
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Stateful Least Privilege Authorization for the Cloud
Leo Cao, Luoxi Meng, Deian Stefan, and Earlence Fernandes, UC San Diego

https://www.usenix.org/conference/usenixsecurity24/presentation/cao-leo

Stateful Least Privilege Authorization for the Cloud

Leo Cao∗

UC San Diego
Luoxi Meng∗

UC San Diego
Deian Stefan

UC San Diego
Earlence Fernandes

UC San Diego

Abstract
Architecting an authorization protocol that enforces least

privilege in the cloud is challenging. For example, when Zoom
integrates with Google Calendar, Zoom obtains a bearer to-
ken — a credential that grants broad access to user data on
the server. Widely-used authorization protocols like OAuth
create overprivileged credentials because they do not provide
developers of client apps and servers the tools to request and
enforce minimal access. In the status quo, these overprivileged
credentials are vulnerable to abuse when stolen or leaked. We
introduce an authorization framework that enables creating
and using bearer tokens that are least privileged. Our core
insight is that the client app developer always knows their
minimum privilege requirements when requesting access to
user resources on a server. Our framework allows client app
developers to write small programs in WebAssembly that cus-
tomize and attenuate the privilege of OAuth-like bearer tokens.
The server executes these programs to enforce that requests
are least privileged. Building on this primary mechanism, we
introduce a new class of stateful least privilege policies —
authorization rules that can depend on a log of actions a client
has taken on a server. We instantiate our authorization model
for the popular OAuth protocol. Using open source client
apps, we show how they can reduce their privilege using a
variety of stateful policies enabled by our work.

1 Introduction
Secure and controlled sharing of data is fundamental to dis-
tributed systems like the Web and Cloud. However, this hap-
pens through rudimentary bearer credentials that cannot pre-
cisely govern how much sharing occurs. For example, let’s
say that you have integrated Zoom with your Google Calendar
so that it can schedule video calls. As part of this process,
Zoom obtains a bearer token that allows it access to your
events on Google Calendar. As a user, you want the assurance
that Zoom exercises minimal rights on your calendar events.
The Zoom app developer wants the least possible rights over

*Equal Contribution.

user resources because this limits the potential for abuse if
Zoom’s bearer token is stolen or accidentally leaked. The
Google Calendar server developers want a method to give out
minimum rights on user data to third parties. These properties
are difficult to achieve in a uniform and flexible way. We con-
tribute an authorization framework for controlled data sharing
in distributed systems enables all these properties.

There are two fundamental issues with current widely-used
authorization protocols like OAuth 2.0 [27] that make it diffi-
cult to achieve least privilege: (1) server-defined permissions
and (2) statelessness. The first problem is that the API server
pre-defines a list of permissions that a client app can request.
For example, Calendar defines permissions that control ac-
cess to various API endpoints. The Zoom developers have to
determine which of these permissions “best match” their func-
tionality requirements. Fundamentally, this “best match” is
not a perfect fit. The client app will always obtain permissions
that it does not need for its functionality because a server de-
veloper cannot anticipate the minimal permissions that clients
need. The Travis Continuous Integration (CI) developers dis-
cuss that they obtain a token that can read and write code
in user’s public and private repositories because GitHub did
not provide a finer-grained permission suited to Travis CI’s
needs [16]. Ideally, the client app should be able to communi-
cate its access requirements to the server, who then enforces
exactly that privilege (only accessing events it created in the
case of Zoom; and only reading code in public/private repos
in the case of Travis CI).

The second fundamental issue with current cloud autho-
rization is that it is stateless. The server evaluates the autho-
rization policy using data present only in the current HTTP
request. This is insufficient because it leads the client to hav-
ing more privilege than it needs. Consider Zoom again — it
should only be able to access the events it has created; it does
not need the ability to access other kinds of events in the cal-
endar. This authorization policy involves state — knowledge
about the actions that the client app (or, its bearer token) has
taken on the server (i.e., which events it has created?). With
currently deployed authorization protocols, writing and en-

USENIX Association 33rd USENIX Security Symposium 3477

forcing an authorization policy involving state is not possible.
Existing work has started to recognize these fundamen-

tal problems with cloud authorization. However, they only
partially target the first problem of server-defined permis-
sions [11,32]. For example, the Macaroons framework allows
clients to include restrictions on how a bearer token may be
used on the server [11]. The recent Rich Authorization Re-
quests RFC for OAuth provides a similar mechanism [32]. In
both frameworks, the server developer has to pre-define a set
of conditions that the client developer can use to attenuate
their tokens — this does not resolve the fundamental problem
that the server developer cannot anticipate all possible ways
in which a client may use a token. Furthermore, these frame-
works only support attenuating the token’s authority using
stateless restrictions.

We construct an authorization framework that addresses
the above fundamental issues using two mechanisms: (1) flex-
ible client-defined attenuation of a bearer token’s privilege;
(2) flexible client-defined statefulness. Concretely, a client
developer writes two programs that the API server runs each
time the client app instance sends a request. The first program,
called the attenuation policy, represents the minimum rights
that the client app needs. The program’s inputs are the cur-
rent HTTP request and a state table — a log of operations
that the client app has performed on the API server thus far.
The second program, called the state updater, is also client
developer-supplied and it captures the semantics of stateful-
ness. Its inputs are the current HTTP request and the previous
state information. It outputs an updated state table for use in
future executions. This enables flexibility — the client app
developer is free to define and use state that makes the most
sense for their functionality.

Revisiting our running example, the Zoom developers will
write the attenuation policy that any request should only ac-
cess Calendar events created by Zoom. They will define the
state as a table containing the API endpoints that were called
for a particular event object. The state updater program con-
tains logic that will add the current API call that the client has
made to the state, if that call is successful. When the Zoom
app makes an API call to the Calendar server to access an
event, the API server will first execute the attenuation policy
to ensure that the request is allowed (i.e., accessing an event
that Zoom has created). Then, it will execute the actual API
and finally execute the state updater to generate the new state
that will be used in future executions.

The client developer is motivated to use this system because
they want to limit abuse if the app’s bearer token is stolen, a
fairly common occurrence [26,28,30,35,37,40,43]. For exam-
ple, Travis CI suffered a breach that allowed attackers to use
stolen OAuth tokens to read private GitHub repositories [26].

Our design requires that the attenuation policy and state
updater programs compile to WebAssembly (Wasm) [24].
We make this decision for the following reasons. First, it
provides flexibility because developers can express arbitrary

policies and state definitions that perfectly fit the privilege
requirements of the client app with any language that compiles
to Wasm. Second, it is portable because Wasm has emerged as
a popular bytecode format and execution environment. Third,
it protects the server because of its strong memory safety
guarantees that enable in-process sandboxing [25].

State is abstractly a log of operations that a client app has
executed on the server. However, it has many concrete forms.
The simplest state definition is the list of distinct server API
calls that a client makes and the number of times those API
calls are made. Client developers can define and use whatever
notion of state they want using the state updater program. A
design question is what party should be responsible for storing
state? Server-side storage is problematic for two reasons: (1)
The state data could grow to be arbitrarily long because it
is client-defined and the server operates at large scale with
millions of users; (2) It would provide an arbitrary storage
primitive for anyone on the Internet. For example, an attacker
could abuse the state mechanism to store illegal material on
the server.

Instead, we require the client app to store the state for all
server-owned objects it accesses and only send a subset of
state relevant to its API requests. This distributes state table
storage into each client and avoids the problems mentioned
above. However, it introduces a secondary challenge of state
integrity and freshness — the server should be guaranteed that
it always receives the most recent state data without alteration
on every API call. Recall that the attacker can steal tokens,
including the state information that is simply another creden-
tial. We address this challenge using cryptographic integrity
protection where the server maintains a hash or HMAC of
each object.

We structure our framework as a library compatible with
OAuth 2.0, a widely-used authorization protocol for the cloud.
The server developer must add a few lines of code to their
route handlers that call into our library. We open source
our prototype implementation for Authlib [33], a popular
Python library for building OAuth clients and servers. We
conduct case studies using a range of open-source client
apps to show how our authorization framework can reduce
token privilege while retaining functionality. Based on these
studies, we develop one definition of state and implement it
as a state updater program that client developers can reuse
(Section 2.3). Our implementation is available at https:
//github.com/earlence-security/stateful-auth

Contributions.
• We design a model for stateful least privilege authorization

for the cloud that allows a client app developer to attenuate
and customize the app’s authority to user resources on
a server. This mechanism is flexible and introduces the
primitive of statefulness that enables a new class of least-
privilege authorization policies.

• We integrate our model with OAuth 2.0, the most widely-
used authorization protocol in the cloud and port existing

3478 33rd USENIX Security Symposium USENIX Association

https://github.com/earlence-security/stateful-auth
https://github.com/earlence-security/stateful-auth

open-source apps to our framework with minimal code
changes. This allows the apps to lower the privilege of
their bearer tokens while retaining functionality.

• We conduct performance tests and find that overhead is
modest. Applying stateful authorization only introduces
a 4.3% increase in latency for requests involving a single
server-owned data object, compared with vanilla OAuth.

2 Stateful Least Privilege Authorization Model
We construct an authorization model that solves the two fun-
damental problems with current approaches — server-defined
permissions and statelessness. This allows client apps and
web services to achieve least privilege authorization and min-
imizes the abuse that can occur if a bearer token is stolen. At
a high level, the model allows client apps to tell servers about
their access requirements using a pair of programs that attenu-
ate a bearer token’s privilege using state information — a log
of API calls that the client app has made to an API service. To
demonstrate the security value of this model, we discuss four
case studies of apps that can use our authorization framework
to minimize their privilege while retaining functionality.
Threat Model. Our goal is to empower a client app developer
(and their security team) to express the minimum privilege
they need and to enable the service developer to enforce these
requirements. The developers of the client app and the API
server are motivated to use our framework because they want
to limit abuse if tokens are stolen. Therefore, we assume that
the client app developer and API server are trusted. This as-
sumption is the same as what we currently have with OAuth
systems and more fundamentally, any permission-based sys-
tem. The client app developers are trusted to provide a useful
service and want to obtain least privilege tokens. A malicious
client developer is outside our threat model.

An important nuance is that even though we trust the client
app developer, the client app itself is vulnerable to security
problems that can result in the bearer tokens being stolen
or leaked [1, 14, 26, 28, 30, 35, 37, 40, 41, 43]. For exam-
ple, we trust that the Travis CI developers want to use the
bearer token for a user’s GitHub repo in a least-privileged
way, but the app instance can still be breached, resulting in
token loss [26]. Broadly speaking, an attacker could steal
tokens through infrastructure misconfigurations, phishing at-
tacks and even through attacks on cloud-based credential
management services that client apps might rely on. For ex-
ample, an Okta breach allowed attackers to gain access to
Cloudflare-owned tokens, ultimately allowing them to access
internal systems [35, 43]. These tokens existed to enable var-
ious integrations such as Atlassian and BitBucket with the
Cloudflare infrastructure. We generalize such attack incidents
and assume that the attacker gains access to current tokens and
also the OAuth client_secret value that will allow them
to create new tokens at will.
Security Goals and Guarantees. We ensure that an au-
thorization token is always bound to its client developer-

supplied least privilege policy. This policy can be a combi-
nation of stateless and stateful checks. In other words, an
attacker cannot use a token in ways that are inconsistent
with the least privilege policy. We also ensure that any new
tokens that an attacker might create (e.g., by stealing the
OAuth client_secret value) is also bound by the developer-
supplied policy. In summary, there is a window of vulnera-
bility where bearer tokens are in the attacker’s possession.
Although the correct server behavior is to revoke the compro-
mised tokens, there is always a delay in taking that action,
during which time, damage is already done. By attenuating
token privilege using stateless and stateful policies, our work
limits the blast radius that results from stolen authorization
tokens.

2.1 Fundamental Problems with Current
Methods

Server-defined vs. Client-defined Permissions. Current
mechanisms to control privilege in protocols like OAuth puts
the onus on the API server developers. They have to create
permissions (or “scopes” in OAuth parlance) that a client can
request. The end-user is prompted to consent to these per-
mission requests, that results in the client obtaining a bearer
token — a credential that represents the client’s privilege over
user data on the server. The key issue is that because there
are many possible ways in which a client can use an API, it is
difficult for service developers to create a set of permissions
that exactly match the client’s requirements.

For example, fly.io is a cloud computing provider that hosts
a server API to control virtual machines. The developers
describe a problem in the design of their permission system —
they cannot anticipate all client app uses of their APIs and are
forced to make a static decision about what permissions to
create [36]. Inevitably, this leads to some clients getting more
permissions than they need. A similar example is Travis CI —
the developers discuss that GitHub did not provide a read-only
permission for private repos [16]. So they obtained a coarse-
grained permission and had to wait until GitHub developed a
completely different integration strategy that supported finer-
grained permissions [18]. This cycle is tedious — the client
app developers have to wait until the server developers create
new permissions and then they have to refactor their codebase.
In the meanwhile, the server developers have to support the
older permissions and the newer ones as well, leading to long-
term security issues.

Prior work has attempted to solve this problem by allow-
ing the client to attenuate a token’s power. For example, the
Macaroons framework allows a client to add “caveats” that
the server evaluates in the context of the current HTTP re-
quest [11]. For example, a caveat might enforce that the Zoom
client is only editing events whose titles start with the sub-
string “work-meeting.” This is a stateless condition and the
server checks it using data only present in the HTTP request
(event title) and the object being manipulated (calendar event).

USENIX Association 33rd USENIX Security Symposium 3479

OAuth Rich Authorization Requests (RAR) specifies a
JSON syntax that clients can use to limit the operations that
can be performed using a token [32]. RAR is a simplified form
of Macaroons. Both of these frameworks require the server
developer to define a set of stateless attenuation conditions.
We observe that this is the same as defining permissions and
thus, it suffers from the same problem — the server developer
cannot anticipate the varied uses of its APIs and thus, the
caveat conditions (Macaroons) or JSON syntax (OAuth RAR)
will always be incomplete.
Stateless vs. Stateful Authorization. The second problem is
that no current authorization framework (vanilla OAuth, Mac-
aroons, OAuth RAR) supports stateful attenuation of token
privilege. Specifically, if a server has access to a log of API
operations that a client has executed with a bearer token, then
it can enforce a new class of stateful least privilege policies.
For example, enforcing that Zoom may only access Calendar
events it has created requires knowledge about what events
it has created in the first place. There are several challenges
in creating a mechanism that enables such policies. First,
what data is recorded as state? Second, where is this state
data stored and how is it recorded? Third, how is state made
available to a client-defined authorization policy?

2.2 Stateful Model Overview
Hybrid Authorization. Fig. 1a shows the high-level work-
flow of our model. It combines server- and client-defined
permissions and introduces statefulness. We trust the client
app developers to: (1) Determine a set of server-defined per-
missions that “best matches” the app’s functionality (SP).
Abstractly, we model the server as providing a set of API
endpoints to the client. The server-defined permissions guard
access to these endpoints and the client wants access to a
subset of them. (2) The app developer writes an attenuation
policy program (Fpolicy) that attenuates SP to achieve a “per-
fect fit” in terms of the client’s privilege requirements. The
attenuation policy program’s inputs are the client’s request
to the server, and state information — a log of API requests
the client has made thus far. (3) The client app developer also
writes a state updater program that defines state concretely
and implements the update logic. The client developer trans-
mits these three pieces of information (SP, Fpolicy, Fupdate) to
the server, and in return, it gets a token (T) that represents
its privilege on the server. Overall, this is a hybrid system
that combines the properties of server- and client-defined
permissions.

When the client app instance makes a data access request,
it specifies the API endpoint, arguments, the state information
and the bearer token. The server first validates that the request
complies with the server-defined permissions bound to the
bearer token (API ∈ SP) and then executes the attenuation
policy (Fpolicy(req,state)). If these checks are true, the server
will perform the API call and then execute the state updater
(Fupdate(req,state)) to produce the new state information. It

Client App Developer Authorization Server

Client App Instance

𝑆!, 𝐹"#$%&' , 𝐹(")*+,

Authorization Server

𝑇

𝐴𝑃𝐼, 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒, 𝑇

𝑟𝑒𝑠𝑝, 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒

if			 𝐴𝑃𝐼 ∈ 𝑆! ∧	𝐹"#$%&' 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒 𝐭𝐡𝐞𝐧
𝑟𝑒𝑠𝑝 ← 𝐴𝑃𝐼	 𝑟𝑒𝑞
𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 ← 𝐹(")*+, 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒
store 𝐼𝑇𝑎𝑔 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒

(a) Stateful Authorization Workflow.

Obj_id API Count

0xAB /read 1

0xAB /update 2

Obj_id

0xABw1

w2

w3

Server Stores:

State

Be
ar

er
To

ke
n

Client App Stores:

Be
ar

er
To

ke
n

0xCD /read 1

… … …

0XCD

State ITag

…

ITag(w1||w2)

ITag(w3)

…

(b) Client app stores and supplies its own state. Note this figure
visualizes one definition of state that we found to be useful for the
case studies in Section 2.3. Our authorization framework supports
any notion of state supplied by the client app developer. The server
only stores an integrity tag (i.e., HMAC or hash) of the state data
and uses it to validate the integrity and freshness of state supplied
by a client app during an API request.

Figure 1: Stateful Authorization Model.

will store an integrity tag (i.e., HMAC or hash) of that new
state and finally return the API call response and the updated
state data to the client app. The client app then stores the state
locally so that it is available for the next request.

This authorization model improves security in the follow-
ing ways. First, by allowing the client app to attenuate its
privilege, the bearer token has the privilege only needed for
client functionality. Second, by including state information,
we enable a broad class of authorization policies that help
attenuate token privilege beyond what is possible using just
stateless machinery. Third, the server-defined permissions
serve as an upper-bound on the bearer token’s authority. If
one were to use a purely client-defined permission system,
then the only thing that limits a token’s authority is the client-
supplied attenuation policy. If this program contains missing
checks, then the token potentially has unbounded authority.
In our model, if there is a missing check in the client-supplied
policy, the token’s authority is still upper-bounded by the
server-defined permissions attached to it. That is, the security
of the system defaults to the status quo. Finally, retaining
server-defined permissions has the advantage of deployability

3480 33rd USENIX Security Symposium USENIX Association

— the server doesn’t have to replace its existing authoriza-
tion system. Rather, our work adds to the existing security
properties that the server provides.

We observe that the client developer is naturally trusted
to write these attenuation policy and state updater programs
because they are providing functionality to users and they
want to minimize the potential for abuse if the bearer token is
stolen. The server developer is also trusted but must run user-
supplied programs on its infrastructure. An attacker could try
to submit a malicious program that breaks out of the sand-
box and takes over the server. The server must also allocate
additional resources to run these programs at a large scale.

To tackle these two issues, our model requires the client
app developers to compile policy programs to WebAssembly
(Wasm). Wasm provides strong in-process memory isola-
tion [25], so the server can run policy programs from multiple
client apps in a single process without sacrificing security,
but still gain performance benefits. An attacker has to com-
promise Wasm memory safety and the OS-enforced process
isolation as well to take over the server.
Defining, Capturing and Storing State Information. A key
contribution of our work is the notion of state — a log of
API calls made by the client app. State information allows
a client app to further attenuate the privilege of its bearer
tokens. Rather than picking a specific definition of state, our
framework allows client app developers to define their own
concept of state and the rules governing its evolution. Fig. 1b
shows one example definition of state — it has two pieces of
information: (1) The called API endpoint; and (2) A counter
that increments each time an API call is successful. This state
gets updated every time the client app calls an API on the
server. For each object that the client app accesses, the state
updater program will create an entry in a table, keyed by that
object’s id. If an entry already exists, the state updater will
increment the counter. This logic forms the evolution rules
for the state under this definition.

Consider our running example of Zoom and Google Calen-
dar. Whenever Zoom makes an API request to access an event,
the attenuation policy can consult the state table to determine
whether there is an entry in it that marked the particular event
as being created by Zoom in the past. If it is the case, then
the Calendar server executes the API call and runs the state
updater to add a new row to indicate that Zoom called the read
API endpoint successfully. Thus, we can enforce a stateful pol-
icy of type access-only-created. Section 2.3 discusses other
types of policies enabled by this particular state definition.

A key design question is where should this state be stored?
One option is to allow the state updater program to access
server storage, such as a key-value database. This is less desir-
able because state is client-defined and the server is support-
ing millions of users. State data could grow to be arbitrarily
large and would require the server to allocate large amounts
of low-latency memory. This demand is exacerbated by the
fact that executing the attenuation policy with the state infor-

mation is now part of the authorization check that is on the
critical path of every API request. Allocating large amounts
of low-latency memory can get expensive [8]. Furthermore,
this design provides a storage primitive to anyone who signs
up as a client. A malicious client could abuse the state updater
program to store arbitrary (and perhaps illegal) data on the
server for free.

A better design is to distribute state storage to the clients.
Each client app stores its own state and then supplies it to the
server along with the bearer token. This trades off server costs
but introduces challenges of protecting the state and ensuring
its consistency in the event of failures.

To address the issue of integrity protection, our model
stores an integrity tag corresponding to each object’s state
data on the server (see Fig. 1b). The tag will be either a hash
or an HMAC. We will discuss an HMAC-based design in
Section 3 and compare hash- and HMAC-based integrity pro-
tection in Section 3.1.3. An attacker with a stolen bearer token
could attempt three attacks involving the state information:
(1) sending a request without state data; (2) replaying out-
dated state; (3) forging state data. Section 3.1 discusses how
our framework prevents all these attacks by design. We dis-
cuss how we handle benign failures and state consistency in
Section 3.2.

2.3 Case Studies
We discuss how client-defined privilege attenuation and state-
fulness allow various real apps to lower their privilege without
affecting functionality. We also introduce how statefulness en-
ables new classes of authorization policies. Table 1 provides
a summary.
Only allow accessing objects that the token bearer has
created. The access-only-created stateful policy formalizes
the “ownership” between the object and the client app that
created it. It helps to restrict the privilege when the client app
instance does not require accessing all the objects, but only
the objects it “owns” to achieve its functionality.

We have already discussed the Zoom and Google Calen-
dar example. In that vein, another example is a note-taking
application, like Joplin [2]. This app synchronizes notes with
various cloud services such as Dropbox or Amazon S3. We
observe that Joplin only needs to create backups and update
existing ones. Based on the access-only-created policy, we
translate the least privilege requirement of note-taking appli-
cations into a stateful policy that “only allows note-taking
applications to access the files/folders it created” and define
the state as the list of distinct API calls made on an object.

In the above examples, given a compromised bearer token,
the attacker can only access the objects the token has cre-
ated. Therefore, the access-only-created policy minimizes the
vulnerability before lost tokens get revoked by the services.
Allow the token bearer to read an object at most N times.
The read-at-most-N-times policy provides a type of “forward
secrecy” in that if the bearer token is stolen, past-read objects

USENIX Association 33rd USENIX Security Symposium 3481

Table 1: Case Studies where Stateful Policies Help to Minimize Tokens’ Privilege. We define a library of three stateful policy
types based on the state definition from Fig. 1b, but the client developer can construct any stateful policy they wish.

Client App Service API Actions Current Privilege Stateful Policy Type State Used Least Privilege

Video-
conferencing
(e.g., Zoom)

Google
Calendar

Zoom creates new
events, modifies or

deletes existing events
on Google Calendar

View and edit all
the events on all

the calendars
Access-only-created

Whether Zoom has
made a request to
Events:insert

Only access the
events created

by Zoom

Note-taking
(e.g., Joplin) Dropbox

Joplin uploads files
for backup and

downloads the backup
files from Dropbox

Download/upload
all the files in
/Apps/Joplin

folder

Access-only-created
Whether Joplin has
made a request to
Files:upload

Only access the
files uploaded

by Joplin

Trip Planner
(e.g., ChatGPT) Gmail

Trip planner reads
users’ Gmail

searching for booking
information

View all the
emails in users’
mailbox at any

time

Read-at-most-
N-times

How many times
Trip Planner has
made requests to
Messages:get

Read each
email at most

once

Continuous
Integration

(CI) Platform
(e.g., Jenkins)

GitHub

CI Platform creates
check runs for CI tests

and updates check
runs when CI tests are

complete

Read and write
the check runs at

any time

Write-at-most-
N-times

How many times CI
Platform has made
PATCH requests to
check-runs/
CHECK-RUN-ID

Update each
check run at
most once

will be unreadable in the future. This relies on a state defi-
nition that can count the number of times the client makes
an API call on the server. Consider a trip planner client app
that reads Gmail to look for new flight or hotel bookings.
It needs to process each new email exactly once. However,
with current authorization, the bearer token allows reading
an email multiple times. If the token is stolen, then the at-
tacker can read any email they wish. With a token bound to
a read-at-most-once policy, the attacker can only read new
emails, and not any emails that the client app might have read
in the past, thus providing “forward secrecy.” Furthermore,
this can be combined with additional stateless conditions such
as only allowing the token bearer to read emails from a set of
pre-specified sender addresses (e.g., Expedia or Kayak). With
the status quo, such a restriction can be enforced only if the
server happens to define such permissions. With our work,
the client has the flexibility to create these restrictions and
bind them with the bearer token.
Allow the token bearer to write an object at most N times.
The write-at-most-N-times policy is designed to express a
sense of “forward integrity” that once data has been commit-
ted, it cannot be tampered with or altered in the future. This
concept is particularly relevant in scenarios where data needs
to be verified not only for its current state but also for its
historical integrity. Like the read-at-most-N-times policy, it
also depends on a state definition that can count API calls.

Consider a GitHub repository integrated with a Continuous
Integration (CI) platform, like Jenkins or Travis CI. These
CI platforms will receive webhook events when a new com-
mit is pushed to the repository, create a check run for CI
tests, and update the status of the check run when the test
completes. The CI platform will request a bearer token with
checks:write permission that allows the token bearer to cre-
ate and update the status of any check runs associated with the
repository at any time. We build a proof of concept GitHub
App [19] and find that the results of a check run can be al-

tered even after being marked as “completed”. An attacker
with this bearer token can alter the result of a check run from
“failure” to “success” so that a buggy release will be posted
and potentially impact the interests of the repository owner. In
this case, once a check run has been marked as “completed”,
its status, conclusion, and other attributes are considered as
final and should not be modified. Thus, we can express the
requirement with a write-at-most-N-times stateful policy that
“allows the CI platforms to update the results of a check run
at most once”, to effectively prevent results of CI tests from
being tampered with.1

Flexibility and Extensibility. We have discussed three exam-
ples of stateful least privilege policies inspired by open source
apps. Our framework provides client developers flexibility
and extensibility — they could add any number of stateless
checks to the attenuation program; they could design custom
state definitions; and they could combine various types of
stateful policies that we have already designed (e.g., access
an object created by the client at most 3 times).

3 Design and OAuth Instantiation
We discuss the design and implementation of our authoriza-
tion framework in the context of the OAuth 2.0 protocol, the
most widely-used authorization system on the Internet. Recall
that OAuth 2.0 involves a client app developer who signs up
on the authorization server operated by the service provider.
At runtime, the client app instance requests permissions (or
scopes, denoted as SP) to access various server resources. The
end-user is prompted with a permission box, where they can
choose whether to grant the requested permissions. At the
end, the client instance obtains a token that authorizes it to
access server resources on behalf of a user. Our primary se-
curity goal is to limit the privilege of bearer tokens to the

1The repository maintainers may request re-runs of CI tests, which will
commonly trigger the creation of another check run instead of overwriting
the existing one, to keep a record of completed check runs.

3482 33rd USENIX Security Symposium USENIX Association

Client App Developer Authorization Server

𝑆!, 𝐹"#$%&' , 𝐹(")*+,
policy_desc, redirect_uri

client_id, client_secret

Compose
	𝐹"#$%&' , 𝐹(")*+,

𝐹!"#$%& ← 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝐹!"#$%&
𝐹'!()*+ ← 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝐹'!()*+
hmac_key

$
←	 0, 1 #

Store
{client_id: (𝐹!"#$%&, 𝐹'!()*+,

hmac_key, policy_desc)}

Figure 2: Client Registration Workflow. l is the key size and
is set to 512 bits.

minimum privilege each client needs for its functionality. We
use HMAC-based integrity protection of state data.

3.1 Workflow
We introduce our design in four steps that mirror the standard
OAuth 2.0 phases: client registration, token request, token
usage and token revocation/expiration. In each phase, we will
use the running example of Zoom and Google Calendar to
clarify the design.

3.1.1 Client Registration
In a standard OAuth flow, the client app developer will sign
into a portal operated by the service provider. They will regis-
ter their client app name, redirect URI and will request permis-
sions (SP) from a server-defined list. As discussed earlier, the
server-defined list fundamentally cannot match the privilege
requirements of the client exactly, so the developer selects
a “best match” instead. We modify this registration step to
include one more piece. The developer writes two programs
(attenuation policy and state updater) in a language that com-
piles to WebAssembly and then submits the Wasm binaries
to the service provider portal (see Fig. 2). We also require
the developer to supply a string (policy_desc) that explains
what the policy programs accomplish in layperson terms. This
string will later be displayed to the end user while a bearer
token is being requested. The server pre-compiles the Wasm
binaries into modules for better performance, randomly gen-
erates a client-specific hmac_key, and returns the standard
client_id and client_secret value to the client developer.
All tokens that the server creates in the future for this client
will be automatically bound to SP, Fpolicy, and Fupdate.
Security Analysis. We trust the client app developer and their
development environment. We also assume that the client
developer writes the pair of programs that capture their least
privilege requirements. Per our threat model, our goal is to
empower developers to access minimum privilege and reduce
abuse if bearer tokens are stolen. It is in the client app de-
veloper’s best interest to protect their users’ data. The server
stores the programs, along with any requested OAuth permis-
sions. This freezes the privilege level of any bearer tokens

1 def zoom_access_only_created(req, state):
2 if req.path.startswith('/events'):
3 if (req.path , req.method) == ('/events', 'POST'):
4 # Allow creating a new event.
5 return True
6 else:
7 # Iterate through the state - history of API calls ,
8 # to see if the user has created this event.
9 for e in state:

10 if (e.path , e.method) == ('/events', 'POST'):
11 # Allow access if the state indicates that
12 # the user has created this event.
13 return True
14 # Deny if no creation in the state.
15 return False
16 # Allow accessing other endpoints in the scope.
17 return True

(a) Access-only-created Attenuation Policy for Zoom integrating
with Google Calendar. Note that the client app supplies the state data
and it is specific to the event object that the client is trying to access.

1 def state_updater(req, state):
2 for e in state:
3 if (e.path , e.method) == (req.path , req.method):
4 return state
5 newEntry = StateEntry(path=req.path , method=req.method)
6 state.append(newEntry)
7 return state

(b) Example State Updater Program. The state is defined as a list of
distinct API calls made in the past.

Figure 3: Policy programs that compile to WebAssembly.

given by the server to a client app. The client app develop-
ers should follow all best-practices related to securing their
credentials that allow them access to the server-operated regis-
tration portal, such as using strong passwords and two-factor
authentication. Furthermore, there is no technical reason for
developer credentials to appear in the client app’s code. Thus,
any compromise of the app instance does not give the attacker
the ability to access the server-operated registration portal.
This ensures that for a specific client, the binding between
all its tokens (current and future), the Wasm policy file, and
OAuth scopes remains static and can only change through
explicit action of a physical developer with the right set of
credentials.

Example. We revisit our running example of Zoom integrated
with Google Calendar. Zoom only wants to either create new
events or read/modify events it has created in the past. Google
Calendar provides the calendar.events [22] scope that al-
lows the token bearer to create/read/modify all events, includ-
ing ones that the bearer did not create. So, the developer will
first select this scope as it is the “best match”. To attenuate
this privilege further, Zoom developers will write the policy in
Fig. 3a. It analyzes the request data and if there’s a matching
entry in the state information (Line 10), it means that Zoom
has accessed/created this particular event in the past. If no
matching entry is present in the state information, then the
request is denied (Line 15). The Zoom developer defines state

USENIX Association 33rd USENIX Security Symposium 3483

as a list of distinct API calls it has made, keyed by event id.
Every time the server successfully processes an API call on
behalf of Zoom, the state updater program (See Fig. 3b) will
be executed. If the program finds the request API call does
not exist in the state, it will return a new state by appending a
new state entry to the old state.

3.1.2 Token Request
A client app instance requests a bearer token before it can
provide service to users. Without loss of generality, we will
describe how our work modifies the standard OAuth autho-
rization code grant flow (Fig. 4). Per this flow, the client app
instance initiates the token request by directing the user to an
authorization endpoint on the server. As part of this request,
the app instance transmits the client_id. This allows the
server to look up the previously stored OAuth permission,
Wasm binaries and end-user description information. This
information is displayed to the user in a standard OAuth per-
mission prompt. Upon user consent, the server mints a new
bearer token (T), associates it with the pre-defined OAuth per-
missions and Wasm programs (Sp,Fpolicy,Fupdate), and returns
it to the client app instance.
Security Analysis. Per our threat model, an attacker could
breach a client app instance to leak tokens and/or the
client_secret value. In standard OAuth, this allows them
to negotiate new tokens, often with more privilege than what
the app had at the time of the attack. In our framework, the
client app developer has already frozen the privilege of all
current and future tokens during the trusted registration phase.
We require the authorization server to ignore any scope re-
quests outside the predefined permissions bound by Sp and
Fpolicy. Thus, the attacker cannot change token privilege —
any tokens they create will always be bound by the client de-
veloper’s stateful least privilege policy. We also note that there
is no mechanism through which the attacker can upload their
own Wasm policy files during a token request. This step can
only occur through the server-operated developer-only portal
(see the client registration step above), and we assume that
the client developer’s credentials for this portal are secure.
End-User Experience. The end-user sees a standard OAuth
permission prompt with the addition of a string description
that explains how the Wasm policies further attenuate the
token’s permissions. In our example, the user will see that
Zoom is asking for OAuth scope calendar.events and a
policy description: Zoom can only access the events it creates.

3.1.3 Token Usage
The client app instance will transmit the bearer token with ev-
ery request it sends to the API server. Our framework requires
the client to also transmit the state information corresponding
to the object(s) it wants to access (as an HTTP request header).
This implies that the client knows ahead-of-time about the
object identifiers involved in a request.

When the server’s route handler receives a request, it will
perform the following steps sequentially:

Client App Instance Server

𝐴𝑃𝐼, 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒, 𝑇

𝑟𝑒𝑠𝑝, 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒

User

Token Request

Grant Consent
Show 𝑆!, policy_desc

auth_code
auth_code, client_secret

Token 𝑇

Retrieve 𝑆!, policy_desc from storage

Generate Token 𝑇

if				valid 𝑇 ∧ 𝐴𝑃𝐼 ∈ 𝑆! ∧
valid 𝑠𝑡𝑎𝑡𝑒 ∧ 𝐹!"#$%& 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒

then
𝑟𝑒𝑠𝑝 ← 𝐴𝑃𝐼	 𝑟𝑒𝑞
𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 ← 𝐹'!()*+ 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒
ℎ ← 𝐻𝑀𝐴𝐶 hmac_key, 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒
Store {(client_id, user_id, object_id): ℎ}

Store {object_id: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}

auth_code

Figure 4: Token Request and Usage Workflow.

• Verify that the token T is valid (unexpired and not revoked)
and that the API request is within the set of OAuth permis-
sions granted to this token (API ∈ SP).

• If the above step is successful, the server will verify in-
tegrity of the client-supplied state table by computing its
HMAC with the client-specific hmac_key and comparing
it with the server-stored value.

• The server runs the attenuation policy program (Fpolicy)
with the request data and state to produce a final autho-
rization decision. We use wasmtime [6] to execute the
sandboxed Wasm policies. Note that policies do not need
to interact with the external OS — they are pure functions.
This provides strong memory isolation guarantees and al-
lows the server to be efficient by running policies from
different clients in the same OS-level process.

• If Fpolicy is true, then the server will allow the resource call
to run as requested by the client. If the resource call is suc-
cessful, the server will execute the state updater (Fupdate) to
produce the new state and store the HMAC of the new state
(HMAC(hmac_key,newState)). Then the server returns
the API call response and new state to the client. Finally,
the server stores the mapping of the triple (client_id,
user_id, object_id) to the HMAC.

• Upon receiving the response, the client app instance will
synchronize its local state storage with the new data (i.e.,
updating the map from object_id to state tables).

Security Analysis. Three attacks are possible with a compro-
mised token.
• Transmit a request without state information. The server

stores the latest state integrity tag for each object of the
client. When it receives a request without any state at-
tached, it will deny the request because it is expecting state
data for integrity verification. The corner case is when the

3484 33rd USENIX Security Symposium USENIX Association

state information is empty (i.e., the first time a client ac-
cesses an object). Our framework handles this naturally
because there won’t be an entry in the server’s state storage
for the client. However, the moment an entry is created, the
server will always expect the correct state in the request.

• Replay out-of-date state information. The server maintains
the invariant that it always stores the latest state integrity
tag corresponding to an object. It achieves this by always
first updating the state integrity tag on its end and then
returning the updated state data to the client. Therefore,
it will simply deny a request that has out-of-date state
information. Note that a client can send out-of-date state
in a request due to benign failures. We discuss this in
Section 3.2.

• Transmit a request with modified state information or state
information from unrelated clients. The attacker can tam-
per with state data. We trivially prevent this due to the
integrity protection with either HMAC or hash.

Hash- vs. HMAC-based Integrity Protection. While we
have discussed an HMAC-based protocol, our protocol is ag-
nostic to using either hashing or HMAC. Both ensure state
integrity: hashing relies on a collision-resistant hash function,
whereas HMAC requires a client-specific secret key known
only to the server. HMAC provides a stronger integrity guar-
antee compared to hashing, since collision vulnerabilities are
mitigated by the HMAC construction [10, 29]. Furthermore,
HMAC offers authenticity, ensuring that only states generated
by the server are accepted. The server should select the appro-
priate mechanism based on its requirements for authenticity
and key management capabilities.
Wasm security configuration. An attacker could write Wasm
designed to affect the server’s operation. We use wasmtime as
our execution engine and our policies do not need to interface
with the external OS because they are pure functions. This
limits the available attack surface. Wasm guarantees memory
safety — a module cannot interfere with the memory of other
modules within/outside the Wasm process. An attacker could
try a denial of service attack by writing a policy that doesn’t
terminate, in the hope of crashing the server. wasmtime pro-
vides a watchdog timer-like abstraction called “fuel” that
limits the runtime of a piece of code. We use this feature to
ensure that a misbehaving policy cannot hang the server.
Example. Following the example in Section 3.1.1, assume
that Zoom wants to use its token to make a GET request on a
calendar event it created earlier. The state is defined as a list
of distinct past API calls made by Zoom on an object and we
assume that the following state is associated with the token:

1 # The current state stored on Zoom instance.
2 object_id_1: [(/events , POST)]
3 object_id_2: [(/events , POST)]

Zoom wants to read the event with object_id_1, the event
it created via the POST /events API. Zoom does this by
sending a GET request to the /events/object_id_1 API

endpoint. Along with the request, Zoom will send only the
state associated with object_id_1, since it is the only object
the current request is accessing. Therefore, inside the request
header, Zoom will include the state:

1 # The state of object_id_1 will be sent along with
2 # the request that accesses it.
3 object_id_1: [(/events , POST)]

After Calendar receives the request, it will validate Zoom’s
token, make sure the token is not expired or revoked, and
the requested resource is in the scope of the token. Then, it
validates the received state by calculating its HMAC, and
checking the result against the correct HMAC in its database:

1 # Server -side storage of state HMACs.
2 object_id_1: hmac_1
3 object_id_2: hmac_2

Assume the state we present above is the latest, i.e., sent
with the last response from the server. The HMAC stored on
the server’s state table (hmac_1) should be the same as the
latest state HMAC on object_id_1. Thus, the state is valid.

Once Google Calendar confirms that the state is valid, it
will proceed to run the policy program registered for Zoom,
specified in Fig. 3a. This program evaluates to true because
Zoom did create the event object. Next, Calendar performs
the resource call and generates a response. If the resource call
returns successfully, the server will execute the state updater
program registered for Zoom. Based on the definition that
the state is the list of distinct API calls Zoom made in the
past, this state updater program will generate a new state for
object_id_1 by adding the URL path and HTTP method of
the current request to the state.

1 # New state returned by the state updater program.
2 object_id_1: [(/events , POST),
3 (/events/object_id_1 , GET)]

The server (Calendar) then calculates the HMAC of the new
state, and updates the old HMAC value in its database. Finally,
along with the API response, the new state for object_id_1
will be sent to the client. Zoom receives the response and
stores the new state in its database.

3.2 Miscellaneous Operations
Token Revocation and Expiration. When the server revokes
or expires a bearer token that belongs to a client app instance,
our framework ensures that the newly-created token will au-
tomatically and seamlessly inherit the latest state informa-
tion. This process is enabled by the server-side storage that
maps (user_id, client_id, object_id) to state HMAC
HMAC(hmac_key,state). When the server creates a new to-
ken for a client (using the procedure outlined in Section 3.1.2),
the newly-created token is naturally associated with the exist-
ing client_id and user_id pair for that client app instance.
Once the client receives the new token, it will simply associate
that token with the existing state data. When it makes an API
request using the new token and the object_id, the server

USENIX Association 33rd USENIX Security Symposium 3485

will look up the corresponding client_id and user_id pair
to locate the state HMAC and will seamlessly find a match.

Benign Failures. Network- and system-level failures can re-
sult in loss of state data. We assume that TCP handles all
network-related packet drops. We expect that the client app
and authorization server use crash-consistent storage tech-
niques for backing up state data and its HMAC respectively.
The server maintains a time-limited cache of previously-sent
state data, using a system such as DynamoDB configured with
a Time-to-Live for key-value entries [15]. If the client goes of-
fline while it is receiving a response, it can contact the server
once its back up to retrieve the most recently cached state
data. We envision that more advanced techniques are possible
that allow a client to communicate its desired time-to-live for
cached state to the server based on the client’s failure rate, but
these are orthogonal and beyond the scope of this work.

Synchronizing State Between Client Instances. There can
be multiple instances of the same client app for a single user
at the same time. For example, a user can be logged into
Zoom on their smartphone and their browser. Both of these
client app instances need the same state information. We
require that the client app instances for the same user utilize
existing replication techniques to ensure that the state table is
consistent across them. A simple method to achieve this is for
each client app instance to always upload the latest state table
to a cloud storage service that other instances can pull from.

Synchronization Attacks. An attacker can de-synchronize
the client-stored state table and the server-stored state
HMACs, causing requests to be rejected in state validation.
Upon the detection of token leakage, the server will revoke
all the leaked tokens. The client app developer will pull the
state tables from the affected app instances and send them
to the server via a portal accessible only to the client app
developers. Observe that these tables do not contain the up-
dates caused by the attacker. The server will compute and
store new state HMACs, thus achieving re-synchronization. If
the client_id and client_secret are leaked, the attacker
could obtain new tokens. Thus, besides the operations above,
the server will revoke client_id/client_secret pair and
all the client tokens. The client app developer should derive a
new client_id/client_secret pair from the server portal.

State Lifecycle and Time-based Limits. State data comes
into existence when an object is created on the server and
is deleted when the object is removed from the server. Con-
cretely, the server will remove the state hash value when the
corresponding object is deleted. To manage storage indepen-
dently of object lifetime, the client developer could set a Time-
to-Live (TTL) for how long state is available. For example,
it is unlikely that the user wants Zoom to manipulate events
that have occurred in the distant past and thus, it is unlikely
that Zoom will make an API request to access those events.
The attenuation policy could include a time interval condition
that only allows access to Calendar events newer than a con-

figurable value. Beyond that, the server deletes state hashes
whose TTL has expired and the client deletes the actual state
data. Similarly, for the Trip planner app, it is unlikely that it
needs access to emails older than a configurable threshold
(say, 6 months). Thus, the client and server can co-operate to
reduce their state storage independently of the actual object
lifetime. Finally, these time intervals can be exposed to the
user, providing them with a knob to tune the level of access
they are willing to give out.
Privilege Changes. An app developer can add or remove
features over time, and this impacts the amount of privilege
it needs. Currently, OAuth handles this by requiring the de-
veloper to change their permissions on a portal that the server
provider operates. We integrate with this mechanism — the
client developer will modify the attenuation policy and op-
tionally the state updater program based on new requirements
using the same portal from the client registration phase dis-
cussed above.

Changes to the state updater might change the schema of
state tables. Thus, both the client-side state table and server-
side state HMACs need to be updated accordingly. We require
the client app to undergo a maintenance period and perform
migration following the new schema. Specifically, the client
app developer will write a program that updates a state table
following the new state definition and distributes it to all the
app instances. Each app instance updates its state table locally.
Then, the client app developer will pull and submit the updated
state table to the authorization server. The authorization server
will recompute and store the new HMACs.

4 Evaluation
We integrate with OAuth 2.0 protocol and provide a collec-
tion of APIs for developers to apply stateful authorization as a
“drop-in” solution. We evaluate the performance of our frame-
work based on the development effortsstorage overhead and
end-to-end latency. We refer to our authorization framework
as StatefulAuth in the following discussion.

4.1 Porting Real Client Apps and API Servers
We design APIs for both server- and client-side developers
based on Authlib [33], a Python library of generic OAuth im-
plementations, outlined in Table 3 in Appendix A. With these
APIs, the transition to stateful authorization only requires
minor changes to client- and server-side codebase.

Fig. 5 reports the example programming inter-
face for the client and server. On the server side
(Fig. 5a), the developers will create a Python dec-
orator [38] @require_oauth_stateful with the
ResourceProtectorStateful class (Line 7) and reg-
ister a stateful token validator for it (Line 8, 9). Then, the
developer will wrap each protected resource API endpoint
with this decorator (Line 14). At runtime, when a new request
to the protected resource arrives, it has to pass the following
checks inside @require_oauth_stateful: validating that

3486 33rd USENIX Security Symposium USENIX Association

1 from flask import Flask , Response , make_response
2 from statefulauth.models import OAuth2Token
3 from statefulauth.serverlib import

ResourceProtectorStateful , update_state ,
create_bearer_token_validator_stateful

4
5 from models import Event
6
7 require_oauth_stateful = ResourceProtectorStateful()
8 validator_stateful =

create_bearer_token_validator_stateful(OAuth2Token)
9 require_oauth_stateful.register_token_validator(

validator_stateful())
10
11 app = Flask(__name__)
12
13 @app.route('/api/events/<event_id >')
14 @require_oauth_stateful('events')
15 @update_state()
16 def get_event(event_id: str) -> tuple[Response , str]:
17 event = Event.query.get(event_id)
18 return make_response(event.as_dict), event_id

(a) Server-Side

1 from requests import get , Request
2 from statefulauth.clientlib import attach_state ,

store_state
3
4 def send(req: Request , obj_id: str):
5 req = attach_state(req , obj_id)
6 resp = get(req)
7 store_state(resp , obj_id)

(b) Client-Side

Figure 5: Code Snippets of Client- and Server-Side APIs.

the bearer token is valid and that the request is within the
pre-approved OAuth scope of that token, validating state
integrity and freshness, and executing the policy program.
After a request passes all the checks and the resource query
succeeds, another decorator @update_state (Line 15) will
execute the client-supplied state updater program to generate
a new state, send it back to the client, and store its hash value
on the server.

On the client side (Fig. 5b), we provide attach_state to
load the state and attach it to a request’s header before sending
the request to the server (Line 5). When the client receives
a response from the server, store_state will fetch the new
state in the server’s response header and update the client’s
state storage accordingly (Line 7).
Deploying to Real Applications. We deploy our authoriza-
tion framework to protect two apps from the case studies in
Table 1: Joplin (a note-taking app that backs up to Dropbox)
and a ChatGPT-based trip planner (that reads Gmail). We only
port these two apps because they can be customized to meet
the deployment requirements of StatefulAuth. The client apps
in other case studies are proprietary in nature. We present the
lines of code (LoC) of attenuation policy and state updater
programs of all the case studies in Table 2.

We integrate our library into the Joplin terminal app writ-
ten in JavaScript by implementing a JavaScript client library
that helps Joplin load and store state. The code changes to

Table 2: Worst-Case Storage and LoC of Fpolicy and Fupdate.

Client
App

Service
API

Fpolicy
LoC

Fupdate
LoC

Client-Side
Storage Per

Object

Server-Side
Storage Per

Object

Zoom Google
Calendar 14 8 1.02 KB 256 bits

Joplin Dropbox 18 9 0.42 KB 256 bits
Trip

Planner Gmail 18 9 0.13 KB 256 bits

Joplin are similar to those illustrated in Fig. 5b, involving the
insertion of only two lines of code before and after sending
the request. These modifications are made within the File
API Driver package of Joplin. During the synchronization
process, Joplin will create a folder called “/Apps/Joplin”, cre-
ate a backup file for each note, and create metadata files —
this process involves 9 different Dropbox API endpoints. On
the server side, we replace the token validator with a stateful
validator (Fig. 5a Line 8, 9) and decorate these endpoints
with @require_oauth_stateful and @update_state. For
@update_state to work properly, each endpoint will return
a tuple of Response and object_id. All the above requires
30 lines of code changes on the server side.

Our second implemented case study is a ChatGPT-based
trip planner built using a custom GPT [34]. The custom GPT
feature allows ChatGPT to call cloud service APIs using
OAuth. We built our trip planner GPT to mirror the function-
ality of commercial trip planners that scan the users’ emails
to recommend trip itineraries, such as TripIt [3] and Wander-
log [4]. We define custom “actions” that make calls to an
email server’s API available to ChatGPT. The email server is
modified similarly to the Joplin integration, we add the deco-
rators @require_oauth_stateful and @update_state to
the server’s API endpoints, and we include the object_id
of the current request in the API response. Since we cannot
modify any client-side code, all state storage is managed on
the email server for demonstration purposes.

Deploying stateful authorization requires changes to both
the client and server’s codebase. Due to the lack of open-
source service APIs, we implement a proxy server as an extra
layer between the client and the server. The proxy is registered
as a client of the real service. When receiving a request from
the client, the proxy will perform the validation process (i.e.,
token authentication, state validation, and policy execution)
and forward the request to the real service if validation suc-
ceeds. When receiving a response from the server, the proxy
will update the state if the request succeeds and forwards the
response to the client. We note here that the real implemen-
tation is to modify both the client- and server-side codebase.
Our implementation with the proxy is to show that the system
works with real client apps and API servers.

4.2 Storage and Memory Overhead
Storing State. The server-side state storage scales with the
product of the number of client-user pairs and the number of

USENIX Association 33rd USENIX Security Symposium 3487

objects (Section 3.1.3). We use HMAC-SHA256; each entry
in the server-side state storage is a 256-bit value.

The client-side state storage only scales with the number
of objects. The client will store the complete state for each
object. Fig. 1b demonstrates an example where the state is
defined as a list of distinct API calls made by the client and
their respective counters. With this state definition, we can
compute the state size of a single object on the client side as:

StateSize= MAX_STATE_ENTRY_SIZE×|Su|
≤ MAX_STATE_ENTRY_SIZE×|Sp|

(1)

Here |Su| denotes the number of API endpoints used by the
client app and |Sp| the number of API endpoints in the set
of server-defined permissions granted to the token. Note that
Su ⊆ Sp and |Su| ≤ |Sp|, i.e., the used API endpoints must
be a subset of those permitted by the server-defined scope.
MAX_STATE_ENTRY_SIZE is the maximum size of an entry in
the state table, a constant based on the definition and design of
the state data structure. We measure the client- and server-side
state storage size per object for a subset of our case studies
and present the result in Table 2.
Storing Policies. The server will store two programs for each
client. To estimate the size of Wasm binaries, we write a
collection of policies for our case studies in Table 1, includ-
ing stateless policies, stateful policies, and combined poli-
cies. Stateful policies include the access-only-created and
read/write-at-most-N-times policies described in Section 2.3.
Examples of stateless policies include scrutinizing attributes
in the request body (e.g., only permitting the creation of cal-
endar events if the specified time falls beyond February 15th).
We also write more complicated policies by combining the
above policies. We observe that the size of each Wasm binary
is 120-200 KB. The size of access-only-created Wasm binary
we use in the integration with Joplin is 124 KB, and the size
of the read-at-most-once Wasm binary used in ChatGPT trip
planner is 121 KB. The size of the state updater Wasm binary
for both Joplin and trip planner is 115 KB.
Memory Overhead of Policy Execution. We measure the
amount of memory required to execute Wasm programs. Each
of the Wasm programs (including both the policy and state up-
dater programs) in the three examples we describe in Table 2
takes 128 KB (i.e., two WebAssembly pages).

4.3 Latency Overhead
We measure latency of authorization in the baseline case
(vanilla OAuth 2.0) and our case (StatefulAuth).
Experiment Setup. We implement a client-server frame-
work to measure end-to-end latency. We host our server on
a c5d.2xlarge instance with 8 vCPUs and 16 GiB memory
on Amazon Web Services (AWS) in the US East (Ohio) re-
gion, and our client app on another instance with the same
configuration in the US West (North California) region. To
simulate the overhead of a real system, we mock up an imple-
mentation of Google Calendar APIs. Specifically, we mirror

(a) End-to-end latency of OAuth and StatefulAuth (Hash- and
HMAC-based integrity.

(b) StatefulAuth (HMAC-based) Server-side Latency Breakdown.

Figure 6: End-to-end and server-side latency breakdown.

the Events API [21]. We define an Event table in the server-
side database. Each API endpoint performs the corresponding
operations on the Event table. We use an in-memory SQLite
database [39] for the above operations.

We use an access-only-created policy written for Events
API in our evaluation of StatefulAuth. The client generates
a sequence of requests. Each request is randomly selected
from the set of Google Calender Events API endpoints. If the
protocol is OAuth, the client will send a bare request; if the
protocol is StatefulAuth, the client will attach the state asso-
ciated with a request to its header. To estimate the worst-case
latency, we generate requests that incorporate the maximum
state length for each object (|Sp| in Eq. 1). Each state table is
configured to include 10 records, representing the entirety of
API endpoints in Google Calendar calendar.events scope.
We also assume all the requests will be completed successfully
to estimate an upper bound of latency.

In StatefulAuth, the client selectively transmits only the
state information of the objects associated with a particular
request. Our objective is to analyze the end-to-end latency in
relation to the quantity of objects included in a single request.
We simulate batch requests where N objects are processed
in a single request. For example, when N = 10, the client
will send 10 object_ids and their associated states, and the
resource API endpoint will sequentially process each object.
We set the upper limit for batch size at 50, aligning with the

3488 33rd USENIX Security Symposium USENIX Association

guidelines in Google’s API documentation. Google advises
against exceeding this threshold, as larger batch sizes are
susceptible to triggering rate limiting [20]. Hence, we adhere
to this recommendation and restrict our analysis to batch sizes
not surpassing 50 objects.

Server-side Latency Optimization. We optimize the server-
side latency of batch requests. Instead of executing a separate
Wasm program for each object, we offload the iteration over
objects to the Wasm module. This allows us to execute a
single Wasm program for all objects in a request, eliminating
the overhead of repeatedly instantiating and calling Wasm
modules. We also optimize the latency of database queries
by performing a bulk save of all the state integrity tags in a
request. We achieved an improvement in server-side latency
by over 2.3×when N ≥ 10, and by over 4×when N = 50. We
improved the end-to-end latency of StatefulAuth by over 20%
when N ≥ 30, and by over 30% when N = 50, as shown in
Fig. 6a. We tried parallelizing operations on different objects,
but it didn’t yield performance benefits due to the Python
Global Interpreter Lock and the overhead of parallelism. Since
the optimized latency is low and mostly compute-bound, the
added complexity of parallelism worsened performance.

End-to-End Latency. Fig. 6a presents the end-to-end latency
when applying OAuth and StatefulAuth (hash- and HMAC-
based) to our client and server framework. We see that State-
fulAuth (HMAC-based) introduces a 4.3% increase to end-to-
end latency when processing a single object in each request
(N = 1) compared with OAuth, and 9.5% when N = 10. Al-
though most requests in a real-world setting only operate on a
single object, we also present the case of N = 50 to represent
the theoretical upper bound of the end-to-end latency, which
we observe as 2.2× of OAuth. We conduct an analysis of the
end-to-end latency of StatefulAuth and break it into network
latency and server-side latency. As per the comparison of
network latency between OAuth and StatefulAuth, the trans-
mission of additional state data incurs linear growth relative
to the number of objects, consequently introducing supple-
mentary network latency. We observe that when N ≥ 20, the
network latency accounts for above 68% of increase in end-
to-end latency compared with OAuth.

Server-Side Latency Breakdown. The server-side latency of
StatefulAuth can be further divided into five parts, shown in
Fig. 6b. We see that the server-side latency increases propor-
tionally with the number of objects because the server will
sequentially iterate through each object for each operation.
State validation is the predominant contributor to server-side
latency, which takes around 36-53% of total server-side la-
tency. Upon closer inspection, we have identified the primary
source of latency in state validation as the sequential reads of
the database for HMAC values.

Comparison of Stateless Policies with Macaroons. We com-
pare the end-to-end latency of stateless-only policies in our
work with the existing Macaroons framework. Note that we

Figure 7: Stateless-only Policy Comparison with Macaroons.

only compare with Macaroons because they functionally sub-
sume OAuth RAR (Section 2.1). We use pymacaroons and
create caveats (i.e., stateless authorization policies) that in-
volve string comparisons on HTTP POST request data. We
implement the same policy in Wasm for our work. We mea-
sure end-to-end latency using the same setup as before. Fig. 7
shows that our work only adds 1–2 ms of latency compared
to Macaroons on average. We conclude that this overhead is
a small price to pay in exchange for the richer set of autho-
rization policies that we enable.

5 Related Work
Credentials-based Authorization. Our authorization frame-
work is an instance of credentials-based authorization that
uses credentials and guards to enforce policies [17]. Creden-
tials define beliefs about principals and the state of a dis-
tributed system. Guards use logical formulas and inference
to determine whether a given access is allowed. We define
principals as the client app and the API server. We allow the
client app developers to define and manage state. However,
we do not use a logical formula to express the authorization
policy. Rather, we use a Wasm program that offers flexibility
and practicality.

There is a long line of work in this general area that uses
public key certificates and formal authorization logic to sup-
port a range of flexible and decentralized authorization poli-
cies for distributed systems. SPKI/SDSI [31], Trust Manage-
ment [12], Active Certificates [13] are a few notable examples.
However, such mechanisms have not been widely adopted in
the cloud [42] for a variety of reasons such as their implemen-
tation complexity or the need for long-term identities.

Currently, authorization in the cloud is based on bearer
tokens — secrets that grant unconditional access to re-
sources. These tokens are exchanged between protection
domains and are vulnerable to a range of token stealing at-
tacks [26, 28, 30, 37, 40]. Our contributions exist in this prac-
tical space of trying to enforce the least privilege principle
on bearer tokens. Macaroons was a first effort at improving
the security of OAuth-like bearer tokens [11]. They provide
a method for first and third parties to attenuate the power of
bearer tokens by adding caveats — conditions that limit the

USENIX Association 33rd USENIX Security Symposium 3489

token’s authority. Similarly, the OAuth Rich Authorization
Requests RFC attempts to limit token privilege by defining
a JSON-based standard to express caveats [32]. As we ex-
plained in Section 2.1, these existing efforts still suffer from
fundamental problems associated with their use of server-
defined permissions and stateless policies. Concretely, Maca-
roons still require the server developers to define the caveat
language. This results in a lack of extensibility — clients
may want to enforce policies that fall outside the server-
defined caveat language. Furthermore, there is an entire class
of authorization policies that rely on state information, as
we explained earlier. These stateful classes can limit a to-
ken’s authority even further compared to what is achievable
by just using stateless machinery. Our work provides a flexi-
ble WebAssembly-based substrate to execute client-defined
stateful authorization policies.

We take inspiration from Active Certificates [13]. Origi-
nally invented in the context of delegating rights to a remote
resource, they introduce the idea that a small piece of code can
represent the rights a principal has to a server-owned object.
When that principal makes a request to the server, it presents
the active certificate that is signed by the object owner. The
server executes the code inside the active certificate to pro-
duce an authorization decision. Our work builds on this idea
and allows client app developers to write Wasm policies that
represent their intended access to the user’s data. We offer
additional improvements to this basic idea: (1) We retain the
server-defined permissions and use them as an upper bound
on token authority in the event that the Wasm policy has a
developer error in its checks. In their original form, active
certificates are vulnerable to coding mistakes and can result
in a principal getting unbounded access to server resources.
(2) We define and use the notion of state that serves as an
additional input to the Wasm policy and enables new classes
of least privilege policies.

WAVE is a recent delegated authorization framework de-
signed to enforce server-defined permissions even when the
authorization server is compromised [9]. It is orthogonal to
our work. We trust the authorization server and our goal is to
empower client app developers to request minimum privilege.

WebAssembly Security. Wasm has emerged as a portable
bytecode format and execution environment for the web [24].
Multiple languages offer Wasm as a compilation target. Writ-
ing policies in any source language developers prefer and
compiling to Wasm gives us portability and flexibility. More
importantly, it also offers strong in-process memory isolation.
The authorization server can execute Wasm policies from
multiple different clients in the same OS-level process and be
guaranteed that the policies cannot interfere with each other.
Our particular usage of Wasm is to run policies that are pure
functions. Thus, we avoid the security issues of integrating
with an external environment by design [5].

6 Discussion and Limitations
Time-limited OAuth Tokens and Fine-grained Scopes. It
is possible to reduce the damage that can occur from stolen
OAuth tokens by limiting their lifetime. Unfortunately, this
implies that the server operator has to detect an attack in a very
timely manner to stop honoring refreshing requests. Experi-
ence has shown that this rarely happens. More fundamentally,
the tokens are still overprivileged and there will always be
a mismatch because a server developer cannot always antic-
ipate the permissions a client might actually need [16, 36].
Additionally, as we have shown with our case studies, client
apps can benefit from stateful policies as well.
Encrypting State. Our implementation only guarantees state
integrity. A client app breach could result in state getting
leaked. Depending on the nature of the API endpoints, this
could potentially be a privacy problem because the attacker
can obtain coarse information on what API endpoints are
being used. A simple extension is to also encrypt the state
table when it exists on the client using a key known to the
server. We do not implement this, but leave it to future work.
Automatic Least Privilege Policies. Our current system re-
quires developers to manually write attenuation policies. As
future work, we envision two possibilities: (1) The client app
could profile its usage of the server APIs and use that data
to automatically synthesize a least privilege policy. (2) The
server developer could write a set of well-known/commonly-
used policies (e.g., access-only-created, read-at-most-once)
and provide it as an option for the client developer to select
during registration. A related line of work is to verify that
a client application is indeed obtaining tokens that are least
privileged. The server operator could keep a log of the APIs
that a client actually uses and then compare those APIs with
the set of APIs that are callable under the least privilege policy
that the client has created.

7 Conclusion
Current cloud authorization uses bearer tokens whose au-
thority is limited only by a set of permissions that API server
developers create. In practice, client app developers are forced
to request tokens whose privilege is more than what is nec-
essary for functionality. Existing efforts have recognized this
problem and attempted solutions. The most notable is the
Macaroons framework that allows server developers to de-
fine caveats that can be used to limit a token’s authority. We
contributed to this line of work by introducing the notion of
purely client-defined authorization policies that can operate
on state — a log of actions that a client has taken on API
endpoints. When combined with server-defined permissions
and Wasm as a vehicle for expressing the policies, we ob-
tain a flexible authorization system that can enforce a variety
of stateful least privilege policies. Using case studies of real
apps, we showed how app developers can restrict the authority
of their tokens while retaining functionality.

3490 33rd USENIX Security Symposium USENIX Association

Acknowledgements
We thank the anonymous reviewers and our shepherd for valu-
able feedback. We also thank Arnar Birgisson, Amir Rahmati,
Andrei Sabelfeld, Stefan Savage and Geoff Voelker for insight-
ful comments. This work is partly supported by NSF grants
CNS-2312119, CNS-2048262 and by gifts from Amazon and
Google.

References
[1] Cve-2023-30527. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2023-30527. Available
from MITRE, CVE-ID CVE-2023-30527.

[2] Joplin. https://joplinapp.org/, 2024.

[3] Tripit. https://www.tripit.com/, 2024.

[4] Wanderlog. https://wanderlog.com/, 2024.

[5] WaVe: a verifiably secure WebAssembly sandboxing
runtime. Evan johnson and evan laufer and zijie zhao
and dan gohman and shravan narayan and stefan savage
and deian stefan and fraser brown. In IEEE Symposium
on Security and Privacy (S&P). IEEE, May 2023.

[6] Bytecode Alliance. Wasmtime. https://
wasmtime.dev, 2024.

[7] Amazon Web Service Inc. DynamoDB encryp-
tion at rest. https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/
EncryptionAtRest.html, 2024.

[8] Amazon Web Services, Inc. Amazon S3 pricing. https:
//aws.amazon.com/s3/pricing, 2023.

[9] Michael P Andersen, Sam Kumar, Moustafa Abdel-
Baky, Gabe Fierro, John Kolb, Hyung-Sin Kim, David E.
Culler, and Raluca Ada Popa. WAVE: A decentralized
authorization framework with transitive delegation. In
28th USENIX Security Symposium (USENIX Security
19), pages 1375–1392, Santa Clara, CA, August 2019.
USENIX Association.

[10] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Key-
ing hash functions for message authentication. In Ad-
vances in Cryptology—CRYPTO’96: 16th Annual Inter-
national Cryptology Conference Santa Barbara, Cali-
fornia, USA August 18–22, 1996 Proceedings 16, pages
1–15. Springer, 1996.

[11] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson,
Ankur Taly, Michael Vrable, and Mark Lentczner. Mac-
aroons: Cookies with Contextual Caveats for Decen-
tralized Authorization in the Cloud. In Network and
Distributed System Security Symposium, 2014.

[12] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings 1996 IEEE Sympo-
sium on Security and Privacy, pages 164–173, 1996.

[13] Nikita Borisov and Eric A Brewer. Active Certificates:
A Framework for Delegation. In NDSS. Citeseer, 2002.

[14] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert
Kotcher, and Patrick Tague. OAuth Demystified for Mo-
bile Application Developers. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 892–903, 2014.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, page 205–220, New York, NY, USA, 2007.
Association for Computing Machinery.

[16] Travis Developers. Travis CI’s use of GitHub
API Scopes. https://docs.travis-ci.com/
user/github-oauth-scopes/#repositories-on-
httpstravis-cicom-private-and-public.

[17] Fred Schneider. Credentials-based authorization.
https://www.cs.cornell.edu/fbs/publications/
chptr.CredsBased.pdf, 2015.

[18] GitHub. Differences between GitHub Apps and
OAuth apps. https://docs.github.com/en/apps/
oauth-apps/building-oauth-apps/differences-
between-github-apps-and-oauth-apps, 2024.

[19] GitHub. GitHub App. https://docs.github.com/
en/apps, 2024.

[20] Google. Batching requests. https:
//developers.google.com/gmail/api/guides/
batch, 2023.

[21] Google. Events | Google Calendar. https:
//developers.google.com/calendar/api/v3/
reference/events, 2023.

[22] Google. Choose Google Calendar API Scopes.
https://developers.google.com/calendar/api/
auth?hl=en, 2024.

[23] Google Cloud. Default encryption at rest.
https://cloud.google.com/docs/security/
encryption/default-encryption, 2024.

[24] W3C WebAssembly Working Group and Community
Group. Webassembly. https://webassembly.org,
2024.

USENIX Association 33rd USENIX Security Symposium 3491

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-30527
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-30527
https://joplinapp.org/
https://www.tripit.com/
https://wanderlog.com/
https://wasmtime.dev
https://wasmtime.dev
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://aws.amazon.com/s3/pricing
https://aws.amazon.com/s3/pricing
https://docs.travis-ci.com/user/github-oauth-scopes/#repositories-on-httpstravis-cicom-private-and-public
https://docs.travis-ci.com/user/github-oauth-scopes/#repositories-on-httpstravis-cicom-private-and-public
https://docs.travis-ci.com/user/github-oauth-scopes/#repositories-on-httpstravis-cicom-private-and-public
https://www.cs.cornell.edu/fbs/publications/chptr.CredsBased.pdf
https://www.cs.cornell.edu/fbs/publications/chptr.CredsBased.pdf
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/apps
https://docs.github.com/en/apps
https://developers.google.com/gmail/api/guides/batch
https://developers.google.com/gmail/api/guides/batch
https://developers.google.com/gmail/api/guides/batch
https://developers.google.com/calendar/api/v3/reference/events
https://developers.google.com/calendar/api/v3/reference/events
https://developers.google.com/calendar/api/v3/reference/events
https://developers.google.com/calendar/api/auth?hl=en
https://developers.google.com/calendar/api/auth?hl=en
https://cloud.google.com/docs/security/encryption/default-encryption
https://cloud.google.com/docs/security/encryption/default-encryption
https://webassembly.org

[25] W3C WebAssembly Working Group and Commu-
nity Group. Webassembly security. https://
webassembly.org/docs/security, 2024.

[26] Mike Hanley. Security alert: Attack campaign involving
stolen OAuth user tokens issued to two third-party
integrators. https://github.blog/2022-04-15-
security-alert-stolen-oauth-user-tokens,
Apr 2022.

[27] Dick Hardt. The OAuth 2.0 Authorization Framework.
https://www.rfc-editor.org/info/rfc6749,
October 2012.

[28] Tommaso Innocenti, Matteo Golinelli, Kaan Onarlioglu,
Ali Mirheidari, Bruno Crispo, and Engin Kirda. OAuth
2.0 Redirect URI Validation Falls Short, Literally. In
Proceedings of the 39th Annual Computer Security Ap-
plications Conference, ACSAC ’23, page 256–267, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[29] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti.
HMAC: Keyed-Hashing for Message Authentication.
RFC 2104, February 1997.

[30] David Krispin and Nir Swartz. Microsoft
and GitHub OAuth Implementation Vulnera-
bilities Lead to Redirection Attacks. https:
//www.proofpoint.com/us/blog/cloud-security/
microsoft-and-github-oauth-implementation-
vulnerabilities-lead-redirection, Mar 2022.

[31] Ninghui Li and C. Mitchell. Understanding spki/sdsi
using first-order logic. Int. J. Inf. Secur., 5(1):48–64, jan
2006.

[32] Torsten Lodderstedt, Justin Richer, and Brian Campbell.
OAuth 2.0 Rich Authorization Requests. https://
www.rfc-editor.org/info/rfc9396, May 2023.

[33] Hsiaoming Ltd. Authlib. https://authlib.org, 2017.

[34] OpenAI. Introduing GPTs. https://openai.com/
blog/introducing-gpts, 2023.

[35] Matthew Prince, John Graham-Cumming, and Grant
Bourzikas. Thanksgiving 2023 security incident.
https://blog.cloudflare.com/thanksgiving-
2023-security-incident, 2023.

[36] Thomas Ptacek. Fly.io server-defined permis-
sion issues. https://fly.io/blog/macaroons-
escalated-quickly/, 2024.

[37] Jody Serrano. Hacker Group Reportedly Leaks
Sensitive Data of 2.28 Million People Regis-
tered on Dating Site MeetMindful. https:

//gizmodo.com/hacker-group-reportedly-
leaks-sensitive-data-of-2-28-mi-1846122878,
Jan 2021.

[38] Kevin D. Smith, Jim J. Jewett, Skip Montanaro, and
Anthony Baxter. Pep 318 – decorators for functions
and methods. https://peps.python.org/pep-0318,
2003.

[39] SQLite. In-Memory Databases. https://
www.sqlite.org/inmemorydb.

[40] San-Tsai Sun and Konstantin Beznosov. The devil is
in the (implementation) details: an empirical analysis
of oauth sso systems. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
pages 378–390, 2012.

[41] Phil Hunt Torsten Lodderstedt, Mark McGloin.
OAuth 2.0 Threat Model and Security Considera-
tions. https://datatracker.ietf.org/doc/html/
rfc6819#section-4.1.1, 2013.

[42] Michal Zalewski. The Tangled Web: A Guide to Secur-
ing Modern Web Applications. No Starch Press, USA,
1st edition, 2011.

[43] Sourov Zaman, Lucas Ferreira, Kimberly
Hall, and Grant Bourzikas. How Cloud-
flare mitigated yet another Okta compromise.
https://blog.cloudflare.com/how-cloudflare-
mitigated-yet-another-okta-compromise, 2024.

3492 33rd USENIX Security Symposium USENIX Association

https://webassembly.org/docs/security
https://webassembly.org/docs/security
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens
https://www.rfc-editor.org/info/rfc6749
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.rfc-editor.org/info/rfc9396
https://www.rfc-editor.org/info/rfc9396
https://authlib.org
https://openai.com/blog/introducing-gpts
https://openai.com/blog/introducing-gpts
https://blog.cloudflare.com/thanksgiving-2023-security-incident
https://blog.cloudflare.com/thanksgiving-2023-security-incident
https://fly.io/blog/macaroons-escalated-quickly/
https://fly.io/blog/macaroons-escalated-quickly/
https://gizmodo.com/hacker-group-reportedly-leaks-sensitive-data-of-2-28-mi-1846122878
https://gizmodo.com/hacker-group-reportedly-leaks-sensitive-data-of-2-28-mi-1846122878
https://gizmodo.com/hacker-group-reportedly-leaks-sensitive-data-of-2-28-mi-1846122878
https://peps.python.org/pep-0318
https://www.sqlite.org/inmemorydb
https://www.sqlite.org/inmemorydb
https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1
https://blog.cloudflare.com/how-cloudflare-mitigated-yet-another-okta-compromise
https://blog.cloudflare.com/how-cloudflare-mitigated-yet-another-okta-compromise

Table 3: API Overview of StatefulAuth Integrated with OAuth 2.0

Server-Side APIs Semantics
class ResourceProtectorStateful A protecting method for resource server with StatefulAuth enabled. This class provides a wrapper

function that validates any incoming request.
create_bearer_token_validator_stateful
(token_model)

Create a bearer token validator class with StatefulAuth enabled. This validator will authenticate the
bearer token, validate history and run the policy program.

update_state() A method that calls the client-supplied state updater to update state after the successful completion
of a request and send it back to the client; besides, update state HMAC on server-side storage.

Client-Side APIs Semantics
attach_state(request, object_id) Load state indexed by object_id and attach it to the request header field “Authorization-State”.
store_state(response, object_id) Update client-side state storage of an object based on the response header “Set-Authorization-State”.

Client App Instance Server

req_id← req_id + 1
log[req_id] ← 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒

if valid 𝑠𝑡𝑎𝑡𝑒 then	
𝑟𝑒𝑠𝑝, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐴𝑃𝐼 𝑟𝑒𝑞
if		 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 ← 𝐹!"#$%& 𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑞
store 𝐼𝑇𝑎𝑔 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒
last_reqs [obj_id] ← req_id

else
𝑟𝑒𝑠𝑝 ← InvalidState
𝑟𝑒𝑠𝑝. 𝑙𝑎𝑠𝑡𝑅𝑒𝑞 ←	last_reqs[obj_id]

if			𝑟𝑒𝑠𝑝 = InvalidState then
𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒 ← log[𝑟𝑒𝑠𝑝. 𝑙𝑎𝑠𝑡𝑅𝑒𝑞]
state_table[obj_id] ←𝐹!"#$%& 𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑞

else	if			𝑟𝑒𝑠𝑝. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠	 then
state_table[obj_id] ← 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒

state_table.sync()
log.remove(req_id)

② 𝐴𝑃𝐼, 𝑟𝑒𝑞, 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑜𝑘𝑒𝑛, obj_id, req_id

③ 𝑟𝑒𝑠𝑝, 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 , obj_id

①

④

Figure 8: Token Usage Workflow with Fault Tolerance. For
simplicity, we assume here that all the token validation and
policy execution are passed successfully.

A API Overview of StatefulAuth Integrated
with OAuth 2.0

We integrate with the widely-used OAuth 2.0 protocol and
present the APIs we provide to help enable stateful authoriza-
tion in Table 3.

B Fault Tolerance
We assume that the API server is consistently online, while the
client app instance running on user devices may experience
intermittent offline periods. Our goal is to facilitate seamless
recovery of the client app’ most recent state despite offline
conditions. As presented in Fig. 1, Fupdate generates the new
state based on the current state and the request being pro-
cessed. A naive idea is to back up state or recent requests on
the server side and recover the most recent state by replaying
state updates. However, both state and request data are user-
controlled. Storing them on the authorization server will have
a potential security problem: a malicious client could leverage

this arbitrary storage primitive to store illegal material on the
authorization server. Instead, we propose an approach based
on client- and server-side logging, as presented in Fig. 8. For
simplicity, we assume that token validation and policy exe-
cution succeed, and focus on state validation and recovery.
The client will assign an ID for each request (req_id). This
request ID will serve as a client-side global counter, unique
for this client-server pair. The client app will also create a
cloud-based encrypted log file to keep track of all the past
requests and states, ordered and indexed by the request ID.
Before making a new request, the client app will log the re-
quest and state information it will supply to the server. Then,
the client app will make requests as usual, with the request
ID attached. Upon receiving the request, the server will verify
the state. If the state is valid and the request is processed
successfully, the server will store a mapping (i.e., last_reqs
in Fig. 8) from the object ID to the request ID and perform
the state update as usual; otherwise, the server will return an
error message. If the state is invalid, the server will send a
response containing a special error message InvalidState
and attach the last request ID performed on the object to the
response. Once the client receives the InvalidState error,
it can recover its latest state by looking up the log with the
request ID provided by the server and perform state updates.
After state recovery, the client will synchronize the state table
with other instances and remove the request already used for
updates from the log file. Then, the client will check the log
file for request ID counter, increment it, and send its next
request.

Table 4 discusses how our system could be recovered when
the client goes offline at different points in the workflow. The
circled number refers to the steps in Figure 8. Our design
distributes the responsibility of logging to both the client and
server: the client stores the request information and the server
only stores the request ID of the last request performed on
each object. This enables the client to recover the most recent
state table without compromising server storage to arbitrary
client data.

We discuss the storage overhead introduced by this fault
tolerance mechanism. Due to the sequential state updates on
a single object, the client app can only send one request for an
object at a time. Thus, for each client-user pair, the server will

USENIX Association 33rd USENIX Security Symposium 3493

Table 4: Client Failures and Recoveries. The circled number refers to the steps in Figure 8.

Client goes offline Request in Log State Updated
on Server

Recovery

Before/during logging the request 1 False False

No state update on the server side. The client-side state table
remains up-to-date. No recovery needed.

After logging the request 1 , before sending
the request 2 True False

After sending the request 2 , before receiving
the response 3 (request failed on server) True False

After sending the request 2 , before
receiving the response 3 (request succeeded
on server)

True True

When the client comes back, it will send a request with the
outdated state. The server will find the state is invalid, reply
InvalidState, and supply the last_reqs mapping. The client
will then look up its log file indexed on the request ID, find the
request and state information, and perform the state update for
each object if needed.

After receiving the response 3 , i.e., during
updating the state table 4 True True

If the client goes offline while updating/recovering the state
table, the state table will be corrupted. But the log file and
server-side last_reqs mapping stay unchanged. Thus, the
same updates will be performed on the state table when the
client sends a new request.

store one entry for each object in the last_reqs mapping.
This server-side storage overhead will grow linearly with the
product of the number of client-user pairs and objects, i.e.,
the same as the server-side state integrity tag storage. The
size of the cloud-based log files maintained by the client app
will grow linearly with the number of objects this client has
accessed.

In Section 3.2, we discuss the state synchronization be-
tween multiple client app instances. We require the client
to keep a cloud-based log file to enable all its instances to
recover the state table through offline periods. As we have
described, this log file serves as a key-value store that allows
the client to look up the request information it needs for state
recovery: the key is the request ID and the value is the re-
quest information, including HTTP method, URI endpoints,
headers, and body, along with the state table when making
the request.

We require the log file to be fully client-owned and man-
aged, because similar to the state table, the request header
and body could be arbitrary data from the client. The log
file itself has no security implication on the existing system
design. If the log file is compromised and an unacknowl-
edged client request req is replaced with a fake request req’
crafted by the attack, the client will end up updating its state by
newState′← Fupdate(state,req′). However, The latest state on
the server side is derived by newState← Fupdate(state,req).
There will be a mismatch between the state computed by the
client and the server. The client will then be notified of this
error and request the server to revoke that token. The recovery
against synchronization attacks we describe in Section 3.2
will handle this case.

As the log file contains information on the recent requests
made by the client, it should be kept confidential. Thus, we
require the log file to be encrypted. The client should imple-
ment client- or server-side encryption based on its capability
of storage, key management, and file encryption. For example,

if the client has its own backend storage server, it can perform
either client- or server-side encryption. On the other hand, if
the client app does not have its own storage server, it needs to
either encrypt the log file before storing to cloud services or
rely on the server-side encryption provided by major cloud
storage platforms, like Google Cloud [23] or DynamoDB [7].
Besides encryption, information stored on this log file should
also be minimized in two ways. First, the client should store
the minimum data in its log file based on its state defini-
tion. If the state is defined as the historical APIs made by the
client, the log file should only contain the HTTP methods and
URI endpoints of each request. Second, the client app should
remove a request after using it for state updates (Figure 8 4).

3494 33rd USENIX Security Symposium USENIX Association

	Introduction
	Stateful Least Privilege Authorization Model
	Fundamental Problems with Current Methods
	Stateful Model Overview
	Case Studies

	Design and OAuth Instantiation
	Workflow
	Client Registration
	Token Request
	Token Usage

	Miscellaneous Operations

	Evaluation
	Porting Real Client Apps and API Servers
	Storage and Memory Overhead
	Latency Overhead

	Related Work
	Discussion and Limitations
	Conclusion
	API Overview of StatefulAuth Integrated with OAuth 2.0
	Fault Tolerance

