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Abstract

Differential privacy is the dominant standard for formal and quantifiable privacy
and has been used in major deployments that impact millions of people. Many
differentially private algorithms for query release and synthetic data contain steps
that reconstruct answers to queries from answers to other queries that have been
measured privately. Reconstruction is an important subproblem for such mecha-
nisms to economize the privacy budget, minimize error on reconstructed answers,
and allow for scalability to high-dimensional datasets. In this paper, we introduce a
principled and efficient postprocessing method ReM (Residuals-to-Marginals) for
reconstructing answers to marginal queries. Our method builds on recent work on
efficient mechanisms for marginal query release, based on making measurements
using a residual query basis that admits efficient pseudoinversion, which is an
important primitive used in reconstruction. An extension GReM-LNN (Gaussian
Residuals-to-Marginals with Local Non-negativity) reconstructs marginals under
Gaussian noise satisfying consistency and non-negativity, which often reduces error
on reconstructed answers. We demonstrate the utility of ReM and GReM-LNN by
applying them to improve existing private query answering mechanisms.

1 Introduction

Differential privacy is the dominant standard for formal and quantifiable privacy and has been used in
major deployments that impact millions of people such as the 2020 US Decennial Census [1]. One
of the most fundamental problems in differential privacy is answering a workload of linear queries.
Linear queries are used for basic descriptive statistics like counts and sums, and as building blocks
for more complex tasks. Marginal queries, which describe the frequency distribution of subsets
of discrete variables (e.g., income by age and education), are of particular interest as descriptive
statistics and for use in downstream tasks like regression analyses.

A key subproblem in linear query answering is reconstruction. Given a workload of linear queries,
most mechanisms select a different set of queries to measure to make the most efficient use of the
privacy budget, and then use the noisy answers to reconstruct answers to workload queries [2–11].
Effective reconstruction methods can combine information from all noisy measurements to provide
mutually consistent answers to workload queries.

Computational complexity is a key challenge for reconstruction methods. These methods answer
workload queries by—either explicitly or implicitly—reconstructing a data distribution that has size
exponential in the number of variables. To scale to high-dimensional data sets, existing approaches
must represent this distribution compactly through some form of parametric representation [8–12],
which introduces tradeoffs such as a restricted space of data distributions that can be represented [8–
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11], non-convex optimization objectives to find the best representation [9–11], or complexity that
depends on the measured queries and is still exponential in the worst case [12].

We introduce ReM (residuals-to-marginals), a principled and scalable post-processing method to
reconstruct answers to a workload of marginal queries from noisy measurements of residuals.
Residuals are a class of linear queries that are related to marginals, which were recently introduced
in the privacy literature [6] but previously studied in statistics [13, 14]. ReM uses a compact
representation of the data distribution to produce workload answers without exponential complexity
in the number of variables. ReM builds on the reconstruction approach of ResidualPlanner [6],
which utilizes Kronecker structure to efficiently perform pseudoinverse operations. ReM is a flexible
framework for performing reconstruction in a broad range of settings and it can be used with a variety
of existing query-answering mechanisms. ReM also extends to the common setting of reconstructing
answers to marginal queries from a set of noisy marginal measurements with isotropic Gaussian noise.
In this case, ReM performs the standard pseudoinverse reconstruction and is the first method to do so
efficiently. We also develop GReM-LNN (Gaussian ReM with local non-negativity), an extension
that reconstructs marginals satisfying non-negativity, which often reduces error on reconstructed
answers.

We demonstrate the utility of ReM and GReM-LNN by showing that they significantly reduce error
and enhance the scalability of existing private query answering mechanisms including ResidualPlan-
ner [6] and the multiplicative weights exponential mechanisms (MWEM) [15]. Our code is available
at https://github.com/bcmullins/efficient-marginal-reconstruction.

2 Preliminaries

We consider a sensitive tabular dataset D of records x(1)
, . . . , x

(N). Each record x = (x1, . . . , xd)
consists of d categorical attributes. The ith attribute xi belongs to the finite set Xi of size ni. The
data universe is X =

Qd
i=1 Xi and has size n =

Q
i ni. The data vector or data distribution

p 2 Rn is a vector indexed by X that counts the occurrences of each record in D; it has entries
p(x) =

PN
i=1 I[x(i) = x]. Since n is exponential in the data dimension d, it is computationally

intractable to work directly with data vectors in high dimensions.

2.1 Linear queries, marginals, and residuals

Linear queries are a rich class of statistics that include counts, sums, and averages and are used
as building blocks for more complex tasks. A linear query is the sum of a real-valued function
q : X ! R applied to each record in the dataset. We adopt the equivalence that a query is a vector
q 2 Rn with answer q>p. A query matrix or workload W is a collection of m linear queries arranged
row-wise in an m⇥ n matrix. The answer to workload W for data vector p is given by Wp.

Marginal queries are a common type of linear query for high-dimensional data. They count the
number of records that match certain values for a subset of the attributes – e.g., the number of
people in a dataset with education at least a college degree and income $50-$100K. Let � ✓ [d] be
a subset of attributes and x� = (xi)i2� be the corresponding subvector of a record x. Further, let
X� =

Q
i2� Xi and n� =

Q
i2� ni. The marginal µ� 2 Rn� has entries µ�(t) =

PN
i=1 I[x

(i)
� = t]

that count the number of occurrences in the dataset for each setting t 2 X� of the attributes in �.
Let M� 2 Rn�⇥n be the marginal workload so that µ� = M�p. As shown in Fig. 1a, M� can be
written concisely as a Kronecker product over dimensions, with base matrices equal to the identity
Ik 2 Rnk⇥nk for attributes in � and the all ones vector 1>k 2 R1⇥nk for attributes not in �. Kronecker
product matrices can be understood as applying different linear operations along each dimension of a
multi-dimensional array. In this case M� sums over dimensions of the array representation of p for
attributes not in �. We provide a brief summary of Kronecker products and their relevant properties
in Appendix A.

Residual queries are class of linear queries closely related to marginals. They were recently introduced
in the privacy literature [6] but previously studied in statistics as variable interactions [13, 14]. For
⌧ ✓ [d], the ⌧ -residual is obtained from the marginal µ⌧ by applying a differencing operator along
each dimension. Let D(k) be the linear operator that computes successive differences for vectors of
length nk, i.e., (D(k)v)i = vi+1 � vi for i = 1, . . . , nk � 1; an example is shown for nk = 3 in Fig.
1b. Let D⌧ be the matrix that applies this operation to all attributes in the ⌧ -marginal as shown in
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M� =
dO

k=1

(
Ik k 2 �

1>k k /2 �

(a) Marginals

D(k) =


1 �1 0
0 1 �1

�

(b) Differencing operator
for kth attribute.

D⌧ =
dO

k=1

(
D(k) k 2 ⌧

1 k /2 ⌧

(c) Differencing operator
for ⌧ -marginal.

R⌧ =
dO

k=1

(
D(k) k 2 ⌧

1>k k /2 ⌧

(d) Residuals

Figure 1: Kronecker structure of workloads.

Fig. 1c. The residual workload can be written as R⌧ = D⌧M⌧ 2 Rm⌧⇥n where m⌧ =
Q

i2⌧ (ni�1),
which has the explicit Kroecker product form shown in Fig. 1d.1 With these definitions, if µ⌧ = M⌧p

is the ⌧ -marginal, the ⌧ -residual is ↵⌧ = D⌧µ⌧ = R⌧p and can be computed from either µ⌧ or p.

Residuals and marginals have an intricate structure. The �-marginal is uniquely determined by the
⌧ -residuals for ⌧ ✓ �, i.e., there is an invertible linear transformation between M� and (R⌧ )⌧✓� (a
vertical block matrix). Intuitively, a �-residual contains information not contained in the ⌧ -marginals
for ⌧ ⇢ �. Further, the row spaces of R⌧ and R⌧ 0 are orthogonal for any ⌧ 6= ⌧

0, and the row
spaces of M� and R⌧ are orthogonal when ⌧ 6✓ � [6, 13, 14]. Along with Kronecker structure, the
orthogonality of residuals is the key property we will leverage to perform efficient reconstruction.

A key advantage of residual workloads is that we can work with their pseudoinverses efficiently
in certain situations even though they have exponential size. Let Q+ denote the Moore-Penrose
pseudoinverse of Q. The following proposition builds on the reconstruction method in [6] and will be
used to reconstruct answers to a marginal query M� from measurements for a collection of residuals.
Proposition 1. Let RS = (R⌧ )⌧2S be a combined workload of residual queries for all ⌧ in a
collection S ✓ 2[d], where the individual matrices R⌧ are stacked vertically. The size of RS is m⇥ n

where m =
P

⌧2S m⌧ . Then for any z = (z⌧ )⌧2S 2 Rm and any �, it holds that

M�R
+
S z =

X

⌧2S,⌧✓�

A�,⌧z⌧ , where A�,⌧ :=
dO

k=1

8
><

>:

D
+
(k) k 2 ⌧�

1/nk

�
1k k 2 � \ ⌧

1 k /2 �

for ⌧ ✓ �.

The matrix A�,⌧ has size n�⇥m⌧ and maps from the space of ⌧ -residuals to the space of �-marginals.
The running time to compute A�,⌧z⌧ is O(|�|n�).

The proof of this result appears in Appendix C. The analysis of time complexity appears in Ap-
pendix E.

2.2 Differential Privacy

When releasing the results of any analysis performed on sensitive data, particular care needs to be
taken to avoid leaking private information contained in the dataset. Differential privacy is a mathe-
matical criterion that bounds the effect of any individual in the dataset on the output of a mechanism,
which is satisfied by adding noise to the computation. This allows for formal quantification of the
privacy risk associated with any release of information.
Definition 1. (Differential Privacy; [16]) Let M : X ! Y be a randomized mechanism. For any
neighboring datasets D,D

0 that differ by adding or removing at most one record, denoted D ⇠ D
0,

and all measurable subsets S ✓ Y: if Pr(M(D) 2 S)  exp(✏) · Pr(M(D0) 2 S) + �, then M

satisfies (✏, �)-approximate differential privacy, denoted (✏, �)-DP.

A fundamental property of differential privacy relevant to our work is the post-processing property,
which states that transformations of differentially private outputs that do not access the sensitive
dataset D maintain their privacy guarantees. Formally:
Proposition 2 (Post-processing; [17]). Let M1 : X ! Y satisfy (✏, �)-DP and f : Y ! Z be a
randomized algorithm. Then M : X ! Z = f �M1 satisfies (✏, �)-DP.

The reconstruction methods we propose in this paper are post-processing algorithms that take as input
a set of noisy linear query answers and, thus, inherit the privacy guarantees from those noisy answers.
Note that the present analysis is largely agnostic to the model of differential privacy used.

1Note that our matrix D⌧ is slightly different from the operator used in [6] but has the same row space [14].
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We discuss variants of differential privacy and privacy guarantees for query answering in Appendix B.

2.3 Private query answering

In private query answering, we are given a workload of linear queries W 2 Rm⇥n. We seek to
approximate the answers Wp as accurately as possible while satisfying differential privacy. A general
recipe for private query answering is select-measure-reconstruct. Data-independent mechanisms
following this recipe such as the various matrix mechanisms [2–6] select and measure a set of queries
Q and reconstruct answers to W . Data-dependent mechanisms following this recipe such as MWEM
[15] and various synthetic data mechanisms [7, 9, 10, 18, 19] typically maintain a model p̂ of the
data distribution p that is improved iteratively by repeating the steps of select-measure-reconstruct
and adaptively measuring queries that are poorly approximated by the current model p̂. The key
idea is that it is often possible to obtain lower error by measuring a different set of queries Q

than W and then using answers to Q to reconstruct answers for W . In this paper, we focus on
the reconstruction subproblem and propose methods applicable to both the data-independent and
data-dependent settings.

2.4 Query answer reconstruction

Reconstruction is a central subproblem to query answering. Suppose y = Qp + ⇠ is the a set
of measurements. To reconstruct a data distribution, we seek p̂ such that Qp̂ ⇡ y. One method
is to set p̂ = Q

+
y where Q

+ is the Moore-Penrose pseudoinverse. This method is used in the
matrix mechanism [4] and HDMM [5] but is not tractable in high dimensions. One contribution
of our proposed method is to demonstrate that this pseudoinverse reconstruction is tractable when
the query matrix Q is a set of marginal measurements and ⇠ is isotropic Gaussian noise. Other
reconstruction methods such as Private-PGM [12] and those used by the mechanisms PrivBayes [8],
GEM [9], RAP [10], and RAP++ [11] represent p̂ through a parametric representation. These (usually)
ensure tractability in high dimensions by using a compact representation, but introduce different
tradeoffs. The parametric assumption typically restricts the space of data distributions that can be
represented [8–11]. Optimizing over the parameteric representation is often non-convex, potentially
leading to suboptimal optimization [9–11]. Private-PGM solves a convex optimization problem and
is closest to the methods of this paper. However its complexity depends on the measured queries and
is still exponential in the worst case [12]; our methods will not have exponential complexity.

We note that all of these above reconstruction methods, and the methods presented in this work, only
depend on the dataset through the noisy query answers and, thus, satisfy the same degree of privacy
as the answers by the post-processing property of differential privacy (Proposition 2).

3 Efficient Marginal Reconstruction from Residuals

In this section, we discuss methods for reconstructing answers to a workload of marginal queries
given measurements of residuals. These methods utilize the structure of marginals and residuals
to make reconstruction tractable and minimize error. Let W ✓ 2[d] and MW = (M�)�2W be the
combined workload of marginals for all of the attribute sets in W (e.g., all pairs or triples of attributes).
Similarly, let RS = (R⌧ )⌧2S represent a set of residual queries for all ⌧ in a collection S . Our goal
is to estimate the marginal query answers MWp from noisy measurements z = RSp+ ⇠.

Algorithm 1 ResidualPlanner reconstruction

Input: Marginal workload W , S = W
#, measure-

ments z⌧ = R⌧p+N (0,⌃⌧ ) for ⌧ 2 S

1: Reconstruct µ̂� =
P

⌧✓� A�,⌧z⌧ for � 2W

ResidualPlanner. ResidualPlanner [6] solves
this problem elegantly in the matrix mechanism
(i.e. data-independent) setting under Gaussian
noise. Let W# = {⌧ ✓ � : � 2 W} denote
the downward closure of W . When S = W

#,
the residual queries for S uniquely determine
the marginals for W , i.e., there is an invertible linear transformation between MW and RS . This
yields the reconstruction approach in Alg. 1. We suppose the residual queries R⌧ are measured with
Gaussian noise to yield z⌧ . In Line 1, the marginals are reconstructed by applying the invertible
transformation from residuals to marginals. This reconstruction is equivalent to setting µ̂� = M� p̂

where p̂ = R
+
S z and z = (z⌧ )⌧2S by Proposition 1.
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The full ResidualPlanner algorithm additionally chooses each ⌃⌧ = �
2
⌧D⌧D

>
⌧ such that the resulting

algorithm optimally answers the marginal workload indexed by W to minimize error under a natural
class of convex loss functions for a given privacy budget [6]. That this can be done efficiently for a
broad class of error metrics for marginal workloads is significant given the computational challenges
that are often faced when attempting to optimally select measurements and reconstruct workload
answers in high dimensions.

A general approach to reconstruction. We propose a reconstruction algorithm that, like the one in
ResidualPlanner, is efficient and principled, but that applies in more general settings. Reconstruction
in ResidualPlanner uses the invertible transformation from residuals to marginals. This restricts to
the case where the measured queries exactly determine the workload queries in the absence of noise.
To address the full range of applications, it is important to address the cases where workload queries
are overdetermined, underdetermined, or both.

Algorithm 2 Residuals-to-Marginals (ReM)
Input: Marginal workload W , arbitrary S, measure-

ments z⌧,i = R⌧p + ⇠⌧,i for ⌧ 2 S, i = 1, . . . , k⌧ ,
where ⇠⌧,i comes from any noise distribution

1: Estimate ↵̂⌧ ⇡ R⌧p for ⌧ 2 S by minimizing loss
function L⌧ (↵⌧ )

2: Reconstruct µ̂� =
P

⌧2S:⌧✓� A�,⌧ ↵̂⌧ for � 2W

Our proposed algorithm, ReM, is shown
in Alg. 2. Compared to ResidualPlanner,
the main differences are: (1) the set S of
measured residuals is arbitrary, (2) a resid-
ual query can be measured any number of
times with any noise distribution, (3) an
optimization problem is solved for each ⌧

to estimate the true residual query answer
↵̂⌧ ⇡ R⌧p, (4) reconstruction uses the es-
timated residuals ↵̂⌧ instead of the noisy measurements z⌧ . The loss function L⌧ (↵⌧ ) in Line 2
captures how well ↵⌧ explains the entire set of noisy measurements {z⌧,i}i=1,...,k⌧ . For example,
a typical choice is L⌧ (↵⌧ ) = �

Pk⌧

i=1 log p(z⌧,i|R⌧p = ↵⌧ ), the negative log-likelihood of the
measurements.

The following result shows that solving the optimization problems in Line 1 is equivalent to finding a
compact representation of a data distribution p̂ that minimizes a global reconstruction loss and then
using p̂ to answer each marginal query.
Theorem 1. Suppose ↵̂⌧ minimizes L⌧ (↵⌧ ) over Rm⌧ for each ⌧ 2 S and let ↵̂ = (↵̂⌧ )⌧2S . Then
Alg. 2 outputs µ̂� = M� p̂, where p̂ = R

+
S ↵̂ is a global minimizer of the combined loss functionP

⌧2S L⌧ (R⌧p) over Rn.

This result is proved (in Appendix D) by showing that R⌧ p̂ = ↵̂⌧ for all ⌧ , and thus p̂ optimizes
each individual loss function L⌧ , and so must be a global minimizer. Proposition 1 then shows that
µ̂� = M� p̂ = M�R

+
S ↵̂ has the form given in Line 2 of the algorithm.

4 Applications of ReM under Gaussian Noise

In this section, we apply ReM to reconstruct answers to marginal queries in various settings: (1)
we reconstruct from residuals measured with Gaussian noise, (2) we reconstruct from marginals
measured with isotropic Gaussian noise, and (3) we reconstruct non-negative answers from residuals
measured with Gaussian noise.

4.1 Reconstruction under Gaussian noise

Algorithm 3 Gaussian ReM with Maximum Likelihood
Estimation (GReM-MLE)
Input: Marginal workload W , arbitrary S,

measurements z⌧,i = R⌧p + N (0,⌃⌧,i) for ⌧ 2 S,
i = 1, . . . , k⌧

1: Estimate ↵̂⌧ =
�P

i ⌃
�1
⌧,i

��1P
i ⌃

�1
⌧,i z⌧,i for ⌧ 2 S

2: Reconstruct µ̂� =
P

⌧2S:⌧✓� A�,⌧ ↵̂⌧ for � 2W

An instance of ReM that allows for effi-
cient computation is when residuals are
measured with Gaussian noise i.e., z⌧,i =
R⌧p+ ⇠⌧,i where ⇠⌧,i ⇠ N (0,⌃⌧,i) and
the loss function L⌧ (↵⌧ ) is the negative
log-likelihood of the measurements. In
this case, ↵̂ = (↵̂⌧ )⌧2S is the maximum
likelihood estimate of the residual an-
swers ↵ = (↵⌧ )⌧2S . We refer to this
setting as GReM-MLE (Gaussian ReM
with Maximum Likelihood Estimation), shown in Alg. 3.
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The loss function L⌧ (↵⌧ ) is a sum of quadratic forms given by L⌧ (↵⌧ ) =
Pk⌧

i=1(↵⌧ �

z⌧,i)>⌃
�1
⌧,i (↵⌧ � z⌧,i). In this setting, the optimization problems in Line 1 of Alg. 2 have the

closed-form solution ↵̂⌧ =
�P

i ⌃
�1
⌧,i

��1P
i ⌃

�1
⌧,i z⌧,i, which is a form of inverse-variance weighting

and can be verified by setting the gradient of the loss function to zero.

GReM-MLE improves computational tractability by reducing Alg. 2 to operations on matrices.
Moreover, if the covariances among measurements of residual R⌧ differ only by a constant for ⌧ 2 S ,
i.e., ⌃⌧,i = �

2
⌧,iK⌧ where �⌧,i 2 R, then ↵̂⌧ can be computed as a weighted average given by

↵̂⌧ = (
P

i �
�2
⌧,i )

�1
P

i �
�2
⌧,i z⌧,i. All instances of GReM-MLE considered throughout the paper

satisfy this assumption of proportional covariances for each ⌧ 2 S .

4.2 Reconstruction from marginals

A common practice in existing mechanisms is to measure marginal queries with isotropic Gaussian
noise [4, 7, 9, 11, 18, 20]. In this special case, the measurements can be converted to an equivalent
set of residual measurements with independent Gaussian noise, allowing us to apply GReM-MLE.

The key observation is that a marginal query answer µ� = M�p for attribute set � can be used to
derive residual answers ↵⌧ = R⌧p for each ⌧ ✓ � via the following Lemma (proved in Appendix D):

Lemma 1. For ⌧ ✓ �, the residual R⌧ can be recovered from the marginal M� as

R⌧ = A
+
�,⌧M� where A

+
�,⌧ =

dO

k=1

8
<

:

D(k) k 2 ⌧

1Tk k 2 � \ ⌧

1 k /2 �

.

Whereas A�,⌧ maps answers from residual R⌧ to answers to marginal M� , the matrix A
+
�,⌧ maps

answers from marginal M� to residual R⌧ . Furthermore, µ� can be reconstructed from the set of
all residuals (↵⌧ )⌧✓� , so these residuals carry equivalent information to the marginal. Additionally,
when the marginal is observed with isotropic noise as y� = M�p+N (0,�2

�I), the corresponding
noisy residuals A

+
�,⌧z⌧ are independent. As a consequence, we can decompose a noisy marginal

measurement into a set of equivalent and independent noisy residual measurements.
Theorem 2. Let y� ⇠ N (M�p,�

2
I) be a noisy marginal measurement with isotropic Gaus-

sian noise and let z⌧ = A
+
�,⌧y� for each ⌧ ✓ �. Then noisy residual z⌧ has distribution

N (R⌧p,�
2
D⌧D

>
⌧

Q
k2�\⌧ nk) and z⌧ is independent of z⌧ 0 for ⌧ 6= ⌧

0.

Furthermore, let H� = (A+
�,⌧ )⌧✓� be the matrix mapping from y� to (z⌧ )⌧✓� . This matrix is

invertible, which implies that

logN (y� |M�p,�
2
I) =

X

⌧✓�

logN
⇣
z⌧

��R⌧p, �
2
D⌧D

>
⌧

Y

k2�\⌧

nk

⌘
+ log | detH� |. (1)

Given a collection of noisy marginal measurements, we can apply the above decomposition to obtain
a set of independent noisy residuals with proportional covariances. To reconstruct marginal answers,
we can apply GReM-MLE to the residuals. Alg. 4 shows this decomposition and reconstruction.
Equation (1) shows that the noisy residual measurements and noisy marginal measurements are
equivalent from the perspective of finding the best data vector p by maximum likelihood, because
the log-likelihood of the residual measurements differs from the log-likelihood of the marginal
measurement by a constant log | detH� | that is independent of p, and measurements of marginals
are each independent. A maximum likelihood estimate of p from the marginal measurements y is
given by using the pseudoinverse of the measured workload to map noisy marginal measurements to
a data vector. The following result shows that the method in Alg. 4 is equivalent to answering queries
from this maximum likelihood estimate of the data vector given the marginal measurements when the
marginals are measured with the same noise scale.
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Algorithm 4 Efficient Marginal Pseudoinversion (EMP)

Input: Marginal workload W , measured marginals multiset Q, measurements y = (y�)�2Q where
y� = M�p+N (0,�2

I) for � 2 Q

Output: Marginal answers (M�M
+
Qy)�2W

1: Initialize S = ; and k⌧ = 0 for all ⌧ . Track measured residuals, lazy data structure for k⌧
2: for � 2 Q do
3: for ⌧ ✓ � do
4: S = S [ {⌧}, k⌧  k⌧ + 1

5: z⌧,k⌧ = A
+
�,⌧y� . Extract residual measurement from y�

6: �
2
⌧,k⌧

= �
2
Q

k2�\⌧ nk . Compute noise scale

7: ⌃⌧,k⌧ = �
2
⌧,k⌧

D⌧D
>
⌧ . Proportional covariance

return GReM-MLE(W , S , z) where z = (z⌧,i : ⌧ 2 S, i = 1, . . . , k⌧ )

Theorem 3 (Efficient pseudoinversion of marginal query matrix). Let MQ = (M�)�2Q be the
query matrix for a multiset Q of marginals and let y = (y�)�2Q be corresponding noisy marginal
measurements with y� = M�p+N (0,�2

I). Let S = {⌧ ✓ � : � 2 Q} and for each ⌧ 2 S let �⌧,i
be the ith marginal in Q containing ⌧ . Let z⌧,i = A

+
�⌧,i,⌧y�⌧,i be the residual measurement obtained

from �⌧,i and let ⌃⌧,i = �
2
⌧,iD⌧D

>
⌧ be its covariance where �

2
⌧,i = �

2
Q

k2�⌧,i\⌧ nk. Then, given
any workload of marginal queries W , for each � 2 W , the marginal reconstruction µ̂� obtained
from Algorithm 3 on these residual measurements is equal to M�M

+
Qy.

This result can be generalized to allow for differing noise scales between marginal measurements.
We prove this result and discuss the generalized form of Theorem 3 in Appendix D.

4.3 Reconstruction with local non-negativity

It is often possible to improve accuracy of a differentially private mechanism by forcing its outputs
to satisfy known constraints [4, 10, 21]. For our problem, true marginals are non-negative, so it is
desirable to enforce non-negativity in their private estimates. To enforce non-negativity, instead of
solving the separate problems in Line 1 of Alg. 2, we solve the following combined problem over the
full vector ↵ = (↵⌧ )⌧2W# of residuals:

min
↵

X

⌧2S
L⌧ (↵⌧ ) s.t.

X

⌧✓�

A�,⌧↵⌧ � 0, 8� 2W. (2)

Reconstruction of marginals then proceeds as in Line 2 of Alg. 2. The constraints in Eq. (2) ensure
that the reconstructed marginals will be non-negative. We refer to this as local non-negativity, since
this problem solves for a data distribution p̂ that is non-negative for marginals in W rather than a data
distribution with non-negative entries.

A natural setting to apply local non-negativity to ReM is under Gaussian noise with covariance
⌃⌧,i = �

2
⌧,iD⌧D

>
⌧ and �

2
⌧,i 2 R. Recall that marginals measured with isotropic Gaussian noise

decompose into residuals with the above covariance structure. Our proposed application of local
non-negativity in the Gaussian noise setting GReM-LNN (Gaussian ReM with local non-negativity)
solves Eq. (2) for L⌧ (↵⌧ ) =

Pk⌧

i=1(↵⌧ � z⌧,i)>K
�1
⌧,i (↵⌧ � z⌧,i) and K⌧,i = 2|⌧ |D⌧D

>
⌧ . In the

GReM-LNN setting, Eq. (2) is an convex program with linear constraints. Our implementation
solves this problem using a scalable dual ascent algorithm (described in Appendix F) but could be
solved in principle using standard optimizers, given sufficient resources [22]. With respect to the
loss function L⌧ (↵⌧ ), adopting 2|⌧ | rather than Gaussian noise scale �

2
⌧,i is a heuristic that weights

lower degree residual queries such as the total query and 1-way residuals more heavily than higher
degree queries such as 3-way residuals. In contrast, using the Gaussian noise scale �2

⌧,i obtained from
both ResidualPlanner and the marginal decomposition in Theorem 2 weights higher degree residual
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queries more than lower degree residuals. When enforcing local non-negativity, it is beneficial for
reducing reconstruction error to allocate more weight to residuals that affect more marginals through
reconstruction. The present choice of weights 2|⌧ | for GReM-LNN, however, remain a heuristic. We
discuss this point further in Section 6.

4.4 Computational Complexity

We summarize the complexity results in Table 1. Formal statements and proofs appear in Appendix E.
Let S be the set of measured residuals. To understand the results, suppose that R⌧ is measured once,
given by z⌧ , for each ⌧ 2 S . Recall from Proposition 1 that computing A�,⌧z⌧ takes O(|�|n�) time.
This operation maps from the space of ⌧ -residuals to �-marginals. To reconstruct an answer to the
marginal query M� , we apply the invertible transformation from residuals to marginals by summing
over contributions for each ⌧ ✓ � to yield µ̂� =

P
⌧2S:⌧✓� A�,⌧z⌧ . In the worst case, this requires

computing A�,⌧z⌧ for 2|�| residuals. Then the running time of reconstructing an answer to marginal
M� is O(|�|n�2|�|). If W is a workload of marginals, then reconstructing answers to each � 2W is
O(
P

�2W |�|n�2|�|). The following result shows that the complexity of reconstructing an answer to
marginal M� is almost linear with respect to domain size.

Theorem 4. For " > 0, reconstructing an answer to M� is o(n1+"
� ) as ni !1 for some i 2 �.

Method Running Time
GReM-MLE(W,S, z) O(

P
�2W |�|n�2|�|)

EMP(W,Q, y) O(
P

�2W |�|n�2|�|)

One Round of GReM-LNN(W,S, z) O(
P

�2W |�|n�2|�|)

Table 1: Summary of Complexity Results

GReM-MLE, given in Alg. 3, consists of two steps: estimating residual answers ↵̂⌧ from residuals
answers z⌧,i for i = 1, . . . , k⌧ and each ⌧ 2 S, and reconstructing answers to marginal workload
W . Recall that we suppose that covariance is proportional among measurements of a given residual
R⌧ , so ↵̂⌧ can be computed in closed-form as a weighted average in O(n⌧ ) time. Then GReM-
MLE takes O(

P
�2W |�|n�2|�|) time. The efficient marginal pseudoinversion, given in Alg. 4,

first decomposes marginals and then applies GReM-MLE. Computing A
+
�,⌧y� takes O(|�|n�) time,

so the running time of decomposing the marginal measurements is O(
P

�2Q |�|n�2|�|) where
Q is the set of marginals measured with isotropic Gaussian noise. Then the efficient marginal
pseudoinversion is O(

P
�2W |�|n�2|�|). Additionally, one round of GReM-LNN, given in Alg. 6, is

O(
P

�2W |�|n�2|�|).

5 Experiments

In this section, we measure the utility of GReM-MLE and GReM-LNN by incorporating them as a
post-processing step into two mechanisms for privately answering marginals: (1) ResidualPlanner
[6], and (2) a data-dependent mechanism we call Scalable MWEM. Both mechanisms measure
queries with Gaussian noise and reconstruct answers to all three-way marginals for the given data
domain. For the ResidualPlanner experiment, we measure residuals for all subsets of three or fewer
attributes with Gaussian noise scales determined by ResidualPlanner. For the Scalable MWEM
experiment, we measure the total query and a subset of the 3-way marginals in the data domain with
isotropic Gaussian noise and reconstruct answers to all 3-ways marginals using the efficient marginal
pseudoinversion in Alg. 4. We fully describe Scalable MWEM in Appendix G.

We compare average `1 error with respect to the reconstructed marginals of the base mechanism
to post-processing with GReM-LNN and two heuristics that enforce non-negativity by truncating
negative values to zero (Trunc) and truncating to zero then rescaling (Trunc+Rescale). For the Scalable
MWEM experiment, we additionally compare to a well-studied reconstruction mechanism Private-
PGM [12]. We run these methods on four datasets of varying size and scale, Titanic [23], Adult [24],

8



Figure 2: Average `1 workload error on all 3-way marginals across five trials and privacy budgets
✏ 2 {0.1, 0.31, 1, 3.16, 10} and � = 1⇥ 10�9 for ResidualPlanner.

Salary [25], and Nist-Taxi [26], and various practical privacy regimes, ✏ 2 {0.1, 0.31, 1, 3.16, 10}
and � = 1⇥ 10�9. For each setting, we run five trials and report the average error of each method as
well as minimum/maximum bands. Additional details are provided in Appendix H.

5.1 ResidualPlanner Results
Fig. 2 displays results for the ResidualPlanner experiment. Across all privacy budgets and datasets
considered, GReM-LNN significantly reduces workload error on the reconstructed marginals com-
pared to ResidualPlanner. Averaging over all settings and trials, GReM-LNN reduces ResidualPlanner
workload error by a factor of 44.0⇥. With respect to the heuristic methods, GReM-LNN reconstructs
marginals with lower error than Trunc across all privacy budgets and datasets. Except at the highest
privacy regime considered (✏ = 0.1) on Titanic and Salary, GReM-LNN yields lower error than
Trunc+Rescale. Averaging over all settings and trials, GReM-LNN has lower workload error by a
factor of 17.6⇥ compared to Trunc and 3.2⇥ compared to Trunc+Rescale. Note that GReM-MLE is
omitted from Fig. 2 since ResidualPlanner is the maximum likelihood reconstruction for its measure-
ments. Appendix I reports results for this experiment with respect to `2 workload error, which are
consistent with the present findings.

5.2 Scalable MWEM Results

Fig. 3 displays results for the Scalable MWEM experiment for 30 rounds of measurements. Observe
that Scalable MWEM runs for the settings considered, which would be infeasible for the original
MWEM mechanism due to large data domains. Of all methods considered, Private-PGM yields the
greatest reduction in workload error in settings where it ran; however, Private-PGM failed due to
exceeding memory resources (20 GB) at 30 rounds on Adult, Salary, and Nist-Taxi in all trials. In
Appendix I, we report the settings in which Private-PGM successfully ran across 10, 20, and 30
rounds of Scalable MWEM.

With respect to GReM-LNN, the findings from the prior experiment agree with the present results.
Across all privacy budgets and datasets considered, GReM-LNN significantly reduces workload
error on the reconstructed marginals compared to Scalable MWEM. Averaging over all settings
and trials, GReM-LNN reduces Scalable MWEM workload error by a factor of 12.3⇥. Averaging
over all settings and trials, GReM-LNN has lower workload error by a factor of 1.1⇥ compared to
Trunc+Rescale. Note that we suppress results for Trunc due to space. Appendix I reports results for
this experiment with respect to `2 workload error, which are consistent with the present findings.
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Figure 3: Average `1 workload error on all 3-way marginals across five trials and privacy budgets
✏ 2 {0.1, 0.31, 1, 3.16, 10} and � = 1⇥ 10�9 for Scalable MWEM with 30 rounds of measurements.

6 Discussion

We develop ReM, a method for reconstructing answers to marginal queries that scales to large data
domains. We also introduce a tractable method to incorporate local non-negativity that significantly
improves reconstruction quality. Finally, we show that ReM can be used to improve the existing
query answering mechanisms ResidualPlanner and a scalable version of MWEM.

Limitations. Many data-dependent query answering mechanisms also generate synthetic data. In
some cases, practitioners utilize these mechanisms primarily in order to use the synthetic data for
downstream tasks such as training a machine learning model [27, 28]. For those users, the fact that
ReM does not generate synthetic data would be an important limitation. A broader limitation, which
is common to many methods in this field, is lack of support for continuous data. Marginal and residual
queries are only defined on discrete domains so continuous attributes need to be discretized.

Future Work and Broader Impacts. While developing effective algorithms for privacy-preserving
data analysis is generally beneficial, it is known that these methods can lead to unfair outcomes
[29]. One direction for future work is to further understand the fairness properties of the methods we
present and how to mitigate any undesirable outcomes. Another direction for future work is further
understanding the weighting scheme used in GReM-LNN to apply local non-negativity. Preliminary
experiments show that weighting lower-order residual queries more highly in the loss function yields
reconstructed answers with lower workload error as well as faster and more reliable convergence of
the optimization routine. In general, the relationship between residual weights in the loss function,
optimizer convergence, and reconstruction quality is not well understood.
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A Kronecker Products

Kronecker products are a convenient way to represent highly structured matrices. Let A be an

ma ⇥ na matrix A =

2

64
a1,1 · · · a1,na

...
...

ama,1 · · · ama,na

3

75 and B be a mb ⇥ nb matrix. Then the Kronecker

product of A with B is an mamb ⇥ nanb matrix given by A ⌦ B =

2

64
a1,1B · · · a1,naB

...
...

ama,1B · · · ama,naB

3

75.

Kronecker products provide a compact representation of matrices by representing exponentially-many
entries of A⌦B with linearly-many entries in A and B. For the Kronecker product of a sequence of
matrices A1, . . . , Ad, we use the notation

dO

i=1

Ai = A1 ⌦ · · ·⌦Ad

The Kronecker product is associative, so pairwise products can be taken in any order.

Kronecker products additionally possess useful algebraic properties. Let (·)+ denote Moore-Penrose
pseudoinverse.

Proposition 3. (Kronecker Product Properties) Let A =
Nd

i=1 Ai and B =
Nd

j=1 Bj . Then the
following properties hold:

1. A
> =

Nd
i=1 A

>
i .

2. A
+ =

Nd
i=1 A

+
i .

3. If Ai and Bi are compatible for multiplication for i = 1, . . . , d, then AB =
Nd

i=1 AiBi.

There are efficient algorithms for matrix-vector multiplication utilizing Kronecker structure such as
Alg. 5. Let A =

N`
i=1 Ai be a Kronecker structured matrix where Ai is a matrix of size ai ⇥ bi so

that A has size a⇥ b with a =
Q`

i=1 ai and b =
Q`

i=1 bi.

Algorithm 5 Kronecker Matrix-Vector Product [20, 30]

Input: Matrix A =
N`

i=1 Ai, vector x
ai, bi = SHAPE(Ai)

r =
Q`

i=1 bi

x1 = x

for i = 1, . . . , ` do
Z = RESHAPE(xi, bi, r/bi)
r = r · ai/bi

xi+1 = RESHAPE(AiZ, r, 1)
return x`+1

B Differential Privacy

Let us begin by introducing a useful variant of differential privacy: zero-concentrated differential
privacy (zCDP).
Definition 2. (Zero-Concentrated Differential Privacy; [31]) Let M : X ! Y be a randomized
mechanism. For any neighboring datasets p, p0 that differ by at most one record, denoted p ⇠ p

0,
and all measurable subsets S ✓ Y: if D�(M(p)||M(p0))  ⇢� for all � 2 (1,1) where D� is the
�-Renyi divergence between distributions M(p),M(p0), then M satisfies ⇢-zCDP.

While (✏, �)-DP is a more common notion, it is often more convenient to work with zCDP. There
exists a conversion from zCDP to (✏, �)-DP.
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Proposition 4 (zCDP to DP Conversion; [32]). If mechanism M satisfies ⇢-zCDP, then M satisfies
(✏, �)-DP for any ✏ > 0 and � = min↵>1

exp((↵�1)(↵⇢�✏))
↵�1

�
1� 1

↵

�↵.

Next, we introduce two building block mechanisms. An important quantity in analyzing the privacy
of a mechanism is sensitivity. The `k sensitivity of a function f : X ! R is given by �k(f) =
maxp⇠p0 kf(p)� f(p0)kk. If f is clear from the context, we write �k.
Proposition 5 (zCDP of Gaussian mechanism; [31]). Let W be an m ⇥ n workload. Given data
vector p, the Gaussian mechanism adds i.i.d. Gaussian noise to Wp with scale parameter � i.e.,
M(p) = Wp + ��2(W )N (0, I), where I is the m ⇥ m identity matrix. Then the Gaussian
Mechanism satisfies 1

2�2 -zCDP.
Proposition 6 (zCDP of correlated Gaussian mechanism; [33]). Let W be an m⇥n workload. Given
data vector p, the correlated Gaussian mechanism adds Gaussian noise to Wp with covariance
matrix ⌃ i.e., M(p) = Mp+N (0,⌃). The correlated Gaussian mechanism satisfies �

2 -zCDP where
� is the largest diagonal element of M>⌃�1

M .
Proposition 7 (zCDP of exponential mechanism; [34, 35]). Let ✏ > 0 and Scorer : X ! R be
a quality score of candidate r 2 R for data vector p. Then the exponential mechanism outputs a
candidate r 2 R according to the following distribution: Pr(M(p) = r) / exp

�
✏

2�1
Scorer(p)

�
.

The exponential mechanism satisfies ✏2

8 -zCDP.

Adaptive composition and post-processing are two important properties of differential privacy that
allow us to construct complex mechanisms from the above building blocks. Let us state these results
for zCDP.
Proposition 8 (zCDP Properties; [31, 35]). zCDP satisfies these two properties of differential privacy:

1. (Adaptive Composition) Let M1 : X ! Y1 satisfy ⇢1-zCDP and M2 : X ⇥ Y1 ! Y2 satisfy
⇢2-zCDP. The mechanism p 7!M2(p,M1(p)) satisfies (⇢1 + ⇢2)-zCDP.

2. (Post-processing) Let M1 : X ! Y satisfy ⇢-zCDP and f : Y ! Z be a randomized algorithm.
Then M : X ! Z = f �M1 satisfies ⇢-zCDP.

C Relationship between Marginals and Residuals

In this section, we prove Proposition 1, which provides a relationship between marginals and residuals.
Before proving this result, let us consider residual workloads as well as the subtraction matrix D(k).

Let us state some properties of residuals.
Proposition 9 (Residual Properties; [6, 13, 14]). Let ⌦ be the set of all tuples of attributes for a
given data universe X .

1. R⌧ is an m⌧ ⇥ n matrix with full row rank.

2. R⌧ , R⌧ 0 are mutually orthogonal for ⌧ 6= ⌧
0 i.e. R⌧R

>
⌧ 0 = 0.

3. R⌧ ,M⌧ 0 are mutually orthogonal for ⌧ 6✓ ⌧
0 i.e. R⌧M

>
⌧ 0 = 0.

4. (R⌧ )⌧2⌦ spans Rn.

Lemma 2. Data vector p 2 Rn can be decomposed uniquely as follows: p =
P

⌧2⌦ R
>
⌧ v⌧ for

v⌧ 2 Rm⌧ .

Proof. Let p⌧ = R
+
⌧ R⌧p be the projection of p onto the row-space of R⌧ . By Proposition 9,

p =
P

⌧2⌦ p⌧ . Let v⌧ 2 Rm⌧ be such that p⌧ = R
>
⌧ v⌧ . Since R⌧ is full row rank, v⌧ is unique.

Now, let us consider D+
(k). Recall that D(k) is an nk � 1⇥ nk matrix given by

D(k) =

2

664

1 �1 0 · · · 0
0 1 �1 · · · 0
...

...
...

...
0 · · · · · · 1 �1

3

775 .
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The pseudoinverse of D(k) is known in closed-form:

D
+
(k) =

1

nk

2

66664

nk � 1 nk � 2 · · · 1
�1 nk � 2 · · · 1
�1 �2 · · · 1

...
...

...
�1 �2 · · · �(nk � 1)

3

77775

= (1/nk)(1ku
>
k � nkCk),

where uk =

2

664

nk � 1
nk � 2

...
1

3

775 and Ck is the nk ⇥ nk � 1 lower triangular matrix of ones.

Continuing the example from Fig. 1,

D(k) =


1 �1 0
0 1 �1

�
D

+
(k) =

1

3

"
2 1
�1 1
�1 �2

#
.

Proposition 1. Let RS = (R⌧ )⌧2S be a combined workload of residual queries for all ⌧ in a
collection S ✓ 2[d], where the individual matrices R⌧ are stacked vertically. The size of RS is m⇥ n

where m =
P

⌧2S m⌧ . Then for any z = (z⌧ )⌧2S 2 Rm and any �, it holds that

M�R
+
S z =

X

⌧2S,⌧✓�

A�,⌧z⌧ , where A�,⌧ :=
dO

k=1

8
><

>:

D
+
(k) k 2 ⌧�

1/nk

�
1k k 2 � \ ⌧

1 k /2 �

for ⌧ ✓ �.

The matrix A�,⌧ has size n�⇥m⌧ and maps from the space of ⌧ -residuals to the space of �-marginals.
The running time to compute A�,⌧z⌧ is O(|�|n�).

Proof of Proposition 1. First note that R+
S is the pseudoinverse of a block matrix. In general the

pseudoinverse of a vertical block matrix involves the pseudoinverse of each block multiplied by a
projection matrix [36]. In this case each block is a residual query, as discussed in Proposition 9, these
query matrices are mutually orthogonal so the pseudoinverse R

+
S has the form (R+

⌧ )
T
⌧2S . Here, the

combined query matrix RS is constructed by stacking the blocks R⌧ vertically and the combined
pseudoinverse R

+
S stacks the blocks R+

⌧ horizontally. Given this block structure of R+
S we can write

R
+
S z =

X

⌧2S
R

+
⌧ z⌧ =) M�R

+
S z =

X

⌧2S
M�R

+
⌧ z⌧ . (3)

Another relevant property of residual queries given in Proposition 9 is that R⌧M
>
⌧ 0 = 0 for

⌧ 6✓ ⌧
0. When we drop these orthogonal queries from the summation, we get M�R

+
S z =P

⌧2S,⌧✓� M�R
+
⌧ z⌧ . When computing the product M�R

+
⌧ , several properties of Kronecker products

given in Proposition 3 are relevant. The first is that (A⌦B)+ = A
+
⌦B

+. Applying this property
gives

R
+
⌧ =

dO

k=1

(
D

+
(k) k 2 ⌧

�
1>k
�+

k /2 ⌧
. (4)

The next property is that when when A and B both have compatible Kronecker structure, AB =N
i AiBi. Both M� and R

+
⌧ have compatible Kronecker structure so we can write

M�R
+
⌧ =

dO

k=1

8
><

>:

IkD
+
(k) k 2 ⌧

Ik

�
1>k
�+

k 2 � \ ⌧

1>k
�
1>k
�+

k /2 �

. (5)
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To evaluate this, notice that (1Tk )
+ = 1k(1Tk 1k)

�1 = 1k/nk and 1>k (1k/nk) = 1. Plugging this into
the equation above we get

A�,⌧ = M�R
+
⌧ =

dO

k=1

8
><

>:

D
+
(k) k 2 ⌧

1k/nk k 2 � \ ⌧

1 k /2 �

. (6)

Finally, this gives the full result that M�R
+
S z =

P
⌧2S,⌧✓� A�,⌧z⌧ .

We prove the time complexity result for A�,⌧z⌧ in Appendix E.

D ReM Proofs

In this section, we prove results related to ReM from Sections 3 and 4.
Theorem 1. Suppose ↵̂⌧ minimizes L⌧ (↵⌧ ) over Rm⌧ for each ⌧ 2 S and let ↵̂ = (↵̂⌧ )⌧2S . Then
Alg. 2 outputs µ̂� = M� p̂, where p̂ = R

+
S ↵̂ is a global minimizer of the combined loss functionP

⌧2S L⌧ (R⌧p) over Rn.

Proof. Suppose ↵̂⌧ minimizes L⌧ for all ⌧ and let p̂ = R
+
S ↵̂. Then for any p 2 Rn

X

⌧2S
L⌧ (R⌧ p̂) =

X

⌧2S
L⌧ (R⌧R

+
S ↵̂)

(?)
=
X

⌧2S
L⌧ (↵̂⌧ ) 

X

⌧2S
L⌧ (R⌧p). (7)

We will justify Equality (?) below. The inequality holds because ↵̂⌧ minimizes L⌧ . Thus, Equation (7)
shows that p̂ minimizes the combined loss

P
⌧2S L⌧ (R⌧p).

To justify Equality (?), first observe that RSR
+
S ↵̂ = ↵̂ because RS has full row rank and thus

RSR
+
S = I . We can see RS has full row rank by Proposition 9: each block of rows corresponding to

one residual has full row rank and these blocks are orthogonal. The equality R⌧R
+
S ↵̂ = ↵̂⌧ is obtained

by selecting the block of rows corresponding to residual ⌧ from the equality RSR
+
S ↵̂ = ↵̂.

Lemma 1. For ⌧ ✓ �, the residual R⌧ can be recovered from the marginal M� as

R⌧ = A
+
�,⌧M� where A

+
�,⌧ =

dO

k=1

8
<

:

D(k) k 2 ⌧

1Tk k 2 � \ ⌧

1 k /2 �

.

Proof of Lemma 1. Recall that we defined A�,⌧ = M�R
+
⌧ . Then A

+
�,⌧ = R⌧M

+
� . Observe the

following:

A
+
�,⌧M� =

dO

k=1

8
<

:

D(k)Ik k 2 ⌧

1>k Ik k 2 � \ ⌧

1 · 1>k k /2 �

=
dO

k=1

⇢
D(k) k 2 ⌧

1>k k /2 ⌧

= R⌧

Theorem 2. Let y� ⇠ N (M�p,�
2
I) be a noisy marginal measurement with isotropic Gaus-

sian noise and let z⌧ = A
+
�,⌧y� for each ⌧ ✓ �. Then noisy residual z⌧ has distribution

N (R⌧p,�
2
D⌧D

>
⌧

Q
k2�\⌧ nk) and z⌧ is independent of z⌧ 0 for ⌧ 6= ⌧

0.
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Furthermore, let H� = (A+
�,⌧ )⌧✓� be the matrix mapping from y� to (z⌧ )⌧✓� . This matrix is

invertible, which implies that

logN (y� |M�p,�
2
I) =

X

⌧✓�

logN
⇣
z⌧

��R⌧p, �
2
D⌧D

>
⌧

Y

k2�\⌧

nk

⌘
+ log | detH� |. (1)

Proof of Theorem 2. Since y⌧ ⇠ N (M�p,�
2
I) and z⌧ = A

+
�,⌧y⌧ , standard properties of normal

distributions give that z⌧ ⇠ N (A+
�,⌧M�p,�

2
A

+
�,⌧ (A

+
�,⌧ )

>). By Lemma 1, the mean is equal to R⌧p,
as stated. For the covariance

A
+
�,⌧ (A

+
�,⌧ )

> =

8
><

>:

D(k)D
>
(k) k 2 ⌧

1>k 1k k 2 � \ ⌧

1 k /2 �

=
Y

k2�\⌧

nk ·

dO

k=1

(
D(k)D

>
(k) k 2 ⌧

1 k /2 ⌧

= D⌧D
>
⌧

Y

k2�\⌧

nk

so the covariance is �2
D⌧D

>
⌧

Q
k2�\⌧ nk, as stated.

For ⌧ 6= ⌧
0 the vectors z⌧ and z⌧ 0 are jointly normal with covariance �2

A
+
�,⌧ (A

+
�,⌧ 0)>. We will show

that A+
�,⌧ (A

+
�,⌧ 0)> is a matrix of zeros, so the covariance matrix is identically zero and the vectors

are independent. By the Kronecker structure,

A
+
�,⌧ (A

+
�,⌧ 0)> =

dO

k=1

8
>>>>><

>>>>>:

D(k)D
>
(k) k 2 ⌧ \ ⌧

0

1>k D
>
(k) k 2 ⌧

0
\ ⌧

D(k)1k k 2 ⌧ \ ⌧
0

1>k 1k k 2 � \ (⌧ [ ⌧
0)

1 k /2 �

Observe that D(k)1k = 0 is a vector of zeros because the rows of D(k) sum to zero, and similarly
1>k D

>
(k) is a row vector of zeros. Thus, any k in the symmetric difference (⌧ 0 \ ⌧) [ (⌧ \ ⌧

0) will
contribute an all zeros matrix to the Kronecker product and cause A

+
�,⌧ (A

+
�,⌧ 0)> to be an all zeros

matrix. But there must be at least one k in the symmetric difference because ⌧ 6= ⌧
0. This proves that

the covariance matrix is identically zero, as desired.

We will next show that the mapping H� is invertible. H� is a matrix with blocks A+
�,⌧ for each ⌧ ✓ �,

stacked vertically, and n� =
Q

k2� nk columns. From the definition of the block A
+
�,⌧ , we can see it

has m⌧ =
Q

k2⌧ (nk � 1) rows and is of full row rank because D(k) is a full rank matrix with nk � 1
rows and the other matrices in the Kronecker product have only one row. We showed above that
A

+
�,⌧ (A

+
�,⌧ 0)> = 0 for ⌧ 6= ⌧

0, which means that the blocks of H� have mutually orthogonal rows,
and combined with the fact that each block has full row rank this means that H� has rank equal to the
total number of rows. This number of rows is

P
⌧✓� m⌧ =

P
⌧✓�

Q
k2⌧ (nk� 1) =

Q
k2� nk = n� ,

which equals the number of columns, and therefore H� invertible.2

Now, given what we have shown so far, we will write two different expressions for the log-probability
density function log pz(z) where z = (z⌧ )⌧✓� . First, we have already derived the joint multivariate
distribution of z, which, due to independence, has log-density

log pz(z) =
X

⌧✓�

logN
⇣
z⌧

���R⌧p,�
2
D⌧D

>
⌧

Y

k2�\⌧

nk

⌘
.

2To see that
P

⌧✓�

Q
k2⌧ (nk � 1) =

Q
k2� nk, observe that n� =

Q
k2� nk counts the number of ways to

map each k 2 � to a value i 2 {1, . . . , nk}. Equivalently, we may consider selecting a subset ⌧ ✓ �, assigning
each k 2 ⌧ to the value 1, and then assigning each k /2 ⌧ to one of the remaining values in {2, . . . , nk}. The
number of ways to do this is

P
⌧✓�

Q
k2⌧ (nk � 1) =

Q
k2� nk.
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Second, because z = H�y� for the multivariate normal random variable y� , the change of variable
formula for probability densities gives that

log pz(z) = logN (y� |M�p,�
2
I)� log | detH� |.

Equating these two expressions gives Equation (1), which completes the proof.

Theorem 3 (Efficient pseudoinversion of marginal query matrix). Let MQ = (M�)�2Q be the
query matrix for a multiset Q of marginals and let y = (y�)�2Q be corresponding noisy marginal
measurements with y� = M�p+N (0,�2

I). Let S = {⌧ ✓ � : � 2 Q} and for each ⌧ 2 S let �⌧,i
be the ith marginal in Q containing ⌧ . Let z⌧,i = A

+
�⌧,i,⌧y�⌧,i be the residual measurement obtained

from �⌧,i and let ⌃⌧,i = �
2
⌧,iD⌧D

>
⌧ be its covariance where �

2
⌧,i = �

2
Q

k2�⌧,i\⌧ nk. Then, given
any workload of marginal queries W , for each � 2 W , the marginal reconstruction µ̂� obtained
from Algorithm 3 on these residual measurements is equal to M�M

+
Qy.

Proof. By standard properties of the pseudoinverse, M+
Qy is the unique vector that minimizes

SE(p) = kMQp � yk
2
2 and is in the row span of MQ. We will show that the vector R+

S ↵̂ satisfies
both properties, where ↵̂ = (↵̂⌧ )⌧2S is constructed in Algorithm 3, and thus R+

S ↵̂ = M
+
Qy. Then,

by Proposition 1, the reconstructed marginal µ̂� in Algorithm 3 is equal to M�R
+
S ↵̂ and hence also

equal to M�M
+
Qy, as claimed.

We will first show R
+
S ↵̂ minimizes SE(p). Observe that the SE(p) is equivalent to the negative

log-likelihood Ly(p) of the marginal measurements y:

SE(p) = kMQp� yk
2
2

=
X

�2Q
kM�p� y�k

2
2

= �2�2
X

�2Q
logN (y� |M�p,�

2
I) + const.

= 2�2
Ly(p) + const.

Therefore SE(p) and Ly(p) have the same minimizers.

Then, by Theorem 2,

Ly(p) =
X

�2Q
� logN (y� |M�p,�

2
I)

=
X

�2Q

X

⌧✓�

� logN (A+
�,⌧y⌧ | R⌧p, �

2
Y

k2�\⌧

nk ·D�D
>
� ) + const.

=
X

⌧2S

k⌧X

i=1

� logN (z⌧,i | R⌧p, �
2
⌧,iD�D

>
� )

| {z }
Lz(p)

+ const.

where in the final line we rearranged terms using the notation of the theorem statement.

Therefore, SE(p), Ly(p) and Lz(p) all have the same minimizers.

Furthermore, Lz(p) decomposes over residual measurements as Lz(p) =
P

⌧2S L⌧ (R⌧p) where
L⌧ (↵⌧ ) =

Pk⌧

i=1� logN (z⌧,i | ↵⌧ , �
2
⌧,iD�D

>
� ). Therefore, Theorem 1 allows us to minimize each

term separately. Algorithm 3 finds ↵̂⌧ to minimize L⌧ (↵⌧ ) for each ⌧ 2 S using inverse variance
weighting. Then, by Theorem 1, the vector R+

S ↵̂ is a minimizer of Lz(p), and therefore also a
minimizer of SE(p).

It remains to show that R+
S ↵̂ 2 row(MQ). This is true because R

+
S ↵̂ 2 col(R+

S ) = row(RS) ✓
row(MQ).3 The final inclusion is true by Lemma 1, since for each ⌧ 2 S we have R⌧ = A

+
�,⌧M�

for some � 2 Q.
3In fact row(RS) = row(MQ) but we only need the inclusion.
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Let us now discuss a generalization of Theorem 3 to the case where noise scales vary across marginal
measurements.
Theorem 5. Let MQ = (M�)�2Q be the query matrix for a multiset Q of marginals and let
y = (y�)�2Q be corresponding noisy marginal measurements with y� = M�p+N (0,�2

I). Define
the scaled query matrix for Q as VQ = (V�)�2Q where V� = 1

��
M� and the scaled marginal

measurements as v =
�
v�

�
�2Q where v� = 1

��
y� . Let S = {⌧ ✓ � : � 2 Q} and for each ⌧ 2 S

let �⌧,i be the ith marginal in Q containing ⌧ . Let z⌧,i = A
+
�⌧,i,⌧y�⌧,i be the residual measurement

obtained from �⌧,i and let ⌃⌧,i = �
2
⌧,iD⌧D

>
⌧ be its covariance where �

2
⌧,i = �

2
Q

k2�⌧,i\⌧ nk.
Then, given any workload of marginal queries W , for each � 2W , the marginal reconstruction µ̂�

obtained from Algorithm 3 on these residual measurements is equal to M�V
+
Q v.

The result follows due to the following Lemma, which shows that V +
Q y is an MLE for p given the

noisy marginal measurements y.
Lemma 3. Let MQ = (M�j )

r
j=1 be the query matrix for marginals Q = (�1, . . . , �r), which may

include duplicates, and let y = (y�j )
r
j=1 be corresponding noisy marginal measurements with

y�j = M�jp+N (0,�2
�j
I). Define the scaled query matrix as VQ = (V�j )

r
j=1 where V�j = 1

��j
M�j

and the scaled marginal measurements as v =
�
v�j

�r
j=1

where v�j = 1
��j

y�j . Then V
+
Q v is a MLE

of p with respect to noisy measurements y.

Proof. The log-likelihood of data vector p under noisy marginal measurement y�j can be written as

Ly�j
(p) = �

1

2�2
�j

��y�j �M�jp
��2
2
+ c�j

where c�j is a constant. Since the noisy marginal measurements are independent, the log-likelihood
of data vector p under noisy marginal measurements y is given by

Ly(p) = �
1

2

rX

j=1

1

�2
�j

��y�j �M�jp
��2
2
+ c

where c is a constant. The vector p̂ is an MLE of p under noisy marginal measurements y if and only
if p̂ minimizes the loss function

Ly(p) =
rX

j=1

1

�2
�j

��y�j �M�jp
��2
2

=
rX

j=1

����

✓
1

��j

◆
y�j �

✓
1

��j

◆
M�jp

����
2

2

=
rX

i=1

��v�j � V�jp
��2
2

= kv � VQpk
2
2 .

Since V
+
Q v minimizes Ly(p), it is an MLE of p under noisy marginal measurements y.

E Computational Complexity

In this section, we analyze the computational complexity of applications of ReM under Gaussian
noise. We state and prove the results discussed in Section 4.4. Let us first prove two useful lemmas
regarding the time complexity of Alg 5 for multiplying the Kronecker matrix A =

N`
i=1 Ai by a

vector x. Recall that Ai has size ai ⇥ bi and A has size a⇥ b with a =
Q`

i=1 ai and b =
Q`

i=1 bi.
Lemma 4. At iteration i, Alg. 5 has the following time complexity:

(a) if Ai is an arbitrary matrix, iteration i takes O
�Qi

j=1 aj
Q`

h=i bh

�
time.
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(b) if Ai = D
+
(k), then iteration i takes O

�Qi�1
j=1 aj

Q`
h=i bh

�
time, where bi = nk � 1.

(c) if Ai = D(k), then iteration i takes O
�Qi

j=1 aj
Q`

h=i+1 bh

�
time, where ai = nk � 1.

Proof. At iteration i of Alg. 5, Ai is multiplied by a matrix Z with size bi ⇥
�Qi�1

j=1 aj
Q`

h=i+1 bh

�
.

Then each row in Ai requires bi
�Qi�1

j=1 aj
Q`

h=i+1 bh

�
=
�Qi�1

j=1 aj
Q`

h=i bh

�
scalar multiplications.

Since Ai has ai rows, this yields
�Qi

j=1 aj
Q`

h=i bh

�
multiplications over all rows. This proves (a).

Suppose Ai = D
+
(k). Recall that D+

(k) = (1/nk)(1ku>
k � nkCk). We claim that computing D

+
(k)v

for any vector v takes O(nk) time. Ckv is a cumulative sum of the elements of v and u
>
k v is

a dot product, both of which take O(nk) time to compute. The remaining steps cost 2(nk � 1)
multiplications and nk � 1 sums. Thus each column of Z can be multiplied by Ai in O(nk) time.
Since Z has

�Qi�1
j=1 aj

Q`
h=i+1 bh

�
columns, computing AiZ takes O

�
bi

�Qi�1
j=1 aj

Q`
k=i+1 bk

��
=

O
�Qi�1

j=1 aj
Q`

k=i bk

�
time, where bi = nk � 1. This proves (b).

Suppose Ai = D(k). For vector v, D(k)v is the difference of consecutive elements of v, which takes
O(nk) time to compute. Thus each column of Z can be multiplied by Ai with nk � 1 operations.
Since Z has

�Qi�1
j=1 aj

Q`
h=i+1 bh

�
columns, computing AiZ takes O

�
ai

�Qi�1
j=1 aj

Q`
k=i+1 bk

��
=

O
�Qi

j=1 aj
Q`

k=i+1 bk

�
time, where ai = nk � 1. This proves (c).

Lemma 5. The following hold for Alg. 5:

(a) If ai � bi and either Ai = D
+
(k) or bi = 1 for i = 1, . . . , `, then Alg. 5 takes O

�
a · `) time.

(b) If ai  bi and either Ai = D(k) or ai = 1 for i = 1, . . . , `, then Alg. 5 takes O
�
b · `) time.

Proof. Applying Lemma 4, if Ai = D
+
(k) then iteration i takes O

�Qi�1
j=1 aj

Q`
h=i bh

�
time, and,

if bi = 1, then iteration i takes O
�Qi

j=1 aj
Q`

h=i+1 bh

�
time. We can bound these terms by

O
�Q`

j=1 aj

�
= O(a). Summing over all ` iterations of Alg. 5 yields O(

P`
i=1 a) = O(a · `). This

proves (a).

If Ai = D(k), then iteration i is O
�Qi

j=1 aj
Q`

h=i+1 bh

�
by Lemma 4 (c). If ai = 1, then iteration

i is O
�Qi�1

j=1 aj
Q`

h=i bh

�
by Lemma 4 (a). We can bound these terms by O

�Q`
h=1 bh

�
= O(b).

Summing over all ` iterations of Alg. 5 yields O(
P`

i=1 b) = O(b · `). This proves (b).

Theorem 6. Let W be a workload of marginals. Then

(a) Reconstructing an answer to marginal M� for � 2W takes O(|�|n�2|�|) time.

(b) The time required for reconstructing an answer to marginal M� for � 2W is o(n1+✏
� ) for

any ✏ > 0 as ni !1 for some i 2 �.

(c) GReM-MLE(W,S, z) takes O(
P

�2W |�|n�2|�|) time.

(d) EMP(W,Q, y) takes O(
P

�2W |�|n�2|�|) time.

(e) GReM-LNN(W,S, z) takes O(
P

�2W |�|n�2|�|) time per round.

Proof. Let us first consider the running time of A�,⌧z⌧ for some ⌧ ✓ �. Recall that A�,⌧ can be
written as follows:

A�,⌧ :=
O

k2�

(
D

+
(k) k 2 ⌧�

1/nk

�
1k k 2 � \ ⌧

Since A�,⌧ satisfies the conditions of Lemma 5 and has n� rows, computing A�,⌧z⌧ takes O(|�|n�)
time. Recall from Proposition 1 that reconstructing an answer to marginal M� is given by
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P
⌧2S,⌧✓� A�,⌧y⌧ . The number of terms in the summation is at most 2|�|, so the total running

time of reconstructing an answer to M� is O(|�|n�2|�|). This proves (a).

For (b), let ✏ > 0 and consider the following quotient:

|�|n�2|�|

|�|n
1+✏
�

=
2|�|

n✏
�

=
2|�|Q
i2� n

✏
i

.

Taking the limit as ni !1, the quotient tends to zero and we obtain the desired result.

With GReM-MLE, each residual query R⌧ , ⌧ 2 S can have multiple measurements y⌧,1, . . . , y⌧,k⌧

but with proportional covariances. For each ⌧ 2 S, we combine the measurements using inverse
variance weighting to obtain ↵̂⌧ . We then reconstruct the marginals M� for � 2W using the residual
answers ↵̂⌧ for ⌧ 2 S . By (a), the running time is O(

P
�2W |�|n�2|�|). This proves (c).

The efficient marginal pseudoinversion, given in Alg. 4, first decomposes marginals and then applies
GReM-MLE. Let Q be the multiset of measured marginals and W be the workload of marginals to
answer. Let W# denote the downward closure of W . We assume that Q is a consists of elements
of W

# and each � 2 W
# appears in Q at most b times. For each � 2 Q, we decompose the

marginal measurements into residual measurements by computing A
+
�,⌧y� for each ⌧ ✓ �. By

Lemma 5 (b), computing A
+
�,⌧y� takes O(|�|n�) time. Then the running time of decomposing

the marginal measurements is O(
P

�2Q |�|n�2|�|). From (c), the running time of GReM-MLE is
O(
P

�2W |�|n�2|�|). Given that the running time of decomposition is at most a multiple of the
running time of GReM-MLE, O(

P
�2W |�|n�2|�|). This proves (d).

Let us turn to the running time of GReM-LNN. Let W# be the downward closure of workload W .
The dual ascent algorithm for GReM-LNN (Alg. 6) consists of three steps each round requiring
matrix multiplications: computing ↵̂⌧ for ⌧ 2 S, computing ↵̂⌧ 0 for unmeasured ⌧

0
2W

#
\ S, and

reconstructing answers to marginals M� for � 2W .

First consider the case where ⌧ 2 S. Recall that in this case ↵̂⌧ =
�Pk⌧

i=1 K
�1
⌧,i

��1�Pk⌧

i=1 K
�1
⌧,i y⌧,i+P

�◆⌧ A
T
�,⌧��

�
, where K⌧,i = �

2
⌧D⌧D

T
⌧ . We can rewrite ↵̂⌧ as follows:

↵̂⌧ =

 
X

�◆⌧

�
�2
⌧

!�1X

�◆⌧

�
�2
⌧ y⌧,i +

 
X

�◆⌧

�
�2
⌧

!
D⌧D

T
⌧

X

�◆⌧

A
T
�,⌧�� .

The left summand requires no matrix multiplications and does not depend on �. Then computing
A

T
�,⌧�� takes O

�
|�|n�) time. The right summand is obtained by computing A

T
�,⌧�� for each � ◆ ⌧ .

Then computing ↵̂⌧ for ⌧ 2 S takes O(
P

�◆⌧ |�|n�) time.

Now consider the case where ⌧ 2W
#
\ S. Then ↵̂ = �(1/2)(AT

⌧,⌧A⌧,⌧ )�1
P

�◆⌧ A
T
�,⌧�� . As with

the prior case, the desired term requires computing A
T
�,⌧�� for each � ◆ ⌧ . Then computing ↵̂⌧ for

⌧ 2W
#
\ S is O(

P
�◆⌧ |�|n�).

Combing these results, computing ↵̂⌧ for ⌧ 2 W
# is O(

P
⌧2W#

P
�◆⌧ |�|n�). Observe that for

each � 2W , there are 2|�| terms in the summation. By indexing the summation in terms of �, we
obtain that computing ↵̂ is O(

P
�2W |�|n�2|�|). The remaining step of GReM-LNN is to reconstruct

answers to marginals M� for � 2 W . By (a), the running time is O(
P

�2W |�|n�2|�|). This
proves (e).

F GReM-LNN Implementation

Recall that GReM-LNN solves the following convex program:

min
↵

X

⌧2S

X

i

(↵⌧ � z⌧,i)
>
K

�1
⌧,i (↵⌧ � z⌧,i) s.t.

X

⌧✓�

A�,⌧↵⌧ � 0, 8� 2W (8)
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Algorithm 6 GReM-LNN Dual Ascent
Input: Marginal workload W , residual workload S , residual measurements z, rounds T , step size s,

Lagrangian initialization �, regularization weight ⌘
1: Initialize �� = � for � 2W

2: for t = 1, . . . , T do
3: Set ↵⌧ =

�Pk⌧

i=1 K⌧,i

��1
(
Pk⌧

i=1 K
�1
⌧,i y⌧,i �

P
�◆⌧ A

>
�⌧��) for ⌧ 2 S

4: Set ↵⌧ = �1/2⌘
�
A

>
⌧⌧A⌧⌧

��1
(
P

�◆⌧ A
>
�⌧��)> for ⌧ 2W

#
\ S

5: Calculate µ�(↵) =
P

⌧✓� A�⌧↵⌧ for � 2W

6: Update �� = min{�� + sµ�(↵),0} for � 2W

for K⌧,i = 2|⌧ |D⌧D
T
⌧ . Observe that the program in Eq. 8 only depends on unmeasured residuals in

W
# through the local non-negativity constraint. To make this problem more tractable and the solution

more stable, we introduce a regularization term to limit the contribution of unmeasured residuals to
reconstructed marginals:

min
↵

X

⌧2S

X

i

(↵⌧ � z⌧,i)
>
K

�1
⌧,i (↵⌧ � z⌧,i) + ⌘

X

⌫2W#\S

kA⌫⌫↵⌫k
2
2

s.t.
X

⌧✓�

A�,⌧↵⌧ � 0, 8� 2W

(9)

Note that the introduction the regularization term in Eq. (9) is only relevant to the underdetermined
case, since, otherwise, W#

✓ S. To solve the program in Eq. (9), we use an iterative dual ascent
algorithm described in pseudocode in Alg. 6.

Let us now show that Alg. 6 is correctly specified. Let us denote the objective as f(↵) =P
⌧2S

Pk⌧

i=1(↵⌧ � z⌧,i)>K
�1
⌧,i (↵⌧ � z⌧,i) + ⌘

P
⌫2W#\S kA⌫⌫↵⌫k

2
2 and the constraint as µ(↵) =

(µ�(↵))�2W = (
P

⌧✓� A�⌧↵⌧ )�2W � 0. Then the Lagrangian function is given by

L(↵,�) = f(↵) + �
>
µ(↵)

=
X

⌧2S

k⌧X

i=1

(↵⌧ � z⌧,i)
>
K

�1
⌧,i (↵⌧ � z⌧,i) + ⌘

X

⌫2W#\S

kA⌫⌫↵⌫k
2
2 +

X

�2W
�
>
�

X

⌧✓�

A�⌧↵⌧

where � = (��)�2W is the dual variable or Lagrangian multiplier and is constrained such that �  0.
The dual function is given by g(�) = min↵ L(↵,�) and the dual problem is given by max�0 g(�).
Under suitable regularity conditions, the optimal value of the dual problem is equivalent to the optimal
value of the primal problem. We can solve both by maximizing the dual function g to obtain �

⇤ and
then minimizing the Lagrangian L(↵,�⇤) with respect to ↵ to obtain ↵

⇤.

We can solve for each ↵
⇤
⌧ in closed form for ⌧ 2 W

#. Minimizing the Lagrangian L(↵,�⇤) with
respect to ↵ corresponds to minimizing an unconstrained quadratic objective and can be solved
separately for each ⌧ . To see this, let us fix � and solve for the critical point of L(↵,�). If ⌧ 2 S,
then gradient of L with respect to ↵⌧ is given by

r↵⌧L(↵,�) =
k⌧X

i=1

K
�1
⌧,i (↵⌧ � z⌧,i) +

X

�◆⌧

A
>
�⌧�� .

Setting this to zero and solving for ↵⇤
⌧ yields

↵
⇤
⌧ =

⇣ k⌧X

i=1

K
�1
⌧,i

⌘�1⇣ k⌧X

i=1

K
�1
⌧,i z⌧,i �

X

�◆⌧

A
>
�⌧��

⌘
.
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Algorithm 7 Scalable MWEM

Input: Marginal workload W , privacy budget (✏, �), initialization parameter ↵

1: Choose ⇢ such that min↵>1
exp((↵�1)(↵⇢�✏))

↵�1

�
1� 1

↵

�↵
= �

2: Set �2
0 ,�

2 = 1
2↵⇢ ,

T
(1�↵)⇢

3: Initialize measurements y = {M;p+ ⇠0} with ⇠0 ⇠ N (0,�2
0I) and multiset Q = {;}

4: Initialize (µ̂�)�2W = EMP(W,Q, y)
5: for t = 1, . . . , T do
6: Select �t with the exponential mechanism using (1�↵)⇢

2T budget according to

Score(p, �, Y ) = kM�p� µ̂�k1 8� 2W

7: Measure yt = M�tp+ ⇠t where ⇠t ⇠ N (0,�2
I) and set Q = Q [ {�t}

8: Reconstruct (µ̂�)�2W = EMP(W,Q, y)

return noisy answers (µ̂�)�2W , noisy measurements y

Now, suppose ⌧ 2W
#
\ S . Then gradient of L with respect to ↵⌧ is given by

r↵⌧L(↵,�) = 2⌘↵>
⌧ A

>
⌧⌧A⌧⌧ +

X

�◆⌧

A
>
�⌧�� .

Setting this to zero and solving for ↵⇤
⌧ yields

↵
⇤
⌧ = �1/2⌘

⇣
A

>
⌧⌧A⌧⌧

⌘�1⇣X

�◆⌧

A
>
�⌧��

⌘>
.

To update �, we set �⇤ = min{� + tµ(↵⇤), 0} where t > 0 is the step size. This can be seen as
projected gradient ascent on g(�) since µ(↵⇤) = r�L(↵⇤

,�) = r�g(�).

G Scalable MWEM with pseudoinverse reconstruction

The multiplicative weights exponential mechanism (MWEM) [15] is a canonical data-dependent
mechanism that maintains a model p̂ of the data distribution p that is improved iteratively by adaptively
measuring marginal queries that are poorly approximated by the current model p̂. MWEM has served
as the foundation for many related data-dependent mechanisms. A limitation of MWEM-style
algorithms is that representing p̂, even implicitly, does not scale to high-dimensional data domains
without adopting parametric assumptions. In this section, we propose an MWEM-style algorithm
called Scalable MWEM (Alg. 7) that employs a standard reconstruction approach, the pseudoinverse
of the measured marginal queries, but scales to high-dimensional data domains.

In general, the pseudoinverse is infeasible as a reconstruction method for large data domains. Com-
puting the pseudoinverse Q

+ of an arbitrary query matrix Q scales exponentially in the number
of attributes and linearly in size of the data vector. Moreover, even storing the reconstructed data
vector p̂ = Q

+
y from noisy answers y in memory presents a limitation in practice. Scalable MWEM

overcomes this computational hurdle by measuring marginals with isotropic noise and utilizing the
efficient marginal pseudoinverse (Alg. 4).

Scalable MWEM initializes by using a predetermined fraction of the privacy budget to measure
the total query i.e. the 0-way marginal that counts the number of records in the dataset. Let W be
a workload of marginals e.g. all 3-way marginals. Then, for a fixed number of rounds, Scalable
MWEM privately selects a marginal � 2W that is poorly approximated by the pseudoinverse of the
current measurements using the exponential mechanism. The selected marginal is measured with
isotropic Gaussian noise and utilizes the efficient marginal pseudoinverse to reconstruct answers to
marginals in W . Being a full query answering mechanism rather than just a reconstruction method,
let us show that Scalable MWEM satisfies differential privacy.
Theorem 7. Scalable MWEM satisfies (✏, �)-DP.
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Proof. We will refer to Algorithm 7 as M. Note that M selects a parameter ⇢ such that
� = min↵>1

exp((↵�1)(↵⇢�✏))
↵�1

�
1� 1

↵

�↵. By proposition 4, it suffices to show that M satisfies
⇢-zCDP, then it also satisfies (✏, �)-DP. In the initialization step, M measures M;p with the Gaussian
mechanism using the noise scale �

2
o = 1

2↵⇢ . The query M;p is the total query, so it has an `2

sensitivity of 1 and therefore by proposition 5, this measurement satisfies 1
2�2

o
= 2↵⇢

2 = ↵⇢-zCDP.

In each round, M runs the exponential mechanism such that it satisfies (1�↵)⇢
2T -zCDP. Also in each

round, M runs the Gaussian mechanism to measure a marginal query with noise scale �
2 = T

(1�↵)⇢ .
All marginal queries have an `2 sensitivity of 1 so again by proposition 5, this measurement sat-
isfies 1

2�2
o
= (1�↵)⇢

2T -zCDP. By the adaptive composition result given in proposition 8, the overall

mechanism satisfies ↵⇢+ T ( (1�↵)⇢
2T + (1�↵)⇢

2T ) = ⇢-zCDP and also (✏, �)-DP.

H Experiment Details

Datasets. In general, we follow the preprocessing steps described in [7]. All attributes in the datasets
are discrete. We identify the data domain by inferring the possible values for each attribute from the
observed values for each attribute.

Titanic [23] contains 9 attributes, 1, 304 records, and has data vector size 8.9 ⇥ 107. Adult [24]
contains 14 attributes, 48, 842 records, and has data vector size 9.8⇥ 1017. Salary [25] contains 9
attributes, 135, 727 records, and has data vector size 1.3 ⇥ 1013. Nist-Taxi [26] has 10 attributes,
223, 551 records, and has data vector size 1.9⇥ 1013.

Compute Environment. All experiments were run on an internal compute cluster with two CPU
cores and 20GB of memory.

GReM-LNN Hyperparameters. For the ResidualPlanner experiments in Section 5.1, we set the
hyperparameters as follows: the maximum number of rounds T = 4000, the Lagrangian initialization
parameter � = �1, and the step size s = 0.1. For the Scalable MWEM experiments in Section 5.2,
we set the hyperparameters as follows: the maximum number of rounds T = 1000, the Lagrangian
initialization parameter � = �1, the step size s = 0.02, and regularization weight ⌘ = 40. For
all experiments, if Alg. 6 fails, we divide the step size by

p
10 and rerun until convergence. We

additionally impose a time limit of 24H on a given run of Alg. 6.

I Additional Experiments

In this section, we detail additional experimental results. For the ResidualPlanner experiment, we
report `2 workload error for the reconstruction methods. For the Scalable MWEM experiment, we
report `2 workload error for the reconstruction methods as well as whether or not Private-PGM
successfully ran across various settings.
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I.1 Additional ResidualPlanner Experiments

Figure 4: Average `2 workload error on all 3-way marginals across five trials and privacy budgets
✏ 2 {0.1, 0.31, 1, 3.16, 10} and � = 1⇥ 10�9 for ResidualPlanner.
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I.2 Additional MWEM Experiments

Figure 5: Average `2 workload error on all 3-way marginals across five trials and privacy budgets
✏ 2 {0.1, 0.31, 1, 3.16, 10} and � = 1⇥ 10�9 for Scalable MWEM with 30 rounds of measurements.

Dataset Rounds Trials Total Trials Completed Trials >24H Trials Out-of-Memory
Titanic 10 25 25 0 0

20 25 25 0 0
30 25 25 0 0

Adult 10 25 0 25 0
20 25 14 8 3
30 25 0 0 25

Salary 10 25 11 14 0
20 25 0 0 25
30 25 0 0 25

Nist-Taxi 10 25 0 0 25
20 25 0 0 25
30 25 0 0 25

Table 2: Completion results of running Private-PGM by setting for the Scalable MWEM experiment.
Failure is broken down by exceeding the 24H time limit or exceeding the available memory (20GB).
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