
Improved Spectral Density Estimation via Explicit and Implicit
Deflation

Rajarshi Bhattacharjee
UMass Amherst

rbhattacharj@cs.umass.edu

Rajesh Jayaram
Google Research

rkjayaram@google.com

Cameron Musco
UMass Amherst

cmusco@cs.mass.edu

Christopher Musco
New York University
cmusco@nyu.edu

Archan Ray
Sloan Kettering Institute
talk2archan@gmail.com

Abstract

We study algorithms for approximating the spectral density (i.e., the eigenvalue distribution)

of a symmetric matrix A 2 Rn⇥n
that is accessed through matrix-vector product queries. Recent

work has analyzed popular Krylov subspace methods for this problem, showing that they output

an ✏ ·kAk2 error approximation to the spectral density in the Wasserstein-1 metric using O(1/✏)
matrix-vector products. By combining a previously studied Chebyshev polynomial moment

matching method with a deflation step that approximately projects off the largest magnitude

eigendirections of A before estimating the spectral density, we give an improved error bound of

✏ · �`(A) using O(` log n+ 1/✏) matrix-vector products, where �`(A) is the `th largest singular

value of A. In the common case when A exhibits fast singular value decay and so �`(A) ⌧ kAk2,
our bound can be much stronger than prior work. We also show that it is nearly tight: any

algorithm giving error ✏ · �`(A) must use ⌦(`+ 1/✏) matrix-vector products.

We further show that the popular Stochastic Lanczos Quadrature (SLQ) method essentially

matches the above bound for any choice of parameter `, even though SLQ itself is parameter-free

and performs no explicit deflation. Our bound helps to explain the strong practical performance

and observed ‘spectrum adaptive’ nature of SLQ, and motivates a simple variant of the method

that achieves an even tighter error bound. Technically, our results require a careful analysis of

how eigenvalues and eigenvectors are approximated by (block) Krylov subspace methods, which

may be of independent interest. Our error bound for SLQ leverages an analysis of the method

that views it as an implicit polynomial moment matching method, along with recent results on

low-rank approximation with single-vector Krylov methods. We use these results to show that

the method can perform ‘implicit deflation’ as part of moment matching.ar
X

iv
:2

41
0.

21
69

0v
3

 [c
s.D

S]
 4

 D
ec

 2
02

4

Contents

1 Introduction 2

1.1 Matrix-Vector Query Algorithms for SDE . 2
1.2 Existing Bounds . 3
1.3 Our Results . 4

1.3.1 Improved SDE via Moment Matching with Explicit Deflation 4
1.3.2 Implicit Deflation Bounds for Stochastic Lanczos Quadrature 5

1.4 Technical Overview . 6
1.4.1 Eigenvalue Deflation for SDE . 6
1.4.2 Error Analysis of Deflation . 7
1.4.3 SLQ and its Existing Analysis . 7
1.4.4 Moment Matching-Based Analysis of SLQ . 8
1.4.5 Implicit Deflation with SLQ . 9
1.4.6 Variance Reduced SLQ . 10

1.5 Roadmap . 10

2 Notation and Preliminaries 10

2.1 Basic Notation . 10
2.2 Linear Algebra Preliminaries . 11
2.3 Moment Matching and Wasserstein Distance Preliminaries 12

3 SDE via Moment Matching with Explicit Deflation 13

3.1 Error bounds for Deflation via Block Krylov . 14
3.1.1 Eigenvector Alignment . 17
3.1.2 Eigenvalue Alignment . 20
3.1.3 Bounding the spectral norm after deflation 23

3.2 Error Bounds for moment matching with deflation 25

4 Analysis of Stochastic Lanczos Quadrature 31

4.1 SLQ bounds via Moment Matching . 32
4.2 Error Bounds for Lanczos . 36
4.3 Improved Error bounds for SLQ via implicit deflation based analysis 41
4.4 Variance reduced SLQ . 61

5 Lower Bound 68

6 Empirical Evaluation 69

6.1 Datasets . 69
6.2 Implementation Details . 70
6.3 Summary of Results . 71

1 Introduction

Spectral density estimation (SDE) is a fundamental task in computational linear algebra. Given a
symmetric matrix A 2 Rn⇥n with eigenvalues �1(A), . . . ,�n(A), the goal is to approximate A’s
eigenvalue distribution (i.e., its spectral density) sA, which is the distribution that places probability
mass 1/n at each of A’s n eigenvalues. Formally, letting �(·) be the Dirac delta function,

sA(x) =
1

n

nX

i=1

�(x� �i(A)). (1)

Understanding sA can provide important information about the input matrix A. To what de-
gree does it exhibit low-rank structure (i.e., have a decaying eigenvalues)? How close is the spec-
trum, or some part of the spectrum, to that of a random matrix? Does A have many repeated
or nearly repeated eigenvalues that may indicate anomalies or other interesting structure? As
such, spectral density estimation is applied throughout the sciences [Ski89, SR94, STBB17, SRS20],
network science [FDBV01, EG17, DBB19], machine learning and deep learning in particular
[RL18, PSG18, MM19, GKX19], numerical linear algebra [DNPS16, LXES19], and beyond.

The spectral density sA can be computed directly by performing a full eigendecomposition of A,
in O(n!) time, for ! ⇡ 2.37 being the exponent of fast matrix multiplication [Par98, PC99, DDH07].
However, when A is very large, or in settings where A can only be accessed through a small number
of queries, we often seek an approximation s̃A, such that s̃A and sA are close in some metric.
In this work we will focus on the Wasserstein-1 (i.e., earth mover’s) distance, W1(sA, s̃A), which
has been studied in a number of recent works giving formal approximation guarantees for SDE
[CSKSV18, CTU21, BKM22, CTU22, JMSS23, JKM+24]. When s̃A is the uniform distribution
over approximate eigenvalues �̃1(A), . . . , �̃n(A), and when we order both sets of eigenvalues in
decreasing order, W1(sA, s̃A) = 1

n

P
n

i=1 |�i(A)� �̃i(A)|. I.e., it is the average absolute error of our
eigenvalue estimates. More generally, when s̃A is any distribution, W1(sA, s̃A) is the minimum cost
of transforming sA into s̃A, where moving probability � from x to y incurs cost � · |x� y|.

1.1 Matrix-Vector Query Algorithms for SDE

Given its practical importance, efficient algorithms for SDE have been widely studied [BRP92,
Wan94, WWAF06, LSY16, CTU21, BKM22]. A large fraction of these methods operate in the
matrix-vector query model : they only access the input matrix A 2 Rn⇥n through multiplication
on the left or right with a sequence of (possibly adaptively chosen) query vectors x1, . . . ,xm 2 Rn.
The goal is to minimize the number of queries m, which typically dominate the runtime cost.

Matrix-vector query algorithms encompass both linear sketching methods (when queries are
chosen non-adaptively) and Krylov subspace methods (when queries are of the form x,Ax,A2

x, . . .,
for some starting vector x, or set of starting vectors). Beyond spectral density estimation, they are
the dominant algorithms in practice for many linear algebraic problems, including eigenvalue and
eigenvector computation [Par98], low-rank approximation [HMT11, MM15], linear system solving
[LSY98, Saa03], and beyond. Such methods typically have low-memory overhead, since even when
A is very large, they only need to store the outputs of the matrix-vector products. Further, they can
often take advantage of highly optimized software and hardware for matrix-vector multiplication,
including parallel hardware like GPUs, and faster matrix-vector multiplication routines when A is
sparse or structured. Moreover, matrix-vector query algorithms are applicable in settings where A

2

cannot be efficiently materialized, but can be efficiently multiplied by vectors. This is the case e.g.,
when A is the Hessian of a neural network [Pea94, GKX19] or a function of some other matrix that
can be efficiently applied to vectors using e.g., an iterative method [UCS17].

Recently, matrix-vector query algorithms have received significant attention in theoretical work
on numerical linear algebra since in many cases, it is possible to prove (nearly) matching query com-
plexity upper and lower bounds for central problems like trace estimation [MMMW21], low-rank
approximation [SEAR18, BCW22, BN23], linear regression [BHSW20], structured matrix approxi-
mation [HT23, DM23, ACH+24], and beyond [SWYZ21, NSW22, SW23].

Most state-of-the-art matrix-vector query algorithms for spectral density estimation are Krylov
subspace methods that fall into two general classes.

Moment Matching. The first class of methods approximates sA by approximating its polynomial
moments. I.e., EsA [p(x)] =

1
n

P
n

i=1 p(�i(A)) = 1
n
tr(p(A)), where p is a low-degree polynomial.

We can employ stochastic trace estimation methods like Hutchinson’s method [Gir87, Hut90] to
approximate this trace using just a small number of matrix-vector products with p(A) and in turn
A, since if p has degree k, a single matrix-vector product with p(A) can be performed using k matrix
vector products with A. After approximating the moments for a set of low-degree polynomials (e.g.,
the first k monomials, or the first k Chebyshev polynomials), we can let s̃A be a distribution that
matches these moments as closely as possible, and thus should closely match sA.

Moment matching methods include the popular Kernel Polynomial Method (KPM) [SR94,
Wan94, WWAF06] and its variants [CPB10, LSY16, BKM22, Che23]. Several works also use moment
matching to give sublinear time SDE methods for graph adjacency matrices [CSKSV18, BKM22,
JMSS23], leveraging structure to estimate moments faster than with matrix-vector queries.

Lanczos-Based Methods. The second class of methods computes a small number of approximate
eigenvalues of A using the Lanczos method, and lets s̃A be a distribution supported on these
eigenvalues, with appropriately chosen probability mass placed at each. The canonical method of
this form is Stochastic Lanczos Quadrature (SLQ) [CTU21]. Many other variants have also been
studied. Some place probability mass not just at the approximate eigenvalues, but on Gaussian or
other simple distributions centered at these eigenvalues [LG82, BRP92, LSY16, HHK72].

1.2 Existing Bounds

While matrix-vector query algorithms for SDE have been studied for decades, theoretical guarantees
on their approximation error in terms of the distance between the true spectral density sA and the
approximate density s̃A have only recently been formalized. Braverman et al. [BKM22] analyze
a Chebyshev Moment Matching method, which can be thought of as a simple variant of KPM,
showing that the method can compute s̃A satisfying W1(sA, s̃A)  ✏ ·kAk2 with probability � 1��
using just O(b/✏) matrix vector products, where b = max(1, 1

n✏2
log2 1

✏�
log2 1

✏
). Note that b = 1 in

the common case when ✏ = ⌦̃(1/
p
n). Here kAk2 denotes the spectral norm of A – i.e., its largest

eigenvalue magnitude. They prove a similar guarantee for KPM itself, but with a worse dependence
on ✏. Chen et al. [CTU21, CTU22] prove that the Lanczos-based SLQ method gives essentially the
same approximation bound: error ✏·kAk2 using O(1/✏) matrix-vector products when ✏ = ⌦̃(1/

p
n).1

1
Work on eigenvalue estimation [AN13, BDD

+
24, SW23] can also give guarantees for SDE. However they are

generally weaker than those discussed above. E.g., [SW23] shows how to approximate all eigenvalues of symmetric

A to additive error ✏kAkF using O(1/✏2) matrix-vector products, which is optimal. Letting s̃A be the uniform

distribution over their approximate eigenvalues, we obtain the somewhat weak bound of W1(sA, s̃A)  ✏kAkF .

3

The above error bounds for KPM, Chebyshev Moment Matching, and SLQ help to justify
the effectiveness of these methods in practice. However, in many cases, they can be loose. A
bound of W1(sA, s̃A)  ✏ · kAk2 roughly corresponds to estimating each eigenvalue to average error
✏ · kAk2. Many matrices however exhibit spectral decay: most of their eigenvalues are much smaller
in magnitude than their largest (i.e., than kAk2). Thus, this error bound does not guarantee that
s̃A effectively captures information about A’s smaller magnitude eigenvalues.

1.3 Our Results

Our main contribution is to show that both moment matching and Lanczos based methods for SDE
can achieve improved bounds on W1(sA, s̃A) that depend on �l+1(A), the (l+ 1)st largest singular
value of A (i.e., the (l + 1)st largest eigenvalue magnitude) for some parameter l, instead of kAk2.
For matrices that exhibit spectral decay and thus have �l+1(A) ⌧ �1(A) = kAk2, our bounds can
be much stronger than those given in prior work.

1.3.1 Improved SDE via Moment Matching with Explicit Deflation

Our first contribution is a modification of the moment matching method of [BKM22] that first
‘deflates’ off any eigenvalue of A with magnitude significantly larger than �l+1(A), before estimating
the spectral density. Specifically, the method uses a block Krylov subspace method [MM15, Tro18] to
first compute highly accurate approximations to the p largest magnitude eigenvalues of A, for some
p  l, along with an orthonormal matrix Z 2 Rn⇥p with columns approximating the corresponding
eigenvectors. It uses moment matching to estimate the spectral density of A projected away from
these approximate eigendirections (I�ZZ

T)A(I�ZZ
T), achieving error ✏�l+1(A) since this matrix

has spectral norm bounded by O(�p+1(A)) = O(�l+1(A)) if Z is sufficiently accurate. It then
modifies this approximate density to account for the probability mass at the top p eigenvalues. While
block Krylov methods are well understood for the closely related tasks of low-rank approximation
and singular value approximation [MM15, MNS+18, BN23], our work requires a careful analysis of
eigenvalue/eigenvector approximation with these methods that may be of independent interest –
see Section 1.4 for details. Overall, the above approach gives the following result:

Theorem 1 (SDE with Explicit Deflation). Let A 2 Rn⇥n be symmetric. For any ✏ 2 (0, 1), l 2 [n],
and any constants c1, c2 > 0, Algorithm 1 performs O

�
l log n+ b

✏

�
matrix-vector products with A

where b = max
�
1, 1

n✏2
log2 n

✏
log2 1

✏

�
and computes a probability density function s̃A such that, with

probability at least 1� 1
nc1 ,

W1(sA, s̃A)  ✏ · �l+1(A) +
kAk2
nc2

.

As compared to the result of [BKM22], Theorem 1 uses O(l log n) additional matrix-vector
products – these are used to compute the approximate top eigenvalues and eigenvectors for deflation.
However, the method gives a significantly improved error bound of roughly ✏�l+1(A). The additive
error kAk2/nc2 can be thought of as negligible – comparable e.g., to round-off error when directly
computing sA using a full eigendecomposition in finite precision arithmetic [BGVKS22].

We further show that our algorithm is optimal amongst all matrix-vector query algorithms, up
to logarithmic factors and the negligible additive error term. Formally:

Theorem 2 (SDE Lower Bound). Any (possibly randomized) algorithm that given symmetric A 2
Rn⇥n outputs s̃A such that, with probability at least 1/2, W1(sA, s̃A)  ✏�l+1(A) for ✏ 2 (0, 1) and
l 2 [n] must make ⌦

�
l + 1

✏

�
(possibly adaptively chosen) matrix-vector queries to A.

4

Theorem 2 leverages an existing lower bound for distinguishing Wishart matrices of different
ranks, previously used to give matrix-vector query lower bounds for the closely related problem of
eigenvalue estimation [SW23].

Application to Schatten-1 (Nuclear) Norm Estimation. Even for matrices that don’t ex-
hibit spectral decay, by balancing the O(l log n) and O(b/✏) terms we can leverage Theorem 1 in
applications that require understanding the small magnitude eigenvalues of A, where previous SDE
bounds gave weak results. For example, consider the estimating the Schatten-1 (nuclear) norm
kAk1 =

P
n

i=1 |�i(A)| =
P

n

i=1 �i(A). It is not hard to show that we can estimate kAk1 to relative
error ✏kAk1 given an approximate spectral density s̃A with W1(sA, s̃A)  ✏kAk1

n
(see [CSKSV18],

Theorem B.1 in [BKM22]). We can find such a density by applying Theorem 1 with l =
p
n

✏
and

✏0 = 1p
n

so that ✏0 · �l+1(A)  ✏
0kAk1

l
 ✏kAk1

n
. Doing so yields the following corollary:

Corollary 1 (Schatten-1 Norm Estimation). Let A 2 Rn⇥n be symmetric. For any ✏ 2 (0, 1) and
any constant c > 0, there exists an algorithm that performs O

⇣p
n logn
✏

+
p
n log4 n

⌘
matrix vector

products with A and computes M such that, with probability at least 1� 1
nc , |M � kAk1|  ✏kAk1.

Prior work on SDE [CTU21, BKM22] could only give error ✏
p
nkAk2 using a comparable number

of matrix-vector products, and thus was not able to achieve a relative error guarantee. We note
that the

p
n dependence of Corollary 1 matches the best known matrix-vector product algorithms

for Schatten-1 norm estimation [MNS+18], while the ✏ dependence improves on prior work.

1.3.2 Implicit Deflation Bounds for Stochastic Lanczos Quadrature

Our second contribution is to show that the popular Stochastic Lanczos Quadrature (SLQ) method
for SDE [LSY16, CTU21] nearly matches the improved error bound of Theorem 1 for any choice
of l, even though SLQ is ‘parameter-free’ and performs no explicit deflation step. This result helps
to justify the strong practical performance of SLQ and the observed ‘spectrum adaptive’ nature of
this method as compared to standard moment matching-based methods like KPM [CTU21].

A key idea used to achieve this bound is to view SLQ as an implicit moment matching method
as in [CTU21, CTU22], and to analyze it similarly to KPM and other explicit moment matching
methods. We combine this analysis approach with recent work on low-rank approximation with
single-vector (i.e., non-block) Krylov methods [MMM24] to show that SLQ can perform ‘implicit
deflation’ as part of moment matching to achieve the improved error bound. See Section 1.4 for
details. Formally, our error bound for SLQ is as follows:

Theorem 3 (SDE with SLQ). Let A 2 Rn⇥n be symmetric and consider any l 2 [n], and
✏, � 2 (0, 1). Let gmin = mini2[l]

�i(A)��i+1(A)
�i(A) and  = kAk2

�l+1(A) . Algorithm 4 (SLQ) run for
m = O(l log 1

gmin
+ 1

✏
log n·

�
) iterations performs m matrix vector products with A and outputs

a probability density function s̃A such that, with probability at least 1� �, for a fixed constant C,

W1(sA, s̃A)  ✏ · �l+1(A) +
C log(n/✏) log(1/✏)p

n
· �l+1(A) +

Cl log(1/✏)
p
log(l/�)

n
kAk2.

Theorem 3 essentially matches our result for moment matching with explicit deflation (Theorem
1) up to some small caveats, discussed below. First, the number of matrix vector products has
a logarithmic dependence on the minimum gap gmin amongst the top l singular values as well as

5

the condition number  = kAk2
�l+1(A) . The dependence on the minimum gap is inherent, as non-block

Krylov methods like SLQ require a dependence on gmin in order to perform deflation/low-rank
approximation [MMM24]. We note that by adding a random perturbation to A with spectral norm
bounded by kAk2

poly(n) , one can ensure that both gmin � 1
poly(n) and   poly(n) with high probability,

and thus replace the O(l log 1
gmin

) term with an O(l log n) and the O(log(n)
✏

) term with an O(logn
✏

)
term, matching Theorem 1. See e.g., [MMM24].

Second, Theorem 3 has an additional error term of size Õ(�l+1(A)/
p
n). This term is lower

order whenever ✏ = ⌦̃(1/
p
n). Further, we believe that it can be removed by using a variant on

SLQ that is popular in practice, where the densities output by multiple independent runs of the
method are averaged together to produce s̃(A). See Section 4 for further discussion.

Finally, Theorem 3 has an additional error term of size Õ(kAk2 · l/n). In the natural case
when we run for m ⌧ n iterations and thus l ⌧ n, this term will be small. However, it cannot be
avoided: even for a matrix with rank  l with well-separated eigenvalues, while the Lanczos method
will converge to near-exact approximations to these eigenvalues (with error bounded by kAk2

nc),
the probability distribution output by SLQ will not place mass exactly 1/n at these approximate
eigenvalues and thus will not achieve SDE error O(kAk2

nc) – see Section 1.4 for further details.
This limitation motivates us to introduce a simple variant of SLQ, which we call variance reduced

SLQ, which places mass exactly 1/n at any eigenvalue computed by Lanczos that has converged to
sufficiently small error. This variant gives the following stronger error bound:

Theorem 4 (SDE with Variance Reduced SLQ). Let A 2 Rn⇥n be symmetric and consider any
l 2 [n], and ✏, � 2 (0, 1). Let gmin = mini2[l]

�i(A)��i+1(A)
�i(A) and  = kAk2

�l+1(A) . Algorithm 5 run for
m = O(l log 1

gmin
+ 1

✏
log n·

�
) iterations performs m matrix vector products with A and outputs a

probability density function s̃A such that, with probability at least 1 � �, for any constant c and a
fixed constant C,

W1(sA, s̃(A))  ✏ · �l+1(A) +

C log(n/✏) log(1/✏)p

n
+

Cl log(1/✏)
p
log(l/�)

n

!
· �l+1(A) +

kAk2
nc

.

1.4 Technical Overview

We next overview the main techniques used to achieve our improved SDE bounds for moment
matching with deflation (Theorem 1) and SLQ (Theorems 3 and 4).

1.4.1 Eigenvalue Deflation for SDE

As discussed in Section 1.3.1, the key idea behind Theorem 1 is to apply eigenvalue deflation.
Assume that we are given Z 2 Rn⇥l with columns equal to the eigenvectors of A corresponding to
its l largest magnitude eigenvectors. Then we can write A = Al + Al,?, where Al = ZZ

T
AZZ

T

and Al,? = (I � ZZ
T)A(I � ZZ

T). Referring to (1), since Al an Al,? have n eigenvalues in total
that are set to 0 due to projecting off Z, we have:

sA = sAl + sAl,? � �(0), (2)

where �(x) denotes the Dirac distribution that places probability mass one at x. If we have Z in
hand, we can exactly compute sAl , whose only non-zero eigenvalues are exactly the eigenvalues

6

corresponding to the eigenvectors in Z. Further, we can approximate sAl,? using an existing SDE
algorithm – e.g., the Chebyshev moment matching method of [BKM22], which will give error ✏ ·
kAl,?k2 using O(1/✏) matrix vector products when ✏ = ⌦̃(1/

p
n).2 We have kAl,?k2 = |�l+1(A)| =

�l+1(A), where �l+1(A) is the (l + 1)st largest magnitude eigenvalue of A. Thus, combining this
approximation with (2), we can approximate sA to error ✏ · �l+1(A) as desired.

We note that eigenvalue deflation is widely applied throughout numerical linear algebra
to problems like linear system solving [BEPW98, FV01, GOSS16, FTU23], trace estimation
[GSO17, Lin17, MMMW21], norm estimation [MNS+18], and beyond [CS97] – the approach is
useful whenever the complexity or approximation error of solving a problem depends on some fea-
ture of its eigenspectrum (e.g. the spectral norm, Frobenius norm, or condition number) that can
be improved by removing the largest magnitude eigenvalues from the matrix.

1.4.2 Error Analysis of Deflation

Of course, when implementing deflation for SDE, we cannot exactly compute Z 2 Rn⇥l spanning
the top l eigenvectors of A. Instead we will approximate Z, in our case, using a standard block
Krylov subspace method (Algorithm 2). It is well known that when Z is approximated in this way,
using O(log n) iterations of the block Krylov method, and thus O(l log n) matrix-vector products
in total, we can still ensure that k(I� ZZ

T)A(I� ZZ
T)k2 = O(�l+1(A)) [MM15]. This suffices to

obtain the error bound of ✏ ·�l+1(A) in approximating the spectral density of (I�ZZ
T)A(I�ZZ

T).
The key challenge however is that when Z does not exactly span a set of eigenvectors, (2) no

longer holds. Further, the spectral density of ZZT
AZZ

T will no longer exactly match the spectral
density of Al – it will place mass at the eigenvalues of ZZ

T
AZZ

T , equal to the eigenvalues of
Z
T
AZ, which approximate, but don’t exactly match, the top eigenvalues of A.
Thus, our proof requires showing that Z is very close to spanning a subspace of eigenvectors, up

to the small kAk2
nc additive error of Theorem 1. To do so, in our block Krylov algorithm (Algorithm 2

line 7) we let Z contain only the approximate eigenvectors that have converged to very small residual
error – i.e., for which Az̃j ⇡ �j z̃j . Via standard backward error analysis bounds for eigenvector
approximation (see Theorem 9), this is enough to handle the above two issues. However, we can
now no longer be sure that k(I� ZZ

T)A(I� ZZ
T)k2 is small – what if, e.g., no eigenvectors have

converged and thus Z is empty? Or e.g., if just the top eigenvector has failed to converge.
Our main technical contribution is to argue that that for some p  l with �p+1(A) = O(�l+1(A)),

the set of converged eigenvectors (i.e., the columns of Z) will contain approximations to at least
the top p magnitude eigenvectors of A, ensuring that k(I � ZZ

T)A(I � ZZ
T)k2 = O(�p+1(A)) =

O(�l+1(A)) as needed. Theorems 5 and 7 give our convergence bounds for the top p eigenvectors,
and Theorem 8 states the ultimate resulting bound on k(I� ZZ

T)A(I� ZZ
T)k2.

Our work fits into a line of work that focuses on more refined eigenvalue/singular value approx-
imation bounds for block Krylov subspace methods – see e.g. [MM15, MNS+18, DIKMI18, Tro22].
We believe that Theorems 5 and 7 may be of independent interest, outside our application to SDE.

1.4.3 SLQ and its Existing Analysis

We next turn our attention to the Stochastic Lanczos Quadrature (SLQ) method, which is detailed
in Algorithm 4. This is a popular and extremely simple, parameter-free algorithm for SDE based
on the classic Lanczos method (Algorithm 3). SLQ uses Lanczos to compute an orthonormal

2
We will focus on the case ✏ = ⌦̃(1/

p
n) and so b = 1 in Thm. 1 throughout the technical overview for simplicity.

7

basis Q for the Krylov subspace {g,Ag,A2
g, . . . ,Am

g} for random starting vector g 2 Rn –
typically, g is Gaussian. The algorithm then computes the eigenvalues of T = Q

T
AQ and lets

sÃ =
P

m

i=1wj · �(x � �j(T)) where wj are appropriately chosen weights: wj = (gT
Qvj)2 where

vj is the jth eigenvector of T. I.e., the spectral density of A is approximated with a reweighted
spectral density of T. Lanczos constructs Q such that T is tridiagonal – this makes computing its
eigenvalues very efficient, but is otherwise not critical in the analysis.

The key idea behind SLQ (and Lanczos-based algorithms in general) is that, for any polynomial
with degree < m, one can show that p(A)g = Qp(T)QT

g. Using this fact, if we consider any
low-degree polynomial moment for the SLQ approximate spectral density, we have:

Es̃A [p(x)] =
mX

j=1

wj · p(�j(T)) =
mX

j=1

g
T
Qvjv

T

j Q
T
g · p(�j(T))

= g
T
Q

0

@
mX

j=1

vjv
T

j p(�j(T))

1

AQ
T
g

= g
T
Qp(T)QT

g = g
T p(A)g. (3)

We can observe that when g has i.i.d. Gaussian entries with variance 1
n
, Eg[gT p(A)g] =

1
n
tr(p(A)) = 1

n

P
n

i=1 p(�i) = EsA [p(x)]. That is, the approximate spectral density output by
SLQ matches all low-degree polynomial moments of the true spectral density in expectation.

To formally argue that s̃A is close to sA in Wasserstein distance, Chen, Trogden, and Ubaru
[CTU21] argue that any two distributions supported on [�kAk2, kAk2] that exactly match on any
polynomial moment of degree O(1/✏) have Wasserstein distance at most ✏ · kAk2. This allows them
to argue that W1(s̄A, s̃A)  ✏ ·kAk2 where s̄A =

P
n

i=1 ⌘i ·�i(A) with ⌘i = (gT
ui)2, for ui being the

ith eigenvector of A. Note that s̄A is constructed so that for any p, Es̄A [p(x)] = g
T p(A)g and thus

the low-degree moments of s̃A and s̄A match by (3). [CTU21] next uses a concentration bound to
argue that the CDFs of s̄A and sA are close, and therefore that these two distributions are close in
Wasserstein distance. They conclude via triangle inequality that s̃A is close to sA.

1.4.4 Moment Matching-Based Analysis of SLQ

Our analysis follows a similar approach to [CTU21], also viewing SLQ as a moment matching
method, but analyzing it in essentially an identical manner to the Chebyshev moment matching
method of [BKM22]. We consider the first m = O(1/✏) Chebyshev polynomials of the first kind :
T0, T1, . . . , Tm. These polynomials are sine-like functions that are bounded in magnitude by 1 on
[�1, 1] (in the SDE setting, we rescale them to be bounded on [�kAk2, kAk2]). [BKM22] show
that any two distributions that are close in their Chebyshev moments are also close in Wasserstein
distance. They then approximate the moments of sA and find a distribution s̃A matching these
moments (and thus satisfying W1(sA, s̃A)  ✏kAk2) by solving a constrained optimization problem.

Like many moment maching methods, [BKM22] use Hutchinson’s trace estimator [Gir87, Hut90]
to approximate the Chebyshev moments – i.e., they approximate 1

n
tr(Ti(A)) ⇡ 1

b

P
b

j=1 g
T

j
Ti(A)gj

where each gj has i.i.d. Gaussian entries with variance 1
n
. They argue that since Ti is bounded,

Hutchinson’s method is highly accurate, and thus for ✏ = ⌦̃(1/
p
n), they can in fact just set b = 1.

So their approximate moments are just of the form g
TTi(A)g for a single random g.

8

Recall that by (3) these are exactly the moments of s̃A output by SLQ! So, SLQ ‘automatically’
finds a distribution matching the approximate Chebyshev moments of [BKM22], and thus satisfies
W1(s̃A, sA)  ✏ · kAk2.3 We prove this bound in Section 4.1, Theorem 10.

1.4.5 Implicit Deflation with SLQ

Armed with the above moment matching-based analysis of SLQ, we next show that the method per-
forms implicit deflation and thus nearly matches the bound of Theorem 1. The key idea is as follows:
the Chebyshev moments used in the analysis above are the polynomials T1(x/kAk2), T2(x/kAk2), . . .
– i.e., the Chebyshev polynomials scaled to be bounded on the range [�kAk2, kAk2], which contains
the eigenvalues of both A and T. This scaling is what leads to the error term scaling with kAk2.

In our explicit deflation approach, after deflating off the largest magnitude eigenvalues we apply
moment matching to (I�ZZ

T)A(I�ZZ
T). We thus approximate the Chebyshev moments of this

matrix where the polynomials are scaled to the (possibly much smaller range) [�k(I� ZZ
T)A(I�

ZZ
T)k2, k(I�ZZ

T)A(I�ZZ
T)k2] of width O(�l+1(A)). This leads to error scaling with �l+1(A).

We cannot use these moments to approximate sA directly: these scaled Chebyshev polynomials
blow up outside the range on which they are bounded and the moments would be dominated by
eigenvalues with magnitudes � �l+1(A) and so not informative for approximating sA.

Deflated Polynomial Moments. To handle this issue, we use that the density output by SLQ
approximates sA on any low-degree polynomial moment. Instead of the scaled Chebyshev polyno-
mials, we use a set of “deflated polynomials”, denoted t1, . . . , tm which are approximately equal to
the scaled Chebyshev polynomials on the range [�O(�l+1(A)), O(�l+1(A))] and have roots placed
outside this range so they are equal to zero for any eigenvalue with magnitude significantly larger
than �l+1(A). Constructing such polynomials is somewhat delicate – naively placing the roots at
large eigenvalues would distort the Chebyshev polynomials on the range of interest. This distor-
tion needs to be canceled using a separate Chebyshev damping polynomial. Our analysis follows
ideas from work studying the convergence of single-vector Krylov subspace methods like Lanczos for
eigenvector/singular vector approximation [Saa80], and in particular, recent work proving low-rank
approximation guarantees for these methods [MMM24].

Once we show that t1, . . . , tm can be constructed as described, we know that SLQ matches the
moments of sA with respect to these polynomials. This is enough to argue that the output s̃A must
closely match the mass of sA on the eigenvalues with magnitude  �l+1(A). But it says nothing
about the large eigenvalues, which contribute nothing to these moments. We need to separately
argue about this part of the density.

Top Eigenvalue Approximation. To do so, we directly look at the form of s̃A. Following a
similar strategy to our proof for explicit deflation and again building on recent work studying the
convergence of single-vector Krylov methods like Lanczos [MMM24], we argue that any eigenvalue
�j(T) with magnitude significantly larger than �l+1(A) is extremely close to �j(A). This finding
is not surprising: the Lanczos method is a popular choice for approximating outlying eigenvalues
[Par98]. Thus, on the large magnitude eigenvalues, the error that s̃A incurs vs. sA is roughly:

wj�j(T)� 1

n
�j(A) ⇡

✓
wj �

1

n

◆
�j(A) 

✓
wj �

1

n

◆
kAk2.

3
Even when ✏ = õ(1/

p
n) and so we need b > 1 repetitions of Hutchinson’s to estimate the Chebyshev moments

in [BKM22], a similar analysis follows from averaging together the densities output by b independent runs of SLQ.

9

Recall that wj = (gT
Qvj)2. Further, since our approximations to the top eigenvectors have con-

verged, Qvj ⇡ uj , where uj is the eigenvector of A corresponding to �j(A). Since uj is a fixed unit
vector and g has random Gaussian entries with variance 1

n
, wj is simply the square of a Gaussian

with variance 1
n
. I.e., E[wj] = 1/n and we can use a Chi-Squared concentration bound to argue

that |wj � 1
n
| = Õ(1

n
) with high probability. Accounting for the l top eigenvalues, this leads to the

Õ(l/n · kAk2) error term in Theorem 3 and completes our analysis.

1.4.6 Variance Reduced SLQ

The above argument immediately suggests a simple improvement to SLQ that can avoid the Õ(l/n ·
kAk2) error term due to the large magnitude eigenvalues. If an eigenvector has converged and thus
we know that |�j(T)��j(A)| is small, then in the weighted spectral density s̃A output by Lanczos,
we know that we should set wj = 1

n
rather than setting wj to be the square of a Gaussian with

variance 1
n
. We formalize this approach in Algorithm 5 and show that it obtains the stronger error

bound of Theorem 4, with only a negligible additive term depending on kAk2.

A Remark on Numerical Stability. We note that there exist results proving that the Conjugate
Gradient (CG) algorithm for solving linear systems, which is closely related to Lanczos, can perform
implicit eigenvalue deflation to achieve faster convergence rates, analogous to our analysis for SDE
[SW09, AL86]. These bounds are known to suffer from numerical stability issues – when CG is
implemented in finite precision arithmetic, it may not be able to apply the necessary polynomials to
achieve these convergence rates. It is likely that our bounds also suffer from stability issues. However
1) in finite precision, the method likely works well as long as the number of deflated eigenvalues l is
relatively small and 2) our analysis directly applies to SLQ implemented using a stable algorithm to
compute a basis for the Krylov subspace – e.g., one that performs full reorthogonalization at each
step. Using such an algorithm will not affect the matrix-vector query complexity of the algorithm,
and only gives a small runtime overhead when the number of iterations is relatively small.

1.5 Roadmap

The remainder of the paper is organized as follows: In Section 2 we define basic notation and
preliminary results used throughout our proofs. In Section 3 we analyze our explicit moment
matching method with deflation, culminating in the proof of Theorem 1. In Section 4 we give our
analysis of SLQ and prove Theorems 3 and 4. In Section 5 we prove our matching lower bound,
Theorem 2, which shows that our SDE bounds are near-optimal. Finally, in Section 6, we report
the results of some numerical experiments comparing various moment matching and Lanczos-based
algorithms for SDE.

2 Notation and Preliminaries

We first introduce notation and foundational results that we will use throughout.

2.1 Basic Notation

For any integer n, let [n] denote the set {1, 2, . . . , n}. We write matrices and vectors in bold literals –
e.g., A or x. For a vector x, we let kxk2 denote its Euclidean norm. The Frobenius norm and spectral
(i.e., operator) norm of a matrix A are denoted by kAkF and kAk2 respectively. We often use that

10

for any two matrices A,B of appropriate dimensions, the spectral norm is sub-multiplicative, i.e.,
kABk2  kAk2kBk2. The column span of a matrix A is denoted by range(A).

2.2 Linear Algebra Preliminaries

SVD and Eigendecomposition. The singular values of A 2 Rn⇥n are denoted by �i(A) for
i 2 [n] with �1(A) � . . . � �n(A). We denote the singular value decomposition (SVD) of A 2 Rn⇥n

by U⌃V
T where ⌃ 2 Rn⇥n is a diagonal matrix with ⌃ii = �i(A) and U 2 Rn⇥n and V 2 Rn⇥n

are orthonormal matrices with columns containing A’s left and right singular vectors respectively.
Our main theorems are concerned with the eigenspectrum of symmetric matrices. We denote the

eigenvalues of a symmetric matrix A 2 Rn⇥n by �i(A) for i 2 [n] such that |�1(A)| � . . . � |�n(A)|.
Observe that we have |�i(A)| = �i(A) for i 2 [n]. We denote the eigendecomposition of a symmetric
A 2 Rn⇥n by U⇤U

T where ⇤ 2 Rn⇥n is a diagonal matrix such that ⇤ii = �i(A) and U 2 Rn⇥n

has orthonormal columns equal to the corresponding eigenvectors of A.
For p 2 [n], let Up 2 Rn⇥p (or Vp 2 Rn⇥p) denote the matrix containing the first p columns of U

(or V) – i.e., the singular vectors or the eigenvectors corresponding to the largest p singular values
or eigenvalues of A by magnitude. Similarly, let Up,? 2 Rn⇥(n�p) (or Vp,? 2 Rn⇥(n�p)) denote
the matrix which containing the last n � p columns of U (or V) – i.e., the singular vectors or the
eigenvectors corresponding to the smallest n� p singular values or eigenvalues of A by magnitude.
Let ⌃p 2 Rp⇥p (and ⌃p,? 2 R(n�p)⇥(n�p)) denote the matrix containing the top p (or the bottom
n � p) singular values of A along its diagonal. For symmetric A 2 Rn⇥n with eigendecomposition
U⇤U

T , define ⇤p 2 Rp⇥p and ⇤p,? 2 R(n�p)⇥(n�p) analogously.
The best p-rank approximation to A in the spectral or Frobenius norms is denoted by Ap and

is given by Ap = Up⌃pV
T
p . The pseudoinverse of A is denoted by A

† and given by A
† = V⌃

†
U,

where ⌃†
ii
= 1/�i(A) if �i(A) > 0 and ⌃†

ii
= 0 otherwise.

We will frequently use Weyls’s inequality which states that a small perturbation of a symmetric
matrix will not significantly change its eigenvalues.

Fact 1 (Weyls’ inequality [Wey12]). For any two symmetric matrices A 2 Rn⇥n and B
n⇥n,

max
i2[n]

|�i(A)� �i(B)|  kA�Bk2.

Matrix functions. Given a function � : R ! R, we define its application to a matrix A with
SVD A = U⌃V

T as �(A) = U�(⌃)VT , where �(⌃) is formed by applying � element-wise to the
diagonal entries of ⌃ (i.e., to the singular values of A). We overload notation and, for symmetric
A with eigendecomposition A = U⇤U

T , also let �(A) = U�(⇤)UT , where �(⇤) is formed by
applying � element-wise to the diagonal entries of ⇤ (i.e., to the eigenvalues of A). We will specify
which specific form we are using when needed.

Krylov Subspaces. All algorithms analyzed in this work are Krylov subspace methods – we
introduce basic notation for Krylov subspaces below.

Definition 2.1 (Block Krylov Subspace). The Krylov subspace of a matrix A 2 Rn⇥n with respect
to a starting block X 2 Rn⇥l is given by:

Kq(A,X) =
⇥
AX, (AA

T)AX, . . . , (AA
T)qAX

⇤
.

Here, l is called the block size and q is the depth or the number of iterations.

11

Notice that we require O(ql) matrix-vector products with A to generate a Krylov subspace
Kq(A,X) with depth q and block size l. We will typically denote an orthonormal basis of the
Krylov subspace by Q 2 Rn⇥r where r is the dimension to the column span of Kq(A,X).

2.3 Moment Matching and Wasserstein Distance Preliminaries

Inner Product between Functions. For any two functions f : [�L,L] ! R and g : [�L,L] ! R,
the inner product between f and g is defined as hf, gi =

R
L

�L
f(x)g(x)dx.

Chebyshev polynomials. Both our explicit moment matching method and our error analysis for
SLQ are based on analyzing approximations to the Chebyshev polynomial moments of the spectral
density sA. We now describe some basic properties of Chebyshev polynomials. We will denote the
kth Chebyshev polynomial of the first kind by Tk. These polynomials are defined by the recurrence:

T0(x) = 1 , T1(x) = x , Tk(x) = 2x · Tk�1(x)� Tk�2(x) for k � 2.

We use the well known fact that the Chebyshev polynomials are bounded between [�1, 1] i.e.,
maxx2[�1,1] |Tk(x)|  1. These polynomials also have an explicit expression of the form:

Tq(x) =
1

2
[(x+

p
x2 � 1)q + (x�

p
x2 � 1)q]. (4)

Let w(x) := 1p
1�x2 . It is well known that hTk, w · Tki =

R 1
�1

1p
1�x2T

2
k
(x)dx = ⇡

2 for k > 0,
hT0, w · T0i = ⇡ and hTi, w · Tji = 0 for i 6= j. We define the kth normalized Chebyshev polynomial
to be T̄k := Tk/

p
hTk, w · Tki. Note that we have |T̄k(x)| 

q
2
⇡

for x 2 [�1, 1]. Also note that
Tk(�x) = Tk(x) when k is even and Tk(�x) = �Tk(x) when k is odd.

We now describe the Chebyshev Series expansion of a function:

Definition 2.2 (Chebyshev Series Expansion). The Chebyshev series expansion for a function
f : [�1, 1] ! R is given by:

1X

k=0

hf, w · T̄ki · T̄k.

If f is Lipschitz continuous then this expansion converges absolutely and uniformly to f [Tre19].

Wasserstein Distance. The Wasserstein-1 distance, also known as the earth mover’s distance,
is a way to measure distance between two distributions. We will use the dual formulation of this
distance given by Kantorovich-Rubinstein theorem [KR57]. In particular, for any two probability
densities s and q supported on [�L,L] for some L 2 R+ the Wasserstein-1 distance is given by:

W1(s, q) = sup
h21-Lip

Z
L

�L

h(x)(s(x)� q(x))dx,

where h 2 1-Lip means we are optimizing the integral over all 1-Lipschitz functions.

12

3 SDE via Moment Matching with Explicit Deflation

In this section, we introduce our deflation-based approach to SDE (Algorithm 1) which combines a
block Krylov method for deflation (Algorithm 2) with Chebyshev moment matching (Algorithm 2
of [BKM22]) for SDE. Pseudocode for this algorithm is given below.

Algorithm 1 Spectral Density Estimation with Deflation
Input: Symmetric A 2 Rn⇥n, error ✏ 2 (0, 1), confidence � 2 (0, 1), block size l.
1: Let Z 2 Rn⇥s, ⇤̃ 2 Rs⇥s be the outputs of Algorithm 2 (Block Krylov iteration) with inputs

A, block size l, and constant �.
2: Let q1 be the spectral density corresponding to ⇤̃: i.e., q1(x) = 1

s

P
s

i=1 �(x� (⇤̃)ii).
3: Let P = I�ZZ

T and let L be an upper bound on kPAPk2 such that kPAPk2  L  2kPAPk2.
Run Algorithm 2 of [BKM22] (Hutchinson-based Chebyshev moment estimation) with input ma-
trix 1

L
PAP, number of moments N = c1

✏
, and number of repetitions of Hutchinson’s method

b = max
�
1, c2

n✏2
log2 1

✏�
log2 1

✏

�
, where c1, c2 > 0 are sufficiently large constants. Let the approx-

imate moments ⌧̃1, . . . , ⌧̃N denote the output of this algorithm.
4: Set ⌧̂i ! 1

n�s
(n · ⌧̃i � s · T̄i(0)) for i 2 [N] where T̄i(x) is the i’th normalized Chebyshev

polynomial.
5: Run Algorithm 1 of [BKM22] (Chebyshev moment matching) with the modified approximate

moments ⌧̂1, . . . , ⌧̂N as inputs. Let q02 be the output of this algorithm.
6: Define q2 as q2(x) = q02(x/L) if x 2 [�L,L].
7: return the spectral density q = s·q1+(n�s)·q2

n
.

Description of Algorithm 1. As discussed in Section 1.4.2, Algorithm 1 first uses a randomized
block Krylov method (Algorithm 2) to compute a set of approximate eigenvectors and eigenvalues
for A, denoted by Z and ⇤̃ respectively. Importantly for our error analysis, Algorithm 2 only returns
approximate eigenvectors that satisfy a convergence condition (line 7 of Algorithm 2), which ensures
that Azi ⇡ �̃izi.

Algorithm 1 computes the spectral density q1 of these converged approximate eigenvalues. It
then deflates A using the corresponding converged eigenvectors in line 3 by computing PAP where
P = I � ZZ

T . The algorithm then approximates the spectral density of PAP corresponding to
the non-deflated eigenvalues of A using a moment matching method. To do so, Algorithm 1 first
computes estimates ⌧̃1, . . . , ⌧̃N of the normalized Chebyshev moments of PAP (after normalizing
PAP so that its spectral norm is bounded by 1), using Hutchinson’s method (Algorithm 2 of
[BKM22]). Since PAP contains s zero eigenvalues corresponding to the deflated eigenvectors Z 2
Rn⇥s, the moments need to adjusted in line 4 so that they do not take into account this mass of
zero eigenvalues. These adjusted moments, ⌧̂1, . . . , ⌧̂N , are then passed as an input to Algorithm 2
of [BKM22] in line 5. This algorithm computes a spectral density q2 whose moments are equal to
the approximate moments ⌧̂i in line 4. The final output of Algorithm 1 is obtained by combining
q1 and q2 after appropriately reweighting them.

Outline of Error Analysis. The remainder of this section is dedicating to analyzing Algorithm
1, ultimately culminating in the proof of Theorem 1, which bounds the Wasserstein error of the
output spectral density estimate by ✏ ·�l+1(A)+ kAk2

nc for any constant c. Our analysis breaks down
into the following steps:

13

• In Section 3.1 we analyze the error of the block Krylov based deflation step (Algorithm 2).
The main technical results of this section are Theorems 5 and 7, which argue that, for some
k  l with �k+1(A) = O(�l+1), the method finds highly accurate approximations to at least
the top k eigenvectors and eigenvalues of A. In particular, these approximate eigenpairs meet
the convergence condition of the algorithm and thus are returned as columns of Z. With this
fact established, we can prove the main export of the section, Theorem 8, which shows that
kPAPk2 = O(�l+1(A)). That is, when we deflate off the converged approximate eigenvectors,
we reduce the spectral norm of the matrix to O(�l+1(A)), allowing us to obtain ✏ · �l+1(A)
error when approximating the spectral density of PAP with Chebyshev moment matching.

• In Section 3.2 we give the error analysis of Algorithm 1 itself. This analysis is fairly straight-
forward – using existing backward stability analysis for eigenpair approximation, we can argue
that, since P only deflates off highly accurate approximations to A’s eigenvectors, our com-
bined spectral density q has Wasserstein error roughly equal to (up to an additive kAk2

nc term)
the Wasserstein error of approximating the spectral density of PAP with moment matching.
As discussed above, this error is bounded by O(✏ · kPAPk2) = ✏ · �l+1(A), allowing us to
achieve our final error bound of ✏ · �l+1(A) + kAk2

nc .

Algorithm 2 Block Krylov Iteration for Deflation
Input: Symmetric A 2 Rn⇥n, block size l 2 [n], iterations q = O(log n), constant � > 0
1: Let X 2 Rn⇥l be a starting block with independent N (0, 1) Gaussian entries.
2: Compute Kq =

⇥
AX, (AA

T)AX, . . . , (AA
T)qAX

⇤
.

3: Orthonormalize the columns of Kq to get Q 2 Rn⇥r where r is the rank of Kq .
4: Compute T = Q

T
AQ and let the eigenvectors of T be v1, . . . ,vr corresponding to eigenvalues

|�1(T)| � . . . � |�r(T)|.
5: Set S = {}.
6: for j = 1, . . . , r do

7: if kAQvj � �j(T)Qvjk2  kAk2
n�

4
then

8: S = S [{j}
9: end if

10: end for

11: return ZS = QVS and ⇤̃S where VS 2 Rr⇥|S| contains all eigenvectors with indices in S and
⇤̃S 2 R|S|⇥|S| is a diagonal matrix containing the corresponding eigenvalues of T.

3.1 Error bounds for Deflation via Block Krylov

In this section, we analyze Algorithm 2 and prove that it outputs highly accurate approximations
to the top eigenvalues and eigenvectors of A.

Recall that we let A = U⌃V
T denote the SVD of A – see Section 2.2. We start by proving

Lemma 1, a generalization of Theorem 2.1 of [DIKMI18], which bounds the error k(I�QQ
T)Upk2F

of projecting the top p left singular vectors of A onto the span of the block Krylov subspace, for any
4
Any upper bound on kAk2 off by at most constant multiplicative factors suffices here. We can compute such an

upper bound eusing O(log n) matrix-vector products via e.g., the power method or a single-vector Krlyov method.

14

p  l5. Notice that, for any q and for any polynomial �(x) of degree  2q+1 containing only terms
with odd powers, �(A)X lies exactly in the span of the Krylov subspace Kq. Lemma 1 bounds
k(I � QQ

T)Upk2F in terms of the norms of the �(⌃p), �(⌃l,?) and V
T

l,?X(VT

l
X)�1 for any such

polynomial �(x) which is not zero at any of the top p singular values of A. Later, by choosing such
a polynomial �(x) of degree at most 2q + 1 with odd powers so that it is large at the top singular
values of A and small at the rest, we can bound the projection error.

Lemma 1 (Angle between subspaces, generalization of Theorem 2.1 of [DIKMI18]). Let A 2 Rn⇥n

have rank(A) > l and SVD given by A = U⌃V
T . Let X 2 Rn⇥l be such that rank(VT

l
X) = l and

let Q be an orthonormal basis of the depth q Krylov subspace Kq(A,X) (see Def. 2.1). For any p  l
and any polynomial �(x) of degree 2q + 1 with odd powers only, such that �(⌃p) is non-singular,

k(I�QQ
T)Upk2F  k�(⌃l,?)k22 · k�(⌃p)

�1k22 · kVT

l,?X(VT

l X)�1k22.

Proof. Let � = �(A)X = U�(⌃)VT
X. As explained above, since �(x) consists of only odd powers

and has degree at most 2q + 1, the columns of � lie in the span of the Krylov susbspace Kq(A,X)
and thus range(�) ✓ range(Kq(A,X)) = range(Q). ��† and QQ

T are the orthogonal projectors
onto range(�) and range(Kq(A,X)) respectively. Since range(�) ✓ range(Q) we have:

k(I�QQ
T)Upk2F  k(I���†)Upk2F . (5)

Thus, to prove the lemma it suffices to upper bound the righthand side of (5). We write � =
�l +�l,? where �l = �(Al)X and �l,? = �(Al,?)X. Since p  l and � is non-zero on the top p

singular values, we have �l�
†
l
Up = Up. We upper bound the righthand side of (5) by:

k(I���†)Upk2F = kUp ��(�†
Up)k2F = min

 2R`⇥p
kUp �� k2F  kUp ��(�†

l
Up)k2F .

Then, replacing � by �l +�l,? and using that �l�
†
l
Up = Up we get:

k(I���†)Upk2F  kUp ��(�†
l
Up)k2F

= k(I��l�
†
l
)Up ��l,?�

†
l
Upk2F

= k�l,?�
†
l
Upk2F

= kUl,?�(⌃l,?)V
T

l,?X(VT

l X)�1�(⌃l)
�1

U
T

l Upk2F
= kUl,?�(⌃l,?)V

T

l,?X(VT

l X)�1�(⌃�1
p)k2F

= k�(⌃l,?)V
T

l,?X(VT

l X)�1�(⌃�1
p)k2F

 k�(⌃l,?)k2F · k�(⌃�1
p)k2F · kVT

l,?X(VT

l X)�1k2F .

In line 4 we used that V
T

l
X 2 Rl⇥l has rank l by assumption, and is thus invertible. Combined

with (5) the above bound completes the proof.

Using Lemma 1 we can show that for any p with �p(A) larger than �l+1(A) by a constant
multiplicative factor, the Krylov subspace Kq(A,X) generated with random width-l starting block
X 2 Rn⇥l and with depth q = O(log n) approximately spans the top p singular vectors of A.

5
In the numerical linear algebra literature, this quantity is often denoted as k(I�QQT)Upk2F = sin(Q,Up)

15

Lemma 2 (Convergence of block Krylov subspace to top singular vectors). Let A 2 Rn⇥n have
rank(A) > l and SVD given by A = U⌃V

T . Let X 2 Rn⇥l be a matrix with independent N (0, 1)
Gaussian entries and let Q be an orthonormal basis for the depth q = O(log n) Krylov subspace
Kq(A,X) generated by X (see Def. 2.1). Then, for any p  l, such that �p(A) � 3

2�l+1(A), for
any constants c, c0 > 0, with probability at least 1� 1

nc0 ,

kUp �QQ
T
Upk2F  1

nc
.

Proof. Since X 2 Rn⇥l is a random Gaussian matrix, with probability one, rank(VT

l
X) = l. Thus,

we can apply Lemma 1 to give, for any degree 2q + 1 polynomial � consisting of only odd powers
where �(⌃p) is non-singular,

kUp �QQ
T
Upk2F  k�(⌃l,?)k22 · k�(⌃p)

�1k22 · kVT

l,?X(VT

l X)†k2F . (6)

We will now bound each term on the righthand side of (6). First, we bound k�(⌃l,?)k2 and
k�(⌃p)�1k2 similarly to Lemma 2.4 of [DIKMI18]. We consider a gap amplifying polynomial �(x)
of degree 2q+1 consisting only of odd powers as defined in Lemma 4.5 of [DIKMI18] with parameters
↵ = �l+1(A) and gap � = �p(A)

�l+1(A) � 1. Observe that we have,

k�(⌃p)
�1k2 = max

1ip

�(�i(A))�1  max
1ip

��1
i

(A) = ��1
p (A), (7)

where we used the fact that �i(A) > 0 for i  p  l as rank(A) > l and the fact that for any i  p,
�(�i(A)) � �i(A) as �i(A) � �p(A) � (1 + �)�l+1(A) = (1 + �)↵ which follows from Lemma 4.5
of [DIKMI18]. Also, as �i(A)  �l+1(A) for any i � l+ 1, from Lemma 4.5 of [DIKMI18] we have:

k�(⌃l,?)k2 = max
i�l+1

|�(�i(A))|  4�l+1(A)

2(2q+1)min(
p
�,1)

. (8)

Finally, we bound the middle term of (6), kVT

l,?X(VT

l
X)�1k2

F
 kVT

l,?Xk2
F
· k(VT

l
X)�1k22. By

rotational invariance of the Gaussian distribution, VT

l
X and V

T

l,?X are l ⇥ l and n� l ⇥ l random
Gaussian matrices respectively. Thus, by Corollary 5.35 of [Ver18], with probability 1� 1

nc3 we have
kVT

l,?Xk22  c1n and �2
l
(VT

l
X) � c2n for constants c1, c2 and c3. So, we have kVT

l,?Xk2
F
 c1n2

and k(VT

l
X)�1k22  ��2

l
(VT

l
X)  1

c2n
which overall gives us that

kVT

l,?X(VT

l X)�1k2F  c00n (9)

for some constant c00. Plugging (9), (8) and (7) back into (6), we get:

kUp �QQ
T
Upk2F 

c00�2
l+1(A)

�2
p(A)

n

2(4q+2)min(
p
�,1)

,

for some constant c00. Since �p(A) � 3
2�l+1(A), the gap is given by � = �p(A)

�l+1(A) � 1 � 1
2 . This gives

us min(
p
�, 1) � 1p

2
. Finally, choosing q = C log n where C is a large enough constant we obtain

the final bound.

Lemma 2 establishes that the Krylov subspace generated by a random starting block X 2 Rn⇥l

will approximately span any singular vector corresponding to a singular value significantly larger
than �l+1(A). Intuitively, projection onto this subspace should thus preserve the largest singular
values (and the largest magnitude eigenvalues) of A. Below we prove several Lemmas that allow us
to argue this formally. We consider the matrix QQ

T
AQQ

T – the projection of A onto the Krylov
subspace on both the left and right.

16

3.1.1 Eigenvector Alignment

In this section, we first prove that the eigenvectors corresponding to the large magnitude eigenvalues
of QQ

T
AQQ

T are also approximate eigenvectors of A. We first prove that if there exists some
k 2 [l] such that �k(A) is larger than �l+1(A) by at least a constant multiplicative factor, then
there exists some k  p  l such that the top p singular vectors of A approximately span the top p
singular vectors of QQ

T
AQQ

T (i.e. the matrix A projected on both sides to the Krylov subspace).
Note that if no such k exists, then kAk2 = O(�l+1(A)) and thus there is nothing to gain from
deflation.
Lemma 3 (Projection of Zp on Up). Consider the setting of Lemma 2 where A 2 Rn⇥n is symmet-
ric. Let ↵ = max

⇣
kA|2
nc/2 ,�l+1(A)

⌘
where c > 0 is the constant in Lemma 2. Let k 2 [l] be such that

�k(A) � 2↵ and �k+1(A) < 2↵. Let z1, . . . , zn be the eigenvectors of QQ
T
AQQ

T corresponding to
its eigenvalues |�1(QQ

T
AQQ

T)| � . . . � |�n(QQ
T
AQQ

T)|. Let c1, c0 > 0 be some large constants.
Then, there exists some k  p  l such that �p(A) � 3

2↵, �p(A)� �p+1(A) � kAk2
2nc/2+1 , and, letting

Zp 2 Rn⇥p have z1, . . . , zp as its columns,

kUpU
T

p Zp � Zpk2 
1

nc1
,

with probability at least 1� 1
nc0 .

Proof. Let l1 be the largest index with k  l1  l and �l1(A) � 3
2↵, i.e., we must have �l1+1(A) <

3
2↵. Note that since �k(A) � 2↵, such an l1 must exist. Then, �k(A) � �l1+1(A) � ↵/2 � kAk2

2nc/2

where we use the fact that ↵ � kAk2
nc/2 . Since there are at most l1 indices in the range [k, l1], there

must be some p 2 [k, l1] such that:

�p(A)� �p+1(A) � �k(A)� �l1+1(A)

l1
� kAk2

2nc/2+1
, (10)

where we loosely bound l1  n. This establishes the first claim of the Lemma. We now prove the
second claim.

Since �p(A) � 3
2↵ � 3

2�l+1(A), from Lemma 2, we get that QQ
T
Up = Up+E where kEk2  1

nc

with rpobability at least 1� 1
nc0 for some constant c0 > 0. Let Z 2 Rn⇥n be an orthonormal matrix

containing all eigenvectors z1, . . . , zn of QQ
T
AQQ

T as its columns. Since the columns of Z form
an orthonormal basis of Rn, there exists a matrix C 2 Rn⇥p such that Up = ZC and C

T
C = Ip

where Ip is the p⇥ p identity matrix. Then, we have:

Up = ZC = ZpC1 + Zp,?C2, (11)

where C = [C1;C2] for C1 2 Rp⇥p and C2 2 Rn�p⇥p. We will now prove that kC2k2 is very small
and C1 is very close to the identity matrix. This implies that Up approximately spans Zp which
proves our second claim.

First observe that we can write QQ
T
AQQ

T
Up as:

QQ
T
AQQ

T
Up = QQ

T
A(Up +E)

= QQ
T
Up⇤p +QQ

T
AE

= (Up +E)⇤p +QQ
T
AE

= Up⇤p +E⇤p +QQ
T
AE. (12)

17

Thus, we get:

QQ
T
AQQ

T
Up = ZC⇤p +E⇤p +QQ

T
AE. (13)

Next, observe that, since Z has columns equal to the eigenvalues of QQ
T
AQQ

T , we can also write
QQ

T
AQQ

T
Up as:

QQ
T
AQQ

T
Up = QQ

T
AQQ

T
ZC = Z⇤̃C, (14)

where ⇤̃ 2 Rn⇥n denotes the diagonal matrix containing the eigenvalues of QQ
T
AQQ

T on its
diagonal. Thus, combining (13) and (14) we get that Z⇤̃C = ZC⇤p +E⇤p +QQ

T
AE or

Z⇤̃C� ZC⇤p = E⇤p +QQ
T
AE.

Let E
0 = E⇤p +QQ

T
AE. Using triangle inequality, we get that kE0k2  kE⇤pk2 + kQQ

T
AEk2.

Now, since kEk2  1
nc and k⇤pk2 = kAk2, we have kE⇤pk2  kEk2k⇤pk2  kAk2

nc . Similarly, since
Q is orthonormal, kQQ

T
AEk2  kAk2

nc . So, we get kE0k2  2kAk2
nc which implies that kZC⇤p �

Z⇤̃Ck2  2kAk2
nc or, equivalently, since Z has orthonormal columns,

kC⇤p � ⇤̃Ck2 
2kAk2
nc

.

For any i 2 [p], the ith column of the n⇥p matrix C⇤p�⇤̃C is given by �i(A)C:,i�⇤̃C:,i where
C:,i is the ith column of C. So, we have k�i(A)C:,i � ⇤̃C:,ik2  2kAk2

nc for all i 2 [p]. Using the
definition of the l2 norm of the vector, we have

qP
n

j=1(�i(A)� �j(QQTAQQT))2C2
ji

 2kAk2
nc .

This implies that for all i 2 [p] and j 2 [n],

|�i(A)� �j(QQ
T
AQQ

T)||Cji| 
2kAk2
nc

. (15)

Now, by the minimax principle of singular values, |�j(QQ
T
AQQ

T)|  |�p+1(A)| for all j � p+ 1.
Thus, for any i 2 [p] and j 2 {p+1, . . . , n}, by the triangle inequality, |�i(A)��j(QQ

T
AQQ

T)| �
|�i(A)| � |�j(QQ

T
AQQ

T)| � |�p(A)| � |�p+1(A)| � kAk2
2nc/2+1 where the last step follows from the

first claim (10). Thus, from (15), we get that for any i 2 [p] and j 2 {p+ 1, . . . , n},

|Cji| 
4

nc/2�1
.

Note that from (11), we have that C2 contains all Cji such that j 2 {p+ 1, . . . , n} and i 2 [p]. So,
we can bound:

kC2k2  kC2kF 

vuut
pX

i=1

nX

j=p+1

C
2
ji
 4

nc/2�2
. (16)

Next, since C
T
C = Ip = C

T
1 C1 +C

T
2 C2, we have kCT

1 C1 � Ipk2 = kCT
2 C2k2 = kC2k22  16

n2(c/2�2) .
Thus, we can write C

T
1 C1 = I+ E1 where kE1k2  16

n2(c/2�2) . Observe that C1C
T
1 and C

T
1 C1 have

the same eigenvalues, and thus we also have

C1C
T

1 = I+E
00, (17)

18

where kE00k2  16
n2(c/2�2) . Since we have kC1k2 =

q
kC1C

T
1 k2 =

p
kI+E1k2 

p
1 + kEk1 

1 + 4
nc/2�2 (where the second to last step follows using triangle inequality), we also have that:

C1 = I+E2, (18)

where kE2k2  4
nc/2�2 . Then, we have:

UpU
T

p Zp � Zp = Up(C
T

1 Z
T

p +C
T

2 Z
T

p,?)Zp � Zp

= UpC
T

1 � Zp

= ZpC1C
T

1 + Zp,?C2C
T

1 � Zp

= Zp(I+E
00) + Zp,?C2C

T

1 � Zp

= ZpE
00 + Zp,?C2C

T

1

= ZpE
00 + Zp,?C2(I+E

T

2)

= ZpE
00 + Zp,?C2 + Zp,?C2E

T

2 .

The first and third equality above follows from (11), the fourth equality follows from (17) and the
sixth equality follows from (16). Thus, using triangle inequality and spectral submultiplicativity, we
get kUpU

T
p Zp �Zpk2  kZpE

00k2 + kZp,?C2k2 + kZp,?C2C
T
1 k2  kE00k2 + kC2k2 + kC1k1kC2k2 

16
nc�4 +

4
nc/2�2 +

16
nc�4  36

nc/2�2 where the second inequality follows from the fact that Zp and Zp,? are
orthonormal matrices and the third inequality follows from the error bounds in (16), (17) and (18).
Choosing the constant c1 to be suitably large enough so that kUpU

T
p Zp � Zpk2 is bounded by 1

nc1

completes the proof.

The next theorem proves the main result of this subsection, i.e., the top eigenvectors of
QQ

T
AQQ

T are also approximately the eigenvectors of A, provided there is some �k(A) that
is constant factor larger than �l+1(A), as assumed in Lemma 3.

Theorem 5 (Convergence error of top p eigenvectors). Consider the setting of Lemma 3. Let
c1, c0 > 0 be some large constants. Let ⇤̃p 2 Rp⇥p be a diagonal matrix containing the corresponding
eigenvalues �1(QQ

T
AQQ

T), . . . ,�p(QQ
T
AQQ

T) on its diagonal. Then, we have

kAZp � Zp⇤̃pk2 
kAk2
nc1

.

with probability at least 1� 1
nc0 .

Proof. From Lemma 3, Zp = UpU
T
p Zp + E1 where kE1k2  1

nc2 with probability at least 1 � 1
nc00

for some constant c2, c00. Also, from Lemma 2, we have Up = QQ
T
Up + E2 where kE2k2  1

nc3

19

with probability at least 1� 1
nc00 for some constant c3. Observe that:

AZp

a
= A(UpU

T

p Zp +E1)

= AUpU
T

p Zp +AE1

b
= UpU

T

pAUpU
T

p Zp +AE1

c
= (QQ

T
Up +E2)U

T

pAUpU
T

p Zp +AE1

= QQ
T
UpU

T

pAUpU
T

p Zp +E2U
T

pAUpU
T

p Zp +AE1

d
= QQ

T
AUpU

T

p Zp +E2U
T

pAUpU
T

p Zp +AE1

e
= QQ

T
A(QQ

T
Up +E2)U

T

p Zp +E2U
T

pAUpU
T

p Zp +AE1

= QQ
T
AQQ

T
UpU

T

p Zp +QQ
T
AE2U

T

p Zp +E2U
T

pAUpU
T

p Zp +AE1.

f
= QQ

T
AQQ

T
Zp �QQ

T
AQQ

T
E1 +QQ

T
AE2U

T

p Zp +E2U
T

pAUpU
T

p Zp +AE1.

In the above set of equations, (a) follows by replacing Zp with UpU
T
p Zp + E1, (b) and (d) follows

from the fact that AUpU
T
p = UpU

T
pAUpU

T
p as Up contains the eigenvectors of A, (c) and (e)

follows from replacing Up in the first term by QQ
T
Up+E2, (f) follows from replacing the UpU

T
p Zp

in the first term by Zp�E1. Now, QQ
T
AQQ

T
Zp = Zp⇤̃p. Also, using spectral submultiplicativity,

kQQ
T
AQQ

T
E1k2  kAk2kE1k2  kAk2

nc2 . Similarly, each of the last three terms in the final step
above can be bounded by max

�kAk2
nc2 , kAk2

nc3

�
. Thus, using triangle inequality, and after adjusting the

constants c1 and c0 appropriately, we have:

kAZp � Zp⇤̃pk2 
kAk2
nc1

,

with probability at least 1� 1
nc0 .

3.1.2 Eigenvalue Alignment

In this section, we show that as a consequence of Lemma 2, the large magnitude eigenvalues of A
are approximated by those of QQ

T
AQQ

T . We first state a result from [Par98] (Theorem 11.5.1)
which states that for a symmetric matrix D 2 Rn⇥n and any orthonormal matrix C 2 Rn⇥m the
eigenvalues of D can be put into one-to-one correspondence with those of C

T
DC such that the

error is bounded by the spectral norm of DC�CC
T
DC.

Theorem 6 (Theorem 11.5.1 of [Par98]). Let D 2 Rn⇥n be a symmetric matrix and C 2 Rn⇥m

be a matrix with orthonormal columns. Then, there exists m eigenvalues of D, {↵i | i = 1, . . . ,m}
such that for i 2 [m]:

|↵i � �i(C
T
DC)|  kDC�CC

T
DCk2.

We now prove a couple of Lemmas which we will use along with Theorem 6 for our main theorem.

Lemma 4. Consider the setting of Lemma 2 where A 2 Rn⇥n is symmetric. Let the error bound
for Lemma 2 hold for a constant c > 0. For some constant c0 > 0, with probability at least 1� 1

nc0 ,

kQQ
T
AQQ

T
Up �UpU

T

pQQ
T
AQQ

T
Upk2 

kAk2
nc�1

.

20

Proof. Recall that we denote the eigendecomposition of a symmetric matrix A by A = U⇤U
T . A’s

eigenvectors (i.e., the columns of U) are equal to its singular vectors, and recall that Up 2 Rn⇥p

has columns equal to the p eigenvectors corresponding to the p largest magnitude eigenvalues (i.e.,
the p singular vectors corresponding to the p largest singular values). From Lemma 2, we have
QQ

T
Up = Up + E where E 2 Rn⇥p has kEk2  1

nc with probability at least 1 � 1
nc00 . Thus,

from (12), we get

QQ
T
AQQ

T
Up = Up⇤p +E⇤p +QQ

T
AE. (19)

Also, we have:

UpU
T

pQQ
T
AQQ

T
Up = Up(U

T

p +E
T)A(Up +E)

= UpU
T

pAUp +UpU
T

pAE+UpE
T
AUp +UpE

T
AE

= Up⇤p +UpU
T

pAE+UpE
T
AUp +UpE

T
AE.

Then, using triangle inequality and spectral submultiplicativity, we have that

kQQ
T
AQQ

T
Up �UpU

T

pQQ
T
AQQ

T
Upk2  k⇤pk2kEk2 + 3kAk2kEk2 + kAkkEk22 

5kAk2
nc

.

This completes the proof.

Next we prove that the eigenvalues of A are well approximated by those of UT
pQQ

T
AQQ

T
Up.

Lemma 5. Consider the setting of Lemma 2 where A 2 Rn⇥n is symmetric. Let the error bound
for Lemma 2 hold for a constant c > 0. For some constant c0 > 0, with probability at least 1� 1

nc0 ,
we have for all i 2 [p],

|�i(U
T

pQQ
T
AQQ

T
Up)� �i(A)|  kAk2

nc�1
.

Proof. To prove the theorem we will show that UT
pQQ

T
AQQ

T
Up is close to U

T
pAUp = ⇤p in the

spectral norm, and thus has nearby eigenvalues. Observe that

U
T

pAUp �U
T

pQQ
T
AQQ

T
Up = U

T

p (I�QQ
T)AQQ

T
Up +U

T

pQQ
T
A(I�QQ

T)Up

+U
T

p (I�QQ
T)A(I�QQ

T)Up. (20)

Since all the terms on the righthand side above contain the term (I�QQ
T)Up, we can use Lemma 2

to show that they are small. For the first term, we have:

kUT

p (I�QQ
T)AQQ

T
Upk2  kUT

p (I�QQ
T)k2 · kAk2 · kQQ

T
Upk2 

kAk2
nc

,

where we also use the fact Q and Up are orthonormal matrices and that kUT
p (I � QQ

T)k2 
kUT

p (I�QQ
T)kF  1

nc by Lemma 2. Similarly we can bound the other two terms in (20) by kAk2
nc .

Applying triangle inequality, we obtain:

kUT

pAUp �U
T

pQQ
T
AQQ

T
Upk2 

3kAk2
nc

.

Observe that UT
pAUp = ⇤p has eigenvalues �1(A) . . . ,�p(A). So, by Weyl’s inequality (Fact 1), we

have that |�i(A)��i(UT
pQQ

T
AQQ

T
Up)|  kUT

pAUp�U
T
pQQ

T
AQQ

T
Upk2  3kAk2

nc for i 2 [p].
This completes the proof.

21

The next theorem is the main result of this section which states that the top p eigenvalues of
A are approximated by the top p eigenvalues of QQ

T
AQQ

T up to some permutation for some
k  p  l as long as the conditions in Lemma 3 are satisfied. i.e., there exists some k 2 [l] with at
least some constant multiplicative gap between �k(A) and �l+1(A).

Theorem 7 (Eigenvalue alignment). Consider the setting of Theorem 5 and Lemma 3. Let c1, c0 > 0
be some constants. Then, there exists a permutation S : [p] ! [p] such that for every i 2 [p], we
have

|�i(A)� �S(i)(QQ
T
AQQ

T)|  kAk2
nc1

,

with probability at least 1� 1
nc0 .

Proof. We apply Theorem 6 to first prove that each of the top p eigenvalues of A has an eigenvalue
of QQ

T
AQQ

T close to it. Let C = Up and D = QQ
T
AQQ

T . Let c > 0 be the constant in the
statements of Lemmas 2, 4 and 5. Then, CT

DC = U
T
pQQ

T
AQQ

T
Up and by Theorem 6, there

exist p eigenvalues ↵1, . . . ,↵p of QQ
T
AQQ

T such that for i 2 [p]:

|↵i � �i(U
T

pQQ
T
AQQ

T
Up)|  kDC�CC

T
DCk2

= kQQ
T
AQQ

T
Up �UpU

T

pQQ
T
AQQ

T
Upk2

 kAk2
nc�1

. (21)

The last inequality hold with probability at least 1� 1
nc0 for some constant c0 > 0 due to Lemma 4.

From Lemma 5, with probability at least 1� 1
nc0 , we get that for all i 2 [p], we have:

|�i(U
T

pQQ
T
AQQ

T
Up)� �i(A)|  kAk2

nc�1
. (22)

Combining (21) and (22), and using triangle inequality we have for every i 2 [p] (for some constant
c4 > 0),

|↵i � �i(A)|  2kAk2
nc�1

. (23)

We now prove that the ↵i’s (for all i 2 [p]) are a permutation over
�1(QQ

T
AQQ

T), . . . ,�p(QQ
T
AQQ

T). Suppose that this is not true, i.e., there ex-
ists some j 2 [p] such that ↵j = �p+r(QQ

T
AQQ

T) for some r � 1. So we have
|�p+r(QQ

T
AQQ

T)� �j(A)|  2kAk2
nc�1 . Now, by the minimax principle we have

|�p+r(QQ
T
AQQ

T)|  |�p+1(QQ
T
AQQ

T)|  |�p+1(A)|.

Using triangle inequality, we have:

|�p(A)|� |�p+1(A)|  |�j(A)|� |�p+r(QQ
T
AQQ

T)|  |�j(A)� �p+r(QQ
T
AQQ

T)|  2kAk2
nc�1

.

From Lemma 3, we have �p(A)� �p+1(A) � kAk2
2nc/2+1 for some constant c. For a large enough c, we

have 2kAk2
nc�1 < kAk2

2nc/2+1 and thus, we have a contradiction. So we must have �j = �i(QQ
T
AQQ

T) for
some i 2 [p]. Choosing the constant c1 to be suitably gives us the bound.

22

3.1.3 Bounding the spectral norm after deflation

In this section, we bound the spectral norm of the matrix A after deflating its top subspace using the
converged eigenvectors from the randomized block Krylov algorithm (Algorithm 2). More formally,
let ZS = QVS be the output of Algorithm 2. Let P = I � ZSZ

T

S
, i.e., the projection matrix onto

the subspace orthogonal to ZS . Then, we bound kPAPk2 based on the fact that ZS must contain
the top p eigenvectors of A for some p  l as proven in Theorems 5 and 7, provided the assumptions
in those theorems hold for A. We first bound the spectral norm after deflating exactly the top p
subspace of A.

Lemma 6 (Spectral norm bound after deflation). Consider the setting of Theorems 5 and 7. Let
c1, c0 > 0 be some constants. Let Zp 2 Rn⇥p be as defined in Theorem 5. Then,

k(I� ZpZ
T

p)A(I� ZpZ
T

p)k2  �p+1(A) +
kAk2
nc1

,

with probability at least 1� 1
nc0 .

Proof. Let the bounds from Theorem 5 and 7 hold with some constant c2 > 0. Assume for contra-
diction, that k(I�ZpZ

T
p)A(I�ZpZ

T
p)k2 > �p+1(A) + kAk2

nc2/2�1 . Then, there exists some eigenvector
x of (I � ZpZ

T
p)A(I � ZpZ

T
p) with corresponding eigenvalue � such that |�| > �p+1(A) + kAk2

nc2/2�1 .
Since any eigenvector corresponding to a nonzero eigenvalue of (I�ZpZ

T
p)A(I�ZpZ

T
p) must lie in

the column space of I�ZpZ
T
p , they will be orthogonal to Zp and thus, we will have Z

T
p x = 0. Since

we have (I� ZpZ
T
p)A(I� ZpZ

T
p)x = �x, we get that (I� ZpZ

T
p)Ax = �x. Then, we have

kAxk22 � �2 � �2
p+1(A) +

2�p+1(A)kAk2
nc2/2�1

+
kAk22
nc2�2

. (24)

Let Z
0 2 Rn⇥p+1 such that the first p columns of Z0 are the columns of Zp and (p + 1)th column

is x. From Theorem 5, we have that AZp = Zp⇤̃p + E where kEk2  kAk2
nc2 . Then, we have

kEkF 
p
nkAk2
nc2  kAk2

nc2�0.5 and thus, we get:

kAZpk2F � (kZp⇤̃pkF � kEkF)2

� (kZp⇤̃pkF � kAk2
nc2�0.5

)2 (25)

� kZp⇤̃pk2F +
kAk22
n2c2�1

� 2kZp⇤̃pkF
kAk2
nc2�0.5

� kZp⇤̃pk2F +
kAk22
n2c2�1

� 2kAk22
nc2�1

=
pX

i=1

�2
i (QQ

T
AQQ

T) +
kAk22
n2c2�1

� 2kAk22
nc2�1

, (26)

for some constant C > 0. The first inequality above follows from the triangle inequality, the second
from the bound kEkF  kAk2

nc2�0.5 and the third from expanding the quadratic expression. The
fourth bound follows from kZp⇤̃pkF = k⇤̃pkF 

p
nk⇤̃pk2 

p
nkAk2 (where we use the fact that

kQQ
T
AQQ

T k2  kAk2 and Zp is an orthonormal matrix) which gives us kZp⇤̃pkF kEkF  kAk22
nc2�1 .

23

The final step follows from the fact that Zp and ⇤̃p contain the top p eigenvectors and eigenvalues
of QQ

T
AQQ

T . By the Pythagorean theorem, we have

kAZ
0k2F = kAZpk2F + kAxk22 >

pX

i=1

�2
i (QQ

T
AQQ

T) +
kAk22
n2c2�1

� 2kAk22
nc2�1

+ �2
p+1(A) +

2�p+1(A)kAk2
nc2/2�1

+
kAk22
nc2�2

, (27)

where the last inequality follows from the lower bounds in (24) and (25). From Theorem 7, there
exists a permutation S : [p] ! [p] such that for every i 2 [p] (and for some constant C 0 > 0),
|�i(A)� �S(i)(QQ

T
AQQ

T)|  kAk2
nc2 or

|�2
i (A)� �2

S(i)(QQ
T
AQQ

T)| 
|�i(A) + �S(i)(QQ

T
AQQ

T)|kAk2
nc2

 2kAk22
nc2

,

where we upper bounded �i(A) and �S(i)(QQ
T
AQQ

T) by kAk2. Thus, we have �2
i
(A) 

�2
S(i)(QQ

T
AQQ

T) +
2kAk22
nc2 or �2(A)  �2

S(i)(QQ
T
AQQ

T) +
2kAk22
nc2 for every i 2 [p]. Adding

up both sides over i 2 [p] we get that
P

p

i=1 �
2
i
(A) 

P
p

i=1 �
2
i
(QQ

T
AQQ

T) +
2pkAk22
nc2 

P
p

i=1 �
2
i
(QQ

T
AQQ

T) +
2kAk22
nc2�1 . So, we get:

pX

i=1

�2
i (A) + �2

p+1(A) 
pX

i=1

�2
i (QQ

T
AQQ

T) +
2kAk22
nc2�1

+ �2
p+1(A)

=
pX

i=1

�2
i (QQ

T
AQQ

T) +
kAk22
n2c2�1

� 2kAk22
nc2�1

+ �2
p+1(A) +

kAk22
nc2�2

+
2�p+1(A)kAk2

nc2/2�1
� (

kAk22
nc2�2

+
kAk22
n2c2�1

� 4kAk22
nc2�1

+
2�p+1(A)kAk2

nc2/2�1
). (28)

For large enough n and c2, we have kAk22
nc2�2 +

kAk22
n2c2�1 � 4kAk22

nc2�1 + 2�p+1(A)kAk2
nc2/2�1 > 0. Thus from the

lower bound (27) on kAZ
0k2

F
and from (28), we get

P
p+1
i=1 �2

i
(A) < kAZ

0k2
F
. But, by the minmax

principle for singular values, we have maxV2Rn⇥(p+1),VTV=I kAVk2
F
=
P

p+1
i=1 �2

i
(A), which results in

a contradiction as Z0 is an n⇥ (p+1) orthonormal matrix. Thus, we must have k(I�ZpZ
T
p)A(I�

ZpZ
T
p)k2  �p+1(A) + kAk2

nc2/2�1 .

We now prove our main result which bounds the spectral norm of the deflated matrix PAP.

Theorem 8. Consider the setting of Theorem 5 and let the error bound of Theorem 5 hold for some
constant c3 > 0. Let Algorithm 2 be run with the inputs A 2 Rn⇥n, block size l 2 [n] and � = c3/2.
Let S be the set of indices as defined in Algorithm 2 such that for any i 2 S, the eigenvector vi

and corresponding eigenvalue �i(QT
AQ) of QT

AQ satisfies kAQvi��i(QT
AQ)Qvik2  kAk2

nc1 for
some constant c1 > 0. Let P = I � ZSZ

T

S
where ZS = QVS is the output of Algorithm 2. Then,

for come constants c2, c0 > 0, we have:

kPAPk2  2�l+1(A) +
kAk2
nc2

,

with probability at least 1� 1
nc0 .

24

Proof. Observe that if v is an eigenvector of Q
T
AQ (where Q is an orthonormal basis of the

Krylov subspace Kq in line 3 of Algorithm 2) with corresponding eigenvalue �, then z = Qv is an
eigenvector of QQ

T
AQQ

T with eigenvalue � as Q is an orthonormal matrix. Similarly, for any
eigenvector z of QQ

T
AQQ

T , there is a corresponding eigenvector Q
T
z of QT

AQ with the same
eigenvalue. Thus, we can interchangeably refer to the eigenvalues and eigenvectors of QQ

T
AQQ

T

instead of QT
AQ in our proof. Let ↵ = max

⇣
�l+1(A), kAk2

nc/2

⌘
for some constant c as defined in

Lemma 3. We will now prove the Lemma by considering the two cases below:

Case 1: Let there be some k 2 [l] such that �k(A) � 2↵ and �k+1(A) < 2↵. Let p 2 [k, l] such
that �p(A) � 3

2↵, �p(A) � �p+1(A) � kAk2
2nc/2+1 as defined in Lemma 3. Then, from Theorem 5, for

any i 2 [p], we have kAzi � �i(QQ
T
AQQ

T)zik2  kAZp � Zp⇤̃pkF  kAk2
nc3 . Thus, as � = c3/2 in

Algorithm 2 we have kAk2
nc3 < kAk2

n� and the convergence condition in line 7 of Algorithm 2 is always
satisfied for the top p eigenvectors of QQ

T
AQQ

T . So, we must have [p] ✓ S, and ZS must contain
at least the top p eigenvectors of QT

AQ. Thus, observe that using Lemma 6, for some constant c4,
we have kPAPk2  k(I�ZpZ

T
p)A(I�ZpZ

T
p)k2  �p+1(A)+ kAk2

nc4  �k+1(A)+ kAk2
nc4  2↵+ kAk2

nc4 
2(�l+1(A) + kAk2

nc/2) +
kAk2
nc4  2�l+1(A) + 2kAk2

nc/2 + kAk2
nc4 . So, for some constant c5 > 0 we get:

kPAPk2  2�l+1(A) +
kAk2
nc5

.

Case 2: If no such k 2 [l] exists, we will have �i(A)  2↵ for all i 2 [n]. So, as P is a projection
matrix, we have kPAPk2  kAk2  2↵  2�l+1(A) + 2kAk2

nc/2 . This completes the proof after
choosingthe constant carefully.

3.2 Error Bounds for moment matching with deflation

In this section, we prove the final error bounds for Algorithm 1. We first prove the existence of a
matrix B that is close in spectral norm to A such that the converged eigenvectors and eigenvalues of
QQ

T
AQQ

T as defined in line 7 of Algorithm 2 are a subset of B’s true eigenvectors and eigenvalues.
First, we state a simplified version of a backward perturbation bound from [Sun95].

Theorem 9 (Theorem 3.1 of [Sun95]). Let A 2 Rn⇥n be a symmetric matrix. Let X̃ 2 Rn⇥l and
⇤̃ 2 Rn⇥l (where ⇤̃ is diagonal) be such that kAX̃�X̃⇤̃k2  � for some � > 0. Let R̂ = AX̃�X̃⇤̃.
Let X̃ = PH be the polar decomposition of X̃. Then, there exits a symmetric matrix H 2 Rn⇥n

such that (A+H)P = P⇤̃ and kHkF 
q

kR̂k2F+kP?R̂k2F
�min(X̃)

where P
? = I�PP

T .

Using Theorem 9, we state a backward error bound for the deflation algorithm which we will
use in the final error analysis.

Lemma 7 (Wasserstein Error using Backward Error Bound). Let A 2 Rn⇥n be a symmetric matrix.
Let ZS and ⇤̃S be the outputs of Algorithm 2 with A as input. Then there exists a symmetric matrix
B 2 Rn⇥n such that

BZS = ZS⇤̃S and kA�Bk2 
kAk2
n��1

,

where � > 0 is the constant defined in Algorithm 2.

25

Proof. We will apply the backward perturbation error bound of Theorem 9 to prove the existence
of B. Following Theorem 9, we have X̃1 = ZS and hence, P1 = ZS since ZS is an orthonormal
matrix and its polar decomposition is equal to itself. Next, observe that �min(ZS) = 1 and kR̂k2

F
=

kAZS � ZS⇤̃Sk2F =
P

i2S kAzi � �i(QT
AQ)zik22  kAk22

n2��1 where the last bound follows from
the fact that kAzi � �i(QT

AQ)zik2  kAk2
n� as stated in line 7 of Algorithm 2. We also have

k(ZS)?(ZS)T?R̂k2
F

= k(I � ZSZ
T

S
)(AZS � ZS⇤̃S)k2F  kAZS � ZS⇤̃Sk2F  kAk22

n2��1 where the last
step follows as I � ZSZ

T

S
is a projection matrix. Thus, there exists a symmetric matrix H such

that (A+H)ZS = ZS⇤̃S and kHkF 
q

kR̂k2F+k(ZS)?R̂k2F
�min(Z)

 kAk2
n��1 . Setting B = A+H gives us the

required matrix.

We now prove that the output of Algorithm 1 of [BKM22] using the modified moments ⌧̂i as
inputs for i 2 N (as defined in lines 4-6 of Algorithm 1) must be close in the Wasserstein distance
to the spectral density defined by the non-zero eigenvalues of the deflated matrix PAP.

Lemma 8 (Modified SDE bound for deflated matrix). Let A 2 Rn⇥n be a rank n � r symmetric
matrix for some r 2 [n] with spectral density sA(x) such that |�1(A)|  1. Let ✏ 2 (0, 1), N = O

�
1
✏

�

and ⌧̃1, . . . , ⌧̃N be the estimates of the top N normalized Chebyshev moments of A estimated using
Algorithm 2 of [BKM22]. Define ⌧̂i =

1
n�r

(n⌧̃i�rT̄i(0)) for i 2 [N] where T̄i(0) is the ith normalized
Chebyshev polynomial. Let the density function q(x) be the output of Algorithm 1 of [BKM22]
with ⌧̂1, . . . , ⌧̂N as the inputs for the moment estimates. Let s0A(x) = 1

n�r

P
n�r

j=1 �(x � �j(A)) be
the probability density defined by the top n � r eigenvalues of A, �1(A), . . . ,�n�r(A). Then, with
probability at least 1� �, we have:

W1(s
0
A, q)  n✏

n� r
.

Also, estimating the density function q using Algorithm 1 of [BKM22] and also using Algorithm 2
of [BKM22] as a subroutine to estimate the moments, requires O

�
b

✏

�
matrix-vector products where

b = max(1, C
0

n✏2
log2 1

✏�
log2 1

✏
).

Proof. 1
n
tr (T̄i(A)) = 1

n

P
n

j=1 T̄i(�j(A)) = 1
n

P
n�r

j=1 T̄i(�j(A)) + r

n
T̄i(0) for i 2 [N] are the top

N normalized Chebyshev moments of sA(x) = 1
n

P
n

i=1 �(x � �i(A)). Then, the ith normalized
Chebyshev moment of s0A(x) is given by ⌧ 0

i
= 1

n�r

P
n�r

j=1 T̄i(�j(A)) = n

n�r
· 1
n

P
n

j=1 T̄i(�j(A)) �
1

n�r

P
n

j=n�r+1 T̄i(�j(A)) = n

n�r
· 1
n
tr(T̄i(A))� r

n�r
T̄i(0).

By setting � = 1
N ln(eN) (where N is the number of Chebyshev moments estimated), using

Lemma 4.2 of [BKM22], we get that with A as the input, the normalized Chebyshev moment
estimates ⌧̂i returned by Algorithm 2 of [BKM22] must satisfy

��⌧̃i � 1
n
tr (T̄i(A))

��  1
N ln(eN) for all

i 2 [N]. So, we have:

��⌧̂i � ⌧ 0i
�� =

������
n

n� r
⌧̃i �

r

n� r
T̄i(0)�

1

n� r

n�rX

j=1

T̄i(�j(A))

������

=
n

n� r

����⌧̃i �
1

n
tr(T̄i(A))

����

 n

(n� r)N ln(eN)
, (29)

26

where the second step follows from the fact that �n�r+1(A) = . . . = �n(A) = 0 by assumption. The
density q returned by Algorithm 1 of [BKM22] is defined on a (d + 1)�length evenly spaced grid
Xd = [�1,�1 + 2

d
, . . . , 1 � 2

d
, 1] for d = dN3/2e. Let zs0 = [⌧ 01/1, ⌧

0
2/2, . . . , ⌧

0
N
/N] and zq = T d+1

N
q

where (T d+1
N

) 2 RN⇥(d+1) such that (T d+1
N

)ij = T̄i(�1 + 2j
d
)/i for i 2 [N], j 2 {0, 1, . . . , d}. Also,

let z = [⌧̂1, ⌧̂2/2, . . . , ⌧̂N/N]. Then, using triangle inequality, we have

kzq � zs0k1 = kzq � zk1 + kz � zs0k1.

Now, kz� zs0k1 
P

N

i=1(⌧̂i� ⌧ 0
i
)/i  n

(n�r)N ln(eN) ·Hn  n

N(n�r) where we use (29) to bound ⌧̂i� ⌧ 0
i

and Hn is the nth harmonic number. Next, consider the following distribution q⇤ on Xd as defined
in Lemma 3.4 of [BKM22]:

q⇤(x) =
1

n� r

n�rX

j=1

�(x� argmin
p2Xd

|p� �j(A)|).

q⇤ is the distribution corresponding to moving the mass from each �j(A) to its nearest point on
the grid Xd. We have W1(s0A, q⇤)  1

d
due to the earth mover’s distance interpretation of the

Wasserstein-1 distance. Let zq⇤ = [hq⇤, T̄1i, . . . , hq⇤, T̄N i/N]. Now, from Line 3 of Algorithm 1
of [BKM22], q is defined as the density which minimizes kT d+1

N
q�zk1. Thus, we have kT d+1

N
q�zk1 

kzq⇤ � zk1. Then, following the proof of Lemma 3.4 of [BKM22] exactly, we can upper bound
kzq⇤ � zk1 by 2

N
using the properties of Chebyshev polynomials which gives us kT d+1

N
q � zk1  2

N
.

Thus, we get kzq � zs0k1  3n
(n�r)N . Finally, following the proof of Lemma 3.4 of [BKM22], Lemma

3.1 of [BKM22] gives us the final bound on W1(s0A, q).
Note that the number of matrix-vector products is obtained by setting � = 1

N ln(eN) in Lemma
4.2 of [BKM22].

We now prove the final error bound for Algorithm 1. We will first show using Lemma 7 that there
exists a matrix B such that its spectral density is very close to that of A and ZS and ⇤̃S (the output
of Algorithm 2) are a subset of the eigenvectors and eigenvalues of B. Then, it is enough to estimate
the spectral density of B. We already know the eigenvalues ⇤̃S of B. So we just need to estimate
the spectral density of its remaining eigenvalues (which is equal to the part of the spectral density
of the deflated matrix PBP corresponding to the eigenvalues with eigenvectors which lie in the
subspace orthogonal to ZS). To do this, we first observe that the spectral density of PBP is again
close to that of PAP. So, it is enough to estimate the spectral density of the eigenvalues of PAP

corresponding to its non-deflated eigenvectors. We show this is exactly estimated by Algorithm 1
of [BKM22] by appropriately modifying the Chebyshev moments of PAP to account for the zero
eigenvalues corresponding to the deflated eigenvectors.

Theorem 1 (SDE with Explicit Deflation). Let A 2 Rn⇥n be a symmetric matrix. For any
✏, � 2 (0, 1), l 2 [n], and constants c, c1 > 0, Algorithm 1 performs O

�
l log n+ b

✏

�
matrix-vector

products with A where b = max
�
1, 1

n✏2
log2 n

✏
log2 1

✏

�
and computes a probability density function q

such that
W1(sA, q)  ✏�l+1(A) +

kAk2
nc

,

with probability at least 1� 1
nc1 .

27

Proof. Let ZS 2 Rn⇥|S| and ⇤̃S 2 R|S|⇥|S| be the output of Algorithm 2, in line 2 of Algorithm 1.
Recall that ZS = QVS where Q is an orthonormal basis of the Krylov subspace of A (Definition 2.1)
with a starting block X 2 Rn⇥l containing random N (0, 1) Gaussian entries and the columns of
VS are all the eigenvectors of Q

T
AQ with the corresponding eigenvalues along the diagonal of

⇤̃S 2 R|S|⇥|S| such that for any i 2 S, kAQvi � (⇤̃S)iiQvik2  kAk2
n� for some constant � as

defined in line 7 of Algorithm 2 (here vi is an eigenvector of QT
AQ corresponding to eigenvalue

�i(QT
AQ)). Equivalently, for every i 2 S, zi = Qvi is an eigenvector of QQ

T
AQQ

T corresponding
to an eigenvalue �i(QQ

T
AQQ

T). Now, using Lemma 7, there exists a symmetric matrix B 2 Rn⇥n

such that BZS = ZS⇤̃S and kA�Bk2  kAk2
n��1 . Using Weyls’ inequality (Fact 1), for all i 2 [n] we

have
|�i(A)� �i(B)|  kAk2

n��1
. (30)

Then, 1
n

P
n

i=1 |�i(A)� �i(B)|  kAk2
n��1 . Using the earth mover’s interpretation, this implies that:

W1(sA, sB) 
kAk2
n��1

, (31)

where sB is the spectral density of B. Since � = c as defined in line 2 of Algorithm 1, it is enough
to bound W1(sB, q).

Since BZS = ZS⇤̃S , the eigenvalues �i(QT
AQ) such that i 2 S are also eigenvalues of B. Let

S1 ✓ [n] be the set of indices of the eigenvalues of B such that |S1| = |S| and for each i 2 S1,
there exists some j 2 S such that �i(B) = �j(QT

AQ). Let [�L1, L1] contain the support of both
sB and q (the output of Algorithm 1). Let P = I � ZSZ

T

S
. Note that, from Algorithm 1, we also

have q(x) = |S|q1(x)+(n�|S|)q2(x))
n

where q1(x) =
1
|S|
P|S|

i=1 �(x� (⇤̃S)ii) =
1
|S|
P

i2S �(x��i(QT
AQ))

(as defined in Line 2 of Algorithm 1) and q2(x) = q02(x/L) for x 2 [�L,L] where q02 is a density
supported on [�1, 1] which is the output of Algorithm 1 of [BKM22] with the modified approximate
moments of 1

L
PAP as defined in lines 4-6 of Algorithm 1 (where kPAPk2  L  2kPAPk2).

W1(sB, q) can be written as:

W1(sB, q) = sup
h21-Lip

Z
L1

�L1

h(x)(sB(x)� q(x))dx.

Let h⇤(x) be the 1-Lipschitz function which maximizes the integral above. Then, using the definitons
of sB and q we have:

W1(sB, q) =

Z
L1

�L1

h⇤(x)

0

@ 1

n

nX

i=1

�(x� �i(B))� 1

n

X

j2S
�(x� �j(Q

T
AQ))� n� |S|

n
q2(x)

1

A dx

=
|S|
n

Z
L1

�L1

h⇤(x)

0

@ 1

|S|
X

i2S1

�(x� �i(B))� 1

|S|
X

j2S
�(x� �j(Q

T
AQ))

1

A dx

| {z }
I1

+
n� |S|

n

Z
L1

�L1

h⇤(x)

0

@ 1

n� |S|
X

i/2S1

�(x� �i(B))� q2(x)

1

A dx

| {z }
I2

. (32)

28

We have I1 = 0 by definition of the sets S1 and S. Thus, we have W1(sB, q) =
n�|S|

n
I2. We now

bound I2.
Observe that any eigenvalue �i(B) such that i /2 S1, is also an eigenvalue value of PBP. To see

this, let xi be the corresponding eigenvector of B. Then, observe that PBPx = PBx = �i(B)x
as Z

T

S
x = 0. Also both PBP and PAP have |S| (where |S| = |S1|) eigenvalues equal to 0 (with

the corresponding eigenvectors being the columns of Z). Let S2 ✓ [n] be the set of indices such
that |S2| = n � |S1| = n � |S| and for every j 2 S2, there exists some i 2 [n] \ S1 such that
�j(PBP) = �i(B). So, we can write I2 as:

I2 =

Z
L1

�L1

h⇤(x)

0

@ 1

n� |S|
X

i/2S1

�(x� �i(B))� q2(x)

1

A dx

=

Z
L1

�L1

h⇤(x)

0

@ 1

n� |S|
X

i2S2

�(x� �i(PBP))� q2(x)

1

A dx

=

Z
L1

�L1

h⇤(x)

0

@ 1

n� |S|
X

i2S2

�(x� �i(PBP))� 1

n� |S|
X

i2S2

�(x� �i(PAP))

1

A dx

| {z }
t1

+

Z
L1

�L1

h⇤(x)

0

@ 1

n� |S|
X

i2S2

�(x� �i(PAP))� q2(x)

1

A dx

| {z }
t2

. (33)

Using the fact that P is a projection matrix and Lemma 6, we again have that kPAP�PBPk2 
kP(A�B)Pk2  kA�Bk2  kAk2

n��1 . Thus, using Weyls’ inequality (Fact 1) we have |�i(PBP)�
�i(PAP)|  kAk2

n��1 for i 2 [n]. We can bound t1 using the earth movers’ interpretation of the
Wasserstein-1 distance as

t1 
1

n� |S|
X

i2S2

|�i(PBP)� �i(PAP)|  kAk2
n��1

. (34)

We bound t2 next. Since all eigenvalues of 1
L
PAP are in [�1, 1] and PAP has at least n � |S|

eigenvalues equal to 0 as described previously (corresponding to �i(PAP) where i /2 S2), according
to Lemma 8, the density q02 returned by Algorithm 1 of [BKM22] in line 6 of Algorithm 1 satisfies
the guarantee

W1

✓
s0PAP, q02

◆
 n✏

(n� |S|) , (35)

with probability at least 1 � � where s0PAP(x) =
P

i2S2

�(x� 1
L�i(PAP))
n�|S| . Since q02 is supported on

[�1, 1], we set q2(x) = q02(x/L) in line 7 of Algorithm 1 when x 2 [�L,L] and q2(x) = 0 otherwise

29

so that q2 is now supported on [�L,L]. So we get that

t2 =

Z
L

�L

h⇤(x)

0

@ 1

n� |S|
X

i2S2

�(x� �i(PAP))� q2(x)

1

A dx

=

Z 1

�1
h⇤(Lx)

0

@ 1

n� |S|
X

i2S2

�(Lx� �i(PAP))� q2(Lx)

1

A dx

=

Z 1

�1
h⇤(Lx)

0

@ 1

n� |S|
X

i2S2

�

✓
x� �i(PAP)

L

◆
� q02(x)

1

A dx

 sup
h121-Lip

L

Z 1

�1
h1(x)

0

@ 1

n� |S|
X

i2S2

�

✓
x� �i(PAP)

L

◆
� q02(x)

1

A dx

= LW1

✓
s0PAP, q02

◆

 n✏

(n� |S|)L.

In the first step above, we use the fact that the densities are supported on [�L,L] instaed of
[�L1, L1]. In the second step, we rescale the integrals from [�L,L] to [�1, 1]. In the third step, we
use the fact that q2(Lx) = q02(x) and 1

n�|S|
P

i2S2
�(Lx� �i(PAP)) = 1

n�|S|
P

i2S2
�
⇣
x� �i(PAP)

L

⌘

when x 2 [�1, 1]. The fourth step follows from the fact that h⇤(Lx) is an L�Lipschitz function and
the final two steps follows from the definition of the Wasserstein-1 distance and (35).

Since kPAPk2  L  2kPAPk2 from Theorem 8, for some constant c2 > 0, we have L 
2kPAPk2  2�l+1(A) + 2kAk2

nc2 . Thus, we get:

t2 
✏n

2(n� |S|) ·
✓
2�l+1(A) +

2kAk2
nc2

◆
. (36)

From (33), using the bounds on t1 and t2 from (34) and (36), we get I2  kAk2
n��1 + ✏n

2(n�|S|) ·⇣
2�l+1(A) + 2kAk2

nc2

⌘
. Using the bound on I2 and the fact that I1 = 0 in (32), we get:

W1(sB, q) 
|S|
n

I1 +
n� |S|

n
I2  ✏�l+1(A) +

✏kAk2
nc2

+
kAk2
n��1

.

Finally, using triangle inequality and (31), we get that, for some suitable chosen constant c1 > 0:

W1(s, q)  W1(sA, sB) + W1(sB, q)  ✏�l+1(A) +
✏kAk2
nc2

+
2kAk2
n��1

 ✏�l+1(A) +
kAk2
nc1

.

This completes the proof.

30

Matrix vector products. Line 1 of Algorithm 1 calls Algorithm 2 with A as input which uses
O(l log n) matrix vector products with A to form the Krylov subspace in Line 2 of Algorithm 2
(since the Krylov subspace has depth O(log n) and block size l). By setting the error parameter ✏ in
Algorithm 2 of [MM15] to 0.5, we get an output L0 in O(log n) iterations such that 0.5kPAPk2 
L0  kPAPk2. Then, we can set L = 2L0 such that kPAPk2  L  2kPAPk2 as defined in Line 3
of Algorithm 1. Also, Algorithm 2 of [BKM22] is called with the deflated and scaled matrix 1

L
PAP

as input in line 4 of Algorithm 1. According to Lemma 8, this uses O
�
b

✏

�
matrix vector products

with PAP where b = max
�
1, 1

n✏2
log2 n

✏
log2 1

✏

�
i.e. O

�
b

✏

�
matrix vector products with A , since

� � 1
nc0 (for some c0 � 0). Finally, Line 5 of Algorithm 1 calls Algorithm 2 of [BKM22] which uses

at most O(log n) extra matrix vector products. Thus, the total number of matrix vector products
is O(l log n+ b

✏
) where b = max(1, C

0

n✏2
log2 n

✏
log2 1

✏
).

We now state a simple corollary which shows that we can get Wasserstein-1 error depending
on the Schatten 1-norm of A by appropriatley balancing the errors from deflation and moment
matching in Algorithm 1.

Corollary 1. Let A 2 Rn⇥n be symmetric. For any ✏ 2 (0, 1) and some constant c > 0, there exists
an algorithm that performs O

⇣p
n logn
✏

+
p
n log4 n

⌘
matrix vector products with A and computes

M such that, with probability at least 1� 1
nc , |M � kAk1|  ✏kAk1.

Proof. Set the block size as l =
p
n

✏
and the error parameter ✏0 to O(1p

n
) of Algorithm 1. Let

q be the output of Algorithm 1 using O
�
l log n+ b

✏0
�
= O

⇣p
n

✏
log n+

p
n log4 n

⌘
matrix vector

products with A. Then, from Theorem 1, we have W1(sA, q)  �l0+1(A)p
n

+ kAk2
nc/4  kAk1

l
p
n

+ kAk2
nc/4 =

✏kAk1
n

+ kAk2
nc/4  2✏kAk1

n
. Then, using q, we can construct a list of n values [�̃1, . . . , �̃n] in time linear

in n and 1
✏

such that
P

n

i=1 |�i��̃i|  2✏kAk1·n
n

 2✏kAk1 (see [CSKSV18], theorem B.1 in [BKM22]).
Adjusting ✏ by constant factors gives us the final bound.

4 Analysis of Stochastic Lanczos Quadrature

In this section, we give our error analysis of Stochastic Lanczos Quadrature (SLQ) (Algorithm 4)
by showing that it implicitly performs a deflation of the input matrix. Our analysis shows
that for a symmetric A 2 Rn⇥n, SLQ achieves an error bound of ✏�l+1(A) + Õ(lkAk2

n
) using

O(l log 1
gmin

+ 1
✏
log n·

�
) matrix vector products with A for any l 2 [n], ✏ = ⌦̃(1/

p
n), failure

probability � 2 (0, 1) and where gmin (minimum singular value gap) and  (condition number) are
as stated in Theorem 3. Hence, it almost matches the error bounds of the explicit deflation and
moment matching algorithm (Algorithm 1) we described in the previous section (up to the additive
lkAk2

n
factor). Roughly, we show that the large magnitude eigenvalues of A are estimated almost

exactly in O(l log 1
gmin

+ 1
✏
log n·

�
) iterations of Lanczos (Algorithm 3). Estimating the spectral den-

sity of the small magnitude eigenvalues requires a further Õ(1/✏) iterations. Then, we give a simple
variant of SLQ, which we call the Variance Reduced SLQ (VRSLQ) which sets the weights of the
converged eigenvalues in the final distribution correctly so that we end up getting an error bound of
✏�l+1(A)+ Õ(l�l+1(A)

n
). We note that the SLQ algorithm described in this paper (Algorithm 4) uses

only one random starting vector for simplicity, though in practice, we can get better concentration
when the resulting distribution is averaged over multiple random starting vectors.

31

This section is organized as follows. In Section 4.1, we first derive a loose error bound of ✏kAk2
for SLQ using a simple moment matching based analysis. In Section 4.2, we derive error bounds
for approximating the top eigenvalue and eigenvector of a matrix using the Lanczos algorithm.
In Section 4.3, we give a tighter error bound of ✏�l+1(A) + Õ(lkAk2

n
) for SLQ by showing that

it implicitly performs deflation and approximates the top eigenvalues (by using the error bounds
developed in Section 4.2) followed by moment matching. In Section 4.4 we describe the variance
reduced version of SLQ and then give the error bounds.

Notations: Throughout this section, U(Sn�1) denotes a uniform distribution on the unit sphere
of dimension n. Also, for two random variables X and Y , X :

d
= Y implies they have the same

distribution.

4.1 SLQ bounds via Moment Matching

In this section, we derive an error bound for SLQ (Algorithm 4) using a simple moment matching
based argument. We begin by describing the Lanczos algorithm (Algorithm 3) on which SLQ is
based. The Lanczos algorithm iteratively constructs an orthonormal basis of the Krylov subspace
[g,Ag, . . . ,Am�1

g] generated by an input matrix A and a random starting vector g of appropriate
dimensions such that T = Q

T
AQ where T is tridiagonal and where Q is an orthonormal basis of

the Krylov subspace that is computed by the Lanczos algrorithm.

Algorithm 3 Lanczos algorithm ([Lan52, GM09, CTU21])
Input: Symmetric A 2 Rn⇥n, starting vector g 2 Rn, number of iterations m.
1: Set q1 = g/kgk2, ↵1 = q

T
1 Aq1, q̃2 = Aq1 � ↵1q1 and initialize T 2 0

m⇥m with T11 = ↵1.
2: for i = 2, . . . ,m do

3: Let ⌘i�1 = kq̃ik2.
4: Compute qi = q̃i/⌘i�1 (i.e., normalize q̃i to obtain Lanczos vectors qi).
5: Compute ↵i = q

T

i
Aqi.

6: Set q̃i+1 = Aqi � ↵iqi � ⌘i�1qi�1.
7: Set Tii = ↵i, and Ti,i�1 = Ti�1,i = ⌘i�1.
8: end for

9: return T, Q where Q 2 Rn⇥m is a matrix whose ith column is qi.

We have the following well known identity for the Lanczos algorithm (for eg. see [GM09]), which
we prove here for completeness.

Lemma 9. ([GM09]) Consider Algorithm 3 run with input A 2 Rn⇥n, starting vector g 2 Rn, and
number of iterations m. Let T 2 Rm⇥m,Q 2 Rn⇥m be the outputs of the algorithm. Then, for any
k 2 [m� 1], we have A

k
g = QT

k
Q

T
g.

Proof. The Krylov subspace generated by Algorithm 3 is Km = [g,Ag,A2
g, . . . ,Am�1

g] after m
iterations. Since Q is an orthonormal basis of Km, the columns of Km are spanned by the columns
of Q. Let x = kgk2e1 (recall e1 is the first standard basis vector with a 1 in the first position). So,
we have g = Qx.

We show that for any p 2 [m], A
p
g = QT

p
Q

T
g, via induction. Observe that for p = 1,

QTQ
T
g = QTQ

T
Qx = QQ

T
AQx = QQ

T
Ag = Ag, where in the last equality we use the fact

that Ag is a column of Km, and so it is spanned by the columns of Q. This shows that the base case

32

for our induction is true. As the inductive hypothesis, assume Ak
g = QT

k
Q

T
g for some k 2 [m�2].

Then observe that QT
k+1

Q
T
g = QTQ

T
QT

k
Q

T
g = QT

k
Q

T
A

k
g = QQ

T
AQQ

T
A

k
g, where in

the third equality we use our inductive hypothesis. Since A
k
g is a column of Km, Ak

g must be
spanned by the columns of Q. So we have, QQ

T
AQQ

T
A

k
g = QQ

T
AA

k
g = QQ

T
A

k+1
g =

A
k+1

g, where in the last step we used the fact that A
k+1

g is also spanned by the columns of Q.
This completes our proof.

We now state the SLQ algorithm for spectral density estimation.

Algorithm 4 Stochastic Lanczos Quadrature (adapted from [CTU21])
Input: Symmetric A 2 Rn⇥n, number of iterations m( n).
1: Sample g ⇠ U(Sn�1).
2: Run Lanczos (Algorithm 3) with inputs A,g and m to compute symmetric tridiagonal matrix

T 2 Rm⇥m, orthonormal basis Q 2 Rn⇥m. Let the eigenvectors of T be v1, . . . ,vm.
3: Set f(x) =

P
m

j=1w
2
j
�(x � �j(T)) where wj = v

T
j
e1 where e1 2 Rm is the first standard basis

unit vector (i.e. a 1 in the first position and a 0 everywhere else)
4: return f(x)

We give an error bound for SLQ by showing that the normalized Chebyshev moments of the
output density are approximately equal to the normalized Chebyshev moments of the spectral
density of the input matrix A. We start by proving a lemma showing that the jth Chebyshev
moment of the output of SLQ f for any j  m � 1 is exactly given by g

T T̄j(A)g where g is the
random starting vector.

Lemma 10. Consider Algorithm 4 run with input A 2 Rn⇥n, number of iterations m, and sampled
vector g ⇠ U(Sn�1) in line 1. Let f(x) =

P
m

i=1w
2
i
�(x � �i(T)) be the output of the algorithm.

Then, for any j 2 {0, 1, 2, . . . ,m� 1}, hT̄j , fi = g
T T̄j(A)g.

Proof. Let L = kTk2. The jth normalized Chebyshev moment of f is given by
hT̄j , fi =

R
L

�L
T̄j(x)f(x)dx =

R
L

�L
T̄j(x)

P
m

i=1w
2
i
�(x � �i(T))dx =

P
m

i=1w
2
i
T̄j(�i(T)) =P

m

i=1 T̄j(�i(T))eT1 viv
T

i
e1 = e

T
1

�P
m

i=1 T̄j(�i(T))viv
T

i

�
e1 = e

T
1 T̄j(T)e1.

Let Q be the orthonormal basis computed by the Lanczos algorithm (Algorithm 3) in line 2
of Algorithm 4. From Lemma 9 we know that A

p
g = QT

p
Q

T
g for any p 2 [m � 1]. Thus,

T̄j(A)g = QT̄j(T)QT
g for any j  m � 1. Note that Qe1 = g since g is set as the first column

of Q in Algorithm 3 (g is a random unit vector). Thus, we get e
T
1 T̄j(T)e1 = g

T
QT̄j(T)QT

g =
g
T T̄j(A)g.

We next prove that the ith normalized Chebyshev moment of the output of SLQ f is almost
equal to the ith normalized Chebyshev moment of the SDE of A via the error bounds for a modified
hutchinson’s trace estimator [MMMW21] that uses a random vector on the unit sphere as opposed
to a gaussian or a random sign vector. We note that the analysis of hutchinson’s using a random
vector on the unit sphere is different from the usual analysis which assumes the elements of the
random vector are independent and identically distributed with zero mean. We also note that we
require that SLQ use a random vector on the unit sphere as opposed to a say, a gaussian vector or
a random sign vector is because such a vector has the same distribution as a normalized gaussian
vector. As we will see, this helps us leverage the rotational invariance of the gaussian distribution

33

to derive error bounds for the convergence of eigenvectors and eigenvalues while still ensuring that
the random starting vector for Lanczos is a unit vector. Hence, we first prove error bounds for
hutchinson’s trace estimator using a single random vector on the unit sphere in Lemma 11.

Lemma 11 (Hutchinson’s with random vectors on the unit sphere). Let A 2 Rn⇥n, � 2 (0, 1/2] and
g ⇠ U(Sn�1). Then, assuming n � ⌦(log(1/�)) and for some fixed constant C > 0, with probability
at least 1� �, we have that:

����
1

n
tr (A)� g

T
Ag

���� 
C log(1/�)

n
kAkF .

Proof. We have g :
d
= yjqPl

j=1 y
2
j

where y 2 Rn is such that yj ⇠ N (0, 1) for j 2 [n] [CTU21]. Now,

using triangle inequality, we have that :
����
1

n
tr (A)� g

T
Ag

���� 
����
1

n
tr (A)� 1

n
y
T
Ay

����+
����g

T
Ag � 1

n
y
T
Ay

����. (37)

We will bound the terms individually. The first term is just the error bound for the hutchinson’s
estimator using a random gaussian vector. The second term can be bounded as the norm of y,
which is just a Chi-suared distribution, can be shown to concentrate around n using standard
concentartion bounds. First observe that, from Lemma 2 of [MMMW21], we have

����
1

n
tr (A)� 1

n
y
T
Ay

���� 
1

n

���� tr (A)� y
T
Ay

���� 
log(1/�)

n
kAkF , (38)

with probability at least 1� �. This bounds the first term in (37). Now, we bound the second term.
From (38), we have:

|yT
Ay|  log(1/�)kAkF + tr (A)  log(1/�)kAkF +

p
nkAkF . (39)

with probability at least 1 � �. Here, the second inequality follows from the fact that tr (A) p
nkAkF . Observe that by the concentration properties of the Chi-squared distribution, we have

�� 1
n
kyk22 � 1

�� 
q

log(l/�)
n

, with probability at least 1 � �, assuming n � ⌦(log(l/�)) [Wai19a].
Rearranging, we get

����
n

kyk22
� 1

����  2

r
log(l/�)

n
. (40)

Thus, we have:
����g

T
Ag � 1

n
y
T
Ay

���� =
����
y
T
Ay

kyk22
� 1

n
y
T
Ay

����

 1

n
|yT

Ay|
����

n

kyk22
� 1

����

 1

n
(log(1/�)kAkF +

p
nkAkF) · 2

r
log(1/�)

n


✓
2 log3/2(1/�)

n
p
n

+
2
p
log(1/�)

n

◆
kAkF

 3 log(1/�)

n
kAkF .

34

where in the second step, we used the triangle inequality and in the third step, we used the upper
bounds from (39) and (40). In the final step, we used the fact that n � ⌦(log(1/�)). Thus, using the

upper bounds from above and from (38) in (37), we finally get
����
1
n
tr (A) � g

T
Ag

���� 
C log(1/�)kAkF

n

for some constant C > 0.

Lemma 12. Consider the setting of Lemma 10. For n � ⌦(log(1/�)), with probability at least 1��,��hT̄i, fi � hT̄i, sAi
��  C log(m/�)p

n
for all i 2 {0, 1, 2, . . . ,m� 1} where C > 0 is a large constant.

Proof. Observe that hT̄i, sAi = 1
n
tr(T̄j(A)). From Lemma 10 we have hT̄i, fi = g

T T̄i(A)g for
i 2 {0, 1, 2, . . . ,m� 1}. From Lemma (11), since n � ⌦(log2(1/�)), for every i 2 {0, 1, . . . ,m� 1},
with probability at least 1� �

m
for a constant C, we have:

����
1

n
tr(T̄i(A))� g

T T̄i(A)g

���� 
C log(m/�)

n
kTi(A)kF  C log(m/�)p

n
,

where in the second inequality, we used the fact that kTi(A)k2  1 since kAk2  1. Applying a
union bound for all i 2 {0, 1, . . . ,m� 1} gives the bound.

We now state the final result of this section which gives the error bound for SLQ.

Theorem 10. Let A 2 Rn⇥n be a symmetric matrix. Let f(x) be the output of Algorithm 4 with
input A and m = O

�
1
✏

�
. Then, for some constant C and for ✏, � 2 (0, 1), we have

W1(sA, f)  ✏kAk2 +
C log(1/✏�) log(1/✏)p

n
kAk2,

with probability at least 1 � �. Also, Algorithm 4 performs m = O
�
1
✏

�
matrix vector products with

A.

Proof. Assume that we run Algorithm 4 with B = 1
kAk2A as input. Then, let sB be the spectral

density of B and let fB be the output of Algorithm 4 after m iterations. Then, observe that

W1(sA, f) = kAk2 ·W1(sB, fB).

Since kBk2  1, as stated in Lemma 10, the symmetric tridiagonal matrix T, which is the output
of Lanczos with input matrix B and starting vector g in Line 2 of Algorithm 4, can be written as
T = Q

T
BQ where Q is an orthonormal matrix. Thus, kTk2 = kQT

BQk2  kBk2  1. So, the
support of density function fB output by Algorithm 4 is in [�1, 1]. Using Lemma 3.1 of [BKM22]
for any two distributions sB, fB with support in [�1, 1], we have

W1(sB, fB) 
36

m� 1
+ 2

m�1X

i=1

|hT̄i, sAi � hT̄i, fi|
i

.

From Lemma 12, |hT̄i, sBi�hT̄i, fBi|  C log(m/�)p
n

with probability 1�� for i 2 {0, 1, 2, . . . ,m�1} as
long as � 2

�
1
en
, 1
�

(due to the assumption n � ⌦(log(l/n))). By setting m = O(1/✏), this gives us,
for constants C1 and C2, W1(sB, fB)  C1✏ +

C2 log(1/✏�) log(1/✏)p
n

from the equation above. Finally,

we get W1(sA, f)  kAk2W1(sB, fB)  C1✏kAk2 + C2 log(1/✏�) log(1/✏)p
n

kAk2
Since the Lanczos algorithm is run for m = O

�
1
✏

�
iterations, the number of matrix vector

products with A is O
�
1
✏

�
.

35

We also note that the second term log(1/✏�) log(1/✏)p
n

in the error bound ✏kAk2+ log(1/✏�) log(1/✏)p
n

kAk2
can be made smaller (< ✏kAk2) by averaging the resulting distributions over multiple random start-
ing vectors in Algorithm 4 instead of a single random starting vector. However, this would complicate
the analysis for the improved deflation based bounds for SLQ that we derive in the subsequent sec-
tion as it would require carefully analyzing the convergence of the ‘average’ distribution for different
starting vectors for SLQ. Hence, we do the analysis with a single random starting vector.

4.2 Error Bounds for Lanczos

Since SLQ uses the Lanczos algorithm (Algorithm 3) as a subroutine, we now derive eigenvalue
and eigenvector approximation error bounds for the Lanczos algorithm, which is a Krylov method
with a single random starting vector. We will use some results and proof techniques developed
in [MMM24] to derive our bounds. We start by describing the critical observation in [MMM24] that
the span of the Krylov subspace generated with a single vector as the starting block is the same
as the span of the Krylov subspace with a large starting block with fewer iterations. Let Krylov
subspace generated by Lanczos after q iterations with starting vector g be

Kq(A,g) = [g, . . . ,Aq�1
g].

Note that here we overload the notation as in Section 3, we had defined Kq(A,g) in terms of AA
T

and Ag while here we define it in terms of A and g. The Lanczos algorithm finds an orthonormal
basis Q of Kq(A,g) such that T = Q

T
AQ where T is a tridiagonal matrix. We are interested

in the bounding the error between the eigenvalues of T and the true eigenvalues of A. Since the
eigenvalues of T are the same up to a rotation of the orthonormal basis Q of the Krylov subspace,
the eigenvalues estimated by the Lanczos algorithm depends only on the span of the Krylov subspace
K generated after q iterations and not on the specific Q found by Algorithm 3. Let Sl be such that:

Sl =
h
g,Ag,A2

g, . . . ,Al�1
g

i
. (41)

Then observe that:

span(Kq(A,g)) = span
⇣h

Sl,ASl,A
2
Sl, . . . ,A

q�l
Sl

i⌘
. (42)

So, the span of the Krylov subspace generated by Lanczos with g as the starting vector after q
iterations matches the span of the Krylov subspace generated after q � l + 1 iterations with Sl as
the starting block. So, it is enough to analyze the orthonormal basis of Kq�l+1(A,Sl). Let Q be
the orthonormal basis for Kq�l+1(A,Sl) found by the Lanczos algorithm (Algorithm 3). Similar to
Lemma 2, we first want to show that Q approximately spans the top subspace of A. However, note
that the proof of Lemma 2 relies on Lemma 1 which assumes that for the starting block X 2 Rn⇥l,
we have rank(VT

l
X) = l. While this is true for a random Gaussian starting block X 2 Rn⇥l, the

starting block Sl in (41) is far from being completely random as its columns are highly correlated.
We will first prove that rank(ST

l
Ul) = l (where Ul 2 Rn⇥l contains the first l columns of U) by

following the approach presented in the proof of Theorem 3 in [MMM24]. Then, we will apply
Lemma 1 to bound the projection error of the top subspace of A onto QQ

T .

Gap Dependence. We note that the number of iterations of Lanczos will depend logarithmically
on the inverse of the minimum relative singular value gap gmin = mini2[l]

�i(A)��i+1(A)
�i(A) among

36

the top l singular values of A, similar to the bounds in [MMM24]. We need gmin > 0 to prove
rank(UT

l
Sl) = l by using the fact that a degree l � 1 polynomial cannot be exactly 0 of l distinct

points. Note that if gmin = 0, then Q will not converge to the the top subspace. For example,
when A is an identity matrix, Q only spans the starting vector (which is always an eigenvector
of the identity matrix) and Lanczos never finds the other eigenvectors. In general, it is reasonable
to expect that for most matrices, gmin should be at least a small constant. We also note that the
bounds can be made gap independent by a random perturbation analysis as in [MMM24].

Lemma 13. For a symmetric matrix A 2 Rn⇥n such that rank(A) > l, let Q be an orthonormal
basis of the Krylov subspace Kq�l+1(A,Sl) where Sl =

⇥
g,Ag,A2

g, . . . ,Al�1
g
⇤

and g ⇠ U(Sn�1).

Let gmin = mini2[l]
�i(A)��i+1(A)

�i(A) . Let ↵ = max

✓
�l+1(A),

kAk2gc/4min

nc/4

◆
for some large constant c > 0

and let k 2 [l] such that �k(A) � 2↵ and �k+1(A)  2↵. Then, for any ✏ 2 (0, 1], � 2 (0, 1)

 = kAk2
2↵ and q = O(l log(1

gmin
) + 1

✏
log(n·

�
)), we have

kUk �QQ
T
Ukk2F  gclmin

(n · )c/✏
,

with probability 1� �.

Proof. Our proof will utilize the results and proof the techniques from Lemma 1, Lemma 2 and
Theorem 3 of [MMM24]. We will first prove that rank(ST

l
Ul) = l (where Ul 2 Rn⇥l contains the

first l columns of U) by following the approach presented in the proof of Theorem 3 in [MMM24].
Noet that we can’t directly use Theorem 3 from [MMM24] as it is stated for a gaussian starting
vector while our starting vector is random on the unit sphere. Observe that for any x 2 Rl,
Slx = p̂(A)g for some degree l � 1 polynomial p̂ with coefficients determined by the entries in x.
Also, by the rotational invariance of the gaussian distribution, we have (UT

l
g)i :

d
= yiqPl

j=1 y
2
j

where

yi ⇠ N (0, 1) for i 2 [l]. Then,

U
T

l Slx = U
T

l p̂(A)g = U
T

l Up̂(⇤)UT
g := p̂(⇤l)

y

kyk2
,

where ⇤l contains the top l eigenvalues of A on its diagonal. By Lemma 4 of [MMM24], we have
mini2[l] y

2
i
� 2�2

⇡l2
with probability at least 1� �. Then, we can bound the numerator above as:

kp̂(⇤l)yk22 =
lX

i=1

(p̂(�i(A)))2y2i � 2�2

⇡l2

lX

i=1

(p̂(�i(A)))2. (43)

Since p̂ has degree l � 1, and none of the eigenvalues are repeated (as gmin > 0), kp̂(⇤l)yk22 > 0.
We also have kyk2 > 0 with probability 1. Thus, we get that kUT

l
Slxk22 > 0 for any x. So,

�min(UT

l
Sl) > 0 and hence, UT

l
Sl is invertible which means rank(ST

l
Ul) = l. Note that we also have

�k(A) � 2↵ � 2�l+1(A) and so k 2 [l]. So, we can apply Lemma 1 to bound k sin⇥(Q,Uk)k2F .
Without loss of generality, assume that q is odd. Let �(x) be a gap amplifying polynomial of
degree q+1 consisting of only even powers as defined in Lemma 4.5 of [DIKMI18] with parameters
↵ = �l+1(A) and gap � = �k(A)

�l+1(A)�1 � 1. Note that for even q, we can similarly define an amplifying
polynomial of degree q consisting of only even powers. For any i 2 [k], �(�i(A)) � �i(A) > 0 as

37

�i(A) � �k(A) � (1 + �)�l+1(A) = (1 + �)↵ by our choice of parameters for the gap-amplifying
polynomial. Thus, �(⇤p) is non-singular for any p 2 [l]. Let � = U�(⇤)UT

Sl. The columns of
� lie in span(Kq�1) (42) and thus range(�) ✓ range(Kq�1) = range(Q). Also, ��† and QQ

T are
the orthogonal projectors onto range(�) and range(Kq�1) respectively. So, following the proof of
Lemma 1 we get:

kUk �QQ
T
Ukk2F  k�(⇤l,?)k22k�(⇤k)

�1k22kUT

l,?Sl(U
T

l Sl)
�1k22. (44)

Since q is odd, q + 1 is even, giving �(�i(A)) = �(��i(A)) = �(�i(A)) for i 2 [n]. So, �(⇤l,?) =
�(⌃l,?) and �(⇤k) = �(⌃k). Following the proof of Lemma 2 (which in turn uses Lemma 4.5
of [DIKMI18] based on the properties of �), we get the bounds

k�(⇤l,?)k2 = k�(⌃l,?)k2 
4�l+1(A)

2(q+1)min(
p
�,1)

. (45)

and

k�(⇤k)
�1k2 = k�(⌃k)

�1k2  �k(A). (46)

So, the final step is to bound kUT

l,?Sl(UT

l
Sl)�1k22. We will bound this by following the proof

technique presented in Theorem 3 of [MMM24] to bound the same quantity. We just give an outline
of the proof and skip the details since the quantity is the same. Observe that we have:

kUT

l,?Sl(U
T

l Sl)
�1k22 = max

x

kUT

l,?Sl(UT

l
Sl)�1

xk2
kxk2

 max
x

kUT

l,?Slxk2
kUT

l
Slxk2

= max
deg(p̂)l�1

kUT

l,?p̂(A)yk22
kUT

l
p̂(A)k22

= max
deg(p̂)l�1

kp̂(⇤l,?)yk22
kp̂(⇤l)yk22

. (47)

The denominator is already bounded from below in (43). We now bound the numerator following
the proof in [MMM24]. Note that y2

i
 1 + 4 log(1/�) for all i 2 [l] with probability at least 1 � �

by standard concentration bounds for chi-squared random variables [Wai19b]. Then, by a union
bound, maxi yi  5 log(n/�) for n > 2. We thus have:

kp̂(⇤l,?)yk22  5 log(n/�)
nX

i=1

(p̂(�i(A)))2  5n log(n/�)max
i2[n]

(p̂(�i(A)))2 (48)

Then, combining (48) and (43), we get:

kUT

l,?Sl(U
T

l Sl)
�1k22 

5⇡nl2 log(n/�)

2�2
maxi2[n](p̂(�i(A)))2
P

l

i=1(p̂(�i(A)))2

We can then bound maxi2[n](p̂(�i(A)))2
Pl

i=1(p̂(�i(A)))2
 l

g4lmin
by expanding p̂ as a Lagrange interpolating polynomial

over �2
1(A), . . . ,�2

l
(A) in exactly the same way as in the proof of Theorem 3 in [MMM24]. We finally

get

kUT

l,?Sl(U
T

l Sl)
�1k22 

5⇡nl3

2g4lmin�
2
log(

n

�
). (49)

38

Then, using the bounds (49), (46) and (45) on the right hand side of (44) and using the fact that
� = �k(A)

�l+1(A) � 1 � 1 (by assumption) we get that for q = O(l log(1
gmin

) + 1
✏
log(n·

�
)) (as long as the

constant c > 0 is large enough):

kUk �QQ
T
Ukk2F  O

�2
l+1(A)

�2
k
(A)

· nl3 log(n/�)

2(2q+1)min(
p
�,1)g4lmin�

2

!
 gclmin

(n · )c/✏
.

Based on the results from Lemma 13, we can now generalize the error bounds for the randomized
block krylov method in Section 3.1 to the single vector Lanczos Algorithm 3. We will utilize the gap
between the eigenvalues (gmin > 0) to give stronger convergence guarantees for the top k eigenvalues
and eigenvectors of QQ

T
AQQ

T . We first state a stronger version of Theorem 7 which gives shows
that the large magnitude eigenvalues of QQ

T
AQQ

T converge to those of A as long as there exists
some k such that �k(A) is larger than �l+1(A) by at least a constant factor. Roughly, we are able to
prove the stronger statement as the gaps between the singular values ensure the estimated singular
values are also well separated.

Lemma 14. Consider the setting of Lemma 13. Let c > 0 be the constant in the error boound of
Lemma 13. Then, for every i 2 [k], with probability at least 1� �, we have:

|�i(A)� �i(QQ
T
AQQ

T)| 
kAk2gcl/2min

(n · )c/2✏
.

Proof. First, we can follow the proofs of Lemmas 4 and 5 along with the stronger bound on kUk �
QQ

T
Ukk2 from Lemma 13 to prove that the following guarantees hold with probability at least

1� �:

1. kQQ
T
AQQ

T
Uk �UkU

T

k
QQ

T
AQQ

T
Ukk2 

kAk2gclmin

nc/✏�1()c/✏
,

2. |�i(UT

k
QQ

T
AQQ

T
Uk)� �i(A)|  kAk2gclmin

nc/✏�1()c/✏
.

Next, we can follow the proof of Theorem 7, along with the stronger error bounds above and in
Lemma 13, with the stronger bound of kAk2gclmin

nc/✏�1()c/✏
, which (similar to (23)) gives us that for every

i 2 [k], there exists some �j(QQ
T
AQQ

T) such that:

|�j(QQ
T
AQQ

T)� �i(A)|  kAk2gclmin

nc/✏�1()c/✏
, (50)

Using the min-max principle of singular values, �i(QQ
T
AQQ

T)  �i(A) for all i 2 [n]. We will
now prove that j = i for all i 2 [k]. Assume, for contradiction, there exists some i 2 [k] such
that (50) is only satisfied by some �j(QQ

T
AQQ

T) such that j > i. Then, we get:

|�j(QQ
T
AQQ

T)� �i(A)| � �i(A)� �j(QQ
T
AQQ

T)

� �i(A)� �j(A)

� �i(A)� �i+1(A)

� gmin�i(A)

� gmin�k(A) � 2gmin↵ �
2kAk2g(c/4+1)

min

nc/4
� kAk2gclmin

nc/✏�1()c/✏
.

39

for a large enough c > 0. This contradicts (50) and thus, we must have j  i. We can similarly rule
out the case j < i. Thus, we must have j = i for every i 2 [k].

We next prove a stronger version of Theorem 5 below which shows that every eigenvector of
QQ

T
AQQ

T , corresponding to a large magnitude eigenvalue, converges to the corresponding eigen-
vector of A as long as there exists some k such that �k(A) is larger than �l+1(A) by at least a
constant factor.

Lemma 15. Consider the setting of Lemma 13. Let the eigenvectors of QQ
T
AQQ

T be z1, . . . , zn.
Then, for any i 2 [k], with probability at least 1� �, for some constant c1, we have

kzi � uik2 
g(c1l)min

(n · )
c1
✏

or kzi + uik2 
g(c1l)min

(n · )
c1
✏

.

Proof. From Lemma 13, we have that for any eigenvector ui of A for i 2 [k], QQ
T
ui = ui + ei

where keik2  kAk2gclmin

(n·)c/✏ for some constant c > 0. So, we have QQ
T
AQQ

T
ui = QQ

T
A(ui + ei) =

�i(A)QQ
T
ui +QQ

T
Aei = �i(A)(ui + ei) +QQ

T
Aei = �i(A)ui + �i(A)ei +QQ

T
Aei. Thus, we

get that
QQ

T
AQQ

T
ui = �i(A)ui + ri, (51)

where krik2 
2kAk2gclmin

(n.)c/✏
.

Since the eigenvectors z1, . . . , zn form an orthonormal basis for Rn, we can write ui =
P

n

j=1 ajzj
where aj are constants such that

P
n

j=1 a
2
j
= 1. Thus,

QQ
T
AQQ

T
ui =

nX

j=1

aj�j(QQ
T
AQQ

T)zj . (52)

From (51), we get QQ
T
AQQ

T
ui =

P
n

j=1 �i(A)ajzj + ri. Hence, from (52) we have:P
n

j=1 �i(A)ajzj+ri =
P

n

j=1 aj�j(QQ
T
AQQ

T)zj . Rearranging, we get:
P

n

j=1(�j(QQ
T
AQQ

T)�
�i(A))ajzj = ri. Taking 2-norm on both sides, we get:

k
nX

j=1

(�j(QQ
T
AQQ

T)� �i(A))ajzjk2 
2gclminkAk2
(n · )c/✏

,

using the fact that krik2  2gclminkAk2
(n·)c/✏ . Now, k

P
n

j=1(�j(QQ
T
AQQ

T) � �i(A))ajzjk2 =
qP

n

j=1(�j(QQTAQQT)� �i(A))2a2
j
. Thus, for all j 2 [n] we have

|�j(QQ
T
AQQ

T)� �i(A)| · |aj | 
2kAk2gclmin

(n · )c/✏
. (53)

Now, we have |�i(A) � �i(QQ
T
AQQ

T)|  kAk2gcl/2min

(n·)c/2✏ for i 2 [k], from Lemma 14. Also, from our

40

assumptions on the singular value gaps, for any i 2 [k] and j 2 [n] such that i 6= j,

|�i(A)� �j(A)| � |�i(A)� �j(A)| � gminmax(�i(A),�j(A))

� gmin�i(A) � gmin�k(A)

� 2gmin↵

�
kAk2g3cl/4min

(n · )3c/4✏
,

Using the min-max principle of singular values, �i(QQ
T
AQQ

T)  �i(A) for all i 2 [n]. So, for
j 6= i and i 2 [k], using triangle inequality we have that |�i(A) � �j(QQ

T
AQQ

T)| � |�i(A) �

�j(A)|� |�j(A)� �j(QQ
T
AQQ

T)| � kAk2gcl/2min

(n·)c/2✏ � kAk2g3cl/4min

(n·)3c/4✏ . Thus, from (53), we get that:

|aj | 
2kAk2gclmin

(n·)c/✏

kAk2gcl/2min

(n·)c/2✏ � kAk2g3cl/4min

(n·)3c/4✏


2gclmin

(n·)c/✏

g
cl/2
min

(n·)c/2✏ �
g
3cl/4
min

(n·)3c/4✏


g(c4l)min

(n · )(c4/✏)
,

for some constant c4 > 0. Since
P

n

j=1 a
2
j
= 1, we get that |ai| � 1� g

(c4l)
min

(n·)c4/✏�1 . Let ai > 0. Then,
using triangle inequality, we have kui�zik2 = kui�aizi+zi(ai�1)k2  kui�aizik2+kzi(ai�1)k2 

k
P

j 6=i
ajzjk2+|ai�1|  C

0
g
(c4l)
min

(n·)c4/2✏�1 where C 0 is some constant. Similarly, we can show when ai < 0,

kui + zik2 
C

0
g
(c4l)
min

(n·)c4/2✏�1 . We complete the proof by choosing the constant c1 > 0 suitably.

4.3 Improved Error bounds for SLQ via implicit deflation based analysis

In this section, we prove the main error bounds for SLQ (Algorithm 4) by showing that it implicitly
performs a deflation followed by moment matching. We first show that there exists a polynomial
r(x) of degree O(l log(1

gmin
)+ 1

✏
log(n·

�
)) which is almost zero on the large magnitude eigenvalues of

A and Q
T
AQ which have magnitude greater than �k(A) and close to one on the small magnitude

eigenvalues of A and Q
T
AQ where k 2 [l] is an index as defined in Lemmas 14 and 15 such

that �k(A) is larger than �l+1(A) by at least a constant multiplicative gap. Then, a polynomial
of the form ti(x) = r(x)T̄i(x) where T̄i(x) is the ith Chebyshev polynomial for i 2 O(1/✏) will
have degree at most O(l log(1

gmin
) + 1

✏
log(n·

�
)) and can be represented in the span of the Krylov

subspace (42) generated by the Lanczos algorithm (Algorithm 3) as long as we run Lanczos for at
least this many number of iterations. Intuitively, this implies that the polynomial ti(x) behaves like a
Chebyshev polynomial for the small magnitude eigenvalues (with magnitude smaller than �k(A) and
�k(QT

AQ)) of A and Q
T
AQ while it is almost zero on the large magnitude eigenvalues of A and

Q
T
AQ. We then show that the moments of the spectral density of the small magnitude eigenvalues

A and the part of the density output by SLQ which only depends on the small magnitude eigenvalues
of QT

AQ with respect to the polynomial ti(x) are very close to each other for i 2 O(1/✏). Since ti(x)
behaves like a Chebyshev polynomial on these small magnitude eigenvalues, via an argument similar
to the Chebyshev moment matching argument in Section 4.1, we say that the spectral densities of
the small magnitude eigenvalues of A and Q

T
AQ are close to each other. On the other hand, via

the results in Section 4.2, we know that the large magnitude eigenvalues of A are approximated by
the corresponding large magnitude eigenvalues of QT

AQ. Combining the arguments for the large

41

and small magnitude eigenvalues, we claim the the spectral densities of A and that defined by SLQ
algorithm (Algorithm 4) are close to each other.

The polynomial r(x) is defined as 1�g(x)L(x) where the polynomial g(x) is a Chebyshev mimiz-
ing polynomial (Lemma 17) and L(x) can be interpreted as a variant of the Lagrange interpolating
polynomial through the points (�i(A), 1

g(�i(A))) for i 2 [k]. We describe this in more detail now.
Suppose we have a set of k ‘basis’ polynomials such that the i’th polynomial in the set is almost
1 at �i(A) and �i(QT

AQ) and almost zero at all other �j(A) and �j(QT
AQ). Then, r(x) can

be defined as 1 minus the sum of these polynomials i.e. we will have r(�i(A)) and r(�i(QT
AQ))

almost to 1 for every i 2 [k] and almost 0 at all other eigenvalues. As a first step, in Lemma 16 for
each i 2 [k] we first define a polynomial pi(x) which is almost 1 at �i(A) and �i(QT

AQ) (referred
to as �̃i(A) in the lemmas below) and zero at all other �j(A) and �j(QT

AQ) for j 6= i and j 2 [l].
However, outside the top l eigenvalues, i.e. on the small magnitude eigenvalues of A and Q

T
AQ,

pi(x) can be potentially be very large (up to (2/gmin)O(l)). To ensure the polynomials pi(x) do not
blow up on the small magnitude eigenvalues of A and Q

T
AQ, we will multiply each pi(x) with

a corresponding minimizing polynomial (defined in Lemma 17) which squishes its values down to
almost 0 on the small magnitude eigenvalues (while keeping its values almost same on the large
magnitude eigenvalues). The final set of polynomials is each pi(x) multiplied by its corresponding
minimizing polynomials. We can then define r(x) as 1 minus this polynomial.

We first define the polynomials pi(x) for i 2 [k] in the lemma below. In the lemmas below,
�̃i(A) = �i(QT

AQ) for ease of notation.

Lemma 16. Consider the setting of Lemma 13. Let �̃i(A) = �i(QQ
T
AQQ

T) for i 2 [n]. Then,
for i 2 [k],

pi(x) =
Y

j2[l],j 6=i

✓
x� �j(A)

�i(A)� �j(A)

◆ Y

j2[l],j 6=i

x� �̃j(A)

�i(A)� �̃j(A)

!
.

Then, for some constant c > 0, with probability at least 1� �:

1. For any i 2 [k] pi(�i(A)) = 1 and pj(�i(A)) = 0 for j 6= i.

2. For any i 2 {k + 1, . . . , l} and j 2 [k], pj(�i(A)) = 0 and pj(�̃i(A)) = 0.

3. |pi(x)|  23l

g2lmin
when |x|  |�k(A)| for i 2 [k].

4. For any i 2 [k], |pi(�̃i(A))� 1|  g
cl/2
min

(n·)c/2✏�4 and pj(�̃i(A)) = 0 for j 6= i.

Proof. First observe that, from Lemma 14, |�i(A)� �̃i(A)|  kAk2gclmin

(n·)c/✏ for i 2 [k] with probability
at least 1� � for some constant c > 0. The first two claims are straightforward from the definition
of pi(x). So we proceed to prove the third claim.

Claim 3: We now bound |pi(x)| when |x|  �k(A) to prove the third claim. We have

|pi(x)| =
Y

j2[l],j 6=i

����
x� �j(A)

�i(A)� �j(A)

����
Y

j2[l],j 6=i

�����
x� �̃j(A)

�i(A)� �̃j(A)

����� .

We bound each term separately.

42

��� x��j(A)
�i(A)��j(A)

���: For any i 2 [k],
��� x��j(A)
�i(A)��j(A)

���  2max(|x|,�j(A))
|�i(A)��j(A)|  2max(�i(A),�j(A))

|�i(A)��j(A)|  2
gmin

where
the second inequality follows from the fact that |x� �j(A)|  2max(|x|,�j(A)), the third inequality
from the fact that |x|  �k(A)  �i(A) for i 2 [k] and the final inequality follows from the definition
of gmin.��� x��̃j(A)

�i(A)��̃j(A)

���: We consider the cases j 2 [k] and k  j  l separately.

Case 1. (j 2 [k]): We have
��� x��̃j(A)

�i(A)��̃j(A)

���  2max(|x|,|�̃j(A)|)

|�i(A)��j(A)|�
kAk2gclmin
(n·)c/✏

 2max(|x|,|�j(A)|)

|�i(A)��j(A)|�
kAk2gclmin
(n·)c/✏

. Here,

for the numerator we used the fact that |�̃j(A)|  |�j(A)| by the minimax principle and for the
denominator we used triangle inequality to get |�i(A)� �̃j(A)| � |�i(A)��j(A)|� |�j(A)� �̃j(A)|
and the fact that |�j(A)� �̃j(A)|  kAk2gclmin

(n·)c/✏ for j 2 [k]. Since |x|  |�i(A)| for i 2 [k] we have:

2max(|x|, |�j(A)|)

|�i(A)� �j(A)|� kAk2gclmin

(n·)c/✏

 2max(|�i(A)|, |�j(A)|)

|�i(A)� �j(A)|� kAk2gclmin

(n·)c/✏

 2
|�i(A)��j(A)|

max(|�i(A)|,|�j(A)|) �
kAk2gclmin

max(|�i(A)|,|�j(A)|)(n·)c/✏

 2

gmin �
kAk2gclmin

max(|�i(A)|,|�j(A)|)(n·)c/✏

 4

gmin
.

Here, the second to last step follows from the definition of gmin and the last step follows from the
assumptions that max(|�i(A)|, |�j(A)|) � �k(A) � 2↵ � 2kAk2g(cl)/4min

(n·)c/4 (the first step follows from the

fact that i, j 2 [k]), which gives us kAk2gclmin

max(|�i(A)|,|�j(A)|)(n·)c/✏  kAk2g3cl/4min (n·)c/4
2(n·)c/✏  gmin

2 . Thus, we get
��� x��̃j(A)

�i(A)��̃j(A)

���  4
gmin

for j 2 [k] and |x|  �k(A).

Case 2. (j 2 {k + 1, . . . , l}): For k + 1  j  p and i 2 [k], we have |�̃j(A)|  |�j(A)|  |�i(A)|
where the first inequality follows from our assumption and the second from the fact that j � i. So,
|�i(A)� �̃j(A)| � |�i(A)|� |�̃j(A)| � |�i(A)|� |�j(A)| = �i(A)� �j(A). So, we get

�����
x� �̃j(A)

�i(A)� �̃j(A)

����� 
2max(|x|, |�̃j(A)|)
�i(A)� �j(A)

 2max(|�i(A)|, |�j(A)|)
�i(A)� �j(A)

 2

gmin
,

where in the second inequality we used the fact that |x|  |�i(A)| and |�̃j(A)|  |�j(A)| by
the minimax principle and the last step follows from the definition of gmin. So, we finally have��� x��̃j(A)

�i(A)��̃j(A)

���  2
gmin

for j 2 {k + 1, . . . , l}.

Combining the two cases above, we get
��� x��̃j(A)

�i(A)��̃j(A)

���  4
gmin

when |x|  �k(A). Thus, plugging

in the upper bound on each term of |pi(x)| , we get |pi(x)| < 23l

g2lmin
when |x|  �k(A) for i 2 [k].

Claim 4: We now prove the fourth claim of our theorem. For any i, j 2 [k], pj(�̃i(A)) = 0 for j 6= i
from the definition of pj(x). This gives the second part of the claim. We now prove the first part

43

of the claim. Observe that,

���pi(�̃i(A))
��� =

Y

j2[l],j 6=i

�����
�̃i(A)� �j(A)

�i(A)� �j(A)

�����
Y

j2[l],j 6=i

�����
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)

����� . (54)

We will bound each term in the product individually. First, observe that
�����
�̃i(A)� �i(A)

�i(A)� �j(A)

����� 
kAk2gclmin

(n · )c/✏|�i(A)� �j(A)|


kAk2gcl/2min

(n · )c/2✏
,

where the second step follows from bounding the numerator using fact that |�̃i(A) � �i(A)| 
kAk2gclmin

(n·)c/✏ for i 2 [k] and last step follows from the fact that for i, j 2 [k + 1] and i 6= j (and a large
enough c):

|�i(A)� �j(A)| � |�i(A)� �j(A)| � gminmax(�i(A),�j(A))

� gmin�k(A)

�
2kAk2g(c/4)+1

min

(n · )c/4

�
kAk2gcl/2min

(n · )c/2✏
. (55)

Thus, we get
�����
�̃i(A)� �j(A)

�i(A)� �j(A)
� 1

����� =

�����
�̃i(A)� �i(A)

�i(A)� �j(A)

�����

 kAk2gclmin

(n · )c/✏|�i(A)� �j(A)|


gcl/2min

(n · )c/2✏
. (56)

Next, we have
�����
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)
� 1

����� =

�����
�̃i(A)� �i(A)

�i(A)� �̃j(A)

�����

 kAk2gclmin

(n · )c/✏|�i(A)� �̃j(A)|

 kAk2gclmin

(n · )c/✏(|�i(A)� �j(A)|� kAk2gclmin

(n·)c/✏)

 1

nc/✏
g
cl/2
min

gclmin(n·)c/2✏
� 1

 2
gcl/2min

(n · )c/2✏
. (57)

44

In the second step above, we used the fact that |�i(A) � �̃i(A)|  kAk2gclmin

(n·)c/✏ for bounding the
numerator, in the third step we used triangle inequality for bounding the denominator and the
fourth step follows from the fact that |�i(A)� �j(A)| � kAk2gcl/2min

(n·)c/2✏ as described in (55). Thus, from
the bounds in (56) and (57) we have

�̃i(A)� �j(A)

�i(A)� �j(A)

!
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)

!
 (1 +

gcl/2min

(n · )c/2✏

!
)

· (1 + 2

gcl/2min

(n · )c/2✏

!
)

 1 + 3

gcl/2min

(n · )c/2✏

!

+ 2

✓
gclmin

(n · )c/✏

◆

 1 + 5

gcl/2min

(n · )c/2✏

!
, (58)

for a large enough c and also,

�̃i(A)� �j(A)

�i(A)� �j(A)

!
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)

!
�

1�

gcl/2min

(n · )c/2✏

!!

·

1� 2

gcl/2min

(n · )c/2✏

!!

�

1� 3

gcl/2min

(n · )c/2✏

!!
. (59)

Multiplying the upper bounds in (58) for each j 2 [l] together, we get

Y

j2[l],j 6=i

�̃i(A)� �j(A)

�i(A)� �j(A)

!
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)

!


1 + 5

gcl/2min

(n · )c/2✏

!!l

 1 +
lX

r=1

✓
l

r

◆
5

gcl/2min

(n · )c/2✏

!!r

 1 + 5l

gcl/2min

(n · )c/2✏�2

!

 1 +
5gcl/2min

(n · )(c/2✏)�3
, (60)

for a large enough c. In the last step above, we bounded l by n. In the third step above, we
bounded each term

�
l

r

�
(5(1/(n · ))c/2✏)r (for r 2 [l]) in the binomial expansion of (1 + 5

�
1

n·
�c/2✏

)l

45

as (a = (n · ) below)

✓
el

r

◆r

5

✓
1

a

◆c/2✏
!r



5l2
✓
1

a

◆c/2✏
!r


✓

5

ac/2✏�2

◆r

 5

ac/2✏�2
,

where in the first step we used the well-known upper bound on the binomial coefficient
�
l

r

�
 (el

r
)r

and in the final step, we used the fact that 5
(n·)c/2✏�2  1 for large c > 0. Similarly, multiplying the

lower bounds in (59) for each j 2 [l] together, we get

Y

j2[l],j 6=i

�̃i(A)� �j(A)

�i(A)� �j(A)

!
�̃i(A)� �̃j(A)

�i(A)� �̃j(A)

!
�

1�

3gcl/2min

(n · )c/2✏

!l

� 1 +
lX

r=1

✓
l

r

◆
(�1)r

3

gcl/2min

(n · )c/2✏

!!r

� 1�
3lgcl/2min

(n · )c/2✏�2

� 1�
3gcl/2min

(n · )(c/2✏)�3
, (61)

for large enough c. Thus, using the bounds in (60), (61) and (54), we get |pi(�̃i(A)) � 1| 
5g

cl/2
min

(n·)(c/2✏)�3  g
cl/2
min

(n·)(c/2✏)�4 . This proves the first property in claim 4.

We now define a Chebyshev Minimizing polynomial similar to the polynomial defined in Lemma
5 of [MM15].

Lemma 17 (Chebyshev Minimizing Polynomial). For values ⇠ > 0, gap � > 0, and some even
integer q � 1, there exists a polynomial g(x) of degree q such that:

1. g(x) = (1 + �)⇠ for |x| = (1 + �)⇠.

2. g(x) � |x| for all |x| � (1 + �)⇠.

3. g(x)  ⇠

2q log(1+�)�1 for x 2 [�⇠, ⇠].

Proof. We define the polynomial g(x) following the proof of Lemma 5 in [MM15]. Let

g(x) = (1 + �)⇠
Tq(x/⇠)

Tq(1 + �)
, (62)

where Tq(x) is a Chebyshev polynomial of degree q where q is even. Since the degree q is even,
we have Tq(x) = Tq(�x) and thus, g(x) = g(�x). The proofs of the first two properties follow the
proof of the first two properties of Lemma 5 of [MM15] exactly. To prove the third property, first
observe that using the property of Chebyshev polynomials that Tq(x)  1 for x 2 [�1, 1], we have
Tq(x/⇠)  1. So, it suffices to show that Tq(1+�) � 2q log(1+�)�1. Using equation 15 of [MM15] which
gives the expression for Tq(x) for |x| > 1, we have Tq(x) � 1

2(1 + �)q = 2q log(1+�)

2 = 2q log(1+�)�1.
This completes the proof of the third property.

46

We now define the polynomial r(x) in the lemma below.

Lemma 18. Consider the setting of Lemmas 16. Let c1, c2 > 0 be some constants. Let g(x) be a
degree q = O(l log(1

gmin
) + 1

✏
log(n

�
)) Chebyshev Minimizing polynomial as defined in Lemma 17 for

some q, with parameters ⇠ = ↵ and � = �k(A)
�l+1(A) � 1. Let

r(x) = 1� g(x)
kX

i=1

pi(x)

g(�i(A))
.

Then, with probability at least 1� �, we have:

1. r(x) = 0 for any x 2 {�1(A), . . . ,�k(A)}.

2. r(x) = 1 for any x 2 {�k+1(A), . . . ,�l(A)} and any x 2 {�̃k+1(A), . . . , �̃l(A)}.

3. |r(x)|  g
c1l
min

(n·)c1/✏ for any x 2 {�̃1(A), . . . , �̃k(A)}.

4. |r(x)� 1|  g
c2l
min

(n·)c2/✏ for |x|  �l+1(A).

Proof. First observe that, from Lemma 14, |�i(A)� �̃i(A)|  kAk2gclmin

(n·)c/✏ for i 2 [k] with probability
at least 1� �. Also note that � � 1 by the assumption that �k(A) � 2↵. We now prove the main
claims.

The first property follows directly from property 1 of Lemma 16. The second property follows
directly from property 2 of Lemma 16. We prove the third property below.

Claim 3: For the third property, observe that for any i, j 2 [k] and j 6= i, we have pj(�̃i(A)) = 0
from property 4 of Lemma 16, so we have

r(�̃i(A)) = 1� g(�̃i(A))
kX

j=1

pj(�̃i(A))

g(�i(A))
= 1� pi(�̃i(A))

g(�̃i(A))

g(�i(A))
. (63)

From property 4 of Lemma 16, we get that for any i 2 [k]:

|pi(�̃i(A))� 1| 
gcl/2min

(n · )c/2✏�4
. (64)

First observe that from definition of g(x) in (62) in Lemma 17, we have g(x)
g(y) = Tq(x/⇠)

Tq(y/⇠)
where

Tq(x) is the qth Chebyshev polynomial for some even q. Now, for any i 2 [k], |�i(A)| � |�k(A)| � 2↵

and so |�i(A)|
↵

� 2. From Lemma 14, we have that for any i 2 [k],

|�̃i(A)| � |�i(A)|� kAk2gclmin

(n · )c/✏

� |�k(A)|� kAk2gclmin

(n · )c/✏

� 2↵� kAk2gclmin

(n · )c/✏
. (65)

47

Now, ↵ � kAk2gc/4min

(n·)c/4 � kAk2gclmin

(n·)c/✏ . Thus, from (65), we get |�̃i(A)| � ↵. Thus, we also have |�̃i|
↵

� 1.
Also, since q is even we have Tq(x) = Tq(|x|). Thus, from (4) we have:

g(�̃i(A))

g(�i(A))
=

Tq(�̃i(A)/↵)

Tq(�i(A)/↵)
=

✓
�̃i(A)

↵
+
q
(�̃i(A)

↵
)2 � 1

◆q

+

✓
�̃i(A)

↵
�
q
(�̃i(A)

↵
)2 � 1

◆q

✓
�i(A)

↵
+
q
(�i(A)

↵
)2 � 1

◆q

+

✓
�i(A)

↵
�
q
(�i(A)

↵
)2 � 1

◆q . (66)

where �̃i(A) = |�̃i(A)|. We will first upper bound this ratio. Since �̃i(A)
↵

�
q
(�̃i(A)

↵
)2 � 1  1,

the numerator in (66) can be upper bounded as
✓

�̃i(A)
↵

+
q
(�̃i(A)

↵
)2 � 1

◆q

+ 1. Now, by the

minimax principle, we have �̃i(A)  �i(A). Thus, the denominator in (66) is lower bounded by✓
�i(A)

↵
+
q
(�i(A)

↵
)2 � 1

◆q

�
✓

�̃i(A)
↵

+
q
(�̃i(A)

↵
)2 � 1

◆q

. Using the upper bound on the numerator

and the lower bound on the denominator in (66), we get:

g(�̃i(A))

g(�i(A))


✓
�̃i(A)

↵
+
q
(�̃i(A)

↵
)2 � 1

◆q

+ 1
✓

�̃i(A)
↵

+
q

(�̃i(A)
↵

)2 � 1

◆q  1 +
1✓

�̃i(A)
↵

+
q
(�̃i(A)

↵
)2 � 1

◆q

 1 +
1

�
�̃i(A)

↵

�q . (67)

Observe that since ↵ � kAk2gc/4min

nc/4 , we have

kAk2gclmin

↵(n · )c/✏
 gclmin(n · )c/4

gc/4min(n · )c/✏


gcl/2min

(n · )c/2✏
. (68)

Dividing both sides of (65) by ↵ and using the fact g
cl/2
min

(n·)c/2✏  1
2 , we get:

�̃i(A)

↵
� 2� gclmin

↵(n · )c/✏
� 2� 1

2
� 3

2
.

Thus, using the bound above in (67), we get that:

g(�̃i(A))

g(�i(A))
 1 +

1
�
�̃i(A)

↵

�q  1 +
1

(3/2)q
 1 +

gc3lmin

(n · )c3/✏
, (69)

for some large constant c3 > 0. Here, in the lasts step, we used the fact that q = O(l log(1
gmin

) +
1
✏
log(n

�
)). We now lower bound g(�̃i(A))

g(�i(A)) .
First observe that the function x �

p
x2 � 1 is a decreasing function with respect to x. Thus,

we have
✓

�̃i(A)
↵

�
q

(�̃i(A)
↵

)2 � 1

◆
�
✓

�i(A)
↵

�
q
(�i(A)

↵
)2 � 1

◆
as �i(A)

↵
� �̃i(A)

↵
. This implies that

48

we have
✓
�̃i(A)

↵
�
r
(
�̃i(A)

↵
)2 � 1

◆✓
�i(A)

↵
+

r
(
�i(A)

↵
)2 � 1

◆

�
✓
�i(A)

↵
�
r

(
�i(A)

↵
)2 � 1

◆✓
�̃i(A)

↵
+

r
(
�̃i(A)

↵
)2 � 1

◆
.

So, from (66), we have:

g(�̃i(A))

g(�i(A))
�

✓
�̃i(A)

↵
+
q
(�̃i(A)

↵
)2 � 1

◆q

✓
�i(A)

↵
+
q
(�i(A)

↵
)2 � 1

◆q . (70)

Now, from Lemma 14 and using triangle inequality, we have �̃i(A) � �i(A) � g
cl
minkAk2
(n·)c/✏ for i 2 [k].

Dividing both sides by ↵, we get �̃i(A)
↵

� �i(A)
↵

� g
cl
minkAk2
↵(n·)c/✏ � �i(A)

↵
� g

cl/2
min

(n·)c/2✏ where in the last step

we used (68) to upper bound g
cl
minkAk2
↵(n·)c/✏ . So, using the lower bound on �̃i(A)

↵
in (70), we get:

g(�̃i(A))

g(�i(A))
�

✓
�i(A)

↵
� g

cl/2
min

(n·)c/2✏ +

r
(�i(A)

↵
� g

cl/2
min

(n·)c/2✏)
2 � 1

◆q

✓
�i(A)

↵
+
q
(�i(A)

↵
)2 � 1

◆q . (71)

Observe that we have
s

(
�i(A)

↵
�

gcl/2min

(n · )c/2✏
)2 � 1

=

s
�
(
�i(A)

↵
)2 � 1

�
�
�2gcl/2min�i(A)

(n · )c/2✏↵
�

gclmin

(n · )c/✏
�

�
r

(
�i(A)

↵
)2 � 1�

s
2gcl/2min�i(A)

(n · )c/2✏↵
�

gclmin

(n · )c/✏
,

from the fact that
p
a� b �

p
a �

p
b. Thus, using the lower bound on the numerator in (71) we

49

get:

g(�̃i(A))

g(�i(A))
�

0

BBB@
1�

✓
g
cl/2
min

(n·)c/2✏ +

r
2g

cl/2
min �i(A)

(n·)c/2✏↵ � gclmin

(n·)c/✏

◆

✓
�i(A)

↵
+
q
(�i(A)

↵
)2 � 1

◆

1

CCCA

q

�

0

BB@1�
2

r
2g

cl/2
min �i(A)

(n·)c/2✏↵
�i(A)

↵

1

CCA

q

=

0

@1� 2

s
2gcl/2min↵

(n · )c/2✏�i(A)

1

A
q

�

1�

2gcl/4min

(n · )c/4✏

!q

. (72)

The second step above follow from upper bounding the numerator of

✓
1

(n·)c/2✏
+

r
2�i(A)

(n·)c/✏↵
� 1

(n·)c/✏

◆

✓
�i(A)

↵ +
q

(
�i(A)

↵)2�1

◆

by 2
q

2�i(A)
(n·)c/✏↵ and its denominator by �i(A)

↵
. The final step follows from the fact that �i(A) � 2↵

for any i 2 [k]. Now, observe that we have:

1�

2gcl/4min

(n · )c/4✏

!q

= 1 +
qX

t=1

✓
q

t

◆
(�1)t(2gcl/4min/(n · )c/4✏)t

� 1�
qX

t=1

(eq/t)t(2gcl/4min/(n · )c/4✏)t

� 1�
qX

t=1

2eqgcl/4min

(n · )c/4✏

!t

� 1�
qX

t=1

gcl/4min

(n · )(c/4✏)�2

= 1�
qgcl/4min

(n · )(c/4✏)�2

� 1�
gcl/4min

(n · )(c/4✏)�3
. (73)

In the second step above, we upper bounded the binomial coefficients
�
q

t

�
by (eq/t)t. In the fourth

and final step above, we bounded q by n. In the fourth step, we also used the fact that 2eq
(n·)c/2✏ << 1

for large enough c. So, using the lower bound from (73) in (72), we get:

g(�̃i(A))

g(�i(A))
� 1�

gcl/4min

(n · )(c/4✏)�3
. (74)

50

Now, from the upper bounds on pi(�̃i(A)) and g(�̃i(A))
g(�i(A)) from (64) and (69) respectively, we get:

pi(�̃i(A))
g(�̃i(A))

g(�i(A))
 1 +

gc4lmin

(n · )c4/✏
,

for some large enough c4. Similarly, from the lower bounds on pi(�̃i(A)) and g(�̃i(A))
g(�i(A)) from (64)

and (74) respectively, we get:

pi(�̃i(A))
g(�̃i(A))

g(�i(A))
� 1�

gc5lmin

(n · )c5/✏
,

for some c5. Finally, using the upper and lower bounds on pi(�̃i(A))g(�̃i(A))
g(�i(A)) in (63), we get:

|r(�̃i(A))| =
����1� pi(�̃i(A))

g(�̃i(A))

g(�i(A))

���� 
gc8lmin

(n · )c8/✏
,

for some constant c8. This gives us the third claim.

Claim 4: For the fourth and final property, using property 3 for |pi(x)| from Lemma 16, we get
that for any |x|  �l+1(A),

|r(x)� 1| 
kX

i=1

|g(x)|
|g(�i(A))| |pi(x)| 

↵

↵2(Cl log(1/gmin)+
C
✏ log(n/�))

· 23l

g2lmin


gc9lmin

(n · )c9/✏
,

for some large constant c9 > 0. Here, in the second step, we also used property 2 of g(x) from
Lemma 17, i.e., g(�i(A)) � |�i(A)| � 2↵ for |�i(A)| � |�k(A)| � 2↵ for lower bounding bounding
the denominator, and property 3 for g(x) when |x|  �l+1(A)  ↵ which gives g(x)  ↵

2q log 2�1 from
Lemma 17 for upper bounding the numerator.

Definition 4.1 (Moment Matching Polynomial). Let ti(x) = T̄i(x)r(x) where T̄i(x) is the ith

normalized Chebyshev polynomial for i 2 [O(1/✏)] and r(x) is a degree O(l log(1
gmin

) + 1
✏
log((n·)

�
))

polynomial as defined in Lemma 18. Thus, ti(x) has degree O(l log(1
gmin

) + 1
✏
log(n·

�
)).

We run Lanczos with A as input for O(l log(1
gmin

) + 1
✏
log((n·))

�
)) iterations. We will now show

that the moments of the spectral density of A as well as the output of Algorithm 4 (SLQ) with
respect to ti(x) is approximately equal to the ith normalized Chebyshev moment of the SDE of A
and the output of SLQ respectively for all i 2 [O(1/✏)].

Lemma 19. Consider the setting of Lemma 18. Let A 2 Rn⇥n be such that kAk2 � 1 and
 = kAk2. Let k 2 [l] such that �k(A) � 1 and �k+1(A)  1. Let ti(x) = T̄i(x)r(x) for i 2 O(1

✏
) be

the polynomials in Definition 4.1. Let f(x) be the final output after running Algorithm 4 with A as
input for m = O(l log(1

gmin
) + 1

✏
log(n·

�
)) iterations for some ✏, � 2 (0, 1). Then, with probability at

least 1� �, for i 2 O(1
✏
), we have (for constant c1, c2 > 0)

����hti, sAi � 1

n

nX

j=k+1

T̄i(�j(A))

���� 
gc1lmin

(n · )c1/✏

51

and ����hti, fi �
mX

j=k+1

w2
j T̄i(�j(T))

���� 
gc2lmin

(n · )c2/✏
.

Proof. We have T = Q
T
AQ where T 2 Rm⇥m is the output of Algorithm 4 and Q is the or-

thonormal basis of the Krylov subspace generated by the Lanczos algorithm in 3. Note that the
nonzero eigenvalues of QQ

T
AQQ

T are the same as those of QT
AQ i.e. �i(T) = �i(QQ

T
AQQ

T)
for i 2 [m].

Moments of sA: We have:

hti, sAi = 1

n

nX

j=1

ti(�j(A))

=
1

n

kX

j=1

T̄i(�j(A))r(�j(A)) +
1

n

lX

j=k+1

T̄i(�j(A))r(�j(A)) +
1

n

nX

j=l+1

T̄i(�j(A))r(�j(A))

= 0 +
1

n

lX

j=k+1

T̄i(�j(A)) +
1

n

nX

j=l+1

T̄i(�j(A))r(�j(A)),

where the second step follows from the definition of ti(x) and sA(x) and the last step follows
from properties 1 and 2 of r(x) in lemma 18. Finally, by property 4 of r(x) in lemma 18, we have

r(�j(A)) = 1+ej such that |ej | 
g
c7l
min

(n·)c9/✏ for j 2 {l+1, . . . , n} and for some constant c9 > 0. Also,

note that |T̄j(�j(A)| 
q

2
⇡

for j 2 {l + 1, . . . , n} as |�j(A)|  |�l+1(A)| = 1 by our assumptions.
So, using triangle inequality we finally get

����hti, sAi � 1

n

nX

j=k+1

T̄i(�j(A))

���� 
1

n

nX

j=l+1

|T̄i(�j(A)||ej | 
gc9lmin

(n · )c9/✏
,

for some constant c9 > 0. This proves the first claim of the lemma. We now prove the second claim.

Moments of f : We have

hti, fi =
mX

j=1

w2
j ti(�j(T))

=
kX

j=1

w2
j T̄i(�j(T))r(�j(T)) +

lX

j=k+1

w2
j T̄i(�j(T))r(�j(T)) +

mX

j=l+1

w2
j T̄i(�j(T))r(�j(T))

=
kX

j=1

w2
j T̄i(�j(T))r(�j(T)) +

lX

j=k+1

w2
j T̄i(�j(T)) +

mX

j=l+1

w2
j T̄i(�j(T))r(�j(T)), (75)

where the last step follows from the properties of r(x) in Lemma 18.
Suppose |�j(T)| � 1 for some j 2 [k]. So, from (4), we get that Ti(�j(T)) can be written as

Ti(�j(T)) =
1

2

✓
|�j(T)|+

q
|�j(T)|2 � 1

◆i

+

✓
|�j(T)|�

q
|�j(T)|2 � 1

◆i�
 (2|�j(T)|)i.

52

Thus,

T̄i(�j(T)) 
r

2

⇡
(2|�j(T)|)i. (76)

Thus, for any j 2 [k], we have T̄i(�j(T)) 
q

2
⇡
max((2|�j(T)|)k, 1). We can also bound each w2

j
as

(wj)2 = (vT

i
e1)2  1 for all j 2 [m]. From property 3 of lemma 18, we have r(�j(T))  g

c6l
min

(n·)c6/✏ for
j 2 [k] and some constant c6. So, using the bounds on wj , r(�j(T)) and (76), for any j 2 [k] such
that that |�j(T)| � 1, we get:

|w2
j T̄i(�j(T))r(�j(T))| 

r
2

⇡
(2kAk2)i

✓
gc6lmin

(n · )c6/✏

◆


r

2

⇡
(2kAk2)c

0
/✏

✓
gc6lmin

(n · )c6/✏

◆


gc8lmin

(n · )c8/✏
, (77)

for a large enough constant c8, where we also use the facts that i  O(1
✏
) and  = kAk2 by

assumption. Similarly, |w2
j
T̄i(�j(T))r(�j(T))|  1 if |�j(T)|  1 for any j 2 [k]. From property 2 of

Lemma 18, we have r(�j(T)) = 1 for j 2 {k+1, . . . , l}. Also, since |�j(T)|  |�j(A)|  |�l+1(A)| =
1 for all j 2 {l + 1, . . . ,m}, from property 4 of Lemma 18, we again have r(�j(T)) = 1 + ej such

that |ej | 
g
c2l
min

(n·)c2/✏ for some constant c2 > 0. Also, note that we again have |T̄j(�j(T))|  1 for
j 2 {l + 1, . . . ,m}. So, we have

mX

j=l+1

w2
j T̄i(�j(T))r(�j(T)) =

mX

j=l+1

w2
j T̄i(�j(T)) +

mX

j=l+1

w2
j T̄i(�j(A)ej .

Finally, from (75), using (77) and the bound above (where |ej |  g
c2l
min

(n·)c2/✏) and using triangle
inequality we have that

|hti, fi �
mX

j=k+1

w2
j T̄i(�j(T))| 

kX

j=1

w2
j |T̄i(�j(A)||r(�j(T))|+

mX

j=l+1

w2
j |T̄i(�j(A)||ej |


gc10lmin

(n · )c10/✏
,

for some large constant c10 > 0. This proves the second claim. Note that everything above holds
with probability at least 1 � � after adjusting � by constant factors (as the bounds in Lemma 18
hold with probability at least 1� �).

We now bound the difference between the moments of sA and f with respect to the polynomials
ti(x) for each i 2 O(1/✏).

53

Lemma 20. Consider the setting of Lemma 19. Then, for n � ⌦(log(1/�)) and i 2 {0, 1, . . . , dC1
✏
e}

where C1 > 0 is some constant,

|hti, fi � hti, sAi|  C log(1/✏�)p
n

,

for some constant C > 0 with probability at least 1� �.

Proof. Observe that hti, fi =
P

m

j=1w
2
i
ti(�j(T)) =

P
m

j=1(e
T
1 vj)2ti(�j(T)) =P

m

j=1 e
T
1 vjv

T

j
e1ti(�j(T)) = e1(

P
m

j=1 ti(�j(T))vjv
T

j
)e1 = e

T
1 ti(�j(T))e1. From Lemma 19,

we have ti(x) = T̄i(x)r(x) for i 2 dC1
✏
e. Then, since r(x) is a polynomial of degree

C2(l log(
1

gmin
) + 1

✏
log((n·)

�
)) for some constant C2 > 0 and T̄i(x) has degree at most

C1
✏

, ti(x) = T̄i(x)r(x) has degree at most (C1 + C2)(l log(
1

gmin
) + 1

✏
log((n·)

�
)). Follow-

ing the proof of Lemma 10, as long as Algorithm 4 is run for m iterations such that
(C1 + C2)(l log(

1
gmin

) + 1
✏
log((n·)

�
))  m, we have hti, fi = g

T ti(A)g.
We also have hti, sAi = 1

n
tr(ti(A)). Thus, from Lemma 11, we have that (for a single repetition

of the hutchinson’s estimator and number), for each i 2 O(1/✏), with probability at least 1�O(�/✏),
for some constant C > 0:

|hti, fi � hti, sAi| = |gT ti(A)g � 1

n
tr(ti(A))|  C log(1/✏�)

n
kti(A)kF  C log(1/✏�)p

n
kti(A)k2.

Now, observe that for j 2 [k], from property 1 of Lemma 18, we get that ti(�j(A)) =
T̄i(�j(A))r(�j(A)) = 0. Also, recall that from the assumptions of Lemma 19, we have that
�k+1(A) = 1. Now, for j � k + 1, |ti(�j(A))| = |T̄i(�j(A))r(�j(A))|  2 where we use prop-
erty 2 of Lemma 18 and the fact that |T (x)|  1 for |x|  1. Thus, we have kti(A)k2 
maxj2{k+1,...,n} |ti(�j(A))|  2. So, we finally get:

|hti, fi � hti, sAi|  C log(1/✏�)p
n

.

Taking a union bound over all i 2 O(1/✏) completes the claim.

Next we bound the weights w2
i

in the distribution f , the output of SLQ. We will show that w2
i

for the top k weights is at most Õ(1/n). This will help us bound the Wasserstein error from the
spectral density of the large eigenvalues of T.

Lemma 21. Consider the setting of Lemma 19. Let wi = v
T

i
e1 be the weights in the output of

distribution of SLQ (Algorithm 4) where e1 2 Rm is the first standard basis vector and vi is the
ith eigenvector of Q

T
AQ. Then, for � 2 (0, 1) such that n � ⌦(log(1/�)), for all i 2 [k], with

probability at least 1� �, we have:

w2
i 

C
p
log(k/�)

n
,

where C > 0 is a large constant.

54

Proof. Let zi = Qvi where Q is the orthonormal basis of the Krylov subspace generated by the
Lanczos algorithm (Algorithm 3) after m iterations. Then, zi are the eigenvectors of QQ

T
AQQ

T .
Also, g = Qe1 or Q

T
g = e1. From Lemma 15, we have that for every i 2 [k], zi = ui + bi where

ui is the ith eigenvector of A and

kbik2 
gclmin

(n · )c/✏
,

for some constant c > 0, with probability at least 1��. Also, we have wi = v
T

i
e1 = (Qvi)T (Qe1) =

z
T

i
g = (ui + bi)Tg = u

T

i
g + b

T

i
g. w2

i
= (uT

i
g)2 + (bT

i
g)2 + 2(uT

i
g)(bT

i
g)

Since g is sampled from a uniform distribution on the unit sphere, g d
:= yiqPn

j=1 y
2
j

where y 2 Rn

is a random vector such that yi ⇠ N (0, 1) for i 2 [n]. So, we have:

w2
i = (uT

i g)
2 + (bT

i g)
2 + 2(uT

i g)(b
T

i g)

d
=

(
P

n

j=1 uijyj)2P
n

r=1 y
2
r

+
(
P

n

j=1 bijyj)2P
n

r=1 y
2
r

+ 2
(
P

n

j=1 uijyj)(
P

n

j=1 bijyj)P
n

r=1 y
2
r

. (78)

We will now bound
P

n

r=1 y
2
r ,
P

n

j=1 uijyj and
P

n

j=1 bijyj individually. Note that
P

n

r=1 y
2
r is a

Chi-squared random variable with n degrees of freedom. Then, using well-known tail bounds for
Chi-squared variables (see 2.21 [Wai19b]) we have that with probability at least 1� �, |

P
n

r=1 y
2
r �

n|  2
q

2n log 2
�
. This gives us

P
n

r=1 y
2
r � n

2 (for � 2 (⌦(1/en), 1)). Next, observe that since
u
T
i
y =

P
n

j=1 bijyj is a linear combination of N (0, 1) random variables and kuk2 = 1, u
T
i
y is

another N (0, 1) random variable. So, (uT
i
y)2 is a Chi-squared random variable and using the

Chi-squared tail bound again, we have (uT

i
y)2  1 + 2

q
2 log 2

�
 3

q
2 log 2

�
with probability at

least 1 � �. So, we have (
Pn

j=1 uijyj)2Pn
r=1 y

2
r

 6
p

2 log(2/�)
n

with probability at least 1 � 2�. Next, using

Cauchy Schwartz inequality,
P

n

j=1 bijyj  kbijk2kyk2. So, (
Pn

j=1 bijyj)2Pn
r=1 y

2
r

 kbik22  g
2cl
min

(n·)2c/✏ . Also,

2
(
Pn

j=1 uijyj)(
Pn

j=1 bijyj)Pn
r=1 y

2
r

 2kbik2 
2gclmin

(n·)c/✏ . So, taking a union bound over all these events from (78)
for all i 2 [k], and adjusting � by a factor of 2k, we get that with probability at least 1� �, for every
i 2 [k]:

w2
i 

6
p

2 log(2k/�)

n
+

3gclmin

(n · )c/✏
 O

 p
log(k/�)

n

!
.

We are now ready to prove our final theorem in this section which bounds the Wasserstein-1
error between sA and f . Let ↵ = max(�l+1(A),

kAk2gc/4min

nc/4) for some constant c > 0. We will now
consider two cases in the proof: when there exists some k 2 [l] such that �k(A) is at least a constant
multiplicative factor larger than ↵ and when there isn’t any such k. When there is such a k, we will
use the bounds from Section 4.2 and Lemma 21 to show that the Wasserstein-1 error of the parts of
sA and f defined by the large magnitude eigenvalues of A and T is at most Õ(lkAk2/n) Then, we
will use Lemma 19 to show that the Chebyshev moments of the spectral density defined by the small
magnitude eigenvalues ( �k+1(A)) of A and T are approximately equal. So, the Wasserstein-1
error of the parts of sA and f defined by the small eigenvalues is bounded by ✏�k+1(A). When

55

there isn’t such a k, all singular values of A are small (< 2↵), and we can use the bounds using
moment matching in Section 4.1 to bound the error by ✏↵ in this case. Before proving the theorem,
we state a couple of results which we will use in our proof. We first state a result from [BKM22] on
uniform approximation of Lipschitz continuous functions by a Chebyshev series:

Fact 2 (Fact 3.2 of [BKM22]). Let f : [�1, 1] ! R be a Lipschitz continuous function with Lipschitz
constant � > 0. Then, for every N 2 4N+, there exists N +1 constants 0  bN < . . . < b0 = 1 such
that the polynomial f̄N =

P
N

k=0 bkhf, w·T̄kiT̄k has the property that maxx2[�1,1] |f(x)�f̄N (x)|  18�
N

.

We now state another result from [BKM22] bounding the magnitude of the inner-product of a
Lipschitz function f with the k-th normalized Chebyshev polynomial T̄k:

Fact 3 (Fact 3.3 of [BKM22]). Let f : [�1, 1] ! R be a Lipschitz continuous function with Lipschitz
constant � > 0. Then, for any k � 0, we have that |f, w · T̄k| = |

R 1
�1 f(x)T̄k(x)w(x)dx|  2�

k
.

Theorem 3. Let A 2 Rn⇥n be symmetric and consider any l 2 [n] and ✏, � 2 (0, 1). Let gmin =

mini2[l]
�i(A)��i+1(A)

�i(A) and  = kAk2
2↵ . Let ↵ = max

✓
�l+1(A),

kAk2gc/4min

nc/4

◆
for some constant c > 0.

Algorithm 4 (SLQ) run for m = O(l log 1
gmin

+ 1
✏
log n·

�
) iterations performs m matrix vector products

with A and outputs a probability density function f such that, with probability at least 1� �, for a
fixed constant C,

W1(sA, f)  ✏ · �l+1(A) +
C log(n/✏) log(1/✏)p

n
· �l+1(A) +

Cl log(1/✏)
p
log(l/�)

n
kAk2.

Proof. We will prove the theorem for two complementary cases and analyze them separately below:

Case 1: Let there be some k 2 [l] such that �k(A) � 2↵ and �k+1(A) < 2↵. Assume that we run
SLQ (Algorithm 4) with input B = 1

2↵A instead of A for m = O(l log 1
gmin

+ 1
✏
log (n·)

�
) iterations.

The output of Lanczos (Algorithm 3) will be the scaled tridiagonal matrix T1 = 1
2↵T after m

iterations. Observe that B satisfies all the conditions of Lemma 19 since �k(B) = �k(A)
2↵ � 1,

�k+1(B)  1, kBk2 = kAk2
2↵ � 1 and B = kBk2.

Let the output of Algorithm 4 with B as input be fB(x) =
P

m

j=1w
2
j
�(x � �j(T1)) =

P
m

j=1w
2
j
�
⇣
x� �j(T)

�l+1(A)

⌘
= f

⇣
x

�l+1(A)

⌘
where wj = v

T

j
e1 (recall that vj is the eigenvector of T cor-

responding to �j(T)). Also, the spectral density of B is given by sB(x) =
1
n

P
m

j=1 �(x� �j(T1)) =
1
m

P
m

j=1 �(x� �j(T)
�l+1(A)) = sA

⇣
x

�l+1(A)

⌘
. Thus, we must have:

W1(s, f)  2↵ ·W1(sB, fB). (79)

Let L = kBk2 = 1
2↵kAk2. Then, the spectrum of both B and T1 are in [�L,L] (as |�i(T1)|  |�i(B)|

56

for all i 2 [m] by the minimax principle). So, we have:

W1(sB, fB) = sup
h21-Lip

Z
L

�L

h(x) (sB(x)� fB(x)) dx

=

Z
L

�L

h⇤(x)

1

n

nX

i=1

�(x� �i(B))�
mX

i=1

w2
i �(x� �i(T1))

!
dx

=

Z
L

�L

h⇤(x)

1

n

kX

i=1

�(x� �i(B))�
kX

i=1

w2
i �(x� �i(T1))

!
dx

| {z }
I1

+

Z
L

�L

h⇤(x)

1

n

nX

i=k+1

�(x� �i(B))�
mX

i=k+1

w2
i �(x� �i(T1))

!
dx

| {z }
I2

. (80)

Here, h⇤(x) is a 1-Lipschitz function that maximizes the integral for computing the Wasserstein
distance. We will bound I1 and I2 separately.

Note that �i(B)  �k+1(B)  1 for i 2 {k + 1, . . . , n} and �i(T1)  �i(B)  1 for i 2 {k +
1, . . . ,m} by the minimax principle. So, the support of 1

n

P
n

i=k+1 �(x��i(B)) and
P

m

i=k+1w
2
i
�(x�

�i(T1) is in [�1, 1] and we can write I2 as follows:

I2 =

Z 1

�1
h⇤(x)

1

n

nX

i=k+1

�(x� �i(B))�
mX

i=k+1

w2
i �(x� �i(T1))

!
dx =

Z 1

�1
h⇤(x) (r1(x)� r2(x))) dx,

where r1(x) =
P

n

i=k+1
1
n
�(x� �i(B)) and r2(x) =

P
m

i=k+1w
2
i
�(x� �i(T1)).

Let N = O(1/✏). We will now bound this by following the Chebyshev moment matching proof
of Lemma 3.1 in [BKM22] where we match N normalized Chebyshev moments of r1(x) and r2(x).
Let h̄N (x) =

P
N

i=0 bihh⇤, w.T̄iiT̄i (where w(x) = 1p
1�x2) be the function from Fact 2 for constants

0  bN . . .  b0 = 1 such that maxx2[�1,1] |h⇤(x) � h̄N (x)|  18
N

. Then, using triangle inequality,
the integral can be upper bounded:

I2 
Z 1

�1
|h⇤(x)� h̄N (x)|(r1(x)� r2(x))dx

| {z }
t1

+

Z 1

�1
h̄N (x)(r1(x)� r2(x))dx

| {z }
t2

. (81)

Since maxx2[�1,1] |h⇤(x)� h̄N (x)|  18
N

,
R 1
�1 r1(x) =

n�k

n
and

R 1
�1 r2(x) =

P
m

i=k+1w
2
i
, we have

t1 
18

N

n� k

n
+

mX

i=k+1

w2
i

!
 36

N
,

where we used the fact that
P

m

i=k+1w
2
i

 1. Next, we bound t2 using the Chebyshev series
expansion of h̄N (x). First note that r1(x)� r2(x) 2 [�1, 1] and so its Chebsyshev series expansion

57

is
P1

i=0hr1 � r2, T̄iiT̄i. This gives us:

t2 =

Z 1

�1
h̄N (x)w(x)

r1(x)� r2(x)

w(x)
dx =

Z 1

�1
h̄N (x)w(x) ·

1X

i=0

hr1 � r2, T̄iiT̄idx

=

Z 1

�1
w(x)

NX

i=0

bihh⇤, w.T̄iiT̄i

! 1X

i=0

hr1 � r2, T̄iiT̄i

!
dx.

By the orthogonality of Chebyshev polynomials under weight w(x) and since hT̄k, wT̄ki = 1 for
k 2 [N], we can bound t2 as:

t2 
NX

i=0

hh⇤, w.T̄ii · (hr1, T̄ii � hr2, T̄ii)

 hh⇤, w.T̄0i · (hr1, T̄0i � hr2, T̄0i) +
NX

i=1

|hh⇤, w.T̄ii| · |hr1, T̄ii � hr2, T̄ii|

 hh⇤, w.T̄0ip
⇡

·

0

@n� k

n
�

mX

j=k+1

w2
j

1

A+
NX

i=1

2

i
· |hr1, T̄ii � hr2, T̄ii|

 hh⇤, w.T̄0ip
⇡

·

0

@n� k

n
�

mX

j=k+1

w2
j

1

A+
NX

i=1

2

i
·
����
1

n

nX

j=k+1

T̄i(�j(B))�
mX

j=k+1

w2
j T̄i(�j(T1))

����, (82)

where for the first step, we used the fact that b̂N (i)

b̂N (0)
 1, and

R 1
�1hr1 � r2, T̄ii = hr1, T̄ii � hr2, T̄ii for

i 2 [N]. For the second step, we bound the sum from 1 to N by its absolute value. For the third
inequality, we used the fact that T̄o(x) =

1p
⇡

and so hr1, T̄0i = n�k

n
p
⇡

and hr2, T̄0i =
Pm

j=k+1 w
2
jp

⇡
for the

first term and use Fact 3 which gives us |hh⇤, w.T̄ii|  2
i

for i 2 [N] for the second term. For the
final step, we replace hr1, T̄ii and hr2, T̄ii by evaluating the integrals. Let ti(x) be the polynomial
defined in Lemma 19. Then, using triangle inequality, for constants c9, c10 > 0 and C > 0, we get
for any i 2 [N]:
����
1

n

nX

j=k+1

T̄i(�j(B))�
mX

j=k+1

w2
j T̄i(�j(T1))

���� 
����
1

n

nX

j=k+1

T̄i(�j(B))� hti, sBi
����

+

����
mX

j=k+1

w2
j T̄i(�j(T1))� hti, fBi

����+
����hti, fBi � hti, sBi

����


gc9lmin

(n · )c9/✏
+

gc10lmin

(n · )c10/✏

+
C log(N/�)p

n
. (83)

To bound
����hti, fBi�hti, sBi

����, the final step uses Lemma 20 and the fact that B = kBk2 = kAk2
2↵ = .

Putting together the bounds on t1 and t2 from (82) and (83), and bounding
P

N

i=1
2
i
 logN , we

58

get from (81) (for some constant c11):

I2 
36

N
+

hh⇤, w.T̄0ip
⇡

·

0

@n� k

n
�

mX

j=k+1

w2
j

1

A+
2gc11lmin logN

(n · )c11/✏
+

C log(N/�) logNp
n

. (84)

We now bound I1. We have the following:

I1 =

Z
L

�L

h⇤(x)

1

n

kX

i=1

�(x� �i(B))�
kX

i=1

w2
i �(x� �i(T1))

!
dx

=
k

n

Z
L

�L

h⇤(x)

1

k

kX

i=1

�(x� �i(B))� 1

k

kX

i=1

�(x)

!
dx

+
kX

j=1

w2
j

Z
L

�L

h⇤(x)

 P
k

i=1w
2
i
�(x)

P
k

j=1w
2
j

�
P

k

i=1w
2
i
�(x� �i(T1))P
k

j=1w
2
j

!
dx

+

Z
L

�L

h⇤(x)

1

n

kX

i=1

�(x)�
kX

i=1

w2
i �(x)

!
dx. (85)

We now bound the three terms above. First observe that 1
k

P
k

i=1 �(x� �i(B)) and 1
k

P
k

i=1 �(x) are
density functions of distributions (defined by dirac deltas at �1(B), . . . ,�k(B) with weights 1

n
and at

0 with weight 1 respectively). So, suph21�Lip
R
L

�L
h⇤(x)

⇣
1
k

P
k

i=1 �(x� �i(B))� 1
k

P
k

i=1 �(x)
⌘

is the
Wasserstein-1 distance between the distributions. Using the Earth mover’s distance interpretation
of Wasserstein-1 distance, we have:
Z

L

�L

h⇤(x)

1

k

kX

i=1

�(x� �i(B))� 1

k

kX

i=1

�(x)

!
 sup

h21�Lip

Z
L

�L

h(x)

1

k

kX

i=1

�(x� �i(B))� 1

k

kX

i=1

�(x)

!


P

k

i=1 |�i(B)|
k

 kBk2.

Similarly, by interpreting
Pk

i=1 w
2
i �(x)Pk

j=1 w
2
j

and
Pk

i=1 w
2
i �(x��i(T1))Pk
j=1 w

2
j

as probability densities and using the
earth mover’s distance interpretation of Wasserstein-1 distance we have:

Z
L

�L

h⇤(x)

 P
k

i=1w
2
i
�(x)

P
k

j=1w
2
j

�
P

k

i=1w
2
i
�(x� �i(T1))P
k

j=1w
2
j

!
dx 

kX

i=1

w2
i
|�i(T1)|P
k

j=1w
2
j


kX

i=1

w2
i
kT1k2P
k

j=1w
2
j

.

Finally, to bound
R
L

�L
h⇤(x)

⇣
1
n

P
k

i=1 �(x)�
P

k

i=1w
2
i
�(x)

⌘
dx, we again use the proof technique

outlined in Lemma 3.1 of [BKM22] and for bounding I2 here. Observe that similar to (81) we have:
Z

L

�L

h⇤(x)

1

n

kX

i=1

�(x)�
kX

i=1

w2
i �(x)

!
dx


Z 1

�1
(h⇤(x)� h̄N (x))

1

n

kX

i=1

�(x)�
kX

i=1

w2
i �(x)

!
dx

| {z }
t1

+

Z 1

�1
h̄N (x)

1

n

kX

i=1

�(x)�
kX

i=1

w2
i �(x)

!
dx

| {z }
t2

.

59

We can bound t1 and t2 the same way as in the case of I2 to get t1  36
N

and (similar to (82))

t2 
hh⇤, w · T̄oip

⇡

0

@k

n
�

kX

j=1

w2
j

1

A+
NX

i=1

2

i
·
����
1

n

kX

j=1

T̄i(0)�
kX

j=1

w2
j T̄i(0)

����

 hh⇤, w · T̄oip
⇡

0

@k

n
�

kX

j=1

w2
j

1

A+
NX

i=1

2

i

����
k

n
�

kX

j=1

w2
j

����.

From Lemma 21, we have
P

k

j=1w
2
j
 Ck

p
log 2/�
n

for some large C > 0. So, using the upper bounds
on all the terms on the right hand side of (85) (and using the fact that kT1k2  kBk2), we get that:

I1 
k

n
kBk2 + (

kX

i=1

w2
i)kT1k2 +

hh⇤, w · T̄oip
⇡

0

@k

n
�

kX

j=1

w2
j

1

A+
NX

i=1

2

i

����
k

n
�

kX

j=1

w2
j

����


k(1 + C

p
log k/�)

n
kBk2 +

hh⇤, w · T̄oip
⇡

0

@k

n
�

kX

j=1

w2
j

1

A+
3Ck logN

p
log k/�

n
, (86)

where in the last step we used triangle inequality to bound the final term. Finally, using the bounds
on I1 and I2 from (86) and (84) respectively in (80) (and using the fact that

P
m

j=1w
2
j
= 1), we get

that:

W1(sB, fB) 
36

N
+

k(1 + 4C logN
p

log k/�)

n
kBk2 +

2gc11lmin logN

(n · )c11/✏
+

C log(N/�) logNp
n

 36

N
+

5Ck logN
p

log k/�

n
kBk2 +

2C log(N/�) logNp
n

,

where we also use the fact that the constant c11 can be chosen to be large enough so that the third
term in the first inequality can be made small enough. Recall that we set N = O(1

✏
). From (79),

we also have W1(s, f)  2↵W1(sB, fB). Thus, we finally get (using the fact B = A
2↵):

W1(s, f)  72✏↵+
5Ck log(1/✏)

p
log k/�

n
kAk2 +

4C log(1/✏�) log(1/✏)↵p
n


5Cl log(1/✏)

p
log(k/�)

n
kAk2 +

✓
72✏+

4C log(1/✏�) log(1/✏)p
n

◆
�l+1(A)


5Cl log(1/✏)

p
log(l/�)

n
kAk2 +

✓
72✏+

4C log(1/✏�) log(1/✏)p
n

◆
�l+1(A).

where we also used the fact that 2↵ < 2�l+1(A) +
2kAk2gc/4min

nc/4 and k  l. Also note that the term
⇣
72✏+ 4C log(1/✏�) log(1/✏)p

n

⌘
2kAk2gc/4min

nc/4 <
Cl log(1/✏)

p
log(l/�)

n
kAk2 for a large c and hence is absorbed

into that term by making the constant C larger. We get the final bound by adjusting ✏ by constant
factors. This concludes the case when such a k exists.

Case 2: Now, when such a k doesn’t exist, i.e. we have kAk2  2↵ < 2�l+1(A) +
2kAk2gc/4min

nc/4 ,
from Theorem 10 we directly get error W1(sA, f)  2✏↵ + C log(1/✏�) log(1/✏)p

n
2↵  ✏�l+1(A) +

2C log(1/✏�) log(1/✏)p
n

�l+1(A) + CkAk2
n

after adjusting ✏ by constants.

60

Finally, observe that the condition n � ⌦(log(1/�)) in Lemmas 19 and 12 must always be
satisfied if we want a non-trivial ( n) number of matrix vector products with A. Adjusting � by
some constant factors gives us the final bound.

4.4 Variance reduced SLQ

We introduce our variant of SLQ with better error guarantees here. The algorithm, which we call
the Variance reduced SLQ is described in Algorithm 5. The main difference between this algorithm
and Algorithm 4 is that here, we set the weights w2

i
corresponding to the converged large magnitude

eigenvalues of T (the output of Lanczos) to 1
n

(and adjust the remaining weights so that the square
of the weights sum to one). This is described in lines 4-9 of Algorithm 3. From Lemma 14, we
know that in the presence of a constant multiplicative gap between �k(A) and �l+1(A), the top k
eigenvalues of T will approximately be equal to those of A. Hence the correct weights corresponding
to these eigenvalues must be 1

n
. This lets us avoid the Õ(l

n
kAk2) error SLQ was incurring on the

large magnitude eigenvalues. However, we do not actually know the value of k or even if there exists
such a k 2 [l] with a constant multiplicative gap. Hence, we check two convergence conditions for
each of the top l indices which will always be true for the top k  l eigenvectors of T (the output
of Lanczos) and corresponding weights (vT

j
e1)2 if such a k 2 [l] exists.

The two convergence conditions to find the indices for which we set the weights to 1
n

are given in
line 5 of Algorithm 5. The first condition (kAQvj � �j(T)Qvjk2  kAk2

n�/✏) checks if an eigenvector
vj of T (and its corresponding eigenvalue) is also approximately an eigenvector and eigenvalue of
A. Note that from Lemma 15 this condition will always be true for the top k eigenvalues and
eigenvectors of T as long as there is at least a constant multiplicative factor gap between �k(A)
and �l+1(A). This helps us set the correct weights of 1

n
for the top k eigenvalues. However, there

might be some eigenvectors of T outside of the top k indices for which this condition is also true.
Unfortunately, we can’t guarantee that the corresponding eigenvalues of T outside of the top k

have converged to an eigenvalue of A. The second condition ((v2
j
e1)2 

p
log(l/�)
n

) ensures that in
case this happens, we don’t incur too much error by correcting the weights to 1

n
. Note that from

Lemma 21, this condition will also be true for the top k weights of the SLQ distribution as long
as there is at least a constant multiplicative factor gap between �k(A) and �l+1(A). But in case
there is spurious convergence of an eigenvector of T without the corresponding eigenvalue of T

converging to an eigenvalue of A, this condition essentially bound the error we incur by correcting
the weights by

p
log(l/�)
n

. Also, since the corresponding eigenvalue of A (and T) is at most �k+1(A),
the total error we incur by incorrectly setting weights for these spurious eigenvectors is at most
Õ(l�k+1(A)

n
)  Õ(l�l+1(A)

n
) as opposed to Õ(lkAk2

n
) as the magnitude of these eigenvalues will always

be less than �k+1(A)  O(�l+1(A)).
We now analyze the algorithm below. The proof is similar to that of Theorem 3 except now,

we use the Backward Perturbation Bound (Lemma 7) to first show that there exists some matrix
with the same converged eigenvalues and eigenvectors of A and which is spectrally close to A (as
we had done in the proof of Theorem 1). This helps us bound the error incurred on the converged
eigenvectors. For bounding the Wasserstein error of the spectral density corresponding to the
eigenvalues with non-converged eigenvectors (which will also have small magnitude), we use the
moment matching analysis of Theorem 3 again.

61

Algorithm 5 Variance reduced Stochastic Lanczos Quadrature
Input: Symmetric A 2 Rn⇥n, number of iterations m( n), convergence parameters l 2 [n],

�, C > 0.6
1: Sample g ⇠ U(Sn�1).
2: Run Lanczos (Algorithm 3) on A,g for m steps to compute symmetric tridiagonal matrix T 2

Rm⇥m and orthonormal basis Q 2 Rn⇥m such that T = Q
T
AQ [GM09]. Let the eigenvectors

of T be v1, . . . ,vm.
3: Set S = {}
4: for j = 1, . . . , l do

5: if kAQvj � �j(T)Qvjk2  kAk2
n� and (vT

j
e1)2 

C

p
log(l/�)
n

7
then

6: S = S [{j}
7: end if

8: end for

9: Set f(x) =
P

j2S
1
n
�(x� �j(T)) +

✓
1� |S|

nP
i2[m]\S w2

i

◆P
j2[m]\S w2

j
�(x� �j(T)), where wj = v

T
j
e1.

10: return f(x).

Theorem 4. Let A 2 Rn⇥n be symmetric and consider any l 2 [n] and ✏, � 2 (0, 1). Let gmin =

mini2[l]
�i(A)��i+1(A)

�i(A) and  = kAk2
2↵ . Let ↵ = max

✓
�l+1(A),

kAk2gc/4min

nc/4

◆
for some constant c > 0.

Algorithm 5 run for m = O(l log 1
gmin

+ log(n·)
✏

) iterations, performs m matrix vector products with
A and outputs a distribution f such that, with probability at least 1 � �, for large fixed constants
C > 0 and c2 > 0,

W1(sA, f)  ✏ · �l+1(A) +

C log(n/✏) log(1/✏)p

n
+

Cl log(1/✏)
p
log(l/�)

n

!
· �l+1(A) +

kAk2
nc2

.

Proof. Throughout the proof, for ease of writing, we will abuse notation slightly and assume that
the first convergence condition in line 5 of Algorithm 5 is given by kAQvj��j(T)Qvjk2  kAk2

n�/✏ i.e.
the first parameter is �/✏ instead of just �. Let k 2 [l] be such that �k(A) � 2↵ and �k+1(A) < 2↵.
We will again consider two cases as in Theorem 3, i.e. when such a k exists and when it doesn’t.

Case 1: We first consider the case when such a k exists. In this case, similar to proof of case 1 of
Theorem 10, let B = 1

2↵A and let T1 =
1
2↵T where T1 is the output of running Lanczos with B as

input. Then, as in (79), we have:

W1(sA, f)  2↵W1(sB, fB), (87)

where sB(x) =
P

m

j=1
1
m
�(x � �i(B)) and fB(x) =

P
j2S

1
n
�(x � �j(T1) +✓

1� |S|
nP

i2[m]\S w2
i

◆P
j2[m]\S w2

j
�(x � �j(T1)), where wj = v

T
j
e1 for each j 2 [m] and S is the

set of indices containing the converged eigenvectors as defined in Algorithm 5. Let VS 2 Rm⇥|S|

contain the set of all eigenvectors vi of T1 such that i 2 S. Let ZS = QVS where Q is the
6
refer to Theorem 4 for instructions on setting these parameters.

7
� 2 (0, 1) is the failure probability.

62

orthonormal basis of the Krylov subspace generated by the Lanczos algorithm (Algorithm 3).
Then, kBZS � ZS⇤̃kF =

qP
i2S kBQvi � �i(A)Qvik22  kBk2

n(��1)/✏ where ⇤̃ is a matrix with the
eigenvalues of T1 corresponding to the eigenvectors of VS on its diagonal and zeros everywhere
else. Then, using the backwards error bound (Lemma 7) we get that there exists a matrix C such
that CZS = ZS⇤̃ and kB � Ck2  2kBk2

n(��1)/✏ . Using Weyls’ inequality (Fact 1), we get that for all
i 2 [n]

|�i(B)� �i(C)|  2kBk2
n(��1)/✏

. (88)

Then, 1
n

P
n

i=1 |�i(B)� �i(C)|  2kBk2
n(��1)/✏ which implies that

W1(sB, sC) 
2kBk2
n(��1)/✏

. (89)

where sC(x) is the spectral density function of C. Let S1 ✓ [n] such |S1| = |S| and for every
j 2 S1, there exists an i 2 S such that �j(C) = �i(T1). We know such a set S1 must exist as ⇤̃ are
eigenvalues of C. Let L = max(kCk2, kBk2). Then we have:

W1(sC, fB) = sup
h21�Lip

Z
L

�L

h(x)(sC(x)� fB(x))dx

=

Z
L

�L

h⇤(x)

✓
1

n

nX

i=1

�(x� �i(C))�
X

j2S

1

n
�(x� �j(T1)

�
✓

1� |S|
nP

i2[m]\S w2
i

◆ X

j2[m]\S

w2
j �(x� �j(T1))

◆
dx

=
|S|
n

Z
L

�L

h⇤(x)

✓
1

|S|
X

i2S1

�(x� �i(C))� 1

|S|
X

i2S
�(x� �i(T1))

◆
dx

| {z }
I1

+
n� |S|

n

Z
L

�L

h⇤(x)

✓
1

n� |S|
X

i2[n]\S1

�(x� �i(C))� 1P
j2[m]\S w2

j

X

i2[m]\S

w2
i �(x� �i(T1))

◆
dx

| {z }
I2

.

(90)

Here, in the second step, h⇤(x) is the function that maximizes the integral in the first step. By
definition of the set S1 we have I1 = 0. Now we bound I2. Let s1(x) = 1

n�|S|
P

i2[n]\S1
�(x��i(C)),

s2(x) = 1
n�|S|

P
i2[n]\S1

�(x � �i(B)) and f1(x) = 1P
j2[m]\S w2

j

P
i2[m]\S w2

i
�(x � �i(T1) be three

density functions. Using triangle inequality, and the fact that h⇤(x) is a 1-Lipschitz function, we
have:

I2 =
n� |S|

n

Z
L

�L

h⇤(x)(s1(x)� f1(x))dx

 n� |S|
n

W1(s1, f1) 
n� |S|

n

�
W1(s1, s2) + W1(s2, f1)

�
. (91)

63

Using (88) and the earth movers’ interpretation of the 1-Wasserstein distance, we can bound
W1(s1, s2) as

W1(s1, s2) 
1

n� |S|
X

i2[n]\S1

|�i(C)� �i(B)|  2kBk2
n(��1)/✏

. (92)

We now bound W1(s2, f1). Let zi = Qvi. Recall that vi are eigenvectors of QT
BQ for eigenvalues

�i(QT
BQ), zi are the eigenvectors of QQ

T
BQQ

T corresponding to eigenvalues �i(QT
BQ) =

�i(QQ
T
BQQ

T). From Lemma 15, we have that for every i 2 [k], either kzi � uik2 
g
cl/4
min

(n·)c/2✏�1 or

kzi + uik2 
g
cl/4
min

(n·)c/2✏�1 . From Lemma 14, we have that for i 2 [k] ,

|�i(B)� �i(QQ
T
BQQ

T)|  gclminkBk2
(n · )c/✏

.

Let us assume we have kzi � uik2  g
cl/4
min

(n·)c/2✏�1 for some i 2 [k]. Using triangle inequality and
spectral submultiplicativity, we get that for i 2 [k]:

kBzi � �i(Q
T
BQ)zik  kB(zi � ui)k2 + kBui � �i(Q

T
BQ)uik2 + k�i(Q

T
BQ)(ui � zi)k2


gcl/4minkBk2
(n · )c/2✏�1

+ k(�i(B)� �i(QQ
T
BQQ

T))uik2 +
gcl/4minkBk2
(n · )c/2✏�1


3gcl/4minkBk2
(n · )c/2✏�3

.

For the second step, we also used the fact that �i(QQ
T
BQQ

T) = �i(QT
BQ). We can similarly

prove that kBzi � �i(QQ
T
BQQ

T)zik  3g
cl/4
min kBk2

(n·)c/2✏�3 when kzi + uik2  g
cl/4
min

(n·)c/2✏�1 . Moreover, from

Lemma 21, for any i 2 [k], we have w2
i
= (vT

i
e1)2  C

p
log(k/�)
n

 C

p
log(l/�)
n

for some constant
C > 0. Thus, if we set the constants �, C1 in Algorithm 5 such that �  c

2 � 3✏, and C1 � C, then
v1, . . .vk must satisfy the conditions in line 5 that kBQvj � �j(T1)Qvjk2  kBk2

n�/✏ and (vT

j
e1)2 

C1

p
log(l/�)
n

, i.e. [k] ✓ S. Thus, maxi2[n]\S |�i(B)|  |�k+1(B)|  1. Also, by the minimax principle,
maxi2[m]\S |�i(T1)|  |�k+1(T1)|  |�k+1(B)|  1. Thus, the support of s2(x) and f1(x) is in
[�1, 1]. To bound W1(s2, f1), we use Lemma 3.1 of [BKM22] to get that for any N 2 4N+, we have:

W1(s2, f1) 
36

N
+ 2

NX

i=1

|hT̄i, s2i � hT̄i, f1i|
i

,

where T̄i is the ith normalized Chebyshev polynomial. Then, we get:

n� |S|
n

W1(s2, f1) 
n� |S|

n
· 36
N

+ 2
NX

i=1

1

i

����
1

n

X

j2[n]\S1

T̄i(�j(B))�
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))

����.

(93)

64

We can set N = O
�
1
✏

�
since the total number of iterations of Lanczos is m = Õ

�
l + 1

✏

�
. Then,

using triangle inequality, and the fact that [k] ✓ S and [k] ✓ S1, we get that for any i 2 [N]:
����
1

n

X

j2[n]\S1

T̄i(�j(B))�
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))

����


����
1

n

nX

j=k+1

T̄i(�j(B))�
mX

j=k+1

w2
j T̄i(�j(T1))

����+
����
1

n

X

j�k+1,j2S1

T̄i(�j(B))�
X

j�k+1,j2S
w2
j T̄i(�j(T1))

����

+

����
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))�

X

j2[m]\S

w2
j T̄i(�j(T1))

����. (94)

We will now bound the three terms above individually. Let f2(x) =
P

m

i=1w
2
i
�(x� �i(T1)), i.e., the

output of SLQ with B as input. Next, observe that B satisfies all the conditions of Lemma 19 since
�k(B) = �k(A)

2↵ � 1 and �k+1(B)  1. Let ti(x) be the polynomial defined in Lemma 19 for i 2 [N].
Then, for the first term, using triangle inequality, we have that:
����
1

n

nX

j=k+1

T̄i(�j(B))�
mX

j=k+1

w2
j T̄i(�j(T1))

���� 
����
1

n

nX

j=k+1

T̄i(�j(B))� hti, sBi
����

+

����
mX

j=k+1

w2
j T̄i(�j(T1))� hti, f2i

����+
����hti, f2i � hti, sBi

����.

From Lemma 19, we have that
����
P

m

j=k+1w
2
j
T̄i(�j(T1)) � hti, f2i

����  g
c3l
min

(n·)c3/✏ and
����
1
n

P
n

j=k+1 T̄i(�j(B))�hti, sBi
���� 

g
c4l
min

(n·)c4/✏ for constants c3, c4 > 0 for all i 2 O(1
✏
). From Lemma 20,

we have that
����hti, f2i�hti, sBi

���� 
C2 log(N/�)p

n
 C2 log(1/✏�)p

n
for some constant C2 and for all i 2 O(1/✏)

with probability at least 1� �. Thus, we get that
����
1

n

nX

j=k+1

T̄i(�j(B))�
mX

j=k+1

w2
j T̄i(�j(T1))

����


gc3lmin

(n · )c3/✏
+

gc4lmin

(n · )c4/✏
+

C2 log(1/✏�)p
n

 2C2 log(1/✏�)p
n

,

for all i 2 O(1
✏
). We now bound the second term in (94). Note that since |�j(B)|  1 for j � k+1,

we have that T̄i(�j(B)) 
q

2
⇡
. Also, |�j(T1)|  |�j(B)|  1 for j � k+ 1 and w2

j
 C1

p
log(l/�)
n

for
all j 2 S. Thus, we get that:

����
1

n

X

j�k+1,j2S1

T̄i(�j(B))�
X

j�k+1,j2S
w2
j T̄i(�j(T1))

����

 1

n

X

j�k+1,j2S1

|T̄i(�j(B))|+
X

j�k+1,j2S
w2
j |T̄i(�j(T1))|


r

2

⇡

|S1|
n

+

r
2

⇡

C1|S|
p
log(l/�)

n


C3l
p
log(l/�)

n
.

65

for some constant C3 > 0 and where we used the fact that |S1| = |S| and |S|  l in the last step.
We finally bound the last term in (94). Observe that we have (for some constant C4 > 0):

������

n�|S|
nP

p2[m]\S w2
p

X

j2[m]\S

w2
j T̄i(�j(T1))�

X

j2[m]\S

w2
j T̄i(�j(T1))

������



������

X

j2[m]\S

w2
j T̄i(�j(T1))

n�|S|

nP
p2[m]\S w2

p

� 1

!������



�����

n�|S|
n

�
P

p2[m]\S w2
pP

p2[m]\S w2
p

�����+

������

X

p2[m]\S

w2
p

r
2

⇡

������


r

2

⇡

������

X

p2S
w2
p �

|S|
n

������


r

2

⇡

C2|S|
p
log(l/�)

n
+

r
2

⇡

|S|
n


C4l
p
log(l/�)

n
.

In the second step above, we used the fact that since [k] ✓ S, we have �j(T1)  �k(T1)  �k(B)  1

for j 2 [m] \ S. So we have T̄i(�j(T1)) 
q

2
⇡

for j 2 [m] \ S. In the third step, we used the fact

that
P

i2[m]w
2
i
= 1 and in the fourth step, we bounded w2

p  C2

p
log(l/�)
n

. Finally, using the upper
bounds on the three terms on the right hand side of (94), and observing that for large enough we
get that for i 2 O(1

✏
) (for constants C2, C5 > 0), with probability at least 1� �:

������
1

n

X

j2[n]\S1

T̄i(�j(B))�
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))

������
 C2 log(1/✏�)p

n
+

C5l
p
log(l/�)

n
.

From (93), we get that (using the fact that N = O
�
1
✏

�
):

n� |S|
n

W1(s2, f1)  C6✏
n� |S|

n
+

C6 log(1/✏�)p

n
+

C6l
p
log(l/�)

n

!
NX

i=1

1

i

 C6✏+
C6 log(1/✏�) log(1/✏)p

n
+

C6l
p
log(l/�) log(1/✏)

n
,

for large constant C6 > 0. Finally, using the bounds on W1(s2, f1) from above, and on W1(s1, s2)
from (92), in (91), we get that:

I2 
2kBk2
n(��1)/✏

+ C6✏+
C6 log(1/✏�) log(1/✏)p

n
+

C6l
p
log(l/�) log(1/✏)

n
,

where we also used the fact that n�|S|
n

 1. Thus, from (90), we get that W1(sC, fB)  2kBk2
n(��1)/✏ +

C6✏ +
C6 log(1/✏�) log(1/✏)p

n
+

C6l
p

log(l/�) log(1/✏)
n

. Then, from (89) and using triangle inequality, we get

66

that:

W1(sB, fB)  W1(sB, sC) + W1(sC, fB)

 4kBk2
n(��1)/✏

+ C6✏+
C6 log(1/✏�) log(1/✏)p

n
+

C6l
p
log(l/�) log(1/✏)

n
.

Finally, from (87), we get that:

W1(sA, f)  2↵

4kBk2
n(��1)/✏

+ C6✏+
C6 log(1/✏�) log(1/✏)p

n
+

C6l
p
log(l/�) log(1/✏)

n

!

 4kAk2
n(��1)/✏

+ 2↵

C6✏+

C6 log(1/✏�) log(1/✏)p
n

+
C6l
p
log(l/�) log(1/✏)

n

!
,

where the second step follows from the facts that B = A
2↵ . Also note that we have ↵  �l+1(A) +

kAk2gc/4min

nc/4 . Simplifying the above expression we get that for some large constants C 0 > 0 and c2 > 0

such that 4
n(��1)/✏ << 1

nc2 , we have:

W1(sA, f)  C 0✏�l+1(A) +
C 0 log(1/✏�) log(1/✏)p

n
�l+1(A) +

C 0l
p
log(l/�) log(1/✏)

n
�l+1(A) +

kAk2
nc2

.

Case 2: We now consider the case when such a k doesn’t exist. In this case, we have kAk2  2↵.
Then, following case 2 of Theorem 3, let B = A

2↵ such that kBk2  1. Then, following case 1, we
can again apply the backwards error to get a matrix C such that kB�Ck2  2kBk2

n(��1)/✏ . We can again
split W1(sC, fB) into the integrals I1 and I2 as in (90) such that I1 = 0 and I2 can be bounded
as I2  n�|S|

n

�
W1(s1, s2) + W1(s2, f1)

�
(as in (91)) such that W1(s1, s2)  2kBk2

n(��1)/✏ (as in (92)) and
n�|S|

n
W1(s2, f1) is bounded using Lemma 3.1 of [BKM22] by the Chebyshev moments of s2 and f1

as in (93). Then, using triangle inequality, we can bound the moments of f1 and s2 again as in (94)
such that we have:

����
1

n

X

j2[n]\S1

T̄i(�j(B))�
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))

����


����
1

n

X

j2[n]

T̄i(�j(B))�
X

j2[m]

w2
j T̄i(�j(T1))

����+
����
1

n

X

j2S1

T̄i(�j(B))�
X

j2S
w2
j T̄i(�j(T1))

����

+

����
n�|S|

nP
p2[m]\S w2

p

X

j2[m]\S

w2
j T̄i(�j(T1))�

X

j2[m]\S

w2
j T̄i(�j(T1))

����. (95)

Since w2
j
 C2

p
log(l/�)
n

for j 2 S and �j(T1)  �j(B)  1, the second and third terms on the

right hand side above can be bounded by O

✓
l

p
log(l/�)
n

◆
as in case 1. To bound the first term,

observe that 1
n

P
j2[n] T̄i(�j(B)) = 1

n
tr(T̄i(B)) and

P
j2[m]w

2
j
T̄i(�j(T1)) is the ith Chebyshev

moment of the output of SLQ (Algorithm 4) with B as input. Thus, from Lemma 12 we get

67

that
����
1
n

P
j2[n] T̄i(�j(B)) �

P
j2[m]w

2
j
T̄i(�j(T1))

����  O
⇣
log(N/�)p

n

⌘
 O

⇣
log(1/✏�)p

n

⌘
. Thus, we get

����
1
n

P
j2[n]\S1

T̄i(�j(B)) �
n�|S|

nP
p2[m]\S w2

p

P
j2[m]\S w2

j
T̄i(�j(T1))

����  O

✓
log(1/✏�)p

n
+

l

p
log(l/�)
n

◆
.The rest

of the proof follows the proof of case 1 which gives us the final bound of

W1(s, f)  ✏�l+1(A) +
C 0 log(1/✏�) log(1/✏)p

n
�l+1(A) +

C 0l
p
log(l/�) log(1/✏)

n
�l+1(A) +

kAk2
nc2

.

Finally, observe that adjusting � by some constant factors gives us the final bound.

5 Lower Bound

We now prove the lower bound on the number of matrix vector queries required by any algorithm to
estimate the spectral density of any matrix A upto Wasserstein error ✏�l+1(A). Our proof proceeds
via a reduction of the spectral density estimation problem to the problem of distinguishing between
two Wishart matrices with ranks very close to each other (Theorem 17 of [SW23]). Our lower bound
of O(l + 1

✏
) shows that our upper bounds for estimating the SDE via explicit deflationa s well as

SLQ are nearly tight (upto polylog factors).

Theorem 2. Any (possibly randomized) algorithm that given symmetric A 2 Rn⇥n outputs s̃A
such that, with probability at least 1/2, W1(sA, s̃A)  ✏�l+1(A) for ✏ 2 (0, 1) and l 2 [n] must make
⌦
�
l + 1

✏

�
(possibly adaptively chosen) matrix-vector product queries to A.

Proof. Let A be an adaptive algorithm that estimates the spectral density of A up to error ✏�l+1(A)
in the Wasserstein-1 norm. Let W (n, r) be the n dimensional Wishart distribution with r degrees of
freedom i.e., the distribution of GG

T where G 2 Rn⇥r has i.i.d. standard normal entries. We will
use Theorem 17 of [SW23] which states that at least ⌦(r) (possibly adaptive) matrix vector queries
are required by any adaptive algorithm to distinguish between two Wishart matrices W (n, r) and
W (n, r + 2) with probability at least 2

3 . We prove the lower bound by considering the two cases:
l > 1

✏
and l  1

✏
.

Case 1.
�
l > 1

✏

�
: The non-zero eigenvalues of the Wishart ensembles W (n, l) and W (n, l + 2) are

bounded between n

2 and 2n with probability at least 5/6 as long as n � Cl for some constant C
[Ver18]. Let n = Cl. Consider the Wishart ensembles A1 = W (n, l) and A2 = W (n, l+2). Observe
that A1 and A2 have ranks of l and l + 2 respectively. So, �l+3(A1) = �l+3(A2) = 0. Let A
use k matrix-vector products with the input matrix to estimate the spectral density sA(x) up to
error ✏�l+3(A) = 0 in both cases with probability at least 0.5 i.e. the spectral density of the input
matrix is estimated exactly. So, the rank of A in both cases is given exactly by n

R 2n
n/2 sA(x)dx with

probability at least 0.5. Hence, A can distinguish between W (n, l) and W (n, l+2) with probability
at least 2

3 . Thus, from Theorem 17 of [SW23], we must have k = ⌦(l).

Case 2.
�
l  1

✏

�
: In this case, let r = b1

✏
c and let us consider the normalized Wishart ensembles

A1 =
1
2nW (n, r) and A2 =

1
2nW (n, r + 2) where n = 2Cr. Let either A1 or A2 be the input to A.

Since the nonzero eigenvalues of A1 and A2 lie in [0.25, 1] with probability at least 5/6, by setting
the error parameter to ✏

1000C we can estimate the spectral density of the input to A up to error
✏

1000C max(�l+1(A1),�l+1(A2))  ✏

1000C in the Wasserstein-1 distance. Let �1 � . . . � �n be the
true eigenvalues of the input to A. Then, using the estimated spectral density returned by A, we can

68

construct a list of n values [�̃1, . . . , �̃n] in time linear in n and 1
✏

such that
P

n

i=1 |�i� �̃i|  3✏n
1000C 

6
1000 (see [CSKSV18], theorem B.1 in [BKM22]). So, we have |�r+1� �̃r+1| 

P
n

i=1 |�i� �̃i|  6
1000 .

When, A1 is the input we gt |�̃r+1|  6
1000 since �r+1 = 0 in this case. When, A3 is the input, via

triangle inequality, we get |�̃r+1| � |�r+1|� 6
1000 � 0.25� 6

1000 since �r+1 > 0.25 in this case. So, we
can distinguish between A1 and A2 with probability at least 2

3 . So, using Theorem 17 of [SW23],
we again have k � ⌦(1

✏
).

Finally, observe that setting � = 1
nc0 for some constant c0 gives us the final bound.

6 Empirical Evaluation

In this section, we compare the empirical performance of the algorithms studied in this paper and
several other standard algorithms in approximating the spectral densities of several synthetic and
publicly available matrices. We observe that the SLQ algorithm (Algorithm 4) and its variance
reduced variant, VR-SLQ (Algorithm 5) generally out perform explicit moment matching methods
like KPM and Chebyshev moment matching in the Wasserstein distance metric. This finding aligns
with our results in Theorem 3 and 4 that these methods perform implicit deflation for any deflation
parameter ` allowing them to adapt to the matrix spectrum to achieve stronger error bounds.

6.1 Datasets

Our comparisons are performed on the following matrices:

• The Gaussian matrix, which is a 5000 ⇥ 5000 matrix, constructed by first drawing 5000
eigenvalues from a Gaussian distribution to get ⇤ 2 N (0, 1)5000, normalizing ⇤ = ⇤/k⇤k1,
then generating a random orthonoromal matrix V 2 R5000⇥5000, and finally computing A =
V⇤V

T . This matrix is generated from the descriptions of the Gaussian matrix in [BKM22].

• The Uniform matrix is constructed analogously to the Gaussian matrix, except its eigenvalues
are drawn uniformly and independently from [�1, 1]. This matrix is generated from the
descriptions of the Uniform matrix in [BKM22].

• The inverse spectrum matrix is a 5000⇥ 5000 diagonal matrix with entries 1, 1/2, . . . , 1/5000.

• The power law spectrum matrix is a 5000 ⇥ 5000 diagonal matrix with entries
1, 1/22, . . . , 1/25000.

• The low-rank matrix is a 5000⇥ 5000 diagonal matrix with 100 entries drawn uniformly and
independently from a Gaussian distribution N (0, 1), and normalized as ⇤ = ⇤/k⇤k1. The
remaining diagonal entries are set at 0.

• Finally, Erdos992 is the adjacency matrix of the Erdös collaboration network (snapshot of
1992) with 6100 vertices and containing 15030 undirected edges. It is taken from a publicly
available sparse matrix collection [DH11]. The adjacency matrix has one eigenvalue at 1,
roughly 1000 eigenvalues at 0, and roughly 500 eigenvalues of magnitude greater than 0.2.

We note that all algorithms considered in this paper are ‘rotationally invariant’ in that their
performance should not depend on the actual eigenvector basis of A. For this reason, most of
our test matrices are simply diagonal matrices. And we indeed see no systematic difference in
performance depending on the eigenvector basis.

69

6.2 Implementation Details

We consider three baseline SDE algorithms: 1) stochastic Lanczos quadrature (SLQ), 2) the Cheby-
shev moment matching (CMM) algorithm (Algorithm 1 of [BKM22]), and 3) the Jackson damped
kernel polynomial method (KPM) (Algorithm 6 of [BKM22]) which is a popular moment matching
algorithm that can be thought of as an approximation of CMM. We implement two versions of our
explicit deflation algorithm (Algorithm 1) – one of which uses CMM after deflation (the one we
analyze), and one that uses KPM. We call these algorithms def-CMM and def-KPM respectively.
Along with these algorithms, we also compare the performance of SLQ algorithm (Algorithm 4) and
VR-SLQ (Algorithm 5).

Since we test for relatively small n, as the number of iterations/moments performed by each
algorithm increases, we may reach small ✏ = õ(1/

p
n) values for which more than one random vectors

in Hutchinson’s method in the explicit moment matching methods or more than one independent
trial of SLQ are needed. For simplicity, for all moment matching methods we use 15 random vectors
for Hutchinson’s method. For SLQ-based methods we perform 15 independent trials of the method
(using 15 independent random starting vectors) and average together the output densities to obtain
our final spectral density estimate. For block Krylov based deflation we perform 15 iterations to
generate the Krylov subspace.

We compare each algorithm based on the Wasserstein-1 error achieved for a fixed number of total
matrix-vector queries to the input matrix. Since the iterations in Krylov and number of vectors in
Hutchinson’s algorithm are fixed at 15, to ensure that def-CMM or def-KPM uses the same number
of matrix-vector queries as other algorithms we then need to split the moment budget of CMM or
KPM to accomodate for the matrix-vector queries due to block Krylov. We split this in the ratio
1 : 3, i.e., for every 2 moment computations of CMM or KPM in def-CMM or def-KPM, we use
a block size of 3 to compute deflation via block Krylov algorithm. Note, for block size of 3 and
` iterations, block Krylov method uses 6` matrix-vector queries. We vary the total matrix-vector
query budget for all algorithms, i.e., increase the total moments approximated by CMM-based
algorithms, or increase the total number of iterations in SLQ-variants, and report the Wasserstein-1
error in Figure 1 across all matrices.

To compute N moment estimates, the CMM algorithm [BKM22] is evaluated on a discrete and
evenly-spaced grid of length d + 1 in the interval [�1, 1]. Theoretically, the algorithm requires
setting d = dN3/3e. In our experiments, we found setting d = 20000 to be sufficient. To solve the
`1-regression problem in the CMM algorithm, we use HiGHS solvers [HH18] within SciPy [VGO+20].
To ensure that the solution vector falls within the probability simplex we use Algorithm 1 of [Con16].
The eigenvalues of any matrix are computed using numpy [Com21].

We repeat each experiment for t = 10 independent trials. In the plots in Figure 1, the x-axis
denotes the total matrix-vector queries used by each algorithm per trial, and the y-axis represents
the corresponding Wasserstein-1 SDE error. The bold lines in the plot represent the mean error
across 10 trials. The 10th and the 90th percentile of the observed errors are represented by the faded
envelope around the bold lines.

Code. All codes are written in Python and available at https://github.com/archanray/SDE_
SLQ.

70

https://github.com/archanray/SDE_SLQ
https://github.com/archanray/SDE_SLQ

6.3 Summary of Results

We observe that across all of the matrices, SLQ (Algorithm 4) and VR-SLQ (Algorithm 5) outper-
form the explicit moment matching-based algorithms that we test. Among these two algorithms,
VR-SLQ more often outperforms SLQ, especially when the spectrum of the input matrix contains
only a few large eigenvalues, as in this case, the variance reduction step can have a significant
positive effect on the spectral density estimate. We also observe that the variants of Algorithm 1
(def-CMM and def-KPM) more often outperform naive CMM and KPM, in particular for matrices
with only a few large eigenvalues, as expected.

Figure 1: Wasserstein-1 error of spectral density estimation approximation algorithms.
In the figures above, we plot the Wasserstein-1 error of approximating the spectral density of several
matrices using the algorithms presented in the paper and some baseline algorithms. We observe
that in almost all cases, VR-SLQ algorithm outperforms all other SDE algorithms. We also observe
that the variants of our deflation algorithm (Algorithm 1) generally outperform the corresponding
baseline of CMM and KPM.

Acknowledgements

Cameron, Rajarshi, and Archan were partially supported by NSF grants 1934846, 2046235, and
2427363. Part of the work was completed while Archan was at the University of Massachusetts
Amherst, NY. Christopher was supported by NSF grant 2045590.

71

References

[ACH+24] Noah Amsel, Tyler Chen, Diana Halikias, Feyza Duman Keles, Cameron Musco, and
Christopher Musco. Fixed-sparsity matrix approximation from matrix-vector prod-
ucts. arXiv:2402.09379, 2024.

[AL86] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the preconditioned
conjugate gradient method. Numerische Mathematik, 1986.

[AN13] Alexandr Andoni and Huy L Nguyen. Eigenvalues of a matrix in the streaming model.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2013.

[BCW22] Ainesh Bakshi, Kenneth L Clarkson, and David P Woodruff. Low-rank approxima-
tion with 1/✏1/3 matrix-vector products. In Proceedings of the 54th Annual ACM
Symposium on Theory of Computing (STOC), 2022.

[BDD+24] Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and Archan
Ray. Sublinear time eigenvalue approximation via random sampling. Algorithmica,
2024.

[BEPW98] Kevin Burrage, Jocelyne Erhel, Bert Pohl, and Alan Williams. A deflation technique
for linear systems of equations. SIAM Journal on Scientific Computing, 1998.

[BGVKS22] Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, and Nikhil Srivastava. Pseudospec-
tral shattering, the sign function, and diagonalization in nearly matrix multiplication
time. Foundations of Computational Mathematics, 2022.

[BHSW20] Mark Braverman, Elad Hazan, Max Simchowitz, and Blake Woodworth. The gradient
complexity of linear regression. In Proceedings of the 33rd Annual Conference on
Computational Learning Theory (COLT), 2020.

[BKM22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Sublinear time spec-
tral density estimation. In Proceedings of the 54th Annual ACM Symposium on Theory
of Computing (STOC), 2022.

[BN23] Ainesh Bakshi and Shyam Narayanan. Krylov methods are (nearly) optimal for low-
rank approximation. In Proceedings of the 64th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2023.

[BRP92] C Benoit, E Royer, and G Poussigue. The spectral moments method. Journal of
Physics: Condensed Matter, 1992.

[Che23] Tyler Chen. A spectrum adaptive kernel polynomial method. The Journal of Chemical
Physics, 2023.

[Com21] The Numpy Community. numpy.linalg.eigvals. https://numpy.org/doc/stable/
reference/generated/numpy.linalg.eigvals.html, 2021.

[Con16] Laurent Condat. Fast projection onto the simplex and the l 1 ball. Mathematical
Programming, 2016.

72

http://arxiv.org/abs/2402.09379
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html

[CPB10] L Covaci, FM Peeters, and M Berciu. Efficient numerical approach to inhomogeneous
superconductivity: The Chebyshev-Bogoliubov–de Gennes method. Physical review
letters, 2010.

[CS97] Andrew Chapman and Yousef Saad. Deflated and augmented Krylov subspace tech-
niques. Numerical linear algebra with applications, 1997.

[CSKSV18] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approxi-
mating the spectrum of a graph. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2018.

[CTU21] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. Analysis of stochastic Lanc-
zos quadrature for spectrum approximation. In Proceedings of the 38th International
Conference on Machine Learning (ICML), 2021.

[CTU22] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. Randomized matrix-free quadra-
ture for spectrum and spectral sum approximation. arXiv:2204.01941, 2022.

[DBB19] Kun Dong, Austin R Benson, and David Bindel. Network density of states. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2019.

[DDH07] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Nu-
merische Mathematik, 2007.

[DH11] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 2011.

[DIKMI18] Petros Drineas, Ilse CF Ipsen, Eugenia-Maria Kontopoulou, and Malik Magdon-Ismail.
Structural convergence results for approximation of dominant subspaces from block
Krylov spaces. SIAM Journal on Matrix Analysis and Applications, 2018.

[DM23] Prathamesh Dharangutte and Christopher Musco. A tight analysis of hutchinson’s
diagonal estimator. Proceedings of the 6th Symposium on Simplicity in Algorithms
(SOSA), 2023.

[DNPS16] Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue
counts in an interval. Numerical Linear Algebra with Applications, 2016.

[EG17] Nicole Eikmeier and David F Gleich. Revisiting power-law distributions in spectra of
real world networks. In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), 2017.

[FDBV01] Illés J Farkas, Imre Derényi, Albert-László Barabási, and Tamas Vicsek. Spectra of
“real-world” graphs: Beyond the semicircle law. Physical Review E, 2001.

[FTU23] Zachary Frangella, Joel A Tropp, and Madeleine Udell. Randomized Nyström precon-
ditioning. SIAM Journal on Matrix Analysis and Applications, 2023.

[FV01] Jason Frank and Cornelis Vuik. On the construction of deflation-based preconditioners.
SIAM Journal on Scientific Computing, 2001.

73

http://arxiv.org/abs/2204.01941

[Gir87] Didier Girard. Un algorithme simple et rapide pour la validation croisee géenéralisée
sur des problémes de grande taille. Technical report, 1987.

[GKX19] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net
optimization via Hessian eigenvalue density. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

[GM09] Gene H Golub and Gérard Meurant. Matrices, moments and quadrature with applica-
tions. Princeton University Press, 2009.

[GOSS16] Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression
using sketched preconditioned SVRG. In Proceedings of the 33rd International Con-
ference on Machine Learning (ICML), 2016.

[GSO17] Arjun Singh Gambhir, Andreas Stathopoulos, and Kostas Orginos. Deflation as a
method of variance reduction for estimating the trace of a matrix inverse. SIAM
Journal on Scientific Computing, 2017.

[HH18] Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Math-
ematical Programming Computation, 2018.

[HHK72] R Haydock, V Heine, and M J Kelly. Electronic structure based on the local atomic
environment for tight-binding bands. Journal of Physics C: Solid State Physics, 1972.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions. SIAM Review, 2011.

[HT23] Diana Halikias and Alex Townsend. Structured matrix recovery from matrix-vector
products. Numerical Linear Algebra with Applications, 2023.

[Hut90] Michael F. Hutchinson. A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Computa-
tion, 1990.

[JKM+24] Yujia Jin, Ishani Karmarkar, Christopher Musco, Aaron Sidford, and Apoorv Vikram
Singh. Faster spectral density estimation and sparsification in the nuclear norm. Pro-
ceedings of the 37th Annual Conference on Computational Learning Theory (COLT),
2024.

[JMSS23] Yujia Jin, Christopher Musco, Aaron Sidford, and Apoorv Vikram Singh. Moments,
random walks, and limits for spectrum approximation. In Proceedings of the 36th
Annual Conference on Computational Learning Theory (COLT), 2023.

[KR57] Leonid Vital’evich Kantorovich and Gennadii Shlemovich Rubinshtein. On a functional
space and certain extremum problems. In Doklady Akademii Nauk. Russian Academy
of Sciences, 1957.

[Lan52] Cornelius Lanczos. Solution of systems of linear equations by minimized iterations. J.
Res. Nat. Bur. Standards, 1952.

74

[LG82] P Lambin and J-P. Gaspard. Continued-fraction technique for tight-binding systems.
A generalized-moments method. Physical Review B, 1982.

[Lin17] Lin Lin. Randomized estimation of spectral densities of large matrices made accurate.
Numerische Mathematik, 2017.

[LSY98] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods.
SIAM, 1998.

[LSY16] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large
matrices. SIAM Review, 2016.

[LXES19] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues slicing li-
brary (EVSL): Algorithms, implementation, and software. SIAM Journal on Scientific
Computing, 2019.

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28 (NIPS), 2015.

[MM19] Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization
in neural network models. In Proceedings of the 36th International Conference on
Machine Learning (ICML), 2019.

[MMM24] Raphael Meyer, Cameron Musco, and Christopher Musco. On the unreasonable effec-
tiveness of single vector Krylov methods for low-rank approximation. In Proceedings
of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

[MMMW21] Raphael A Meyer, Cameron Musco, Christopher Musco, and David P Woodruff.
Hutch++: Optimal stochastic trace estimation. In Symposium on Simplicity in Algo-
rithms (SOSA), 2021.

[MNS+18] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P.
Woodruff. Spectrum approximation beyond fast matrix multiplication: Algorithms
and hardness. In Proceedings of the 9th Conference on Innovations in Theoretical
Computer Science (ITCS), 2018.

[NSW22] Deanna Needell, William Swartworth, and David P Woodruff. Testing positive semidef-
initeness using linear measurements. In Proceedings of the 63rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2022.

[Par98] Beresford N Parlett. The symmetric eigenvalue problem. SIAM, 1998.

[PC99] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC),
1999.

[Pea94] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,
1994.

75

[PSG18] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. In Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics (AISTATS), 2018.

[RL18] Aditya Ramesh and Yann LeCun. Backpropagation for implicit spectral densities.
arXiv:1806.00499, 2018.

[Saa80] Yousef Saad. On the rates of convergence of the Lanczos and the block-Lanczos meth-
ods. SIAM Journal on Numerical Analysis, 1980.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[SEAR18] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity
lower bounds for PCA via finite sample deformed Wigner law. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC), 2018.

[Ski89] John Skilling. The eigenvalues of mega-dimensional matrices. Maximum Entropy and
Bayesian Methods, 1989.

[SR94] RN Silver and H Röder. Densities of states of mega-dimensional Hamiltonian matrices.
International Journal of Modern Physics C, 1994.

[SRS20] Jürgen Schnack, Johannes Richter, and Robin Steinigeweg. Accuracy of the finite-
temperature Lanczos method compared to simple typicality-based estimates. Physical
Review Research, 2020.

[STBB17] Björn Sbierski, Maximilian Trescher, Emil J Bergholtz, and Piet W Brouwer. Disor-
dered double Weyl node: Comparison of transport and density of states calculations.
Physical Review B, 2017.

[Sun95] Ji-guang Sun. A note on backward perturbations for the hermitian eigenvalue problem.
BIT Numerical Mathematics, 1995.

[SW09] Daniel A Spielman and Jaeoh Woo. A note on preconditioning by low-stretch spanning
trees. arXiv:0903.2816, 2009.

[SW23] William Swartworth and David P Woodruff. Optimal eigenvalue approximation via
sketching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC), 2023.

[SWYZ21] Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix
through matrix-vector products. ACM Transactions on Algorithms (TALG), 2021.

[Tre19] Lloyd N Trefethen. Approximation theory and approximation practice, extended edi-
tion. SIAM, 2019.

[Tro18] Joel A. Tropp. Analysis of randomized block Krylov methods. Technical report,
California Institute of Technology , Pasadena, CA, 2018.

[Tro22] Joel A Tropp. Randomized block Krylov methods for approximating extreme eigen-
values. Numerische Mathematik, 2022.

76

http://arxiv.org/abs/1806.00499
http://arxiv.org/abs/0903.2816

[UCS17] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochas-
tic Lanczos quadrature. SIAM Journal on Matrix Analysis and Applications, 2017.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science. Cambridge university press, 2018.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 2020.

[Wai19a] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2019.

[Wai19b] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge university press, 2019.

[Wan94] Lin-Wang Wang. Calculating the density of states and optical-absorption spectra of
large quantum systems by the plane-wave moments method. Physical Review B, 1994.

[Wey12] Hermann Weyl. The asymptotic distribution law for the eigenvalues of linear partial
differential equations (with applications to the theory of black body radiation). Math.
Ann, 1912.

[WWAF06] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The
kernel polynomial method. Reviews of Modern Physics, 2006.

77

	Introduction
	Matrix-Vector Query Algorithms for SDE
	Existing Bounds
	Our Results
	Improved SDE via Moment Matching with Explicit Deflation
	Implicit Deflation Bounds for Stochastic Lanczos Quadrature

	Technical Overview
	Eigenvalue Deflation for SDE
	Error Analysis of Deflation
	SLQ and its Existing Analysis
	Moment Matching-Based Analysis of SLQ
	Implicit Deflation with SLQ
	Variance Reduced SLQ

	Roadmap

	Notation and Preliminaries
	Basic Notation
	Linear Algebra Preliminaries
	Moment Matching and Wasserstein Distance Preliminaries

	SDE via Moment Matching with Explicit Deflation
	Error bounds for Deflation via Block Krylov
	Eigenvector Alignment
	Eigenvalue Alignment
	Bounding the spectral norm after deflation

	Error Bounds for moment matching with deflation

	Analysis of Stochastic Lanczos Quadrature
	SLQ bounds via Moment Matching
	Error Bounds for Lanczos
	Improved Error bounds for SLQ via implicit deflation based analysis
	Variance reduced SLQ

	Lower Bound
	Empirical Evaluation
	Datasets
	Implementation Details
	Summary of Results

