block methods, this claim is broken down as a number of
results throughout our paper. We state one such result as a concrete example:

Theorem 1. For A 2 Rn⇥d, let gmin = mini2{1,...,k�1}
�i��i+1

�i
be the smallest relative gap among

the top k singular values. For any ", � 2 (0, 1), Algorithm 1 initialized with an i.i.d. mean zero
Gaussian vector x and run for t = O( kp

"
log( 1

gmin
) + 1p

"
log( n

"� )) iterations returns an orthogonal

Q 2 Rn⇥k such that, with probability at least 1� �, letting k · k⇠ be the spectral or Frobenius norm,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠.

As discussed, [Musco and Musco, 2015] prove that Algorithm 2 with block size k achieves an

identical error bound in O

⇣
log(n/"�)p

"

⌘
iterations. This translates to O

⇣
k log(n/"�)p

"

⌘
matrix-vector

products, which Theorem 1 matches, except for the dependence on log(1/gmin). At the same time,
Theorem 1 improves on the large block bound by separating the log(n/"�) and k terms.

Remark. Since it is a logarithmic instead of polynomial dependence, we consider the log(1/gmin)
term to be mild for typical problems. In experiments, it appears to have little impact on the ob-
served convergence of the single vector Krylov method (see Section 6). Indeed, except in adversarial
cases, such as the identity matrix, where gmin truly equals 0, in finite precision, we cannot expect
to resolve singular value gaps to accuracy better than machine precision. So, it is reasonable to
think that in practice, this term should be at most a moderate constant. We make this intuition
formal in Section 5, showing that the dependence on gmin can be eliminated in a smoothed analysis
setting (i.e., when the input is perturbed by a small random matrix).

Our proof for Theorem 1 (with some additional results) is given in Section 3. Our approach is
via a black-box reduction to the existing analysis for large block methods. In particular, we view
the single-vector method of Algorithm 1 as a block Krylov method in disguise. We observe that

x AA|x (AA|)tx

Sk (AA|)Sk (AA|)2Sk (AA|)t�k+1Sk

· · ·

· · ·

Figure 2: Our main analysis is based on the simple
observation that the span of the Krylov subspace gen-
erated by a single vector Krylov method after t itera-
tions is exactly equivalent to that generated by a block
Krylov method run for t�k+1 iterations with starting
block Sk = [x, (AA|)x, . . . , (AA|)kx ]. This obser-
vation allows us to take advantage of existing results
on block methods in a black-box way.
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the span of the single-vector Krylov subspace K (Line 1 of Algorithm 1) is exactly equivalent to
the span of a block Krylov subspace generated from a specific starting matrix. Concretely, suppose
Algorithm 1 is run for t � k iterations and let Sk 2 Rd⇥k equal the first k columns of K. I.e.,

Sk :=
⇥
x AA|x (AA|)2x . . . (AA|)k�1x

⇤
. (2)

Then we can check that for q = t� k + 1:

span(K) = span
�⇥
Sk AA|Sk (AA|)2Sk . . . (AA|)qSk

⇤�
. (3)

This equivalence is visualized in Figure 2. Since both Algorithm 1 and Algorithm 2 only depend on
the span of the Krylov subspace they generate (through Z), the single vector method thus matches
the block Krylov method run for k � 1 fewer iterations, with the specific starting block Sk.

With this perspective, a naive hope might be to directly appeal to prior results on block Krylov
iteration to analyze the single vector method. Unfortunately, these results rely on the fact that
the starting matrix B is chosen at random, typically with i.i.d. Gaussian or sub-Gaussian entries
[Halko et al., 2011b, Musco and Musco, 2015, Bakshi et al., 2022]. In contrast, Sk is far from a
random Gaussian matrix. Its columns are highly dependent on each other. To understand just how
far Sk is from an ideal starting matrix, note that, generally, a block Krylov subspace with q blocks
will have rank qk when B is a random Gaussian matrix. In contrast, the block Krylov subspace⇥
Sk AA|Sk . . . (AA|)qSk

⇤
only has rank t = q + k � 1.

Surprisingly, however, we are still able to show that Sk provides a (barely) good enough starting
matrix for the block Krylov method in Algorithm 2 to succeed. To do so, we consider a natural
definition of what it means to be a “good” starting matrix. At a high-level, we need Sk to have
non-negligible inner product with all top k singular vectors of A. While Sk is exponentially worse
in terms of starting inner product than a random B, this is made up for by the fact that it is
far cheaper (in terms of matrix-vector products) to build a block Krylov subspace with Sk; we
can compute a degree q subspace using just q + k matrix-vector products with A. In contrast,
computing a degree q block Krylov subspace with a random starting block B 2 Rn⇥k requires qk

matrix-vector products. The detailed proof is presented in Section 3.

1.3 Results and Paper Organization

Theorem 1 is our main result, and its proof is contained entirely in Section 3. In addition to this
result, whose proof shows the crux of our argument that single vector methods converge quickly,
we include several other bounds for single vector and small block methods. We summarize these
additional results below. Section 6 contains experiments which demonstrate that our bounds are
predictive of the performance of these methods in practice.

Spectrum adaptive bounds, Section 4.1. The black-box nature of Theorem 1’s proof allows
us to similarly adapt other results on large block Krylov methods to the single vector setting.
For example, we show that Algorithm 1 matches known “spectrum dependent” bounds for large
block methods. As discussed in Section 1.1, the convergence rate of these bounds depends on
gk!` =

�k��`+1

�k
, the gap between the kth and (`+1)st singular values. Since this gap increases with

`, there is a natural tradeo↵: a larger block means more matrix-vector products per iteration, but
fewer iterations. Our proof shows that single vector methods match any block size ` � k (up to
a dependence on log(1/gmin)). I.e., they automatically match the complexity of the method with
best choice of large block size, without need for parameter tuning.

Schatten p-norm low-rank approximation, Sections 4.2 and 4.3. Recently, a combination
of spectrum dependent and spectrum independent bounds have been used to give faster convergence
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rates for Schatten p-norm low rank approximation. In particular, for constant p, [Bakshi et al.,
2022] show how to find a low-rank approximation achieving kA � QQ|Akp  (1 + ")kA � Akkp
using just Õ(k/"1/3) matrix-vector products with A. For the Frobenius norm (i.e., p = 2), this is an
improvement on the Õ(k/

p
") required by [Musco and Musco, 2015]. Their method requires running

Algorithm 2 with multiple choices of block size, and optimizing over the best Krylov subspace. We
show that, again up to a logarithmic dependence on 1/gmin, the exact same guarantees can be
obtained by simply running a single vector Krylov method. In concurrent work, [Bakshi and
Narayanan, 2023] show a similar result without a dependence on log(1/gmin) or log(n).

Beyond block size 1, Section 4.4. While the above results focus on the single vector Krylov
method, our bounds naturally generalize to other small block sizes between 1 and k (e.g. 4, 10, or
k � 1). For general small block size b, we show that dependence on gmin can be replaced with a
dependence on the smallest “bth order” gap gmin,b := mini2{1,...,k�b}

�i��i+b

�i
.

Removing the gap dependence, Section 5. While a dependence on singular value gaps is
unavoidable for small block methods in the worst-case, the parameter seems to rarely have an
impact in practice. We take a step towards explaining this observation via a smoothed-analysis
result [Spielman and Teng, 2004, Sankar et al., 2006]. Specifically, we leverage work in random
matrix theory on eigenvalue repulsion, which shows that small spectral gaps in a matrix are brittle:
adding a tiny amount of random noise to any matrix ensures that its singular value gaps are at
worst inverse polynomial in the problem parameters. Using this fact, we present bounds that replace
the dependence on log(1/gmin) in our prior results with a dependence on log(nk

�" ) for randomly
perturbed matrices, where k = �1/�k measures the conditioning of the top k singular values.
From an algorithm design perspective, the log(1/gmin) can be removed even in the worst case by
explicitly adding a random diagonal perturbation to A.

Single Vector Simultaneous Iteration, Appendix G. Lastly, we describe a single vector
analogue for simultaneous iteration. While it converges somewhat more slowly, this method has
the advantage of using less space than the single vector Krylov method, which needs to store
the span for the entire Krylov subspace. For instance, it allows us to store just k vectors while
converging in Õ(k/") iterations, in contrast to the Õ(k/

p
") iterations required by the standard

single vector Krylov method. Since single vector simultaneous iteration only uses a single starting
vector, its convergence still depends on log(1/gmin).

1.4 Related Work

We briefly discuss additional prior work on low-rank approximation and Krylov methods, though
since the literature is rich, so we cannot cover all relevant prior work. As discussed, early analyses
of Krylov methods for approximating eigenvectors consider both single vector and block methods
[Saad, 1980, Golub and Underwood, 1977, Kuczyński and Woźniakowski, 1992]. However, this work
does not directly provide strong bounds for low-rank approximation, since convergence to the top
singular vectors is not required to accurately solve the problem [Drineas and Ipsen, 2019].

For low-rank approximation, large block methods have been more popular. In addition to prior
work already discussed, this includes work on randomized sketching methods, which can be viewed
as large block Krylov methods run for one or two iterations [Martinsson et al., 2006, Cohen et al.,
2015, Clarkson and Woodru↵, 2013, Drineas and Mahoney, 2016, Martinsson and Tropp, 2020].
Sketching methods have become a mainstay technique in randomized numerical linear algebra.

Work on single vector or small block methods for low-rank approximation has been more sparse.
[Wang et al., 2015] experimentally study small block methods, and suggest that large blocks are
only worthwhile when singular value gaps are very small, when low precision su�ces, or when
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making many passes over a matrix is expensive. [Yuan et al., 2018] theoretically studies the related
problem of singular value approximation for all block sizes, and as in our work, obtains linear
convergence rates depending on gk!`. They also show superlinear rates when A has a su�ciently
quickly decaying spectrum. While it is di�cult to directly compare their results to ours on low-rank
approximation, it would be interesting to consider such spectra in our setting. Finally, we note that
[Allen-Zhu and Li, 2016] proves a result similar to Theorem 1 using an algorithm that in some ways
is a single vector Krylov method. However, because the method iteratively restarts k times with k

randomly chosen starting vectors, it ultimately returns a solution from a block Krylov subspace.
Related to our results in Section 5, we note that adding small random perturbations to avoid

small singular value gaps or other conditioning issues is a technique that has been employed in
several recent works focused on worst-case runtime bounds for linear algebraic problems [Boutsidis
et al., 2016, Peng and Vempala, 2021, Banks et al., 2022].

2 Notation

We use capital bold letters to denote matrices, lowercase bold letters to denote vectors, and lower-
case non-bold letters to denote scalars. For a matrix Q, we let qi denote the i

th column, span(Q)
denote its column span, and Q| denote its transpose. Typically, A 2 Rn⇥d denotes our input
matrix. We let A = U⌃V| denote the SVD of A, with U 2 Rn⇥n

,⌃ 2 Rn⇥n
,V 2 Rd⇥n. We

let �1 � �2 � . . . � �n � 0 denote the singular values of A (the diagonal entries of ⌃). We let
Uk 2 Rn⇥k and Vk 2 Rd⇥k denote the first k columns of U and V, and let ⌃k 2 Rk⇥k denote the
top k⇥k principal submatrix of ⌃. Then Ak = Uk⌃kV

|
k is the best rank-k approximation to A in

any unitarily invariant norm. When A is square, we let A = U⇤U| be the eigendecomposition of
A, where �1 � �2 � . . . � �n are the eigenvalues of A (the diagonal entries of ⇤). We often work
with symmetric positive semi-definite (PSD) matrices, which have all non-negative eigenvalues. In
this case, the singular values equal the eigenvalues. We also work with matrix polynomials. If
p(x) =

Pq
i=1 cix

i is a polynomial and if A is square, p(A) :=
Pq

i=1 ciA
i.

We let kxk2 denote the vector `2 norm, kAk2 the spectral norm, kAkF the Frobenius norm, and

kAkp = (
Pp

i=1 �
p
i )

1/p the Schatten p-norm. Wherever kAk⇠ is used, the equation holds for both
the spectral and Frobenius norms. We let [n] = {1, . . . , n} be the set of integers between 1 and n.
Finally, we let N (0, I) denote the distribution over vectors whose entries are i.i.d. mean zero unit
variance Gaussians. The dimension will be clear from context.

3 Proof of Theorem 1

In this section, we prove Theorem 1 by showing that Sk as described in Section 1.2 is a good enough
starting matrix for block Krylov iteration. This proof serves as a foundation for all additional results
in the paper. Throughout, we assume that A 2 Rn⇥n is square and positive semidefinite. We shown
in Appendix A that this is without loss of generality: running Algorithm 1 or Algorithm 2 on a
matrix C 2 Rn⇥d with SVD C = U⌃V| yields an identical output to running the method on
the PSD matrix A = (CC|)1/2 = U⌃U|. Further, all low-rank approximation and singular value
approximation results guaranteed for the returned matrix Q directly carry over from A to C.

3.1 A naive approach that actually works.

As discussed in Section 1.2, our main approach is to view the single-vector method of Algorithm 1
as a block Krylov method in disguise. Specifically, recall the matrix Sk and the Krylov subspace

7



from Equations (2) and (3). Since we now assume that A is PSD, we have AA| = A2, so we can
write

Sk :=
⇥
x A2x A4x . . . A2(k�1)x

⇤
(4)

and

span(K) = span
�⇥
Sk A2Sk . . . A2qSk

⇤�
, (5)

where q := t � k + 1. This matches the subspace spanned by K in Algorithm 2 with starting
block B = Sk. Since the output of Algorithm 1 and Algorithm 2 depend only on the span of the
Krylov subspace they construct, we will use this equivalence to appeal to prior results on block
Krylov methods to analyze Algorithm 1. To do so, we need to show that, even though Sk is very
much unlike the i.i.d. random starting matrices used in prior work, it still provides a good enough
starting matrix for convergence to a near-optimal low-rank approximation.

Towards that end, we use a natural definition of what it means to be a “good” starting matrix
that specifically will allow us to leverage results on block Krylov methods from [Musco and Musco,
2015] in a black-box way. That same definition su�ces for other results as well [Woodru↵, 2014,
Drineas et al., 2018]. Intuitively, we require that a starting matrix B has nontrivial inner product
with all of the top k singular vectors of A:

Definition 1 ((k, L)-good Starting Matrix). Let A 2 Rn⇥d be a matrix with top k left singular
vectors Uk 2 Rn⇥k. A matrix B 2 Rn⇥k is a (k, L)-good starting matrix for A if, letting Q 2 Rn⇥k

be an orthonormal basis for span(B), U|
kQ is invertible and k(U|

kQ)�1k22  L.

The condition above is equivalent to requiring that all singular values of U|
kQ are at least 1p

L
,

or that all principle angles between span(Uk) and span(B) have cos(✓i) � 1p
L
[Drineas et al., 2018].

Using Definition 1, we can immediately obtain bounds on the low-rank approximation error of
a subspace Q returned by Algorithm 2 when run with any (k, L)-good starting matrix. We will use
such bounds to analyze the single vector Krylov method of Algorithm 1, after proving that Sk is
(k, L)-good. Consider the following bound, which depends logarithmically on L:

Imported Theorem 2 (Theorem 1 of [Musco and Musco, 2015]). Let B 2 Rn⇥k be any (k, L)-good
starting matrix (Definition 1) matrix for A. If we run Block Krylov iteration (Algorithm 2) for
q = O( 1p

"
log(nL" )) iterations with starting block B, then the output Q 2 Rn⇥k satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ (6)

and, letting qi be the i
th column of Q,

��q|
iAA|qi � �i(A)2

��  "�k+1(A)2. (7)

Imported Theorem 2 is implicit in [Musco and Musco, 2015], although, as stated in that work, it
is specialized to when B is a matrix with i.i.d. Gaussian entries. In Appendix F we discuss how the
more general result stated above follows from [Musco and Musco, 2015]. Imported Theorem 2 gives
two di↵erent guarantees. The first bounds low-rank approximation error, in both the Frobenius
and spectral norms. The second shows that the columns of Q can be used to estimate the top
singular values of A. This can be called a “Ritz value guarantee” or a “singular value guarantee”.

A random Gaussian matrix B can be shown to be an (k,O(nk))-good starting matrix with high
probability (see Lemma 4 in [Musco and Musco, 2015] or [Rudelson and Vershynin, 2010]). This is
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intuitive, since B will span a uniformly random subspace, which has non-negligible inner product
with any other fixed subspace, including the one spanned by Uk. For a Gaussian starting block,
Imported Theorem 2 therefore gives a bound of O( 1p

"
log(n/")) iterations to achieve Equations (6)

and (7).
The fact that Sk satisfies Definition 1 is less clear. Our main technical contribution is to prove

that it does, albeit with a much larger value of L than in the Gaussian case: in Section 3.2 we show
that, with probability at least 1� �, Sk is a (k, L)-good starting matrix for L = O(poly(n/�gkmin)).
Here gmin = mini2{1,...,k�1}

�i��i+1

�i
is the minimum gap between A’s top k singular values. Since

Imported Theorem 2 depends logarithmically on L, it follows that block Krylov with starting

block Sk needs O
⇣

kp
"
log( 1

gmin
) + 1p

"
log( n

"� )
⌘
iterations to achieve Equations (6) and (7) – yielding

Theorem 1.
In other words, we require k times as many iterations when starting with Sk instead of a fully

random B. However, notice that running Algorithm 2 for q iterations with starting block Sk only
requires q + k iterations of the single vector Krylov method from Algorithm 1, and thus q + k

matrix-vector products. In contrast, running the method with a random B requires qk matrix-
vector products. Ultimately, this allows us to achieve in Theorem 1 a total complexity (in terms
of matrix-vector products) that matches, and in some cases improves, the block Krylov method
initialized with a Gaussian starting matrix, up to the dependence on log(1/gmin).

3.2 Main Technical Analysis

Formally, we prove the following (k, L)-good guarantee for Sk. In combination with Imported
Theorem 2 and Equation (5), this bound yields Theorem 1. It will also serve as the basis for all of
the other results discussed in Section 1.3.

Theorem 3. Fix any PSD matrix A 2 Rn⇥n with singular values �1 � . . . � �n, let g be a vector
with i.i.d. mean zero Gaussian entries, and let Sk =

⇥
g A2g A4g . . . A2(k�1)g

⇤
. For any

� 2 (0, 1), with probability at least 1��, Sk is a (k, L)-good starting matrix for A for L = cnk3 log(n/�)
�2g4kmin

.

Here c = 2.5⇡ is a fixed constant and gmin = mini2{1,...,k�1}
�i��i+1

�i+1
.

To prove Theorem 3, we will need a simple bound on the minimum of k independent Gaussian
random variables:

Lemma 4. Let g1, . . . , gk ⇠ N (0, 1) and independent. Then, with probability at least � 1 � �,

mini g2i � 2�2

⇡k2 .

Proof. We have that:

Pr[min
i

g
2
i � t] =

�
1� Pr[g1

2  t]
�k

=
�
1� 2Pr[0  g1 

p
t]
�k � (1�

p
1� e�2t/⇡)k.

The last line uses the bound Pr[0  g1 
p
t]  1

2

p
1� e�2x2/⇡ from [Chu, 1955]. Setting the right

hand side equal to 1� � and solving for t, we get:

t = ⇡
2 ln

1
1�(1�(1��)1/k)2

� ⇡
2 (1� (1� �)1/k)2 � ⇡

2 (
�
k )

2 = ⇡�2

2k2 .

In the first inequality we used that ln
⇣

1
1�x

⌘
� x. In the second we used that 1�(1�x)1/k � x

k .

9



Proof of Theorem 3. We first argue that U|
kSk is invertible. Observe that for any x 2 Rk, Skx =

p̂(A2)g for some degree k� 1 polynomial p̂ with coe�cients determined by the entries in x. We let
A = U⌃U| be the SVD of A. Then

U|
kSkx = U|

kp̂(A
2)g = U|

kUp̂(⌃2)U|g = p̂(⌃2
k)g̃,

where ⌃k contains the top left k elements of ⌃ and g̃ := U|
kg ⇠ N (0, I) by rotational invariance of

the Gaussian distribution. Note by Lemma 4 that mini2{1,...,k} g̃
2
i � 2�2

⇡k2 with probability at least
1� �. So altogether, we can write

kU|
kSkxk22 = kU|

kp̂(A
2)g̃k22 =

kX

i=1

(p̂(�2
i ))

2
g̃
2
i � 2�2

⇡k2

kX

i=1

(p̂(�2
i ))

2
. (8)

Since p̂ has degree k � 1, if none of the top k singular values are repeated (i.e., gmin > 0), we have
that the right hand side is nonzero for any nonzero x. Thus, U|

kSk is invertible.
Now, let Q 2 Rn⇥k be any orthonormal basis for span(Sk), so that Sk = QC for some invertible

matrix C 2 Rk⇥k (observe that Sk must be full rank since U|
kSk is invertible). Since U|

kSk is
invertible, we then also know that U|

kQ is invertible, as required by Definition 1. We also have
Sk(U

|
kSk)�1 = QC(U|

kQC)�1 = Q(U|
kQ)�1 and therefore kSk(U

|
kSk)�1k22 = kQ(U|

kQ)�1k22 =
k(U|

kQ)�1k22. So, to prove the theorem, it su�ces to bound

kSk(U
|
kSk)

�1k22 = max
x

kSk(U
|
kSk)�1xk22
kxk22

= max
x

kSkxk22
kU|

kSkxk22
= max

deg(p̂)k�1

kp̂(A2)gk22
kU|

kp̂(A
2)gk22

. (9)

We already bounded the denominator in (8). Thus, we turn to the numerator. Since g has i.i.d.
mean zero, unit variance Gaussian entries we have for each i, g2i  1 + 4 log(1/�) with probability
at least 1 � � by standard concentration bounds for chi-squared random variables [Laurent and
Massart, 2000]. So, by a union bound, maxi g2i  5 log(n/�) for n > 2. We thus have:

kp̂(A2)gk22  5 log(n/�)
nX

i=1

(p̂(�2
i ))

2  5n log(n/�) · max
i2{1,...,n}

(p̂(�2
i ))

2
. (10)

Combining (10) and (8), we conclude that

kSk(U
|
kSk)

�1k22 
5⇡nk2 log(n� )

2�2
· max
deg(p̂)k�1

maxi2{1,...,n}(p̂(�
2
i ))

2

Pk
i=1(p̂(�

2
i ))

2
. (11)

We now focus on bounding the maximum in (11). Observe that if there were no gap between two
of the top k singular values, then some nonzero polynomial p̂ could make the denominator zero by
equaling zero on the at most k� 1 unique values in �1, . . . ,�k. So, any bound on (11) must depend
on the minimum gap between singular values. Second, note that if the maximum in the numerator
is achieved for i  k, then the overall ratio is trivially at most 1. So, without loss of generality, we
only consider maxi2{k+1,...,n}(p̂(�

2
i ))

2 in the numerator.
To bound this ratio, we follow a similar broad approach to [Saad, 1980], who bounds a re-

lated term by expanding p̂ as an interpolating polynomial. Formally, we write p̂ as a Lagrange
interpolating polynomial over �2

1, . . . ,�
2
k:

p̂(x) =
kX

i=1

�i`i(x) where �i := p̂(�2
i ), `i(x) :=

Y

j2{1,...,k}
j 6=i

x� �
2
j

�2
i � �2

j

, i 2 {1, . . . , k}.

10



For any 0  x  �
2
k we have

|`i(x)| 
Y

j2{1,...,k}
j 6=i

�
2
j

|�2
i � �2

j |


Y

j2{1,...,k}
j 6=i

�
2
j

|�i � �j |2
 1

g2kmin

,

where the second inequality uses that |�2
i � �

2
j | � |�i � �j |2 for all �i,�j � 0. Next, we write

� = [�1 . . . �k] = [p̂(�1)2 . . . p̂(�2
k)] and obtain:

maxi2{k+1,...,n} |p̂(�2
i )|2Pk

i=1(p̂(�
2
i ))

2


maxx2[0,�2
k]
|p̂(x)|2

Pk
i=1(p̂(�

2
i ))

2
=

maxx2[0,�2
k]
|
Pk

i=1 �i`i(x)|2
Pk

i=1(p̂(�
2
i ))

2


maxx2[0,�2

k]
(k�k1maxi |`i(x)|)2

k�k22

=
k�k21
k�k22

max
x2[0,�2

k],i2{1,...,k}
|`i(x)|2

 k

g4kmin

.

Finally, we plug back into (11) to conclude that k(U|
kQ)�1k22 = kSk(U

|
kSk)�1k22  5⇡nk3

2g4kmin�
2 log(

n
� ),

which completes the proof.

3.3 Proof of Theorem 1

As mentioned, Theorem 1 follows directly by combining Imported Theorem 2 and Theorem 3. In

particular, since Sk is an (k, L)-good starting matrix for L 
⇣

n
�gkmin

⌘c
for a constant c, if we run

the block Krylov method initialized with Sk, then with probability at least 1 � �, we obtain Q
achieving the guarantees of Theorem 1 after

q = O

✓
1p
"
log

✓
nL

"

◆◆
= O

✓
kp
"
log

✓
1

gmin

◆
+

1p
"
log
⇣
n

"�

⌘◆
iterations.

Moreover, by Equation (5), the Q returned by Algorithm 2 with Sk as the starting block, is
exactly the same as the Q returned by the single vector Krylov method (Algorithm 1) after q + k

iterations. Overall, we get the following full version of Theorem 1, which includes both the low-rank
approximation and singular value guarantees from Imported Theorem 2:

Theorem 1 Restated. For A 2 Rn⇥d, let gmin = mini2{1,...,k�1}
�i��i+1

�i
. For any ", � 2 (0, 1),

Algorithm 1 initialized with x ⇠ N (0, I) and run for t = O( kp
"
log( 1

gmin
) + 1p

"
log( n

"� )) iterations

returns an orthogonal Q 2 Rn⇥k such that, with probability at least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

4 Additional Applications of Main Result

In this section, we leverage our analysis of the starting block Sk to give several results beyond
Theorem 1. In Section 4.1, we start by generalizing from using Sk to using S`, which has ` � k

columns, and lets us obtain faster rates of convergence when the spectrum of A decays between

11



singular values k and `+1. Next, in Section 4.2, we use the results of Theorem 1 and Section 4.1 to
get a faster rate of convergence in the Frobenius norm, simplifying the algorithm of [Bakshi et al.,
2022]. In Section 4.3, we generalize from the Frobenius norm to Schatten p-norms, also simplifying
[Bakshi et al., 2022]. Lastly, in Section 4.4, we generalize from single vector Krylov with block size
b = 1 to small-block Krylov with any block size b < k.

4.1 Faster Convergence with Spectral Decay

As discussed in Section 1, in addition to spectrum-independent bounds, we know that large block
Krylov methods achieve very fast convergence when using block size ` � k if there is a su�ciently
large gap between �k and �`+1. Formally, [Musco and Musco, 2015] show the following:

Imported Theorem 5 (Theorem 13 of [Musco and Musco, 2015]). Let B 2 Rn⇥` be any (`, L)-
good starting matrix (Definition 1) matrix for A, for some ` � k. If we run Block Krylov iteration
(Algorithm 2) for q = O( 1p

gk!`
log(nL" )) iterations with starting block B, where gk!` = �k��`+1

�k
,

then the output Q 2 Rn⇥k satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Our second main result shows that the convergence rate of Imported Theorem 5 applies to
single vector Krylov as well. In particular, we can simply apply the same idea as was used to prove
Theorem 1, but with “simulated block size” ` � k. Letting

S` :=
⇥
x A2x A4x . . . A2(`�1)x

⇤
and span(K) = span

�⇥
S` A2S` . . . A2qS`

⇤�
,

we observe that single vector Krylov run for t iterations exactly computes span(K) for q = t�`+1.
This lets us show that single vector Krylov run for t iterations essentially matches the convergence
rate of block Krylov run for ⇡ t/` iterations:

Theorem 6 (Spectral Decay Convergence). For A 2 Rn⇥d and ` � k, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1

and gk!` = �k��`+1

�k
. For any ", � 2 (0, 1), Algorithm 1 initialized with x ⇠ N (0, I) and run for

t = O( `p
gk!`

log( 1
gmin

) + 1p
gk!`

log( n
�")) iterations returns an orthogonal Q 2 Rn⇥k such that, with

probability at least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Proof. By Theorem 3, we know that S` is an (`, L)-good starting matrix for block Krylov iteration
on A, where L  ( n

�g`min
)c for a constant c. So, by Imported Theorem 5, we find that block Krylov

iteration with starting block S` converges in

q = O

✓
1

p
gk!`

log

✓
nL

"

◆◆
= O

✓
`

p
gk!`

log

✓
1

gmin

◆
+

1
p
gk!`

log
⇣
n

�"

⌘◆

iterations. Moreover, by Equation (5), the Q returned by Algorithm 2 with S` as the starting block
is exactly the same as the Q returned by the single vector Krylov method (Algorithm 1) after q+ `

iterations, which completes the proof.

Comparison to Prior Bounds. In terms of the number of matrix-vector products computed,
Theorem 6 can significantly improve upon the prior work for large k. [Musco and Musco, 2015]
require using a block size ` � k for t = O( 1p

gk!`
log( n

�")) iterations, or equivalently for O( 1p
gk!`

·
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` log( n
�")) matrix-vector products. Assuming that gmin is a constant, our guarantee for single vector

Krylov methods only requires O( 1p
gk!`

(`+log( n
"� ))) matrix-vector products. That is, we reduce the

product between ` and log( n
�") into a sum, suggesting a nearly `-fold speedup when we want high

precision results. Further, we obtain the above guarantee for any ` � k, meaning that single vector
Krylov automatically competes with the bound for the best possible choice of block size, without
knowing it in advance. We observe in Section 6.5 that the above theoretical advantages translate
into practice – for matrices with decaying singular value spectra, we find that single vector Krylov
methods substantially outperform large block methods.

Comparison to Lower Bounds. It is worth comparing Theorem 6 to the lower bound of
[Simchowitz et al., 2018], who show that finding an orthogonal matrix Q 2 Rn⇥k such thatPk

i=1 q
|
iAqi � (1 � ")

Pk
i=1 �i(A) requires at least ⌦( k lognp

gk!k
) matrix-vector products when " =

gk!k = �k��k+1

�k
. In comparison, applying Theorem 6 with ` = k yields an upper bound of roughly

O(k log(1/gmin)p
gk!k

+ lognp
gk!k

), which only does not violate the lower bound of [Simchowitz et al., 2018]

since 1
gmin

= poly(n) for their input. I.e., their input su↵ers from very small singular value gaps.
When k = 1, the intuition for the log n dependence is that since a random start vector has

1
poly(n) inner product with the top singular vector, it requires log n iterations to converge. The

matching upper and lower bounds of ⇥( k lognp
gk!k

) from [Musco and Musco, 2015] and [Simchowitz

et al., 2018] suggest that the cost of rank-k approximation is simply k times the cost of rank-1
approximation, i.e., roughly k log n. In fact, the situation is more nuanced. Our work suggests
that, unless gaps between singular values are very small, the cost of rank-k approximation is much
actually cheaper.

4.2 Improved Results for Frobenius Norm Low-Rank Approximation

Theorem 6 shows that single vector Krylov methods achieve strong spectrum-adaptive guarantees,
converging at essentially the same rate as the best choice of block size, if not faster. As a concrete
application of this observation, we show that single vector Krylov methods automatically match
a recent result of [Bakshi et al., 2022] on Frobenius norm low-rank approximation. [Bakshi et al.,
2022] propose an algorithm that combines the results of running block Krylov iteration twice,
once with block size k for Õ( 1

"1/3
) iterations and once with block size O( k

"1/3
) for Õ(1) iterations.

Their algorithm obtains a (1 + ") optimal low-rank approximation in the Frobenius norm using
Õ( k

"1/3
) matrix-vector products instead of Õ( kp

"
), as required by Theorem 1. Since Theorem 1 and

Theorem 6 show that single vector Krylov methods match the convergence rates of both block size
k and block size O( k

"1/3
), they therefore match the result of [Bakshi et al., 2022]. Formally we have:

Theorem 7. For A 2 Rn⇥d, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1
where ` = ⇥( k

"1/3
). For any ", � 2

(0, 1), Algorithm 1 initialized with x ⇠ N (0, I) and run for t = O( k
"1/3

log( 1
gmin

) + 1
"1/3

log( n
�"))

iterations returns an orthogonal Q 2 Rd⇥k such that, with probability at least 1� �, we have

kA�QQ|AkF  (1 + ")kA�QQ|AkF .

We formally prove Theorem 7 in Appendix B, by generalizing and formalizing an analysis
stated in the introduction of [Bakshi et al., 2022]. We note that, in concurrent work, [Bakshi and
Narayanan, 2023] show a similar result which has no gmin dependence and further removes the
log n dependence. However, their bound only applies to the special case of rank-1 approximation.
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4.3 Improved Rates for Schatten Norm Low-Rank Approximation

The work of [Bakshi et al., 2022] also gives bounds for low-rank approximation in general Schatten
p-Norms for any p � 1. They show that by running Krylov iteration 4 times, on both A and A|

and with both a relatively small block size ` = k and a relatively large block size ` = Õ( k
"1/3

), they

can recover a low-rank approximation to A in the Schatten p-norm using Õ(kp
1/6

"1/3
) matrix-vector

multiplications. As in the case of Frobenius norm low-rank approximation, we show that we can
match this entire process with a single instantiation of single vector Krylov, yielding:

Theorem 8 (Schatten-p Norm Low-Rank Approximation). For A 2 Rn⇥d and p � 1, let gmin =
mini2{1,...,`�1}

�i��i+1

�i+1
where ` = ⇥( k

"1/3p1/3
). For any ", � 2 (0, 1), let Q 2 Rd⇥k be the result of

running Algorithm 1 on A| initialized with x ⇠ N (0, I) and run for

t = O

⇣
kp1/6

"1/3
log( 1

gmin
) + (

p
p+ p1/6

"1/3
) log(np�" )

⌘
= Õ

⇣
kp1/6

"1/3
+
p
p

⌘

iterations. Let Z 2 Rn⇥k be an orthonormal basis for AQ. Then, with probability at least 1� �,

kA� ZZ|Akp  (1 + ")kA�Akkp,

where kAkp := (
Pn

i=1 �i(A)p)1/p is the Schatten p-norm.

We prove Theorem 8 in Appendix C. Unlike our previous results, Theorem 8 first uses single
vector Krylov to compute an orthonormal basis Q, but then outputs Z, which is an orthonormal
basis for AQ. We suspect that this two-step process is an artifact of the analysis in [Bakshi et al.,
2022], and that simply returning the output of a single vector Krylov method su�ces.

Note that since the same single vector Krylov method obtains the result of Theorem 8 for any
choice of p, and setting p = O( logn" ) closely approximates the Schatten-1 norm (i.e., the spectral
norm), we achieve the best known result for outputting a low-rank approximation simultaneously
in all Schatten p-norms:

Corollary 9. For A 2 Rn⇥d, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1
where ` = ⇥( k

log1/3(n)
). For any

", � 2 (0, 1), let Q 2 Rd⇥k be the result of running Algorithm 1 on A| initialized with x ⇠ N (0, I)
and run for

t = O

✓
k log

1
6(n)p
"

log( 1
gmin

) +
p

log(n)p
"

log( n
�")

◆
= Õ

⇣
kp
"

⌘

iterations. Let Z 2 Rn⇥k be an orthonormal basis for AQ. Then, for "p := " ·min{1,
p
p"

log(n)}  ",
with probability at least 1� �, simultaneously for all p � 1,

kA�QQ|Akp  (1 + "p)kA�Akkp.

A similar but weaker guarantee is available from [Bakshi et al., 2022]. They show that running
four Block Krylov methods with block size choices depending on p su�ces to obtain a low-rank ap-
proximation in the Schatten q-norm for all q  p. If we let p = O( logn" ), so that kAkp approximates

the spectral norm, then, their result shows that Õ( kp
"
) matrix-vector products su�ce to output a

(1+ ") relative error low-rank approximation in all Schatten norms, including the Frobenius norm.
In contrast, Theorem 7 shows that running single vector Krylov for Õ( kp

"
) iterations actually gives

a better relative error of (1 + "
3/2) in the Frobenius norm.
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4.4 General Bounds for Small-Block Methods

Our approach to analyzing single vector Krylov also extends to ‘small-block’ Krylov methods,
which use block size 1 < b < k. Such methods are common in practice as they help avoid slow
convergence due to nearby singular values: intuitively, we expect a block size of b to be e↵ective
even when the input A has clusters of at most b very close singular values. Additionally, parallelism
often lets us compute multiple matrix-vector products with A just as quickly as computing a single
matrix-vector product, with incentives the use of a block size > 1.

We outline results for small block methods in this section, but defer proofs to Appendix E. To
start, we generalize the notion of a gap between singular values:

Definition 2. Fix block size b 2 [k]. For each i 2 [k], we let Ni ⇢ [k] \ {i} be the indices of the
b� 1 singular values other than i that minimize |�i��j

�j
|. Then let gmin,b be the b

th-order gap of A:

gmin,b = min
i2[k]

min
j2[k]\Ni,j 6=i

����
�i � �j

�j

���� .

If b = k, then the sets Ni have no terms, and we define gmin,b := 1.

If b = 1, then we see that the sets Ni are empty, and we recover gmin,b = gmin as defined in
Theorem 1. If b = k, then gmin,b is just 1, which matches the fact that block size k does not require
a gap dependence [Musco and Musco, 2015]. If e.g., b = 2 and A has two identical singular values,
then we may still have gmin,b > 0, and so an algorithm can depend on 1

gmin,b
without risking total

failure. With this characterization of small-block gaps, we prove the following generalization of
Theorem 3 in Appendix E:

Theorem 10. Fix any PSD A 2 Rn⇥n and block size b 2 {1, . . . , k}. Let G 2 Rn⇥b be a matrix
with i.i.d. N (0, 1) entries, and let Sr =

⇥
G A2G A4G . . . A2(r�1)G

⇤
, where r = k � b + 1.

For any � 2 (0, 1), with probability at least (1 � �), there exists a matrix Q 2 Rn⇥k that lies in

the span of Sr and is a (k, L)-good starting matrix for A for L = cb2k2n log(1/�)

�2g
4(k�b)
min,b

. Here, c is a fixed

constant.

Above, the starting block Sr has rb ⇡ b(k�b) columns, which can be larger than k. Theorem 10
shows that there exists a matrix Q 2 Rn⇥k in the span of Sr which satisfies the (k, L)-good property
of Definition 1. Since the Krylov subspace generated byQ lies within the Krylov subspace generated
by Sr, we can thus use Imported Theorem 2 and Imported Theorem 5 to obtain guarantees for the
subspace generated by Sr. For a formal argument, see Appendix E. Overall, by plugging in the
value of L = poly( n

�gk�b
min,b

) into these theorems, we achieve similar guarantees as for single vector

Krylov, but with a dependence on gmin,b. For instance, we generalize Theorem 1, obtaining:

Theorem 11. For A 2 Rn⇥d and b  k, let gmin,b as in Definition 2. For any ", � 2 (0, 1),
Algorithm 2 initialized with i.i.d. N (0, 1) matrix G 2 Rn⇥b and run for t = O(k�bp

"
log( 1

gmin,b
) +

1p
"
log( n

�")) iterations returns an orthogonal Q 2 Rn⇥k such that, with probability at least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

In particular, this requires O( b(k�b)p
"

log( 1
gmin,b

) + bp
"
log( n

�")) matrix-vector products with A.
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For constant b = O(1), the above theorem recovers the same asymptotic matrix-vector com-
plexity as Theorem 1 but with an improved dependence on singular value gaps. For k�b = O(1), it
nearly matches the matrix-vector complexity of block Krylov with block size k, but with a very mild
gap dependence. When b = k

2 , we get the worst of both worlds, needing m = Õ( k2p
"
) matrix-vector

products. This may be a limitation of our proof techniques: it could be possible to show that the
matrix-vector complexity scales linearly in k for any block size.

Further, observe that by using Theorem 10, the spectrum-adaptive results of Section 4.1, the
fast Frobenius results of Section 4.2, and the fast Schatten norm results of Section 4.3 also apply in
the general block size b  k case. Wherever those theorems have gmin, we replace this with gmin,b,
where gmin,b is defined now across the top `� b singular values instead of the top k � b.

5 Random Perturbation Analysis

Theorems 1, 6, 8 and 11 all show that single vector or small-block Krylov methods match or improve
the existing bounds for large block methods, up to a factor of log( 1

gmin
). Single vector methods

cannot avoid this dependence in general: if one of A’s top singular values is repeated, so that
gmin = 0, then the Krylov subspace can be rank deficient and fail to converge to the top subspace
of A. To address this possible point of failure, we take a smoothed-analysis approach, showing that
if our input instance is subjected to a small random perturbation, the dependence on gmin can be
removed. The key tool we leverage is a line of work from random matrix theory called eigenvalue
repulsion, which shows that small eigenvalue gaps are brittle: by adding a tiny amount of random
noise to any matrix, we can ensure that its eigenvalues are well separated [Minami, 1996, Nguyen
et al., 2017, Beenakker, 1997].

5.1 Gap-Independent Bounds for PSD Matrices

Our first result shows that we can remove the dependence on gmin when our input matrix A is
PSD. In Section 5.2, we show that this result gives some bounds for non-PSD matrices as well. Our
result leverages the following eigenvalue repulsion bound, which we derive in Appendix D.1 using
a result of [Minami, 1996].

Lemma 12. Fix symmetric matrix A 2 Rn⇥n, � 2 (0, 1), and �  kAk2. Let D 2 Rn⇥n be a
diagonal matrix whose entries are uniformly distributed in [��,+�]. Then, letting Ã = A + D
and letting C denote some universal constant, with probability at least 1� �,

min
i2[n�1]

|�i(Ã)� �i+1(Ã)|
|�i+1(Ã)|

� �

Cn2
· �2

kAk22
.

That is, by adding a small amount of noise to the diagonal ofA, we can ensure its eigenvalue gaps
are polynomially large in the problem parameters. While Lemma 12 holds for general symmetric
matrices, we will apply it specifically to PSD A in our analysis, since for indefinite matrices, having
large eigenvalue gaps does not necessarily imply having singular value gaps, which are required
for our convergence results for single vector Krylov methods. It would be interesting to prove an
analogous result to Lemma 12 that applies directly to singular values and use it to generalize our
results beyond PSD matrices.

Naturally, the larger the perturbation parameter � in Lemma 12, the larger the resulting gaps.
Thus, � gives a tradeo↵ between runtime and accuracy: higher � leads to larger gaps and thus
faster convergence. However, it will also make the result of our algorithms less accurate. In
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Appendix D.2 we show that picking � such that kDk2  "�k+1(A)
n su�ces to guarantee that a

near-optimal low-rank approximation of Ã is also near optimal for A:

Lemma 13. Let Ã = A + D where kDk2  "
3n�k+1(A) and " 2 (0, 1). Fix any Q 2 Rn⇥k with

orthonormal columns q1, . . . ,qk. Then, with probability at least 1� �,

1. If |q|
i ÃÃ|qi � �i(Ã)2|  "�k+1(Ã)2, then |q|

iAA|qi � �i(A)2|  8"�i(A)2.

2. If kÃ�QQ|Ãk2  (1 + ")kÃ� Ãkk2, then kA�QQ|Ak2  (1 + 2")kA�Akk2.

3. If kÃ�QQ|ÃkF  (1 + ")kÃ� ÃkkF , then kA�QQ|AkF  (1 + 4")kA�AkkF .

In particular, since we pick D to be diagonal, we have kDk2  �  "�k+1(A)
3n . Lemmas 12

and 13 then together imply the following gap-independent variant of Theorem 1 for PSD matrices.

Corollary 14 (Gap-Independent Convergence). For PSD A 2 Rn⇥n, let k = �1
�k

and � = "�k+1

3n .

For any ", � 2 (0, 12), let Ã = A + D where D 2 Rn⇥n is a diagonal matrix with entries drawn

uniformly and i.i.d. from [��,�]. Then, Algorithm 1 run on Ã initialized with x ⇠ N (0, I) and
run for t = O( kp

"
log(nk

�" )) iterations returns orthogonal Q 2 Rn⇥k such that, with probability at

least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Proof. Proving this result simply requires showing that Lemma 12 implies gaps betweenA’s singular
values. This is not immediate since, even if we assume A is PSD, Ã might not be, so could have
negative eigenvalues. An eigenvalue at ⌘ and another eigenvalue at �⌘, which would give a singular
value gap of 0, which we need to rule out. To do so, note that kDk2 = maxi |Di,i|  � < "�k+1(A).
So by assuming that A is PSD, we know that for any negative eigenvalue �i(Ã) of Ã,

|�i(Ã)|  |�i(Ã)� �i(A)|  kDk2 < "�k+1(A)  �k+1(Ã).

The last inequality assumes "  1
2 to say that �k+1(Ã) � �k+1(A) � kDk2 � (1 � ")�k+1(A) �

"�k+1(A). So, we know that if �i(Ã) < 0 then any singular value associated with �i(Ã) is not one
of the top k singular values of Ã. So, the top k singular values of Ã must all be associated with
nonnegative eigenvalues. That is �i(Ã) = �i(Ã) for i 2 [k]. And so, we find that

gmin = min
i2{1,...,k�1}

|�i(Ã)� �i+1(Ã)|
�i+1(Ã)

= min
i2{1,...,k�1}

|�i(Ã)� �i+1(Ã)|
|�i+1(Ã)|

� �

Cn2
· �2

kAk22
.

To complete the theorem, we then plug in � = "�k+1

3n , getting

gmin � �

Cn2
·
"2�3

k+1

9n2

�2
1

=
�"

2

9Cn42k

.

We then appeal to Theorem 1 to get the final iteration complexity of t = O( kp
"
log( 1

gmin
) +

1p
"
log( n

"� )) = O( kp
"
log(nk

�" )).

Up to a logarithmic dependence on k, Corollary 14 exactly matches the gap-independent low-
rank approximation for the block Krylov method [Musco and Musco, 2015]. The same approach
can be generalized to give analogs to Theorem 6, Theorem 7, Theorem 8, and Corollary 9 with a
dependence on k instead of gmin.
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Corollary 14 can be interpreted in several ways. In practice, it is unlikely that adding random
noise is in fact needed to break small singular value gaps. Noise inherent in the input matrix or due
to roundo↵ error will generally su�ce to rule out the existence of tiny singular value gaps. Thus,
the corollary can be thought of as a smoothed-analysis result [Spielman and Teng, 2004, Sankar
et al., 2006], showing that single vector Krylov methods display gap-independent convergence even
on input instances which are tiny random perturbations of potentially worst-case instances. Al-
ternatively, when rigorous worst-case guarantees are required, we could actually run Algorithm 1
on the true input matrix A with a random diagonal perturbation added. Since D is diagonal, the
runtime of matrix-vector products with Ã will generally be dominated by the runtime of matrix-
vector products with A, so this is very e�cient. We experimentally explore the convergence of this
perturbed iteration on a PSD matrix in Section 6.4.

5.2 Gap-Independent Bounds for Rectangular and Indefinite Inputs

We next observe that Corollary 14 gives results for non-PSD matrices as well, at least for low-rank
approximation with respect to the spectral norm. In this case, we can run a single vector Krylov
method on a perturbation of PSD matrix AA|. This su�ces because the spectral norm guarantee
has the property that a near-optimal basis for approximating AA| is also a near-optimal for A:

Lemma 15. Let A 2 Rn⇥d. Let Q 2 Rn⇥k be a matrix with orthonormal columns such that
kAA| �QQ|AA|k2  (1 + ")kAA| � (AA|)kk2. Then, kA�QQ|Ak2  (1 + ")kA�Akk2.

Proof. Let P := I � QQ|. Observe that kAA| � (AA|)kk2 = �k+1(A)2, so we are given that
kPAA|k2  (1 + ") �k+1(A)2. Next note that P is a projection matrix, which can only decrease
spectral norms, so we have

kPAk22 = k(PA)(PA)|k2 = kPAA|Pk2  kPAA|k2  (1 + ") �k+1(A)2.

Taking the square root of both sides, and noting that
p
1 + "  1 + ", we conclude that kA �

QQ|Ak2  (1 + ")�k+1(A) = (1 + ")kA�Akk2.

Combining Lemma 15 with Lemma 15 we obtain the following result:

Corollary 16. For A 2 Rn⇥d, let k = �1
�k

and � =
"�2

k+1

3n . For any ", � 2 (0, 12), let Ã = AA|+D

where D 2 Rn⇥n is a diagonal matrix with entries drawn uniformly and i.i.d. from [��,�]. Then,
Algorithm 1 run on Ã initialized with x ⇠ N (0, I) and run for t = O( kp

"
log(nk

�" )) iterations returns

an orthogonal Q 2 Rn⇥k such that, with probability at least 1� �,

kA�QQ|Ak2  (1 + ")kA�QQ|Ak2.

Note that it is not clear that Lemma 15 extends beyond the spectral norm, e.g., to the Frobenius
norm. Nevertheless, we suspect that a result comparable to Corollary 16 should hold for all other
error metrics considered in this paper.

6 Numerical Experiments

In this section we validate the core findings of our theoretical results with numerical experiments.
We focus on four key findings. In Section 6.2, we verify that the dependence of single vector
Krylov on the sequential gap size gmin is in fact logarithmic, matching the theoretical bounds of
Sections 3 and 4. In Section 6.3, we show that using a small block size b > 1 can ameliorate this
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gap dependence, by replacing log(1/gmin) with log(1/gmin,b) as shown in Theorem 11. Relatedly,
in Section 6.4 we show that a small random perturbation of the input matrix can break up over-
lapping singular values and lead to much faster convergence of the single vector Krylov method,
matching our theoretical findings from Section 5. In Section 6.5 we compare single vector and large
block Krylov methods. We find that for a wide range of matrices, single vector Krylov methods
significantly outperform larger block methods. However, for some very specific worst case instances,
large block methods can perform better.

Finally, while our theoretical bounds ignore issues of numerical stability, in Section 6.6, we
observe empirically that small block methods tend to have significantly more issues with stability
than large block methods. Exploring this issue further in future work would be very interesting.

6.1 Experimental Set Up

To control against stability issues in our primary experiments, we implement algorithms Algorithm 1
and Algorithm 2 using a full reothogonalization strategy to keep the Krylov subspace close to
orthogonal. At every iteration of the (block) Krylov iteration, we orthogonalize the most recently
generated column (resp. block) of the Krylov subspace against all previous columns (resp. blocks)
using the modified Gram-Schmidt process. At the next iteration, this column (resp. block) is
multiplied by A to produce a new column (resp. block) of the Kyrlov subspace. See Section 6.6
for more details or our code, which is available on GitHub5.

We also note that, like most standard implementations, including those based on the Lanczos
recurrence, our code implements Algorithm 1 run for t iterations using t+1 matrix-vector products
with AA|. To see why this is possible, note that the matrix AA|Z computed on Line 2 of the
algorithm can be formed “on-the-fly” as we generate the Krylov subspace. Let zi be the ith column
in Z. At each iteration we already compute AA|zi for column zi to form column zi+1, so can just
store this result to form AA|Z. Similarly, implementing Algorithm 2 requires (t+1)` matrix-vector
products with AA|.

Throughout our experiments, we only report low-rank approximation error in terms of the
Frobenius norm, as we found convergence in the spectral and Frobenius norms typically matched
quite closely. In particular, letting Q be the output of Algorithm 1 or Algorithm 2, we report

"empirical :=
kA�QQ|AkF � kA�AkkF

kA�AkkF
.

Our theory describes how "empiricial should change as a function of the number of iterations, the
block size, and the singular value gaps of A.

Lastly, we note that, since Krylov methods initialized with random Gaussian vectors are invari-
ant to rotation, without loss of generality we test on diagonal input matrices for all synthetic data
experiments. Each matrix’s diagonal entries correspond to its singular values.

6.2 Verifying Gap Dependence

We first empirically show that single vector Krylov has a logarithmic dependence on the minimum
sequential gap size gmin = mini2[k�1]

�i��i+1

�i+1
, as predicted by the bounds of Sections 3 and 4. We

consider an exponentially decaying spectrum with parameter ↵ = 1.1 whose singular values are all
nearly repeated, with gap sizes varying between gmin 2 [10�10

, 1]. That is, letting our vector of

5
https://github.com/RaphaelArkadyMeyerNYU/SingleVectorKrylov
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Figure 3: Low-rank approximation error vs. minimum gap size for diagonal A 2 R1000⇥1000 with
singular values � as described in Equation (12). For 8 di↵erent gap sizes logarithmically spaced in
[10�10

, 1], we run single vector Krylov for t = 25, 26, . . . , 34 iterations with target rank k = 10. The
median of "empirical over 500 independent trials is plotted, with the 25th and 75th quartiles shaded
in. When "empirical < 10�15, we plot it at 10�15 so that the log/log plot does not degenerate. As
expected given the theoretical bound of Theorem 6, we see a linear relationship between the log
relative error and log gap size.

singular values be denoted � = [�1, . . . ,�n] so that A = diag(�), and fixing n = 1000, we let

� =
h
1, 1

1+gmin
, ↵

�1
,

↵�1

1+gmin
, ↵

�2
,

↵�2

1+gmin
, . . . ↵

�499
,

↵�499

1+gmin

i
. (12)

Since this matrix has a fast decay of singular values, we expect the performance of single vector
Krylov to follow the spectral decay rate of Theorem 6. That is, fixing the dimension d and failure
probability �, we should expect the number of iterations to scale as:

t / `p
gk!`

log
⇣

1
gmin

⌘
+ 1p

gk!`
log
�
1
"

�
.

Rearranging this expression, we can equivalently expect

log(") = �t
p
gk!` � ` log(gmin)

= � Ct � ` log(gmin)

where Ct := t
p
gk!` is independent of gmin. So, if we plot "empirical versus gmin on a log/log plot

for a fixed value of t, we should see a line with negative slope. Further, since the vertical o↵set of
these lines are Ct / t, we should expect that increasing t should shift these lines downwards and
proportionally to t. We see this behavior exactly in Figure 3.

6.3 Verifying the E↵ect of Block Size on Gap Dependence

We next show that when A has very small singular value gaps (or even exactly overlapping singular
values), the dependence on log(1/gmin) can be avoided by using a small constant block size b. This
lets us instead depend on log(1/gmin,b), as in the analysis of Theorem 11.
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Figure 4: Low-rank approximation error vs. number of matrix-vector products for diagonal A 2
R1000⇥1000 with repeated top singular values as in Equation (13). We run Krylov iteration with
target rank k = 50 for block sizes b = 1, 2, 3, 50. The median of "empirical over 10 independent
trials is plotted, with the 25th and 75th quartiles shaded in. Note that these quartiles are very
close together in this example. When "empirical < 10�15, we plot it at 10�15 so that the plot does
not degenerate. The plot on the left has a linear y-axis and highlights the performance for early
iterations, while the plot on the right uses a logarithmic y-axis and highlights the performance
for later iterations. Overall, we see that block size b = 2, which is just large enough to avoid
the repeated pairs of singular values in A’s spectrum, performs best. Single vector Krylov is
handicapped by the repeated singular values, especially at early iterations. Large block Krylov
converges at a significantly slower rate than the small block variants.

We focus on when A has pairs, but not triplets, of exactly overlapping singular values. In this
case, block Krylov with block size b = 2 should perform well, since it should not su↵er due to the
overlapping singular values. Further, it should match or outperform larger block methods. To show
this, we construct an exponentially decaying spectrum with parameter ↵ = 1.005 and whose top
k = 50 singular values are each repeated, with sequential gap size gmin = 0. Formally, we choose
1000 singular values as follows:

�A =
⇥
1 1 ↵

�1
↵
�1

↵
�2

↵
�2

. . . ↵
�25

↵
�25
⇤

�B =
⇥
↵
�26

↵
�27

↵
�28

. . . ↵
�975

⇤

� = [�A �B] . (13)

In theory, single vector Krylov should completely fail in this case, only capturing a k/2-dimensional
subspace of the span of the top k singular vectors. Due to finite precision roundo↵, the method
nevertheless converges. However, it is still significantly handicapped by the repeated singular values.

In Figure 4 we plot the low-rank approximation error vs. number of matrix-vector products of
single vector Krylov and block Krylov with block sizes 2, 3, and 50, for target rank k = 50. We show
both y-linear and y-logarithmic plots to highlight the performance at early and later iterations. We
see that block size 2 performs the best across the board, and that block size 3 is only mildly worse.
Due to the repeated singular values, single vector Krylov performs worse, especially for the early
iterations. It becomes competitive with block size 3 eventually. In contrast, the full block size k

method converges much more slowly.
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Figure 5: Low-rank approximation error vs. number of matrix-vector products for diagonal A 2
R1000⇥1000 with repeated top singular values as described in Equation (13). We run the single
vector Krylov method with target rank k = 50, with varying levels of noise added to A to separate
its repeated singular values. In particular, following Corollary 14, we run the method on A + D
where D 2 R1000⇥1000 is a random diagonal matrix with entries drawn uniformly on [��,�], for
� 2 {10�6

, 10�10
, 10�14

, 0}. Low-rank approximation error is measured with respect to the original
input A. For comparison, we also show performance of block Krylov with block size b = 2 with no
noise added. This was the optimal block size for this spectrum as seen in Figure 4. The median of
"empirical over 10 independent trials is plotted, with the 25th and 75th quartiles shaded in. Note that
these quartiles are very close together in this example. When "empirical < 10�15, we plot it at 10�15

so that the plot does not degenerate. The plot on the left has a linear y-axis and highlights the
performance for early iterations, while the plot on the right uses a logarithmic y-axis and highlights
the performance for later iterations. We can see that by adding a small random perturbation, we
can improve the convergence of single vector Krylov to nearly match that of block Krylov with
b = 2. Larger noise leads to faster convergence but also larger final error.

6.4 Verifying the E↵ect of Random Perturbations on Gap Dependence

Next, we show that adding a small amount of random noise to break up small singular value gaps
can also make single vector Krylov converge more quickly, verifying the results of Section 5. We
use the same matrix as in Section 6.3, with spectrum given in Equation (13). In Figure 5, we show
that adding noise to A the order of 10�6 leads to single vector Krylov converging nearly as quickly
as the optimal b = 2 block Krylov method as seen in Section 6.3. This noise does limit our eventual
accuracy at convergence, which can be seen clearly in our logarithmic error plot. Changing the
magnitude of the noise lets us interpolate between fast convergence and high accuracy.

6.5 E↵ect of Block Size in Convergence

We next present a wider comparison of how the choice of block size for Krylov iteration e↵ects
convergence to a near-optimal low-rank approximation. We fix target rank k = 50 and compare
block sizes 1, 2, 3, 50, and 54. Block size 1 corresponds to the single vector Krylov method. Block
sizes 2 and 3 should be more resilient to a pairs or triplets of very close singular values, respectively.
Block sizes k and k + 4 are recommended by prior theoretical work on Krylov Iteration for low-
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rank approximation [Musco and Musco, 2015, Tropp, 2018]. We consider eight input matrices. All
synthetic inputs are 1000⇥ 1000 and diagonal.

1. Exponential Decay: �i = ↵
�i for ↵ 2 {1.001, 1.01, 1.1}

2. Polynomial Decay: �i = i
�� for � 2 {0.1, 0.5, 1.5}

3. Repeated Singular Values: A matrix with each of its top k singular values repeated, as
defined in Equation (13).

4. Wishart Lower Bound: �i =
q
1� ( i

1000)
2. This is an approximation of the spectrum of

I� 1
5nG

|G where G1000⇥1000 has i.i.d N (0, 1) entries. This matrix is used as a lower bound
instance for rank-1 low-rank approximation in [Bakshi et al., 2022].

5. nd3k, appu, human gene 2, exdata 1: Various real-world matrices arbitrarily chosen
from SuiteSparse [Davis and Hu, 2011].

We can see the results of these experiments in Figure 6. We see that for all except the repeated
singular value and Wishart lower bound matrices, single vector Krylov dominates. For the repeated
singular value matrix, as in Section 6.3, we see that block size 2 dominates again. For the Wishart
lower bound matrix from [Bakshi et al., 2022], we see that large block methods marginally (though
consistently) outperform small block methods. This lower bound instance is designed to force
Krylov methods to converge at a rate of 1

"1/3
, instead of at the spectral decay rate 1p

gk!`
. This

seems to makes the rate of convergence of single vector Krylov slower than block Krylov, since
we pay a log(1/gmin) dependence, while only benefiting a small amount from separating the k

and log(n/") dependence (see Theorem 1). In contrast, the other figures show matrices where
the spectral decay rate controls convergence, where single vector Krylov still pays log(1/gmin) but
seems to see performance gains from being able to simulate general block sizes and from separating
the log(n/") dependence from the (simulated) block size dependence (see Theorem 6).

6.6 Block Size and Numerical Stability

It is well known that Krylov methods can su↵er from numerical stability issues [Golub and Van Loan,
2013, Meurant and Strakoš, 2006]. In particular, the iterates (AA|)tg approach the same vector
(the top singular vector of A) as t grows large. So, K becomes ill-conditioned. So far, we have
focused on convergence guarantees and ignored numerical stability. As discussed, our implementa-
tions use orthogonalization to keep K well-conditioned at all iterations. That is, for single vector
Krylov, at every iteration, we compute (AA|)kt�1 where kt�1 is the last column in the Krylov
matrix K. Then we project (AA|)kt�1 away from all of the previous columns k1, . . . ,kt�1 via
modified Gram-Schmidt, and store the resulting vector as kt. We do the same for block Krylov,
where we compute (AA|)

⇥
kt�b�1 . . . kt�1

⇤
and add the resulting b columns to K iteratively via

modified Gram-Schmidt.
In practice, Krylov implementations typically spend less e↵ort orthogonalizing at each step. For

example, they are commonly implemented via the Lanczos method, where kt is only projected away
from kt�1 and kt�2. In infinite precision, this is equivalent to projecting away from all previous
columns [Golub and Van Loan, 2013]. Similar ideas can be applied to block Krylov methods
[Rokhlin et al., 2009, Saad, 1980]. While such methods are highly e�cient, when using them, K
can lose orthogonality. This can lead to slower convergence or necessitate modifications such as
restarts or reorthogonalization [Calvetti et al., 1994, Paige, 1972, Parlett, 1998].
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Figure 6: Low-rank approximation error vs. number of matrix-vector products for Krylov iteration
with various block sizes on synthetic and real-world input matrices as described in Section 6.5. In
all cases, the target rank is set to k = 50. The median of "empirical is plotted over 10 independent
trials, with the 25th and 75th quartiles shaded in. Note that these quartiles are very close together
in most plots. When "empirical < 10�15, we plot it at 10�15 so that the plot does not degenerate.
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Figure 7: Low-rank approximation error vs. number of matrix-vector products for diagonal A 2
R1000⇥1000 with singular values �i = 1.1�i and target rank k = 50. We run for block sizes b 2
{1, 2, k, k + 4} both with Lanczos and with full orthogonalization. The median of "empirical over
100 independent trials is plotted, with the 25th and 75th quartiles shaded in. Notice that for this
experiment, single vector Krylov converges the fastest with full orthogonalization and slowest with
Lanczos, and that large block methods have no real gap between full orthogonalization and Lanczos.
I.e., large block methods are much more stable even with partial orthogonalization.

Intuitively, comparing single vector or small block Krylov to large block Krylov with a fixed size
Krylov subspace K, we expect that single vector and small block Krylov will be more susceptible
to conditioning issues, since they require more iterations to reach the same sized subspace. Thus,
we should expect partial orthogonalization methods like Lanczos to lead to slower convergence for
these methods as compared to large block methods. With full orthogonalization, we should instead
expect to see small block methods dominate. We see this trend exactly in Figure 7. An interesting
extension to our work would be to more closely study the stability of Krylov methods for low-rank
approximation, and to develop a more clear theoretical understanding of the advantages of large
block methods in this regard.
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A Reduction to the Positive Semidefinite Case

In our analysis, we can assume without loss of generality that the input A is a square PSD matrix.
To see why, for any C 2 Rn⇥d, let A = (CC|)1/2. Observe that A 2 Rn⇥n is PSD. Further, observe
that since A2 = AA| = CC|, Algorithm 1 and Algorithm 2 yield identical outputs for A and C.

Expanding the SVD C = U⌃V|, we can have A = (CC|)1/2 = U⌃U|. Thus, A and C
have identical singular values and kA�Akk⇠ = kC�Ckk⇠ for any unitarily invariant norm k · k⇠
(including the spectral and Frobenius norms) and any k. Additionally, for any Q 2 Rn⇥k,

kA�QQ|Ak⇠ = kU⌃�QQ|U⌃k⇠ = kC�QQ|Ck⇠.

Thus, any bound on kA�QQ|Ak⇠ in terms of kA�Akk⇠ holds identically for C. Finally, for any
q 2 Rn, q|CC|q = q|A2q. Thus, any bound on q|A2q in terms of �i(A) holds identically for C.

B Frobenius Low-Rank Approximation with "�1/3
Dependence

In this section, we prove Theorem 7. This analysis closely follows the intuition given in the intro-
duction of [Bakshi et al., 2022]. We have the following:
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Theorem 7 Restated. For A 2 Rn⇥d, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1
where ` = ⇥( k

"1/3
). For

any ", � 2 (0, 1), Algorithm 1 initialized with x ⇠ N (0, I) and run for t = O( k
"1/3

log( 1
gmin

) +
1

"1/3
log( n

�")) iterations returns an orthogonal Q 2 Rn⇥k such that, with probability at least 1� �,

kA�QQ|AkF  (1 + ")kA�QQ|AkF .

Proof. We first recall that we have two di↵erent guarantees for Algorithm 1. Fix some � > 0.
By Theorem 1, if we run Algorithm 1 for t = O( kp

� log( 1
gmin

) + 1p
� log( n

�� )) iterations, then with

probability at least 1� �,
|q|

iAA|qi � �
2
i |  ��

2
k+1.

Fix some ` � k, and let gk!` = �k��`+1

�k
. Then, by Theorem 6, if we run Algorithm 1 for t =

O( `p
gk!`

log( 1
gmin

) + 1p
gapk!`

log( n
�⌘ )) iterations, then with probability at least 1� � we again have

|q|
iAA|qi � �

2
i |  ⌘�

2
k+1.

We will show that we can get error " in Frobenius norm by taking � = "
2/3 and ⌘ = "

k . In particular,
we run a case-analysis between either large-tailed or small-tailed spectra of A.

Small Tailed Case: Suppose kA �Akk2F  k
"1/3

�
2
k+1. Then A must have a fast spectral decay.

In particular, let ` = (1 + 4
"1/3

)k = O( k
"1/3

). Then �` is substantially smaller than �k:

k

"1/3
�
2
k+1 � kA�Akk2F =

nX

i=k+1

�
2
i � (`� k)�2

` =
4k

"1/3
�
2
` .

That is, �`  �k+1

2 , so that
p
gk!` =

q
�k��`+1

�k
� 1p

2
, so the spectral-decay analysis of Theorem 6

says that t = O( k
"1/3

log( 1
gmin

) + log( n
�⌘ )) iterations su�ce to get the singular value guarantee

kq|
iAk22 2 �

2
i ± ⌘�

2
k+1. Since QQ| =

Pk
i=1 qiq

|
i is a sum of orthogonal projection matrices,

kA�QQ|Ak2F = kAk2F �
kX

i=1

kqiq
|
iAk2F (Matrix Pythagoras)

= kAk2F �
kX

i=1

kq|
iAk22

 kAk2F �
kX

i=1

�
2
i + ⌘k�

2
k+1 (Singular Value Guarantee)

= kA�Akk2F + ⌘k�
2
k+1

 kA�Akk2F + ⌘kkA�Akk2F
= (1 + ⌘k)kA�Akk2F .

So, taking ⌘ = "
k for a total iteration count of t = O( k

"1/3
log( 1

gmin
) + log( n

�")) su�ces in this case.

Large Tailed Case: Suppose kA�Akk2F >
k

"1/3
�
2
k+1. Since the tail is large, even a low-accuracy

singular value guarantee still ensures a good Frobenius norm guarantee. In particular, we take the
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gap-independent analysis of Theorem 1 with � = "
2/3, so that kq|

iAk22 2 �
2
i ± "

2/3
�
2
k+1, and we get

kA�QQ|Ak2F = kAk2F �
kX

i=1

kqiq
|
iAk2F (Matrix Pythagoras)

= kAk2F �
kX

i=1

kq|
iAk22

 kAk2F �
kX

i=1

�
2
i + "

2/3
k�

2
k+1 (Singular Value Guarantee)

= kA�Akk2F + "
2/3

k�
2
k+1

 kA�Akk2F + "kA�Akk2F (�2
k+1 <

"1/3

k kA�Akk2F )
= (1 + ")kA�Akk2F .

So, since � = "
2/3 here, we achieve error " under Frobenius norm with t = O( k

"1/3
log( 1

gmin
) +

1
"1/3

log( n
�")).

Putting it Together. So, in either case, running t = Õ( k
"1/3

) iterations su�ces to obtain a
(1+ ") optimal low-rank approximation in the Frobenius norm. Further, the algorithm used in the
two cases is identical, so (unlike [Bakshi et al., 2022]) we do not have to detect which case we are
in and alter the algorithm accordingly. We simply run single vector Krylov.

C Schatten Norm Low-Rank Approx. with "�1/3
Dependence

In this section, we prove Theorem 8 by arguing that running Algorithm 1 once e↵ectively simulates
running Algorithm 5.4 from [Bakshi et al., 2022]. We have the following:

Theorem 8 Restated. For A 2 Rn⇥d and p � 1, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1
where ` =

⇥( k
"1/3p1/3

). For any ", � 2 (0, 1), let Q 2 Rd⇥k be the result of running Algorithm 1 on A| initialized

with x ⇠ N (0, I) and run for

t = O

⇣
kp1/6

"1/3
log( 1

gmin
) + (

p
p+ p1/6

"1/3
) log(np�" )

⌘
= Õ

⇣
kp1/6

"1/3
+
p
p

⌘

iterations. Let Z 2 Rn⇥k be an orthonormal basis for AQ. Then, with probability at least 1� �,

kA� ZZ|Akp  (1 + ")kA�Akkp,

where kAkp := (
Pn

i=1 �i(A)p)1/p is the Schatten p-norm.

Proof. Note that [Bakshi et al., 2022] outputs orthonormal Q 2 Rd⇥k with kA�AQQ|k bounded,
rather than Q 2 Rn⇥k with kA � QQ|Ak bounded. However, we can translate their analysis to
the later case simply by running their algorithms on A|. Thus we consider this case going forward.
The first two lines of Algorithm 5.4 in [Bakshi et al., 2022] run Block Krylov Iteration twice on
A|. First, they let W1 2 Rd⇥k be the result of using block size `1 = k and running until the
gap-independent rate gives a singular value guarantee (i.e. Equation (7)) with relative error at

most �1 =
"2/3

p1/3
. For single vector Krylov, by Theorem 1, this takes

O

⇣
kp
�1

log( 1
gmin

) + 1p
�1

log( n
�1�

)
⌘
= O

⇣
kp1/6

"1/3
log( 1

gmin
) + p1/6

"1/3
log(np"� )

⌘
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iterations. Second, they let W2 2 Rd⇥k be the result of running with block size `2 = O( k
"1/3p1/3

)

for enough iterations so that if gk!`2 � 1
p , then block Krylov would achieve error �2 = poly( "n)

6.
For single vector Krylov, by Theorem 6, this takes

O

⇣
`2pgk!`2

log( 1
gmin

) + 1pgk!`2
log( n

�2�
)
⌘
= O

⇣
kp1/6

"1/3
log( 1

gmin
) +

p
p log( n

"� )
⌘

iterations. Note that Algorithm 1 outputs a single matrix Q that achieves the guarantees needed
by both W1 and W2.

Next, we consider the third and fourth lines of Algorithm 5.4 in [Bakshi et al., 2022]. The third
line runs block Krylov on A directly to estimate several of its singular values. The fourth line uses
those estimated singular values to determine if we should return an orthogonal basis for W|

1A
|

or W|
2A

|.7 Since we have W1 = W2 = Q, we can ignore the tests in the third and fourth lines,
and just always return a basis for Q|A|. So, overall, we compute a matrix Z with the exact same
guarantees as the [Bakshi et al., 2022] by only using a one instance of single vector Krylov.

D Eigenvalue Repulsion Corollaries

This appendix covers the proofs needed for Corollary 14. First, we take a result of [Minami, 1996]
and use it to prove a gap on the eigenvalues of symmetric matrices. Second, we show that a
optimal projection matrix that achieves near-optimal low-rank approximation on the perturbation
of A must also achieve near-optimal low-rank approximation on A itself.

D.1 Proof of Lemma 12

We first import a result of [Minami, 1996], originally studied in relation to the Wegner Estimate
[Wegner, 1981]. This result is also given as Equation (1.11) in [Aizenman et al., 2017]:

Imported Theorem 17. Let A 2 Rn⇥n be symmetric, and let D 2 Rn⇥n be diagonal, with entries
drawn i.i.d. from a distribution with pdf p(·). Then, for any interval I ⇢ R,

Pr[A+D has at least 2 eigenvalues in I]  C(kpk1|I|n)2,

for some universal constant C, where |I| is the length of I, and where kpk1 = maxt2R p(t).

Lemma 12 Restated. Fix symmetric matrix A 2 Rn⇥n, � 2 (0, 1), and �  kAk2. Let D 2 Rn⇥n

be a diagonal matrix whose entries are uniformly distributed in [��,+�]. Then, letting Ã = A+D
and letting C denote some universal constant, with probability at least 1� �,

min
i2[n�1]

|�i(Ã)� �i+1(Ã)|
|�i+1(Ã)|

� �

Cn2
· �2

kAk22
.

Proof. Let R := 2kAk2. Since � < kAk2, we know that kÃk2  kAk2 + kDk2  2kAk2 = R. Let
� > 0 be a number to be fixed later. Then define

Ii := (�R+ i�)± � = [(�R+ �i)� �, (�R+ �i) + �]

6
They write �2 = " in the algorithm but in Equation (5.21) we can see they actually want this smaller error. Since

gap-dependent rate depends on log(
n
�2

), shrinking �2 from " to poly(
"
n ) does not change the asymptotic complexity.

7
In a personal communication with the authors of [Bakshi et al., 2022], we confirmed there is a typo in the current

arXiv version of the paper, where the algorithm says to return a matrix Z1. It should return an orthonormal basis

for W|
1A

|
instead.
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for i = 1, . . . ,m, where m = 4kAk2
� � 1. These are intervals of width 2� that overlap and cover

the range [�R,R]. For instance, we have I1 = [�R,�R + 2�], I2 = [�R + �,�R + 2�], and
I3 = [�R+2�, R+4�], so that I2 overlaps with I1 and I3. In particular, if Ã has two eigenvalues
that are additively � close, so that |�i(Ã)� �i+1(Ã)|  �, then we know that �i(Ã) and �i+1(Ã)
both lie in some Ij . Therefore, we can write

Pr[9i : |�i(Ã)� �i+1(Ã)| < �]  Pr[at least two eigenvalues of Ã lie in some Ij ]


mX

j=1

Pr[at least two eigenvalues of Ã lie in Ij ]

 Cm

✓
1

2�
· 2� · n

◆2

(Imported Theorem 17)

 4C�n
2kAk2
�2

(using that m  4kAk2
� )

= �,

where the last line holds if we fix � = �2�
4Cn2kAk2 . That is, with probability at least 1� �, we know

that |�i(Ã)� �i+1(Ã)| � �2�
4Cn2kAk2 for all i = 1, . . . , n� 1. Lastly, we take

|�i(Ã)� �i+1(Ã)|
|�i+1(Ã)|

� |�i(Ã)� �i+1(Ã)|
kÃk2

�
�2�

4Cn2kAk2
2kAk2

=
�2

�

8Cn2kAk22
,

which completes the proof.

D.2 Proof of Lemma 13

We next show that a small enough perturbation of A su�ces to give approximate SVD results for
A itself.

Lemma 13 Restated. Let Ã = A + D where kDk2  "
3n�k+1(A) and " 2 (0, 1). Fix any

Q 2 Rn⇥k with orthonormal columns q1, . . . ,qk. Then, with probability at least 1� �,

1. If |q|
i ÃÃ|qi � �i(Ã)2|  "�k+1(Ã)2, then |q|

iAA|qi � �i(A)2|  8"�i(A)2.

2. If kÃ�QQ|Ãk2  (1 + ")kÃ� Ãkk2, then kA�QQ|Ak2  (1 + 2")kA�Akk2.

3. If kÃ�QQ|ÃkF  (1 + ")kÃ� ÃkkF , then kA�QQ|AkF  (1 + 4")kA�AkkF .

Proof.

Singular Value Guarantee. First note that for any real a, b, c such that |a� b|  c and c < b,
we have |a2 � b

2|  3bc. This follows from expanding (b � c)2 < a
2
< (b + c)2 and applying the

AMGM inequality. Then note that |�i(Ã)� �i(A)|  kÃ � Ak2 = kDk2. We then find that for
i  k + 1,

|�2
i (Ã)� �

2
i (A)|  3�i(A)kDk2  "�i(A)�k+1(A)  "�i(A)2.

Similarly note that |kÃqik2 � kAqik2|  kDk2 and kÃqik2  2�i(Ã)  4�i(A), so we have

|kÃqik22 � kAqik22|  3kÃqik2kDk2  4"�i(A)2.
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Which completes this part by triangle inequality:

|q|
iAA|qi � �i(A)2|  |q|

i ÃÃ|qi � �i(A)2|+ 4"�i(A)2

 |q|
i ÃÃ|qi � �i(Ã)2|+ 7"�i(A)2

 8"�i(A)2.

Spectral Norm Guarantee. Here, first note that kÃ � Ãkk2 = �k+1(Ã)  (1 + ")�k+1(A)
by the prior analysis on the singular value guarantee. Next, we use the fact that I � QQ| is a
projection to simplify

kÃ�QQ|Ãk2 = k(I�QQ|)(A+D)k2 � k(I�QQ|)Ak2 � kDk2,

and since kDk2  "�k+1(A), we have kA�QQ|Ak2  kÃ�QQ|Ãk2 + kDk2  (1+ 2")�k+1(A),
which completes this part of the lemma.

Frobenius Norm Guarantee. Here, first note that kÃ� Ãkk2F  (1 + ")kA�Akk2F , since

kÃ� Ãkk2F =
nX

i=k+1

�
2
i (Ã) 

nX

i=k+1

(�i(A) + kDk2)2  kA�Akk2F +
nX

i=k+1

(kDk22 + 2�i(A)kDk2),

where we can further upper bound

nX

k+1

(kDk22 + 2�i(A)kDk2)  n( "�k+1(A)
3n )2 + 2n�k+1(A) "�k+1(A)

3n  "�
2
k+1(A)  "kA�Akk2F .

Next, using the fact that P = I�QQ| is a projection matrix, we simplify

kÃ�QQ|ÃkF = kP(A+D)kF � kPAkF � kPDkF ,

and since kPDkF  kPkF kDk2 
p
d

"
3n�k+1(A)  "kA�AkkF , we have

kA�QQ|AkF  kÃ�QQ|ÃkF + kPDkF  ((1 + ")2 + ")kA�AkkF ,

which completes the proof since ((1 + ")2 + ")  1 + 4" for " 2 (0, 1).

E Krylov Analysis with Small Blocks

This section proves Theorem 11. We first define the starting matrix that we will simulate block
Krylov iteration on, analogously to what we use in Section 3:

Sr :=
⇥
G A2G A4G . . . A2(r�1)G

⇤
K

span
=
⇥
Sr A2Sr A4Sr . . . A2qSr

⇤

where ` = rb is the simulated block size (so we assume the integer r has rb > k) and where
q = t � r + 1 denotes the number of simulated block-Krylov iterations run. Our proof will set
r = k� b+1. Notably, this means that Sr can have more than k columns, which is not allowed by
the definition of (k, L)-good in Definition 1. So, we first present a generalization of Definition 1 that
also su�ces for convergence under Imported Theorem 2 and Imported Theorem 5. In particular,
it su�ces for Sr to contain a n ⇥ k size (k, L)-good matrix within its span. The Krylov subspace
generated by this matrix will be contained in the subspace generated by Sr, and thus any guarantees
that hold for it apply to Sr as well. See Appendix F for a formal argument.
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Definition 3 ((k, L)-good Starting Matrix (Generalized)). Let A 2 Rn⇥d be a matrix with top
k left singular vectors Uk 2 Rn⇥k. A matrix B 2 Rn⇥` is a (k, L)-good starting matrix for A if
k(U|

kQ)�1k22  L for some orthonormal Q 2 Rn⇥k whose columns lie in span(B).

Observe that when the starting block has exactly ` = k columns, Definition 3 matches Def-
inition 1 exactly. To prove the (k, L)-good guarantee for small block methods, we first note an
equivalent formulation of the generalized (k, L)-good guarantee:

Lemma 18. B 2 Rn⇥` is (k, L)-good for A 2 Rn⇥n if and only if there exists a matrix M 2 R`⇥k

with U|
kBM = I and kBMk22  L.

Proof. Suppose we are given such an M. Since span(BM) is a k-dimensional subspace of span(B),
we can let Q be an orthonormal basis for BM. Then we have BM = QX for some invertible
X 2 Rk⇥k. Since U|

kQX = U|
kBM = I, we have X�1 = U|

kQ. And so, we have k(U|
kQ)�1k22 =

kXk22 = kQXk22 = kBMk22  L.
In the other direction, we are given Q which spans a subspace of span(B). So, for any invertible

matrix X 2 Rk⇥k, we can write BM = QX for some M 2 R`⇥k. If we take X = (U|
kQ)�1, then

we have U|
kBM = U|

kQX = I and kBMk22 = kQXk22 = kXk22 = k(U|
kQ)�1k22  L.

With this foundation in place, we prove the following guarantee on Sr:

Theorem 10 Restated. Fix any PSD matrix A 2 Rn⇥n with singular values �1 � . . . � �n,
k 2 [n], and b 2 [k]. Let r = k � b + 1. Let G 2 Rn⇥b be a matrix i.i.d. N (0, 1) entries, and let
Sr =

⇥
G A2G A4G . . . A2(r�1)G

⇤
. For any � 2 (0, 1), with probability at least (1� �), Sr is

a (k, L)-good starting matrix for A for L = cb2k2n log(1/�)

�2g
4(k�b)
min,b

. Here c is a fixed constant.

Proof. We prove the generalized (k, L)-good bound by constructing a matrix M 2 R`⇥k with
U|

kSrM = I and then applying Lemma 18. Consider first the matrix U|SrM. Writing the SVD

A = U⌃U|, we can define Ĝ := U|G 2 Rn⇥b, which is distributed as a iid N (0, 1) matrix because
of the rotational invariance of the Gaussian. We can then write U|A2iG = U|U⌃2iU|G = ⌃2iĜ.
Thus,

U|Sr =
⇥
Ĝ ⌃2Ĝ ⌃4Ĝ . . . ⌃2(r�1)Ĝ

⇤
.

If we let ĝi be the i
th column of Ĝ and permute the columns of U|G, we can write U|Sr as

U|SrP = [ ĝ1 ⌃2ĝ1 ... ⌃2(r�1)ĝ1 | ĝ2 ⌃2ĝ2 ... ⌃2(r�1)ĝ2 | ... | ĝb ⌃2ĝb ... ⌃2(r�1)ĝb ] .

where P is the permutation matrix that reorders the columns as such. So, for some vector mi,

we can decompose P|mi =
h c1
...
cb

i
for cj 2 Rr, and let pi,j (t) be the degree r � 1 polynomial with

coe�cients cj . Then, we get

U|Srmi = U|SrPP|mi = pi,1(⌃
2)ĝ1 + pi,2(⌃

2)ĝ2 + . . .+ pi,b(⌃
2)ĝb. (14)

And so, the matrix U|SrM is the concatenation of k such vectors U|Srm1, . . . ,U|Srmk.
Observe that U|

kSrM is just the top k rows of U|SrM. So to apply Lemma 18, we need to
find polynomials p1,1, . . . , pk,b which make the top k rows of U|SrM into an identity matrix. I.e.,
we need to show U|

kSrmi = ei for i = 1, . . . , k. We do this by first designing the degree k� b filter
polynomials f1, . . . , fk by

fi(�
2
j ) =

(
1 j = i

0 j /2 Ni [ {i}
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That is, fi is 1 at �2
i and is 0 on the squares of the k � b+ 1 singular values furthest from �i. The

squares are there because the Krylov subspace uses polynomial of ⌃2. We then take

pi,j(t) := fi(t)zi,j

for some values of zi,j which will be specified later. Note these polynomials are all degree r�1 = k�b,
which is why we constrain r = k � b+ 1. If we plug this into Equation (14), we get

U|Srmi = pi,1(⌃
2) ĝ1 + pi,2(⌃

2) ĝ2 + . . .+ pi,b(⌃
2) ĝb

= fi(⌃
2) (ĝ1zi,1 + ĝ2zi,2 + . . .+ ĝbzi,b)

= fi(⌃
2) Ĝzi,

where zi =
⇥
zi,1 . . . zi,b

⇤|
. So, we need to find a choice of zi 2 Rb such that U|

kSrmi = ei.

Letting Ĝk 2 Rk⇥b be the top k rows of Ĝ, we write

U|
kSrmi = fi(⌃

2
k) Ĝkzi.

Recalling that fi is a filter polynomial, we know that [U|
kSrmi]j = 0 for j /2 Ni [ {i}. So, we just

need to pick zi 2 Rb such that [U|
kSrmi]j = 0 for j 2 Ni and [U|

kSrmi]i = 1. That is, we need to

pick zi such that the product Ĝkzi is zero for the b� 1 rows in Ni and is 1 for row i. This is just
a linear system, so we pick the unique zi = [Ĝk]

�1
Ni[{i}ei, where [Ĝk]Ni[{i} just selects the b rows

indexed by Ni [ {i}.
Once we have these zi vectors, we get U|

kSrmi = fi(⌃2
k) Ĝkzi = ei, and so U|

kSrM = I, as
required by Lemma 18. Now we just have to bound kSrMk22. We do this by bounding kSrMk22 =
kU|SrMk22  kU|SrMk2F 

Pk
i=1 kU|Srmik22.

Let ⌃�k 2 R(n�k)⇥(n�k) be the bottom n � k singular values of A, and let Ĝ�k 2 R(n�k)⇥b

bottom n� k rows of Ĝ. Then, we can decompose

U|Srmi = fi(⌃
2) Ĝzi =


fi(⌃2

k)Ĝkzi
fi(⌃2

�k)Ĝ�kzi

�
=

"
ei

fi(⌃2
�k) Ĝ�k[Ĝk]

�1
Ni[{i}ei

#
.

We now bound the lower elements. First, we look at Ĝ�k[Ĝk]
�1
Ni[{i}ei, which is the product of a

(n � k) ⇥ b Gaussian matrix and inverse of an independent b ⇥ b Gaussian matrix. Since these
matrices are independent, we can directly bound

kĜ�k[Ĝk]
�1
Ni[{i}eik2  kĜ�kk2 ·

1

�min([Ĝk]Ni[{i})
· kek2  O

 
b
p
kn

�

s

log

✓
1

�

◆!
, (15)

where we use the bound kG�kk2  O(
q
(n� k)b ln(1� )) from Equation (2.3) of [Rudelson and

Vershynin, 2010] and the bound �min([Ĝk]Ni[{i}) � ⌦( �
k
p
b
). This latter bound comes from a

union-bound argument using the fact that any square Gaussian G̃ 2 Rb⇥b has Pr[�min(G̃) �
⌦( �p

b
)] � 1� � [Huang and Tikhomirov, 2020], and that [Ĝk]N1[{1}, . . . , [Ĝk]Nk[{k} are all square

Gaussian matrices. Next, we bound fi(⌃2
�k) by writing fi as a Lagrange interpolating polynomial:

fi(t) =
Y

j2[k]\Ni,j 6=i

t� �
2
j

�2
i � �2

j

.
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We can then use our gap assumption to bound fi on all singular values below �k. That is, for
0  t  �k we have

|fi(t)| 
Y

j2[k]\Ni,j 6=i

�����
�
2
j

�2
i � �2

j

����� 
Y

j2[k]\Ni,j 6=i

����
�j

�i � �j

����
2

 1

g
2(k�b)
min,b

.

Putting this altogether, we then find that

kfi(⌃2
�k) Ĝ�k[Ĝk]

�1
Ni[{i}eik

2
2  kfi(⌃2

�k)k22 kĜ�k[Ĝk]
�1
Ni[{i}eik

2
2

 O

0

@ b
2
kn

g
4(k�b)
min,b �2

log

✓
1

�

◆1

A .

And therefore

kSrMk22  kU|SrMk2F  O

0

@1 +
b
2
k
2
n

g
4(k�b)
min,b �2

log

✓
1

�

◆1

A ,

which completes the proof by Lemma 18.

F Convergence Results from [Musco and Musco, 2015]

In this section, we show how Imported Theorem 2 and Imported Theorem 5 follow from [Musco
and Musco, 2015]. We prove the result using a generalization of a (k, L)-good starting block
(Definition 1), which is useful in the small block analysis of Appendix E:

Definition 3 Restated ((k, L)-good Starting Matrix (Generalized)). Let A 2 Rn⇥d be a matrix
with top k left singular vectors Uk 2 Rn⇥k. A matrix B 2 Rn⇥` is a (k, L)-good starting matrix for
A if k(U|

kQ)�1k22  L for some orthonormal Q 2 Rn⇥k that lies in span(B).

Note that if B has exactly k columns then this generalized definition exactly matches Defini-
tion 1. This is the case for the analysis of single vector Krylov in Section 3, where we take B = Sk

with exactly k columns and show that Sk is (k, L)-good. In Appendix E, we show an equivalent
formulation which is easier to use in our analysis:

Lemma 18 Restated. B 2 Rn⇥` is (k, L)-good for A if and only if there exists a matrix M 2 R`⇥k

with U|
kBM = I and kBMk22  L.

Given this definition, we will show that Imported Theorem 2 and Imported Theorem 5 follow
from [Musco and Musco, 2015]. Before diving in, we first state a guarantee on the polynomials

used in [Musco and Musco, 2015]. They use polynomials of the form p(x) := (1+�)↵
Tq(1+�)Tq(

x
↵) for some

↵ > 0, � 2 (0, 1), and q 2 N, and where Tq(x) is the degree q Chebyshev polynomial of the first
kind. We first show that such polynomials are monotonic for large enough x:

Lemma 19. Let p(x) = (1+�)↵
Tq(1+�)Tq(

x
↵) where ↵ > 0 and � 2 (0, 1). Then, maxx2[0,↵] p(x) = p(↵)

and p(x) is monotonically increasing on (↵,1).

Proof. The result follows from two well-known properties of Tq: that Tq is monotonically increasing
on (1,1) and that maxt2[0,1] Tq(t) = Tq(1) = 1. Since � > 0, we know that Tq(1 + �) > Tq(1) = 1,

so we have (1+�)↵
Tq(1+�) > 0. Therefore, we get that p(x) is monotonically increasing on (↵,1), and

that maxx2[0,↵] p(x) = p(↵).
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In order to relate the generalized (k, L)-good definition to the convergence analysis of [Musco
and Musco, 2015], we rely on a slight generalization of a theorem used in the appendix of [Musco
and Musco, 2015]:

Imported Lemma 20 (Lemma 48 of [Woodru↵, 2014]). Let P = PUU|+E 2 Rn⇥n be a low-rank
factorization of A 2 Rn⇥n, with U 2 Rn⇥k and U|U = Ik. Let B 2 Rn⇥` (` � k) be any matrix
with rank(U|S) = rank(U) = k. Let M 2 R`⇥k with U|BM = Ik. Let C = AS 2 Rn⇥`. Then,

kP�⇧C,k(P)k2F  kEk2F + kEBMk2F .

Here, ⇧C,k(P) = YoptY
|
optA 2 Rn⇥n is the best rank k approximation to A in the column space of

C So, Yopt 2 Rn⇥k is an orthogonal matrix that lies in the column span of C.

Lemma 48 from [Woodru↵, 2014] is stated with M = (U|B)+, but the proof only requires that
U|BM = I. We now prove the imported theorems:

Imported Theorem 2 Restated (Theorem 1 of [Musco and Musco, 2015]). Let B 2 Rn⇥` be
any (k, L)-good starting matrix (Definition 3) matrix for A. If we run Block Krylov iteration
(Algorithm 2) for q = O( 1p

"
log(nL" )) iterations with starting block B, then the output Q 2 Rn⇥k

satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Proof. To recover this guarantee from [Musco and Musco, 2015], we recover Properties 1-3 of their

Lemma 9. We start by recovering Property 1. We let p1(x) =
(1+�)↵
Tq(1+�)Tq(

x
↵) where ↵ = �k+1(A),

� = "
2 , and q = O( 1p

"
log(nL" )). Let M 2 R`⇥k be the matrix guaranteed to exist by Lemma 18.

We then instantiate Imported Lemma 20 with P = p1(A), B = B, M = M, and U = Uk being the
top k singular vectors of A. By Lemma 19, since ↵ = �k+1(A), we know that the top k singular
vectors of A are also the top k singular vectors of p1(A), and therefore that PUU| = p1(A)k. We
then get that some orthonormal Y1 2 Rn⇥k in the span of p(A)B has

kp1(A)�Y1Y
|
1p1(A)k2F  kp1(A)� p1(A)kk2F + k(p1(A)� p1(A)k)BMk2F

 kp1(A)� p1(A)kk2F + kp1(A)� p1(A)kk2F kBMk22
 (L+ 1)kp1(A)� p1(A)kk2F

= (L+ 1)
nX

i=k+1

p(�i(A))2

 (L+ 1)n · 4�k+1(A)2

22q
p
�

(Lemma 5 of [Musco and Musco, 2015])

 "

2
�k+1(A)2, (16)

where the last line uses q � 1
2
p
� log2(

8(L+1)n
" ) = O( 1p

"
log(Ln" )). The inequality kp1(A)�Y1Y

|
1p1(A)k 

"
2�k+1(A)2 is exactly Equation (5) on page 11 of [Musco and Musco, 2015]. Once Equation (5) is
achieved, the rest of the proof of Property 1 then follows without any alteration.

We next move onto proving properties 2 and 3. The proofs of properties 2 and 3 in [Musco
and Musco, 2015] both involve defining the matrix Aouter. If A = U⌃U| is the SVD of A, then
Aouter := U⌃outerU| where ⌃outer contains all the singular values of A with either �i(A) � �k(A)
or �i(A) <

1
1+"/2�k(A). All the other singular values are set to equal zero. Crucially, the top k

singular vectors of A are still the top k singular vectors of Aouter.
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We let p2(x) = (1+�)↵
Tq(1+�)Tq(

x
↵) where ↵ = 1

1+"/2�k+1(A), � = "
2 , and q = O( 1p

"
log(nL" )). We

next instantiate Imported Lemma 20 with P = p2(Aouter), B = B, M = M, and U = Uk. By
Lemma 19, since ↵  �k(Aouter), we know that the top k singular vectors ofAouter are also the top k

singular vectors of p2(Aouter), and therefore that PUU| = p2(Aouter)k. We then let Youter 2 Rn⇥k

be the orthogonal basis that constructs ⇧C,k(A), so that

kp2(Aouter)�YouterY
|
outerp2(Aouter)k2F  kp2(Aouter)� p2(Aouter)kk2F

+ k(p2(Aouter)� p2(Aouter)k)BMk2F
 (L+ 1)kp2(Aouter)� p2(Aouter)k2F
 "

2
�k+1(Aouter)

2
.

Where the inequalities follow from the same logic as earlier, for Equation (16). We again find
ourselves at Equation (5) of [Musco and Musco, 2015], and follow the rest of the proof on page 11
to get the following guarantee:

k(Aouter)kk2F � kYouterY
|
outer(Aouter)kk2F  "

2
�k+1(Aouter)

2
.

Since (Aouter)k = Ak, the above inequality then recovers Equation (10) of [Musco and Musco,
2015]. Given this proof of Equation (10), the rest of the proof of Property 2 holds as written.
Equation (10) is also used on page 14 of [Musco and Musco, 2015] to prove Property 3. The rest
of the proof of Property 3 also holds without alteration given Equation (10).

Overall, we have recovered the proofs of Properties 1-3 of Lemma 9 of [Musco and Musco, 2015].
That is, we have shown that Lemma 9 holds for block Krylov iteration starting from (k, L)-good
starting block B with q = O( 1p

"
log(nL" )) iterations. The proofs in Section 6.2 of [Musco and Musco,

2015] then show that Properties 1-3 su�ce to achieve the spectral, Frobenius, and singular value
guarantees.

We now move onto Imported Theorem 5 from [Musco and Musco, 2015], which depends on
spectral decay. Note there are two di↵erent variables ` and `0 in this context. In order to perform
rank-k approximation, we want to recover a convergence bound in terms of gk!` for some ` � k.
Our starting block B 2 Rn⇥`0 has `0 � ` columns and is an (`, L)-good starting block. We need
to consider this case because, when running block size b  k Krylov iteration, the analysis in
Appendix E considers a simulated starting block Sr which uses `0 ⇡ b(` � b) � ` columns to
simulate block size ` Krylov iteration.

Imported Theorem 5 Restated (Theorem 13 of [Musco and Musco, 2015]). Let B 2 Rn⇥`0

be any (`, L)-good starting matrix (Definition 3) matrix for A, for some ` � k. If we run Block
Krylov iteration (Algorithm 2) for q = O( 1p

gk!`
log(nL" )) iterations with starting block B, where

gk!` =
�k��`+1

�k
, then the output Q 2 Rn⇥k satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Proof. We again show that Properties 1-3 of Lemma 9 of [Musco and Musco, 2015] hold, but now
with q = 1p

gk!`
log(nL" ). Following Section 7 of [Musco and Musco, 2015], we will prove Property 1

for all l 2 [k], which in turn implies that Properties 2 and 3 hold. To begin, let p3(x) =
(1+�)↵
Tq(1+�)Tq(

x
↵)

where ↵ = �`+1(A), � = gk!`, and q = O( 1p
gk!`

log(nL" )). We let M 2 R`0⇥` be the matrix

guaranteed to exist by Lemma 18. Then, noticing that the top ` singular vectors of A are also
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the top ` eigenvectors of p3(A), we again appeal to Imported Lemma 20 with P = p3(A), B = B,
M = M, and U = Uk. We get that some orthogonal Y3 2 Rn⇥` in the span of p3(A)B has:

kp3(A)�Y3Y
|
3p3(A)k2F  kp3(A)� p3(A)`k2F + k(p3(A)� p3(A)`)BMk2F

 kp3(A)� p3(A)`k2F + kp3(A)� p3(A)`k2F kBMk22
 (L+ 1)kp3(A)� p3(A)`k2F

= (L+ 1)
nX

i=`+1

p(�i(A))2

 (L+ 1)n · 4�`+1(A)2

22q
p
�

(Lemma 5 of [Musco and Musco, 2015])

 "

2
�`+1(A)2,

This recovers Equation (5) on page 10 of [Musco and Musco, 2015], and from there the rest of the
proof of Property 1 holds. As discussed on page 16 of [Musco and Musco, 2015], Property 1 holds
here for all l 2 [k], and therefore Properties 2 and 3 also hold. Then, the analysis in Section 6.2
shows how Properties 1-3 imply the spectral, Frobenius, and singular value guarantees.

G Single Vector Simultaneous Iteration

We briefly present a single vector algorithm for low-rank approximation based on the standard
simultaneous iteration algorithm. Simultaneous iteration, or block power method, extracts a low-
rank approximation from the span of K = A2qB where B is a starting block. We present a
prototypical pseudocode for simultaneous iteration in Algorithm 3. [Musco and Musco, 2015]
show that Algorithm 3 converges from any (k, L)-good starting block B, giving the two following
theorems, which follow from the same arguments as in Appendix F and [Musco and Musco, 2015]:

Algorithm 3 Simultaneous Iteration for Low-Rank Approximation

input: Matrix A 2 Rn⇥d. Target rank k. Starting block B 2 Rn⇥`. Number of iterations t.
output: Orthogonal matrix Q 2 Rn⇥k.

1: Compute an orthonormal basis Z for K = (AA|)tB.
2: Compute Uk, the k top eigenvectors of M = Z|AA|Z
3: return Q = ZUk.

Algorithm 4 Single Vector Simultaneous Iteration for Low-Rank Approximation

input: Matrix A 2 Rn⇥d. Target rank k. Starting vector x 2 Rn. Number of iterations t. Memory
budget ` � k.
output: Orthogonal matrix Q 2 Rn⇥k.

1: Compute an orthonormal basis Z for K = [ (AA|)t�`+1x, (AA|)t�`+2x, . . . , (AA|)tx ].
2: Compute Uk, the k top eigenvectors of M = Z|AA|Z
3: return Q = ZUk.

Imported Theorem 21 (Theorem 1 of [Musco and Musco, 2015]). Let B 2 Rn⇥` be any (k, L)-
good starting matrix (Definition 3) matrix for A. If we run Simultaneous Iteration (Algorithm 3)
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for q = O(1" log(
nL
" )) iterations with starting block B, then the output Q 2 Rn⇥k satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Imported Theorem 22 (Theorem 13 of [Musco and Musco, 2015]). Let B 2 Rn⇥`0 be any (`, L)-
good starting matrix (Definition 3) matrix for A, for some ` � k. If we run Simultaneous Iteration
(Algorithm 3) for q = O( 1

gk!`
log(nL" )) iterations with starting block B, where gk!` =

�k��`+1

�k
, then

the output Q 2 Rn⇥k satisfies

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

When compared to block Krylov Iteration, subspace iteration uses less memory, but converges
slower. Specifically, in the theorems above we obtain a dependence on 1/" and 1/gk!` in comparison
to 1/

p
" and 1/

p
gk!` in the comparable Imported Theorem 2 and Imported Theorem 5 for block

Krylov iteration.
In Algorithm 4, we present a “single vector” variant of simultaneous iteration that similarly

saves memory over the single vector Krylov method from Algorithm 1. When run for t iterations,
instead of storing the entire length t Krylov subspace as in Algorithm 1, the method only stores
the last ` � k columns for a specified memory budget `.

Taking ` = k, we can analyze Algorithm 4 by letting Sk =
⇥
x A2x A4x . . . A2(k�1)x

⇤

and noticing that Algorithm 3 run with starting matrix Sk for q iterations produces the matrix
K = A2qSk =

⇥
A2qx A2(q+1)x . . . A2(q+k)x

⇤
. Since Theorem 3 already tells us that Sk is

(k, L)-good for A, applying Imported Theorem 21 immediately gives the following convergence
guarantees for Algorithm 4:

Theorem 23. For A 2 Rn⇥d, let gmin = mini2{1,...,k�1}
�i��i+1

�i+1
. For any ", � 2 (0, 1), Algorithm 4

initialized with x ⇠ N (0, I) and run for t = O(k" log(
1

gmin
) + 1

" log(
n
"� )) iterations with memory

budget k returns an orthogonal Q 2 Rn⇥k such that, with probability at least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.

Additionally, if Algorithm 4 is run with memory budget ` � k, we can obtain a spectrum
dependent convergence bound comparable to the result proven in Section 4.1 for single vector
Krylov iteration. Specifically, since Theorem 3 already tells us that S` is (`, L)-good for A, applying
Imported Theorem 22 immediately gives the following convergence guarantees for Algorithm 4:

Theorem 24. For A 2 Rn⇥d and ` � k, let gmin = mini2{1,...,`�1}
�i��i+1

�i+1
and gk!` = �k��`+1

�k
.

For any ", � 2 (0, 1), Algorithm 4 initialized with x ⇠ N (0, I) and run for t = O( `
gk!`

log( 1
gmin

) +
1

gk!`
log( n

�")) iterations with memory budget ` returns an orthogonal Q 2 Rn⇥k such that, with
probability at least 1� �,

kA�QQ|Ak⇠  (1 + ")kA�Akk⇠ and
��q|

iAA|qi � �i(A)2
��  "�k+1(A)2.
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