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Abstract. Recent strides in Natural Language Understanding (NLU)
for pair programming conversational agents underscore the importance
of expanding datasets and constructing models applicable across genders,
languages, and domains. The difficulty arises from the resource-intensive
nature of gathering data through lab studies. Our study explores the
potential use of vast amounts of pre-existing data for the training of
conversational agents. We introduced software engineering-specific slot
labels through an open-coding process by identifying key words and
phrases. Our slot labels were integrated with a dataset of developer-
developer (DD) and developer-agent (DA) utterances, annotated with
software engineering-specific intent labels, from pair programming con-
versations. We employed the transformer-based language model, joint-
BERT, to explore the required training size and gender-related impacts
on intent and slot accuracy. To gauge the model’s generalizability, we an-
alyzed 5 pair programming video conversations sourced from YouTube.
These conversations were fully labeled for software engineering-specific
intent and slot, allowing us to investigate language and domain effects
on the model’s performance. Our findings reveal that 5 conversations,
without a strict gender balance, can be used to train a pair program-
ming NLU. Our study paves the way for expanding datasets used in the
training of conversational agents.
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1 Introduction

Conversational agents have transformed our daily lives by enhancing accessibility
[60,37], fostering emotional connections (e.g., Cleverbot [56], Xiaoice [77], Mit-
suku [57]), facilitating customer service 1], and supporting in routine tasks (e.g.,
Alexa [63], Apple’s Siri [64], Google Assistant [65]). Past studies have explored
the benefits of designing a pair programming conversational agent [33,30,32] and
investigated the feasibility of training NLU using developer-developer (DD) [52]
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and developer-agent (DA) [51] conversations. These studies released a conversa-
tional dataset, comprising 7,879 utterances marked with software engineering-
specific intent labels, capturing developers collaborating on the development of
a Java Tic-Tac-Toe game. However, effective language model training demands a
more extensive benchmark dataset derived from developer conversations, similar
to ATIS [27], SNIPS [14], and MultiWoZ [11] spanning over multiple domains.

Furthermore, for language models to exhibit generalizability across genders,
programming languages, and domains, there is a need for diverse datasets. How-
ever, the collection of conversational data, from developers, poses both a costly
and time-intensive challenge for both researchers and practitioners. We build
upon our earlier research [51], in which we established that (DD) conversations
can be utilized to train conversational agents, to extend our findings by delving
into the impact of dataset size, gender, language, and domain on model accuracy.

Our study marks an initial step in establishing software engineering-specific
slot labels, which is a crucial component for identifying key words or phrases
during the implementation of a comprehensive NLU system. Building upon our
existing dataset of (DD) and (DA) conversations, we employed an open-coding
method to formulate a slot labeling framework tailored for pair programming
conversations. We applied our slot labeling framework to annotate pair pro-
gramming conversations from prior research.

To examine the impact of dataset size and gender, leveraging existing data
from [51], we formulated two research questions:

— RQ1: How much data is required to train a pair programming
NLU? The size of the training dataset is crucial for models to achieve con-
sistent accuracy. We employed jointBERT, to facilitate simultaneous slot
tagging and intent classification. We aimed to explore the optimal training
size for datasets.

— RQ2: How does gender effect the performance of a pair program-
ming NLU? Prior research has highlighted gender differences while pair
programming [30]; thus, we investigated whether maintaining a strict gen-
der balance is necessary for the training and testing of models.

To examine the viability of leveraging existing developer-developer (DD) con-
versations from online video hosting platforms, we formulated one research ques-
tion:

— RQ3: How should developer-developer pair programming conver-
sations, from online videos, be incorporated into the training dataset
of a pair programming NLU? We searched YouTube for recent videos
featuring developers engaged in pair programming, with the goal of explor-
ing the potential for expanding pair programming conversational datasets
through existing videos.
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2 Background & Related Works

2.1 Bots for Developers

Bots help developers perform several tasks such as assisting with debugging [2],
identifying syntax errors [48,42|, automating repetitive tasks [3], mining reposi-
tories [4], locating Stack Overflow posts [73], and providing code feedback [70].
Developers use bots to perform load testing [43] and suggest patches based on
failed test cases [62]. Bots can facilitate the on-boarding process for new project
members [55], locate and utilize REST APIs [19], design micro-service based
architectures [36], and assist in agile retrospectives [40].

2.2 Design & Feasibility of Pair Programming Agents

In our earlier work [44,53], we established design guidelines for a pair program-
ming agent by implementing a lab study and a Wizard of Oz (WoZ) study,
where participants engaged with an agent whose behaviors was covertly orches-
trated by a researcher [15]. These guidelines encompass practices such as clearly
acknowledging suggestions, offering feedback in a positive tone, expressing un-
certainty through both verbal and non-verbal cues, and apologizing for mistakes
[63]. We discovered that an agent effectively facilitated knowledge transfer, lead-
ing to developers displaying increased trust and humility without a significant
change in code quality, productivity, or self-efficacy. Based on our findings, we
further investigated the feasibility of a pair programming [33] and facilitator
agent [52]. We observed comparable performance among transformer-based lan-
guage models, with BERT having a slight advantage. Our findings indicated
that (DD) conversations were effective for training the intent classifier of a pair
programming NLU with optimal performance being achieved by training with
(DD) conversations and fine-tuning with (DA) conversations.

2.3 Dialogue Datasets

Researchers have labeled and annotated data in the realm of software design
and development, with a focus on intent classification. For instance, the Ubuntu
dialogue corpus [39] comprises unstructured human-human chats extracted from
chat logs, where researchers aimed to do next utterance classification without
considering slots. In another study, Viviani et al. [66] delved into design and
decision-related dialogues extracted from pull requests and online discussions,
focusing on intent perspective. Ebert et al. [18] and Pascarella et al. [45] identified
the types of questions posed by software engineers during code reviews. Wood et
al. [72,71] utilized open-coding to devise an intent labeling scheme for debugging
conversations. Previously, we employed an open-coding process to develop a
hierarchical approach to intent labeling, resulting in 26 unique intent labels
tailored for pair programming conversations [51].

Beyond the realm of software development, various non-software engineering
datasets such as SWITCHBOARD [23], ATIS [27,61], SNIPS [14] are employed
to train models for intent and slot classification.
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2.4 Slot Labeling

A fully implemented NLU must have the capability of slot tagging, which is the
process of identifying important words in a sentence. Slots enable the agent to
pinpoint essential parts of an utterance [31,75]. Slots originated in the GUS ar-
chitecture [29], grounded in the concept of frames. In GUS, the agent identifies
the user’s intent and utilizes the ongoing conversation to complete all necessary
slot values before making a query. In the modern dialogue state architecture,
slots serve to delimit the conversation space which empowers the agent to ask
clarifying questions, offer suggestions, or respond based on the evolving con-
versation rather than adhering to a predetermined template [29]. Slots enable
models to understand the typical locations of key terms within a specific intent.
Slot tagging is framed as a sequence-to-sequence modeling problem, with the
input sequence being the utterance and the output sequence consisting of asso-
ciated slot tags [22]. Slots offer the advantage of modeling occurrences of key
terms within a specific intent, and defining the potential values of the key terms.
This precision aids the model in determining whether a slot has been accurately
identified.

2.5 Transfer Learning on Intermediate Tasks

Transfer learning involves training on a source task followed by fine-tuning on a
target task [76,10]. An additional training task, referred to as an intermediate
task, can be incorporated within the transfer learning process. Phang et al.
[46] introduced STILTs (Supplementary Training on Intermediate Labeled-data
Tasks) which entails training a model initially on an unlabeled dataset, then
on an intermediate labeled dataset, and ultimately fine-tuning the model on
the target task. They found that STILTs can enhance the performance of large
language models such as BERT [16], ELMo [10], and GPT [49].

Researchers, including Sap et al. [54] and Clark et al. [13], have explored
STILTs by using intermediate tasks to enhance model performance. Wang et
al. [67] conducted a comprehensive study with ELMo and BERT, revealing the
complexities of multitask learning and the impact of dataset size on target task
performance. Pruksachatkun et al. [47] experimented with BERT and RoBERTa,
emphasizing the ambiguity of training on intermediate tasks.

3 Methodology

3.1 Developer-Developer and Developer-Agent Conversations

Robe et al. [51] released a dataset comprising 7,879 utterances from 9 (DD) and
14 (DA) pair programming conversations collected through a remote environ-
ment lab study [52] and a (WoZ) study [51]. In both studies, they conducted
40 minute sessions where participants engaged in pair programming to imple-
ment a Tic-Tac-Toe game in Java. Participants utilized the think-aloud method
[35] and adhered to test-driven development principles [7]. All participants were



Title Suppressed Due to Excessive Length 5

equipped with template code, including the game board, a sample test case, and
user stories for the programming task.

The (DD) dataset was curated through recorded conversations in a remote
pair programming lab study with 18 participants [52]. These participants, exclu-
sively computer science students, were strategically paired by their self-identified
gender, resulting in 9 gender-balanced pairs: 3 men-men, 3 men-women, and 3
women-women.

The (DA) conversation dataset were captured using the (WoZ) methodol-
ogy. Yang et al. [74] affirm (WoZ) as the singularly, viable method for collecting
conversations with an agent prior to its actual implementation because it facil-
iates iterative designs and the observation of user behaviors. (WoZ) serves as a
foundational tool for training machine learning algorithms [15] and has found
widespread application in natural language interfaces, including conversational
agents [9,72,74]. The (WoZ) study involved 14 participants, 6 computer science
students (3 men, 3 women), and 8 professionals (4 men, 4 women) [51]. The
motivation and implementation of the agent, in the (WoZ) study, was inspired
by Robe et. al [53].

All (DD) and (DA) transcripts were labeled with software engineering-specific
intent labels and developed using a hierarchical, open-coding process [8]. The
absence of software engineering-specific slot labels serves as motivation for our
work.

3.2 Slot Labeling

We developed our slot labels employing an open coding process, following the
practices of other software engineering researchers [52,72]. Table 1 is the list of
our slot labels (boolean, feedback, filename, filename method, current error,
driver, inequality, keyword, line_number, location, name of user, number, ob-
jective, phase of sdl, text add, text remove, user _story, variable), along with
their descriptions.

To establish the initial set of slot labels, two researchers analyzed three (DA)
studies using the open-coding method to generate potential relevant slots. The
two researchers discussed the potential slot labels, consolidated similar labels,
and independently labeled a (DA) conversation. In a series of iterations, the
researchers discussed and reached agreement on new slot labels as they emerged
during their analysis. To ensure inter-rater reliability, two researchers labeled
20% of the (DD) and (DA) data, achieving a Cohen’s Kappa of 0.7192, indicating
substantial agreement [41]. The remaining data was labeled by one researcher.
We used Inside-Outside-Beginning (IOB) tagging in the slot labeling process [50].
Each study took approximately 2 hours for manual slot labeling, accumulating
to 46 total hours.

3.3 Model Design

To perform simultaneous slot labeling and intent classification, we employed
jointBERT, an extension of BERT developed by Chen et al. [12]. BERT is a
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Table 1: Our slot labels and descriptions. Domain dependent slots are annotated
with ‘D’ and language dependent slots are annotated with ‘L.” Both language and
domain dependent slots are annotated with ‘L, D.” The corresponding numbers
show the frequency of label occurrences in the (DA), (DD), and (YT) dataset.

Label Name Description/Example Dependence|(DA)|(DD)|(YT)
Used to help understand relations between objects and
their function (e.g., true, false).

This allows the developer to agree or disagree with a
feedback suggestion, question, or clarification and continue with 265 | 544 75
their thoughts (e.g., yes, no, good, bad).

Name of the file being discussed but not necessarily the

boolean 160 | 183 0

filename L,D 94 38 117
file currently open.
. Name of the method being discussed. The filename - ey
filename_method helps to differentiate polymorphic methods. LD 517 | 454 15
current  error The reason why the program is not running as LD 36 2 6
- expected.
driver De}te:rlnlnes if the user or the agent is 46 3 0
driving.
inequality Used to. help ur.nderstaud relations between objects 90 122 4
and their function (e.g., >=, <=, >, <, = ).
Used to help understand relations between objects
keyword and their function with language denoted keywords or L 344 | 413 | 202

reserved words.

Identifies the specific location in the code that is
under discussion.

Refers to the documentation or an application

line_number 112 13 20

location (e.g., web browser, terminal window). D 38 7 0
name of user Used to identify and personalize communication with 0 0 10
- = the user.
Used to help understand relations between objects and
number their function (e.g., numbers in assignment, comparison, 499 | 649 27
or other functions within the code).
objective The current next step. Multiple objective work D 705 | 707 | 135

towards a user story.

High-level definition of the current phase in the
phase_of sdl |software engineering development life cycle (e.g., plan, 54 18 0
analyze, design, implement, test, maintain).
Allows the user to write code verbally using

text_add 0 0 12
— speech.

text remove Allows the user to remove code verbally using 0 0 2
— speech.

Used to identify the current user story which is

a high-level goal that contains multiple objectives.
Used to capture user-defined variables and its
functionality.

user _story 323 | 90 85

variable

bidirectional transformer-based model that was pre-trained on masked language
modeling and next sentence prediction tasks using the BooksCorpus [78] and
English Wikipedia [16]. Previously, BERT has been applied to software anal-
ysis [68], technology comparison tools via online discussions [69], and machine
translation failure detection [25]. The uncased BERT model was expanded to
joitBERT, which was evaluated on the SNIPS [14] and ATIS [27,61] datasets.

Implementation. To enhance the utility of joint BERT, our model was trained
on the entire intent label, contrasting with our previous approach [51], where a
model for each category of intent was employed in a pipeline manner. Training on
the entire intent label simplifies the learning objective for jointBERT. Moreover,
a comprehensive pair programming agent can leverage a multi-model approach
to NLU with jointBERT providing full intent classification and specialized mod-
els for validation. Our implementation utilized HuggingFace’s Transformers
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Table 2: Our model’s 5-fold cross validation accuracy for slot and intent, along
with the intent F1 score for (DA), (DD), and (DD—DA).

DA | DD | DD—DA
Intent |68.39|55.38 68.72

Intent F1|70.85|56.96 71.12
Slot  [99.16 | 98.58 99.08

Python package, specifically the bert-based-uncased model. We utilized the
pre-trained BERT tokenizer with an encode_length of 66.

We conducted a hyperparameter sweep, a process involving training models
with all possible combinations within the search space [47]. We explored various
learning rates (le-3, le-4, 5e-5, le-5), epsilons (le-6, le-7, le-8, 1e-9), and batch
sizes (8, 16, 32, 64, 128) with both Adam and AdamW optimization algorithms.
This results in 250 combinations, each using 5-fold cross-validation, resulting in
1,250 trained models. Our search space was motivated by Chen et al [12], who
trained for (1, 5, 10, 20, 30, 40) epochs using an Adam optimizer with a learning
rate of 5e-5 and a batch size of 128. They observed that jointBERT, with 1
epoch of training, outperformed other slot-predicting models such as LSTMs
[26], Attention-Based BiDirection RNNs [38], and Slot-Gated [24]. Based on our
hyperparameter sweep results, we trained our model using Adam with a learning
rate of be-5, epsilon of 1e-9, and a batch size of 16, for 12 epochs.

Performance. Table 2 illustrates the slot, intent accuracy, and intent F1 score
when the model was trained on (DA), (DD), and employed transfer-learning by
training on (DD) then fine-tuning on (DA) (DD—DA). We reported all metrics
as the average of the 5-fold cross-validation using new training and testing sets.
We implemented the KFold method from SKLearn’s model_selection library.
We found performance variation between (DA) (Intent F1: 70.85%) and (DD)
(Intent F1: 56.96%), which is similar to our previous hierarchical model [44]. We
observed minor improvements in the (DA) dataset (Intent F1: 70.85%) when
we used (DD—DA) (Intent F1: 71.12%), also similar to our previous work [44].
The slot accuracy for (DA) was 99.16% and (DD) was 98.58%; however, for
(DD—DA) the slot accuracy slightly decreased to 99.08%. Still, the (DD—DA)
slot accuracy (99.08%) was superior to the (DD—DA) intent accuracy (68.72%),
which suggests that training on (DD) then fine-tuning on (DA) remains the best
option to train a pair programming NLU.

4 Results

4.1 RQ1: How much data is required to train a pair programming
NLU?

The size of the training data, used in machine learning models, plays a pivotal
role in achieving consistent accuracy. Transformer-based language models, like
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those pre-trained on extensive corpora such as BookCorpus [78] and Wikipedia,
require less training data. Fine-tuning is essential for adapting these models to
specific downstream tasks [10]. Our training dataset, consisting of 3,436 (DD)
and 4,443 (DA) utterances, falls between the range of standard AI data bench-
marks, including ATIS (5,871 utterances) [27,61] and SNIPS (16,000 queries)
[14]. Thus, we explored the impact of data size on intent and slot accuracy.

Methodology. We used pair programming conversations in our training dataset
because it serves as a robust metric for enhancing existing conversational data
and tends to be more elaborate compared to other task-oriented conversational
agents (e.g., Siri [64], Alexa [63], Google Assistant [65]). We incrementally trained
our models on each (DD) or (DA) conversation, employing 5-fold cross-validation
in randomized order for each iteration, resulting in 25 total models.

Fig. 1: Intent (1a, 1c) and slot accuracy (1b, 1d) of (DA) and (DD) conversations
when increasing the training size. ‘*’ represents p-value < .05; “**’ represents p-
value < .01; “*** represents p-value < .001; “**** represents p-value < .0001;
‘ns’ represents p-value > .05.

Intent Accuracy for DA C¢

with Increasing Training Size Slot Accuracy for

e fﬁﬁﬁﬁﬁﬁé

i3 5 4 5 & 7 & 5 1 11 12 13 1 12z 3 42 5 6 7 8 9§ 10 1 12 13 1
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(a) Intent accuracy for (DA) (b) Slot accuracy for (DA)

Intent Accuracy for DD Ct with Increasing Training Size Slot Accuracy for DD
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e

1 H 3 @ 5 [ 7 5 3
Number of Conversations

(¢) Intent accuracy for (DD)

0ss0
oses
Sosmo
os7s
0570

0.965

(d) Slot accuracy for (DD)
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Findings. Fig. 1 illustrates the impact of dataset size on intent and slot ac-
curacy. The box plots represent the intent (Fig. la, 1c) or slot (Fig. 1b, 1d)
accuracy for our 25 models. The outliers, in Fig. 1, may be attributed to ideal-
ized test cases, where portions of the test dialogue included novel examples not
encountered during training, or the inherent variability of conversation. We per-
formed a paired t-test when (DA) or (DD) conversations were incorporated into
the training dataset to assess differences in the model’s performance. We rep-
resented statistically significant p-values with a ‘*’ and non-significant p-values
with ‘ns’.

As represented in Fig. 1, both (DA) and (DD) show that a transformer-based
language model requires a minimum of 5 pair conversational units. To verify the
accuracy of our findings, we performed a one-way analysis of variance (ANOVA)
to identify statistically significant differences across groups [58]. This analysis
focused on the performance of models trained with 5 or more conversations,
resulting in non-significant p-values of 0.31 for (DA) and 0.55 for (DD). In Fig.
1b and 1d, the slot performance, required 2 pair conversational units for (DA)
and 3 for (DD) before performance leveled. We conducted ANOVA testing on
the models’ performance after training with 5 or more conversations, which was
the minimum required for intent. We found non-significant differences for (DA)
with a p-value of 0.18 and (DD) with a p-value of 0.84.

Fig. 2 represents the impact of dataset size on intent and slot accuracy of
transfer learning, (DD—DA), models. We discovered that the intent accuracy
of 1 (DA) conversation, in the (DD—DA) model, matches that achieved with
5-6 (DA) conversations (refer to Fig. 1a). Based on our results from the paired
t-test, we found a non-significant change, for intent accuracy when adding one
pair conversation to the training data set. We performed ANOVA testing, with
14 conversations, and found a significant difference with a p-value of 0.000014.
For the slot accuracy, we found a significant difference from 4 to 5 conversa-
tions, based on the paired t-test. We used ANOVA testing on the remaining
conversations which gave a significant p-value of 0.024.

Fig. 2: Intent (2a) and slot (2b) accuracy for (DD—DA).

Intent Accuracy for DA tions Pretrained on DD tions with Increasing Training Size Siot Accuracy for DA C tions Pretrained on DD tions with Increasing g Training Size

ns 1000 ns
[l ns n:
= - [ A B
ns i

0995

ns ns y — T _—
s s ;*ﬁé’?
o0 s e s ns
T e
Eors * : . g .
.
o

0.980

T 2 3 3 5 6 7 8 5 D 11 2 15 1

Number of Conversations Number of Conversations

(a) Intent accuracy for (DD—DA) (b) Slot accuracy for (DD—DA)
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Summary of RQ1. Based on our findings, 5 conversations encompassing 1,500-
2,000 utterances total, are required to train a pair programming NLU, irrespec-
tive of transfer learning. This aligns with the findings of Huggins et al. [28§],
demonstrating that a high performance with BERT can be achieved with 25
examples per intent. We did not explore data augmentation techniques that
possibly could reduce the total number of utterances needed to get a similar,
stable performance.

4.2 RQ2: How does gender effect the performance of a pair
programming NLU?

Collaboration is a critical component of software development. Efficient collabo-
ration may be effected by developers gender, race, or geographical location [17,6].
We investigated how gender may effect the performance of a pair programming
NLU because gender gaps exist in computing-related classrooms (18% women)
and workplaces (10% women) [59]. Previous studies have investigated differences
in problem-solving [5], communication [30], and leadership style [30] between
men and women while pair programming. Furthermore, while numerous pair
programming videos are accessible on the internet for training our NLU, the
majority of these videos feature men-men pairs. To leverage these videos for our
model training, we assessed the generalizability of a model primarily trained on
data from men-men pairs to mitigate the risk of perpetuating gender bias.

Methodology. We separated the (DD) and (DA) datasets based on the self-
identified gender of the speaking participant. We combined the data, by gender,
for (DD), (DA), and (DD—DA) to assess the model’s overall performance. We
created 6 total datasets: M-DD (9 men utterances); M-DA (7 men utterances);
M-DD—DA (16 men utterances); W-DD (9 women utterances); W-DA (7 women
utterances); and W-DD—DA (16 women utterances). We trained and tested 12
models within the same conversational-context group (DA, DD, DD—DA). We
reported accuracy, for same-gender comparisons (M-M, W-W), as the average of
the 5-fold cross-validation. To analyze mixed-gender comparisons (M-W, W-M),
we trained the model on the first gender dataset and tested on the second gender
dataset in a one-to-one comparison.

Findings. Table 3 illustrates the 12 models intent and slot accuracy perfor-
mance. Our analysis found gender bias across all conversational context groups
(DA), (DD), (DD—DA).

Training and testing exclusively with men data resulted in better perfor-
mance, for intent accuracy, irrespective of conversational context. For exam-
ple, within the DD conversational context, the alternative training and testing
methods (W-W, W-M, M-W) exhibited accuracy below 60%; whereas, the (M-
M) accuracy was 86.62%. Moreover, when training on men data and testing
on women data (M-W), we observed performance levels comparable to those
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achieved when training and testing exclusively on women data (W-W). To il-
lustrate, for the (DA) dataset, (M-W) intent accuracy was 69.09% and (W-W)
intent accuracy was 70.79%. For the (DD) dataset, (M-W) intent accuracy was
59.54% and (W-W) intent accuracy was 58.44%.

Training and testing with exclusively women data (W-W) resulted in the best
slot accuracy performance, for (DA) with 99.88% and (DD) with 98.91%. For
(DD—DA), the best performance came from exclusively men data (M-M) with
98.95%. For (DA) the slot accuracy was comparable for (M-M) with 99.67%,
(W-W) with 99.88%, and (M-W) with 99.67%.

Summary of RQ2. Our findings indicate that while men data can be uti-
lized for training a pair programming NLU, the inclusion of women data en-
hances overall performance. These results are promising in light of the under-
representation of women in computing classes, workplaces, and online videos.

Table 3: Intent and slot accuracy based on same- and mixed-gender training
and testing datasets (W-W, W-M, M-W, M-M) and (DA), (DD), (DD—DA)

conversational contexts.

DA DD DD—DA
Train Test|Intent Slot [Intent Slot |Intent Slot
W W | 70.79 99.88| 58.44 98.91|64.48 98.69
W M |67.16 99.35| 53.78 98.15|61.87 98.04
M W [69.09 99.67|59.54 98.75(61.93 98.50
M M [88.77 99.67| 86.62 98.75|87.20 98.95

4.3 RQ3: How should developer-developer pair programming
conversations, from online videos, be incorporated into the
training dataset of a pair programming NLU?

A pair programming agent is required to support diverse domains and languages.
However, our collected data is centered around one language (Java) and a spe-
cific domain (a Tic-Tac-Toe game). Robe et al. [44] demonstrated that (DD)
data is usable for intent detection, but (DA) data is needed for achieving higher
accuracy. Further, our findings in RQ1 show that slot accuracy slightly decreases
when using transfer-learning. Considering these challenges and findings, we se-
lected 5 pair programming videos, from YouTube, to investigate the generaliz-
ability of the slot, intent labels and feasibility of using online videos as a training
dataset.

Methodology. We found pair programming videos by using a private browsing
window of Google.com to search the term ‘pair programming’. Then, we used
built-in filtering tools to find videos published since 2016 that were longer than
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20 minutes. We used this filtering criteria because newer videos are likely to
focus on current popular languages, domains and longer videos are more com-
parable to the existing data set with comprehensive pair programming sessions.
We selected 3 types of candidate videos: (1) the same language but a different
domain; (2) similar domain but different language; (3) different language and
domain. The similar domain mimicked a Tic-Tac-Toe game by placing objects
on a grid. We reviewed all candidate videos to confirm their language was En-
glish, ensure their availability, and verify the presence of two participants. The
videos represent approximately 350 minutes of pair programming conversations
and 4,822 utterances.

The video we used with the same language but from a different domain fea-
tured 2 open-source software developers working through pull-requests, error
submissions, and merge requests for a Java library that functioned as a verifi-
cation tool [20]. The pair interaction was formal, and they navigated through
tasks systematically with the intent to record their interaction for posterity, po-
tentially serving as a valuable resource for historians, researchers, or their own
future reference.

The first video we used from a similar domain but with a different language
featured 2 coworkers, one man and one woman, who aimed to demonstrate the
basics of creating a 2D interactive terrain for a game board. The pair worked
in a casual and humorous manner to introduce variables and console inputs
to their audience of beginner programmers. They used JavaScript and CSS in
their demonstration. The second video we used was a virtual meeting between
an online teacher and student. The pair debugged the student’s tower defense
game to create a working version. The interaction included frequent sarcasm,
from the teacher, which appeared to negatively impact the students’ responses.
The target audience for this video was self-taught programmers. The pair used
JavaScript and CSS for the project.

The first video we used from a different language and domain was of 2 friends
collaborating to create a Facebook Messenger Bot that ‘echoes’ messages to users
connected to the bot. The interaction was friendly with a lighthearted atmo-
sphere. The second video we used was of 2 Kaggle (a competitive venue for data
science collaboration) partners who live streamed their code development for a
drug classification competition. They used Python and the Pytorch library to
demonstrate the process of building a neural network, catering to an audience of
Kagglers and self-taught programmers. The pair interaction consisted of formal
help and role-switching request with minimal interruptions.

We transcribed all 5 videos using YouTube’s auto-generated closed caption-
ing. We manually adjusted phrasing errors while labeling. We conducted intent
and slot labeling for each transcript. Each researcher labeled 20% of the data
independently and reached a Cohen’s Kappa of 0.810 for the intent labels and
0.725 for the slot labels, which is considered substantial agreement [41]. The
remaining transcripts were divided between two researchers, one researcher la-
beled 3 videos for intent and 2 for slot, and the other research labeled 2 videos
for intent and 3 for slot. The researchers dedicated 14 hours to annotate each
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video for both intent and slot, totaling to 70 hours. Similar to RQ1, we repeated
the 5-fold cross validation 5 times by randomizing the order of the studies.

Fig. 3: Intent and slot accuracy for (YT—DA) and (YT—-DD—DA) conversa-
tions when increasing the training size.
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Findings. Previous research [44] and our current findings discovered that trans-
fer learning (DD—DA), results in better model performance. Further, in RQ1,
we found that 5 conversations, representing about 1,500-2,500 utterances, is suf-
ficient to level-off jointBERT performance; however, that is representative of
one language and domain. Therefore, we explored three ways of using trans-
fer learning: (1) training on YouTube (YT) data, then fine-tuning on (DA),
(YT—DA); (2) training on YouTube (YT) data, then training on (DD), then
fine-tuning(DA), (YT—DD—DA); (3) training on YouTube (YT) data, then
fine-tuning on (DA), (YT—DA).

Table 4 presents the intent and slot accuracy for (DA), (DD—DA), (YT—DA),
and (YT—DD—DA). We found that by training on (YT) data, (YT —-DD—DA)
and (YT—DA), we achieved comparable, slightly improved performance for in-
tent accuracy when compared to (DD—DA). For slot, the performance slightly
increased with the inclusion of (DD) from 99.14% for (YT —DA) to 99.17% for
(YT—-DD—DA).
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Figure 3 compares (YT—DA) and (YT—DD—DA) intent and slot accuracy
when increasing the training size. We used ANOVA on all conversations and
found a non-significant p-value for (YT—-DD—DA) intent accuracy (p-value =
0.90), refer to Fig. 3a. We found a non-significant p-value for (YT —-DD—DA)
slot accuracy (p-value = 0.37), refer to Fig. 3b.

Table 4: The intent and slot accuracy of the model when trained on (DA),

(DD—DA), (YT—-DD—DA), and (YT—DA).
DA [ DD—DA|YT—-DD—DA|YT—DA

Intent|68.39| 68.72 68.77 68.79
Slot [99.16] 99.08 99.17 99.14

Summary of RQ3. Our findings suggest that relying solely on (DD) and
(DA) datasets is insufficient for training a pair programming NLU. Initially
training with diverse data from (YT) and fine-tuning for a specific domain is the
optimal approach to maximize performance. Thus, future endeavors should focus
on expanding the collection of labeled video transcripts, ensuring the inclusion
of new domains and languages overtime.

5 Limitations

A limitation of our study is the utilization of a linear model, in contrast to pre-
vious work that used a hierarchical modeling approach [51]. In a hierarchical
modeling approach, the model is trained for each node of the intent hierarchy.
Adopting this approach with jointBERT could complicate the learning objec-
tive or result in the prediction of slots without the full intent. Potential threats
to validity may stem from our video selection process. The YouTube videos we
selected may not encompass all diverse domains and languages, but our goal
was to ensure that the videos closely resembled situations that a future agent
might encounter. The sample size of five videos may be considered small, but
the videos contains 4,822 utterances from 10 programmers across 4 domains and
3 languages. Furthermore, we present a set of software engineering specific slot
labels which may be insufficient at representing all slots in pair-programming
conversations. Labeling errors may have occurred in the manual labeling pro-
cess, but this was mitigated by using an iterative open-coding process and data
validation tools. The researchers who labeled the data self-identified as men, po-
tentially introducing implicit bias into the labeling process. Furthermore, the size
of the encoding length may have impacted slot accuracy. If the conversational
context leads to shorter utterances on average, this would involve additional
padding for each utterance, potentially making it easier for the model to predict
the correct slot label.
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6 Discussion

For RQ1, we investigated how much data was needed to train a pair program-
ming NLU. Prior work by Sap et al. [54] found that increasing the training size of
the intermediate task resulted in better performance on their downstream task;
therefore, we focused on the creation of a dataset for the intermediate task. We
found that training on 1,500-2,000 utterances, across 5 conversations, resulted
in stable model performance. This highlights the importance of considering the
number of utterances and conversations when training a pair programming NLU.
For example, the two extremes are one conversation with 1,500-2,000 utterances
and hundreds of short conversations with a total of 1,500-2,000 utterances. The
first extreme, involving only one conversation, would make training on infrequent
labels, such as greetings, difficult; whereas, the other extreme would fail to cap-
ture more nuanced labels, such as those relating to task control. Our findings
have implications for training other agents to have longer form conversations.

A major advantage to expanding the dataset through pre-existing data is the
reduction in cost; however, as the dataset expands, maintaining a gender balance
will become increasingly difficult. Reinforcing bias within Al is recognized in fa-
cial recognition [34], bots [21], and underlying language models such as BERT
[16]. This problem is confounded by the lack of women in computing classrooms
and industry positions. For RQ2, we examined if the gender bias inherent in
BERT affected our model and explored the optimal strategy for further expand-
ing the dataset to enhance overall performance. Our findings show that datasets
can deviate from a strict gender balance between men and women, but periodic
checks remain essential to mitigating the risk of perpetuating gender bias.

For RQ3, we investigated two methods of integrating pair programming con-
versations from YouTube. Our first method involved training the model on (YT)
and (DD) before fine-tuning with (DA); whereas, our second method solely
trained on (YT) before fine-tuning with (DA). The (YT—DA) method, with-
out (DD), required 1,500-2,000 (DA) utterances, whereas the (YT—DD—DA)
method, including (DD), required 300-400 (DA) utterances to level off perfor-
mance. While our first method achieved comparable performance, with less (DA)
utterances, both methods require a similar number of total utterances. Our find-
ings indicate that conversations from YouTube could serve as a starting point
for exploring multiple languages and domains in the development of pair pro-
gramming conversational datasets.

7 Conclusion

Our study determined the required training data size (RQ1), scrutinized po-
tential gender bias (RQ2), and assessed the viability of leveraging online videos
featuring developers engaged pair programming (RQ3), for the creation of a pair
programming NLU.

Our research contributes to the broader Software Engineering and Human-
Computer Interaction community with our software engineering-specific slot la-
beling scheme. We expanded the dataset, from earlier work, to include slot labels
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for the original (DA) and (DD) conversations. Our study introduced 5 fully la-
beled pair programming conversations from an online video hosting platform.
We explored various training methods to optimize performance, aiming to incor-
porate general conversational data. Our results has implications for minimizing
the costs associated with conducting and transcribing lab studies, facilitating
the expansion of pair programming conversational datasets, and training future
NLUs for pair programming.
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