DE-HNN: An effective neural model for Circuit Netlist representation

Zhishang Luo' Truong Son Hy?

Elahe Rezaei® Ryan Carey®
! University of California San Diego

3 Qualcomm Technologies, Inc.

Abstract

The run-time for optimization tools used in
chip design has grown with the complexity of
designs to the point where it can take several
days to go through one design cycle which
has become a bottleneck. Designers want
fast tools that can quickly give feedback on a
design. Using the input and output data of
the tools from past designs, one can attempt
to build a machine learning model that pre-
dicts the outcome of a design in significantly
shorter time than running the tool. The ac-
curacy of such models is affected by the repre-
sentation of the design data, which is usually
a netlist that describes the elements of the
digital circuit and how they are connected.
Graph representations for the netlist together
with graph neural networks have been inves-
tigated for such models. However, the char-
acteristics of netlists pose several challenges
for existing graph learning frameworks, due
to the large number of nodes and the im-
portance of long-range interactions between
nodes. To address these challenges, we rep-
resent the netlist as a directed hypergraph
and propose a Directional FEquivariant Hy-
pergraph Neural Network (DE-HNN) for the
effective learning of (directed) hypergraphs.
Theoretically, we show that our DE-HNN can
universally approximate any node or hyper-
edge based function that satisfies certain per-
mutation equivariant and invariant proper-
ties natural for directed hypergraphs. We

Proceedings of the 27*" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

Puoya Tabaghi!

Rhett Davis®

4 Qualcomm Wireless GmbH

Donghyeon Koh*

Rajeev Jain® Yusu Wang!

2 Indiana State University

5 North Carolina State University

compare the proposed DE-HNN with sev-
eral State-of-the-art (SOTA) machine learn-
ing models for (hyper)graphs and netlists,
and show that the DE-HNN significantly out-
performs them in predicting the outcome of
optimized place-and-route tools directly from
the input netlists. Our source code and the
netlists data used are publicly available at
https://github.com/Yusulab/chips.git.

1 Introduction

Chip design is a complicated process involving numer-
ous steps, many of which involve solving hard opti-
mization problems. Just consider the stage of the place
and route of a synthesized netlist: Here the input is
a netlist consisting of cells and nets, where cells refer
to functional units such as logic gates, and nets refer
to connections between cells. The goal is to produce
a layout of this netlist in a specific 2D region, where
gates are placed and connections among them are re-
alized by wires laid out across multiple layers (called
“routed”), all while aiming to optimize multiple key
properties (e.g, minimizing total wirelength and reduc-
ing congested “hotspots”). This place-and-route stage
is highly nontrivial to solve for large netlists, and re-
quires a time-consuming process in practice with mul-
tiple stages and iterations.

There therefore arises the need for data-driven meth-
ods to predict properties of a design directly without
the time-consuming place and routing process. To this
end, graph neural networks become natural choices,
given that the netlists are often represented as a graph
or a hypergraph. In this paper, we aim to develop
an efficient and effective graph learning architecture
to predict post-routing properties (e.g., wirelength or
congestion) for a synthesized netlist accurately.

The past decade has witnessed a tremendous growth

Michael Defferrard?*

https://github.com/YusuLab/chips.git

DE-HNN: An effective neural model for Circuit Netlist representation

of graph learning models. Two most popular fami-
lies are (i) message-passing neural networks (MPNNs)
(Gilmer et al., 2017; Jegelka, 2022), and (ii) trans-
former based approaches (e.g, survey (Miiller et al.,
2023)). However, netlists present several challenges for
existing graph learning architectures: (i) their size can
be massive, from hundreds of thousands to millions of
nets, (ii) long-range interactions are important (e.g.,
properties of interest might be caused by long paths
and other long-range interactions), and (iii) properties
of post-routing netlists seem to depend on complex in-
formation of graph topology beyond simple statistics
such as in-/out-degrees (distributions).

Unfortunately, it is challenging for popular MPNNs to
capture long-range interactions, due to issues such as
over-smoothing of graph signals (Chen et al., 2020a)
and oversquashing bottlenecks (Topping et al., 2022).
MPNN’s ability in capturing graph motifs (e.g cy-
cles and trees) and higher-order structures is also
limited (Xu et al., 2019; Jegelka, 2022; Hy et al.,
2019). Transformer-based graph neural models appear
to be more effective in capturing long-range interac-
tions (Dwivedi et al., 2022; Ngo et al., 2023). However,
each transformer layer typically takes time quadratic
to the number of nodes. While there are sparse trans-
formers (Katharopoulos et al., 2020; Tay et al., 2022),
their representation power is also reduced. Further-
more, the primary ways for a graph transformer to
capture input graph topology have been either via ini-
tial position/structure encoding of nodes, or via the
use of certain pairwise graph distances to “reweight”
the attention (Zhang et al., 2023). In general, it is not
clear how sensitive a transformer based model is to
features in input graph topology (e.g., specific paths
which can be important to netlists properties).

Our work. In this paper, similar to (Xie et al.,
2021), we model a netlist as a directed hypergraph and
present a novel Directional FEquivariant Hypergraph
Neural Networks (DE-HNN) for the effective learning
of (directed) hypergraphs. In particular, DE-HNN can
be used to predict properties (e.g., congestion or net-
wirelength) of a post-routed netlist directly from an
input netlist before performing the lengthy place-and-
route process. Our DE-HNN incorporates several new
ideas to address the aforementioned challenges posed
by netlists. Our contributions are as follows:

o We advocate for the modeling of a netlist as a di-
rected hypergraph. Indeed, a net usualy consists
of a driver gate/cell ¢, togehter with a set S of
“sinks”; see Section 2 and Figure 1. Recognizing
the difference between the driver gate and sinks in
the timing of a routed net, inspired by (Xie et al.,
2021), we represent a net as a directed-hyperedge

(¢, S) to separate the roles of driver and sinks cells.

e We propose a learning model DE-HNN for directed
hypergraphs. Theoretically, we show (Theorem
1) that our DE-HNN can universally approximate
any node or hyperedge based function that satis-
fies certain permutation equivariant and invariant
properties natural for directed hypergraphs.

e On the practical front, to mitigate the issue of
large size of and long-range interactions in in-
put netlists, we use a hierarchy of virtual nodes
(VNs), which provides additional “bridges” to al-
low the integration of both local and global in-
formation while still maintaining original graph
topology (unless in a graph pooling approach);
see Figure 2 and Section 3.

e To make our initial node features more informa-
tive, in addition to using Laplacian eigenvectors to
provide position encoding as in (Kim et al., 2022;
Rampdsek et al., 2022), we also use a topological
summary called persistent homology (Edelsbrun-
ner and Harer, 2010; Dey and Wang, 2022), which
can be used to encode the “shape” of graph motif
around each node in a multi-scale manner (e.g.,
(Zhao et al., 2020; Yan et al., 2021)).

e We compare our DE-HNN with several SOTA
machine learning models for (hyper)graphs and
netlists. Our model significantly outperforms
them in predicting different properties of post-
routed netlists directly from input netlists. We
provide careful ablation studies to demosntrate
the utilities of the use of directed hyperedge, (hi-
erarchical) VNs and persistence-based topolog-
ical summaries. Finally, we remark that ML
research for chip design currently suffers from
the scarcity of open-source benchmark datasets®.
We hope our datasets (which will be made pub-
licly available at https://github.com/YusuLab/
chips.git) can help bridge this gap. These
netlists (of sizes from 400K to 1.3M) can also serve
as benchmark for long-range graph interactions
for machine learning researchers.

While in this paper, we design DE-HNN with the goal
of netlists representation and learning, our architec-
ture as well as its theoretical results are general and
applicable to any directed hypergraphs.

Related work on machine learning models for
netlists. Earlier machine learning (ML) approaches
for netlist property (e.g, congestion) prediction assume
that the placement of cells (logic gates) are already

'Previous netlist property prediction work sometimes
releases the input netlist designs, which our paper also
uses. However, they do not release the resulting proper-
ties nor the post place-and-route netlists due to the use of
commercial tools.

https://github.com/YusuLab/chips.git
https://github.com/YusuLab/chips.git

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

given, that is, the input are placed, but not yet routed.
They then convert the input to a 2D image or other
2D grid-based representations to predict the final con-
gestion map over this region using models such as con-
volutional neural networks (Tabrizi et al., 2018; Chen
et al., 2020b; Xie et al., 2018; Al-Hyari et al., 2021;
Liang et al., 2020; Chai et al., 2023; Alawieh et al.,
2020; Chen et al., 2022; Wang et al., 2022). How-
ever, the placement information is itself very time-
consuming to obtain. Furthermore, representing the
input as a 2D image makes it hard to capture local
and global connectivity information in the netlists.

Since a circuit is represented more accurately as a (hy-
per)graph, recent work deploys graph neural networks
(GNNs) for congestion prediction. The work of (Kirby
et al., 2019) constructs a homogeneous graph repre-
sentation of netlist in which each node corresponds to
a cell, and if two cells are connected by a net then
there exists an edge between those nodes in the graph,
and then applies Graph Attention Networks (GAT)
(Velickovi¢ et al., 2018). Later follow-up work includes
using node embedding computed from partitioned sub-
graph (to capture more global graph structure) (Ghose
et al., 2021) and using dual graph with both cell and
net features (Xie et al., 2021). Note that this conver-
tion of a net to a clique can lead to very large sized
cliques, and also loses net-specific topological informa-
tion. The SOTA approach for netlists representation
is (Yang et al., 2022), which introduces a heteroge-
neous (i.e., different edge types) graph construction,
called circuit graph, in which both cells and nets are
represented as nodes of a bipartite graph.

All these approaches still have the issues of capturing
long-range interaction essentially for netlists. As we
describe in “Our contributions”, our DE-HNN deploys
a suitable architecture, hierarchical virtual nodes, as
well as informative persistent homology features, to
build an effective graph learning model for netlists
(and other directed hypergraphs). Note that similar
to (Kirby et al., 2019; Yang et al., 2022), our DE-HNN
performs learning on netlists without placement in-
formation. If placement informtion is available, they
can easily be added to initial node position encoding.

2 Modeling netlists as directed
hypergraphs

Circuit netlists. A circuit netlist is a textual rep-
resentation of electronic components, such as logical
boolean gates, and the connections between them. A
(pre-placed, also called synthesized) netlist H consists
of a collection of cells (logic gates) C = {ci,...,cn},
and a set of nets N' = {o1,...,0,,}. Each cell (gate)
has a certain number of input pins and an output pin.

The number of input pins is decided by the type of
this gate (e.g., an AND gate takes two inputs). For
every gate, its output will flow into the input pins of a
collection of other gates. This information is captured
by the concept of net, where a net o € N consists of
the output pin of a certain cell, called its driver cell
denoted by v, € C, together with all those sink cells,
denoted by S, C C, where the signal from this out-
put pin will flow into. In other words, a net can be
represented by a tuple o = (v,,S,). See Figure 1 (a).

Given such a netlist, standard chip design pipelines
will first lay it out in the physical space (placement).
Then in the routing stage, the connection from output
pin of one cell to the input of other cells are mapped to
the routing channels within the chip’s physical floor-
plan. Among other properties, one wishes to minimize
the total wirelength of each net, and to reduce rout-
ing “congestions”, which occurs when the number of
edges to be routed in a specific region of the floorplan
exceeds the available routing capacity. See Figure 4
in the Supplement for an illustration of a placed-and-
routed netlist.

Directed hypergraphs. The standard hypergraph
H is a tuple (V, X)), where V is a set of nodes, 3 is a set
of hyperedge, and each e € ¥ is a subset of V; i.e., e C
V. A directed hypergraph ﬁ is a tuple (V, ¥), where
each directed hyperedge o € consists of an ordered
pair 0 = (v, S,) with v, € V and S, C V. It is easy
to see that a netlist (C,N') can be naturally viewed as
a directed hypergraph where we have: cell < node,

and net < directed hyperedge. See Figure 1 (b).

In what follows, we often use cells / nodes, as well as
nets / directed hyperedges, interchangeably. In fact,
for simplicity, we often use the terms “nodes” and
“nets” as they are more concise. We will also refer to
v, and S, from a directed hyperedge o = (v,,Ss) as
its driver and its sinks, respectively, just like in a net
.

Given a net o € g, we say that it contains a node
v € V, denoted by v € o, if v is either the driver, or
a sink of 0. Given a node v € V, we say that a net o
is incident on v if o contains v. The collection of nets
incident to v is called the incident-net-set of v, denoted
by Z(v) = {0’ € 54 | v € ¢'}. For example, in Figure 1
(b), the incident-net-set of vs is Z(vs) = {01, 02,05}

In the chip design literature, a netlist is oftentimes
represented either (1) as a (directed) graph where two
cells are connected if they belong to a common net; or
(2) as a standard hypergraph where a net is a hyper-
edge consisting of the union of the driver cell and all
sink cells. The former can lead to huge cliques (as some
nets can consist of large number of cells) and also lose

DE-HNN: An effective neural model for Circuit Netlist representation

o
1

T

(a)

Figure 1: (a) A netlist with 7 cells C = {ci,...,c7} and
5 nets. For example, the output of gate co flows into cells
cs, ¢5, and c7, giving rise to the net o = (c2,{cs3,cs,c7}).
That is, the driver cell of o is Vo = c2, while its sink-set

belng S, = 03,05,07}) The corresponding directed
hypergraph 7 Wlth 7 nodes and 5 hyperedges
= {oy,... ,05}. Each node v; corresponds to cell c;,

and each hyperedge is marked as a shaded region.

sensitivity to the net topology. In the learning con-
text, the work of Xie et al. (2021) first separated the
role of the driver and sinks of a net in the represen-
tation of a netlist and provided justification for this
choice. Their final representation is still a graph rep-
resentation that is intuitively a directed version of the
so-called line graph for a hypergraph. However, con-
verting a hypergraph to a line graph is a lossy process.
The directed hypergraph provides a more informative
and cleaner representation: it both preserves the full
net information and differentiates between drivers and
sinks.

3 DE-HNN: a neural network for
directed hypergraphs

In this section, we first describe a basic neural network
(NN) model in Section 3.1, which we refer to as base-
DE-HNN, for the representation learning of directed
hypergraphs. We provide theoretical justification of
this model in Section 3.2. Then in Section 3.3, we
describe how to augment this base model to make it
more effective at capturing long-range interactions as
well as the multi-scale graph topology.

3.1 Base-DE-HNN

Our base-DE-HNN uses message-passing mechanisms.
However, it differs from standard MPNN (message-
passing neural networks) (Gilmer et al., 2017) in how
the messages are aggregated and updated, so as to pro-
cess node and net based features, as well as to respect
the direction of hyperedges.

More specifically, base-DE-HNN consists of L layers.
Consider an input directed hypergraph ﬁ = (V, g)
For the ¢-th layer, each node v € V (resp. each
net/directed hyperedge o € g) will maintain a node
feature (resp. net feature) denoted as m‘(v) (resp.

M*(o)). For simplicity, assume that m‘(v), M%(0) €
R% are dy-dimensional vectors. Assume first that our
final goal is to predict net properties. The base-DE-
HNN will compute m’(v) and M* (o) using feature rep-
resentations from the (¢ — 1)-th layers by the following
two steps:

[Node Update]: First, the features of each node
(cell) v € V is updated using features of the set of
those nets containing it, that is, via the features of
those nets in the incident-net-set Z(v) of v as follows:

m*(v) = Aggg ., ({MH (W yrezw), (1)

where {{ - }} denotes a multiset as some neighboring
nets could have identical feature representations. The
function Agg,_,, operates on a multiset and should be
invariant to the order of neighboring nets of v in Z(v).
Similar to the Deep Set architecture (Zaheer et al.,
2017) which can hancle such permutation invariance
in multisets, we implement the function Agg__,, by:

m‘(v)= > MLP{(M* (o)), (2)

o’ €Z(v)

where MLP; stands for a multi-layer perceptron.
For example, the update of node feature for wy
in Figure 1 (b) is m‘(vs) = MLP{(M*'(oy)) +
MLP{ (M*~'(03)) as Z(vs) = {o1,03}. It is easy to
see that the update in Eqn (2) satisfies the needed
permutation invariance.

[Net Update]: Next, the features of each net o =
(Vo,Sy) is updated using the new node features for
those nodes contained in . Since the net (hyperedge)
o is directed, we wish to separate the roles of its driver
node v, and the set of sinks S, that is,

‘o) flm () Hes,) (3)

However, the update should not depend on the order-
ing of nodes in the sink set S,, i.e., Agg,_,, needs to
be permutation invariant w.r.t. its second parameter,
the multiset {{mz(v’))}}v,es(a). We use the following
to implement Eqn (3) to guarantee the needed per-
mutation invariance of Agg, . w.r.t. the ordering of
nodes in S,:

M (o) = MLPK{ < > MLP§(m)))}

v €Sy
(4)

MZ(O-) = Aggﬁ—n;(m

where MLPy; and MLP3 are multi-layer perceptrons,
and @ denotes vector concatenation. For example, in
Figure 1, the update of oy = (v1, {vs,v4}) is M (0y) =
MLPj (m*(v1) @ (MLPj(m!(vs)) + MLP5(m*(v4))).

We note that if the target task is to predict node-level
features (instead of net-level features), then we will

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

apply dual update rules where the roles of nets and
nodes will be swapped. Finally, in our implementa-
tion, we also add residuals (i.e, node / net features
from the previous level) to each node / net features
during the updates. There are L such layers, and in
the end, if the given task is a regression task, then
another linear layer ¢ is applied to the values m®(-)
(resp. ML(-)) to generate the final node-based (resp.
net-based) regression function. During the training
process, the loss function in this case is the standard
mean squared error; that is, if it is a node-based re-
gression with ground-true function y : V. — R, then
we have:

where 8 denotes the set of all learnable parameters in
the entire base-DE-HNN model. Node or net classifi-
cation tasks are handled similarly but with the cross-
entropy loss.

3.2 Theoretical analysis of DE-HNN

We now provide some theoretical guarantee of our
base-DE-HNN model. For simplicity, in what follows
we assume that our target (regression) functions are
net-valued functions? (or simply net-functions) of the
form F : — R. Our main result below holds for
node-valued functions via a symmetric argument.

Let us consider one update stage at a fixed layer ¢ €
[1,L]. From the net-function perspective, the goal of
the update stage is the following: At the beginning
of this stage, we start with input net features p, :=
M*~Y(g), for all o €

new features p* := M*(o) for each o € . I we view
this feature update as a function on net features, then
ideally, for any fixed ¢ € ¥, its new feature should
depend on the features of all its neighboring nets which
are those nets that share at least one node with o.
However, note that the neighbors of o are naturally
classified to two families:

. In the end, we obtain a set of

(type-A) those in the set Z(v,) (recall Z(v) is the set
of nets that contains node v), which are connected
to o via the driver node v, of o; and

(type-B) those in |5 Z(v'), where each set Z(v')
are those nets connected to o via a sink node v’
of o (i.e., v' € S,). Note that {I(v’)} o is a

v’ €S,

set of sets of neighboring (type-B) nets of o.
For example, in Figure 1, for o5 = {vs, {vs,vr}}, its
(type-A) neighbors are Z(vs) = {o1,09,05}, while

2The net-valued function is more natural for properties
such as net wirelength and congestion.

(type-B) is a set of sets {{o2,04,05},{02,05}}. It
is natural to model the desired update function for
the directed hyper-edges as follows, which differenti-
ate (type-A) and (type-B) neighbors of o:

Mo =]:({{/J’U’}}U’GI(VU)’ {{ {{“0/}}0’61@’)}}1;/656)
(6)

Note that the first variable, {{Mo’}}a'ez(w)a con-
sists of the set of input feature representations of
(type-A) neighbors of o, while the second variable,

{{{{No’}}wez(v/)}}U/Eso, is a set of sets® (of net

features), constituting multisets of feature represen-
tations of those (type-B) neighbors of o. The function
F should be invariant not only to the order within each
individual set Z(u) for some cell u, but also invariant
to the order of nodes in the sink-set S, i.e., the order
of sets {fto’ }orcz()’s Within the outer-set in the sec-
ond variable of F. We refer to such a function F as
nested-permutation invariant.

Now recall that in our base-DE-HNN, at each layer
we perform update of node-feature by features of its
incident nets as described in Eqn (2), followed by the
update of net-features by the new features of those
nodes contained in o as specified in Eqn (4). In other
words, one can think of the update of net features from
M*1(-) to M*(-) to be the composition of updates in
Eqns (2) and (4). By construction, it is easy to see
that the composition of these two udpate steps indeed
gives rise to a nested-permutation invariant function.
However, can any nested-permutation invariant net-
function be represented (or approximated) by such a
composition of two steps? A priori, the answer to this
opposite direction is not clear at all as the iterative
updates factored through the node features appears
more restrictive. Our main theorem below shows that
the answer is in fact positive.

Theorem 1 (Simplified). Let F be any continuous,
nested-permutation invariant, net-value function as in
Egn (6). For simplicity, assume both input nets and
output of M take values in a compact set B C R?, a
connected compact subset of RY. Then we have that F
can be rewritten as the following sum-decomposition

Yo : .F({ug"}o"ez(vg)7 {{MU’}U’EI(v’)}v,Esu)

_ p(Yo b)Y b Y ¢1(“”’)))
)

o' €L (vs v’ €S, o'€Z(v’)
(7)

where ¢ : R — Rd,, Ps : R — Rd”, and p are

continuous functions.

3For concision, we use “set” instead of “multiset” here.

DE-HNN: An effective neural model for Circuit Netlist representation

Recall that for the ¢-th layer, the input feature for any
net o’ is j, = M*"1(c’). Now compare the right-
hand side of Eqn (7) with Eqns (2) and (4): it is easy
to see that by using MLP; from Eqn (2) to approx-
imate the continuous function ¢, and using MLPs
and MLP3 from Eqn (4) to approximate continuous
functions ¢9 and p respectively, we then have that our
iterative updates using Eqns (2) and (4) approximate
any desired update of the net features via a nested-
permutation invariant function as in Eqn (6). In other
words, the iterative message-passing update steps in
our base-DE-HNN provides an universal approxima-
tion of the desired nested-permutation invariant up-
date functions over nets. The proof of this theorem
and more discussions can be found in the Supplement.

3.3 Augmenting base-DE-HNN to DE-HNN

The base-DE-HNN provides an effective way to update
features for both nodes and hyperedges in an itera-
tive manner. We now describe further augmentation
strategies for the resulting DE-HNN to capture long-
range interactions as well as to be more senstive to the
multi-scale graph topology.

Hierarchy of virtual mnodes. The standard
message-passing GNNs have difficulty to capture long-
range interaction due to issues such as over-smoothing,
over-squashing and under-reaching. Most GNNs used
in practice have few layers. Transformer-type mod-
els for graphs may alleviate the issue (Dwivedi et al.,
2022), but each self-attention layer requires quadratic
computation, which does not scale to large graphs.
Furthermore, it is not clear how to effectively encode
graph structures for transformers, even with the use
of initial position encoding (Miiller et al., 2023) or
reweighting based on graph distances (Zhang et al.,
2023). Intuitively, we want to keep the simple and ef-
ficient message-passing framework over the input (very
sparse) hypergraph, but also have a way to propagate
long-range information among nodes that are far away
from each other (in terms of graph distances). We will
do so via the use of virtual nodes.

Specifically, a virtual node (VN) is an additional node
we add that is connected to all input nodes. This
effectively reduces the graph diameter to 2, and has
been a popular strategy in graph learning literature;
e.g. (Gilmer et al., 2017). However, note that mes-
sages cannot be directly passed between two nodes.
Instead, information of all nodes have to be aggre-
gated at the virtual node before being passed back
to all nodes. Nevertheless, (Cai et al., 2023) shows
that a message-passing GNN augmented by a sin-
gle VN can already approximate Lineaer Transformer
(Katharopoulos et al., 2020) and Performer (Choro-

super- VN wy
-

first-level VNs
=

w2

Figure 2: A two-level hierarchy of virtual nodes (VNs).

manski et al., 2021) (as well as general transformers
to some extent) and bring significant empirical gains.

While adding a single VN will only linearly increase
the number of edges, the VN itself will have a high de-
gree and potentially become a computatoinal bottle-
neck. Furthermore, since the features of all nodes have
to be aggregated at the virtual node, the aggregated
messages will lose sensitivity to individual node fea-
tures. The benefits of adding a single VN thus dimin-
ishes as the graph becomes larger. We instead propose
to use a hierarchy of VNs as follows (see Figure 2).

e Given an input hypergraph ﬁ =(V, 3), we first
use Metis (Karypis and Kumar, 1998) to partition
its node set to k disjoint subsets V = V; U V4, U
-+ U V. In our experiments, we keep the sizes of
V;s roughly balanced, and therefore the value of
k varies as input graph size changes.

e We introduce a VN w; for each subset V;, for
i € [1,k], and w; is connected to all nodes in V;.
These VNs are first-level VNs. Note that the total
number of edges added this way is only n = |V|.

e We further create a super-VN, denoted by wy,
which connects to all the first-level VNs. This
introduce an additional £ number of edges.

In what follows, we refer to nodes from input hy-
pergraphs as standard modes. During the updating
of node/edge features, we will use heterogeneous up-
dates, where the aggregation functions at the first-level
VNs and super-VN are different from that at standard
nodes. Different from graph pooling, the use of ad-
ditional VNs keep the original hypergraph topology,
while they act as additional “bridges” and allow infor-
mation flow both at global (among far-apart nodes via
VNs) and local scales (along original edges).

As the input hypergraph becomes even larger, we
could use multiple layers in our hierarchy of VNs. Nev-
ertheless, we observe that two layers already yield good
performance in our current test cases. If nodes are
placed, one could partition the node set by spatial lo-
cations (e.g., by decomposing the rectangular region)
instead of using Metis.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Initial positional / structural encodings. Fi-
nally, we aim to encode meaningful multi-scale features
for each node / hyperedge. To this end, for each node,
we add the Laplacian positional encoding consisting of
the function value of this node from the first s (s = 10
in our experiments) eigenvectors of the undirected ver-
sion of input hypergraph.

Furthermore, to better capture the “shape” of the
neighborhood of each node v in a more discriminative
and multi-scale manner, similar to (Yan et al., 2021;
Zhao et al., 2020), we use the so-called extended persis-
tence diagram (PD) summary induced by the shortest
path distance function within the r-hop neighborhood
of each node (r = 6 in our experiments) as an ini-
tial structural encoding for each node. Note that it is
known (Tian and Wang, 2019) that PDs constructed
this way can encode rich graph information of the -
hop neighborhood of each node v (viewed as a local
motif around v), such as clustering coefficients, num-
ber of nodes at distance a < r to v, number of in-
dependent cycles, etc. See the Supplement for more
details. Indeed, as our ablation study and results in
Supplement show, adding PDs improve both our and
previous graph learning models.

4 Experiments

4.1 Datasets

We wused 12 of the Superblue circuits from
(Viswanathan et al., 2011, 2012) to evaluate our pro-
posed models and baselines. The Superblue circuits
are some of the most complex yet publicly available
circuits used in previous work about VLSI placement
and routing. The size of these netlists range from 400K
to 1.3M nodes, with similar number of nets. Note that
these hypergraphs are very sparse, although there are
a very small fraction of nets with large sizes. See
the Supplement for more detailed statistics of these
netlists, including the size of each design as well as the
statistics of target properties.

We pulled our designs from the RosettaStone (Kahng
et al., 2022) repository’s Skywater 130 nm technol-
ogy (Edwards, 2020) benchmark set. We then used a
commercial physical design tool to perform placement
optimization for each design with a utilization ratio
of 0.7. We exported global-routing congestion infor-
mation in the form of demand and capacity for each
global-route cell (GRC) in each routing layer.

4.2 Setup

Baselines. We compare with a range of SOTA base-
lines: (i) Graph Convolutional Networks (GCN) (Kipf

and Welling, 2017); (ii) a SOTA variant of Graph
Attention Networks (GATv2) (Brody et al., 2022);
(iii) Hypergraphs Message Passing Neural Network
(HMPNN) (Heydari and Livi, 2022); (iv) Hypergraph
(Neural) Networks with Hyperedge Neurons (HNHN)
(Dong et al., 2020); (v) A multiset function framework
for Hypergraph Neural Network (AllSet) (Chien et al.,
2022); (v) the SOTA graph-based model specifically
defined for netlist property predictions, NetlistGNN
(Yang et al., 2022). See the Supplement for more de-
tails on their architecture, including model complexity.
We also compare with the hypergraph convolutional
operator (HyperConv) (Bai et al., 2021) and Linear
Transformers (Katharopoulos et al., 2020). As both
models’ performances on average are not as good as
other baseline models, we include their results only in
the Supplement.

We compare these baselines with our DE-HNN model,
which we refer to as ful-DE-HNN in results to differen-
tiate with base-DE-HNN model, whose performance we
also include for reference. Note that base-DE-HNN is
without persistence diagrams (PDs) as initial features
nor virtual nodes (VNs). We implement our DE-HNN
and the baselines with PyTorch (Paszke et al., 2019)
and PyTorch-geometric (Fey and Lenssen, 2019).

Features. For each cell, its initial features include:
type, width, height of gate, degree, degree distribu-
tion of a local neighborhood (summarized into a vec-
tor), top-10 Laplacian eigenvectors, and persistence di-
agram (PD) features (see Supplement). For all meth-
ods other than Linear Transformer, the initial net fea-
tures are the nets’ degrees. For Linear Transformer,
net features are obtained by averaging the features
of those nodes contained in it so as to provide more
topology information. (see Supplement). For a fair
comparison, the same initial cell/net features are used
for all models (other than our base-DE-HNN, which do
not have PDs as it is a base model without any aug-
mentation). One might wonder whether adding persis-
tence diagrams (PDs) features are beneficial for both
our method and baselines. Indeed as we show later
in Ablation study and in Supplement, using PDs im-
prove model performance for both our methods and
baselines. For example, it improves NetlistGNN by
3.6% on average in terms of demand regression in the
single-design setting.

Prediction tasks. We test three different tasks in
our experiments, including both net- and node-based
tasks. These tasks cover the types of experiments per-
formed by previous netlist prediction approaches.

e Net-based wirelength regression: We use
half-perimeter wirelength (HPWL), a common es-
timator used for wirelength calculation, to calcu-

DE-HNN: An effective neural model for Circuit Netlist representation

Table 1: Net-based wirelength regression. Last row “Im-

”

provement” refers to the improvement of our full DE-HNN

model over the best baseline approach for each metric.

Model ‘ Single-Design ‘ Cross-Design
| RMSE | MAE | Pearsont{| RMSE| MAE| Pearson?
GCN 1.762 1.276 0.750 1.691 1.276 0.746
GATv2 1.812 1.330 0.687 1.717 1.281 0.737
AllSet 1.718 1.264 0.760 1.837 1.348 0.695
HMPNN 1.841 1.368 0.710 1.785 1.335 0.710
HNHN 1.852 1.368 0.717 1.754 1.333 0.701

NetlistGNN 1.773 1.320 0.740 1.762 1.324 0.718

base DE-HNN | 1.751 1.269 0.748 1.731 1.291 0.730
full DE-HNN | 1.689 1.245 0.770 | 1.677 1.242

Improvement‘ 1.7% 1.6% 1.3% ‘ 1.9% 2.6% 1.8%

Table 2: Net-based demand regression for each design.

Model ‘ Single-Design ‘ Cross-Design
‘ RMSE | MAE | Pearson | ‘ RMSE | MAE | Pearson 1
GCN 9.321 6.163 0.570 6.571 5.024 0.365
GATv2 9.342 6.118 0.561 6.623 5.137 0.363

AllSet 9.072 5.745 0.632 6.120 4.820 0.345
HMPNN 9.342 6.118 0.561 6.979 5.356 0.306
HNHN 9.342 6.118 0.561 6.390 4.870 0.358
NetlistGNN 9.063 5.839 0.623 8.328 6.839 0.367

base DE-HNN | 8.997 5.764 0.630 6.778 5.085 0.337
full DE-HNN | 8.381 5.334 0.683 | 6.037 4.670

Improvement | 7.5% 7.2% 8.1% | 1.4% 4.1% 1.4%

late the wirelength of each net (Mirhoseini et al.,
2021). Similar to (Yang et al., 2022), we take the
log, of the wirelength to reduce the range.

e Net-based demand regression: We predict
the net-based demand. Congestion happens when
demands exceeds capacity. There is no concensus
on how to define congestion (difference or ratio)
and we thus directly predict demand.

e Cell-based congestion classification: Similar
to (Yang et al., 2022) and (Wang et al., 2022),
we classify the cell-based congestion values (com-
puted as the ratio of demand/capacity) into (a) [0,
0.9], not-congested; and (b) [0.9, inf]; congested.

Our experiments have two settings:

e Single-design: We train and evaluate on each
individual design separately. For each graph in
a design, we apply 4-fold cross-validation to ran-
domly split the nodes into 4 subsamples with same
sizes (25%/25%/25%/25%). We report the aver-
age performance across all 12 designs with cross-
validation applied to each design. The distribu-
tion of target values and the average performance
from cross-validation for each design can be found
in the Supplement.

e Cross-design: We aim to evaluate the ability of
the models to generalize to unseen netlist topolo-
gies. Following previous work (Yang et al., 2022),
we use 10 designs, Superbluel,2,3,5,6,7,9,11,14,16,
for training, superbluel8 for validation, and su-
perbluel9 for testing.

Table 3: Cell-based congestion classification.

Model |

‘ Precision T Recall T F_score 1 ‘ Precision T Recall ¥ F_score 1

Single-Design | Cross-Design

GCN 0.761 0.857 0.802 0.633 0.997 0.773
GATv2 0.810 0.864 0.835 0.630 0.999 0.765
AllSet 0.782 0.837 0.804 0.645 0.964 0.773
HMPNN 0.774 0.826 0.792 0.633 0.999 0.772
HNHN 0.792 0.869 0.826 0.648 0.939 0.767
Netlist GNN 0.812 0.860 0.831 0.647 0.953 0.771
base DE-HNN 0.824 0.860 0.840 0.653 0.990 0.774
full DE-HNN 0.833 0.876 0.853 0.660 0.986 0.780

Improvement | 2.6% 0.8% 2.2% | 1.7% — 1.0%

4.3 Results

The test performance of all baselines and our meth-
ods (base-DE-HNN and full-DE-HNN) are shown in Ta-
bles 1, 2 and 3. For the regression tasks, to be compre-
hensive, we use three metrics: the Mean Squared Error
(MSE), the Mean Average Error (MAE), and the Pear-
son correlation (Pearson). For classification tasks, we
report the Precision, Recall, and F-Score. Note that
for MSE and MAE, the smaller the value is the better;
while for Pearson, Precision, Recall, and F-Score, the
larger the better. In all tables, we highlight the best
performance results in red, while the best among all
baseline models are colored blue (unless a baseline re-
sult is the best, in which case it will be red-colored).
In the last row of these tables, we show the Improve-
ment of our full-DE-HNN model over the best of all
baselines for each metric; note that our improvement
over any individual baseline can only be better than
this improvement. Our full-DE-HNN model outper-
forms all baselines, sometimes significantly. For exam-
ple, compared to NetlistGNN (Yang et al., 2022), the
previous SOTA for netlist representatin learning, our
improvement on average is around 5.3% for wirelength
prediction, and 8.6% for demand prediction, both in
terms of MAE. See the Supplement for the full results,
including the test performances for each design in the
single-design setting.

Ablation study. We carried out an ablation study
to understand the effects of the different strategies em-
ployed in our DE-HNN. In particular, the factors we
wish to test are: (a) the use of direction in model-
ing nets, (b) the use of persistence diagrams (PDs)
as features, and (c) the use of single and hierarchi-
cal VNs (virtual nodes). To this end, we compare
the performance of the following versions: (a) base-E-
HNN stands for treating a net as a standard hyperedge
(thus no direction), and using neither PD features
nor VNs. (b) base-DE-HNN is the base model for di-
rected hypergraph (described in Section 3.1) with nei-
ther PDs nor VNs. In other words, the difference be-
tween base-DE-HNN and base-E-HNN shows the effect
of adding directions. (c) base-DE-HNN+PD is the base
model with only PDs. Hence the difference between
(c) and (b) is to show the effect of PDs. (d) base-DE-

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

HNN+PD+single VN is the base model with PD and
a single global VN. (e) Finally, full-DE-HNN is our full
model with PDs and a two-level hierarchy of VNs. The
results for net-based demand regression and cell-based
congestion classification are shown in Figure 3. Full
results are found in the Supplements, Other metrics
and tasks show a similar behavior. For example, for
demand prediction, from base-E-HNN, to adding direc-
tions, PDs, single VN, and finally two-level VNs, per-
formance improves over the previous version by 2.5%,
2.6%, 1.0% and 3.4%, respectively. Overall, full-DE-
HNN improves over the base-DE-HNN by around 6.8%,
while its improvement over base-E-HNN (base model
with no direction) is 9.2%.

Net-based demand regression Cell-based congestion classification

Em Demand RMSE

BN Congestion F_score

8.20 0.8
W N &) v] = W
o o W g e AN o e o
2 oV o P I AT N
W g W ¥ o
e v\‘\‘\k @
o o
o o

Figure 3: Ablation study for net-based demand regression
(left, RMSE) and cell-based congestion classification (right,
F-score).

5 Conclusion

In this paper, we presented an effective model for rep-
resentation learning on directed hypergraphs. We con-
sidered learning on netlists, the hypergraph represen-
tation of circuits in chip design. This has great impor-
tance in practice but so far ML approaches for netlist
representation learning has been limited, partly due
to their huge sizes, long-range interactions, as well as
the scarsity of benchmark datasets. We introduced
several strategies to capture long-range interactions,
graph motifs, and to consider direction in a hyper-
edge. Our model significantly outperforms a range of
SOTA methods over a collection of chip designs. Our
datasets will be publicly available, which we hope will
facilitate further research on ML for chip design ap-
plications, pushing the ability of methods to capture
long-range interactions. Finally, while we significantly
outperformed other approaches, we note that in gen-
eral, improvements in the cross-design setting are less
prominent, potentially due to large variations in cir-
cuit designs. It will be interesting to further explore
this direction.

Acknowledgements

This work is partially supported by NSF under grants
CCF-2112665 and CCF-2310411, as well as by a gift
fund from QualComm. The first, second and last au-
thors would like to extend our sincere thanks to Prof.
Andrew B. Kahng for the many insightful discussions
and contributions in the early stage of this work, espe-
cially in exploring and experimenting the use of topo-
logical summaries for property prediction of netlists.

References

Adams, H., Emerson, T., Kirby, M., Neville, R., Pe-
terson, C., Shipman, P., Chepushtanova, S., Han-
son, E.,; Motta, F., and Ziegelmeier, L. (2017). Per-
sistence images: A stable vector representation of

persistent homology. Journal of Machine Learning
Research, 18(8):1-35.

Al-Hyari, A., Szentimrey, H., Shamli, A., Martin, T.,
Gréwal, G., and Areibi, S. (2021). A deep learn-
ing framework to predict routability for fpga cir-
cuit placement. ACM Trans. Reconfigurable Tech-
nol. Syst., 14(3).

Alawieh, M. B., Li, W., Lin, Y., Singhal, L., Iyer,
M. A., and Pan, D. Z. (2020). High-definition rout-
ing congestion prediction for large-scale fpgas. In
Asia and South Pacific Design Automation Confer-
ence, pages 26-31.

Bai, S., Zhang, F., and Torr, P. H. (2021). Hyper-
graph convolution and hypergraph attention. Pat-
tern Recognition, 110:107637.

Brody, S., Alon, U., and Yahav, E. (2022). How at-
tentive are graph attention networks? In Int. Conf.
on Learning Representations.

Cai, C., Hy, T. S., Yu, R., and Wang, Y. (2023). On
the connection between MPNN and graph trans-
former. In Int. Conf. on Machine Learning, volume

202 of Proceedings of Machine Learning Research,
pages 3408-3430. PMLR.

Chai, Z., Zhao, Y., Liu, W., Lin, Y., Wang, R.,
and Huang, R. (2023). Circuitnet: An open-source
dataset for machine learning in vlsi cad applica-
tions with improved domain-specific evaluation met-
ric and learning strategies. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, pages 1-1.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and
Sun, X. (2020a). Measuring and relieving the over-
smoothing problem for graph neural networks from
the topological view. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(04):3438-3445.

Chen, J., Kuang, J., Zhao, G., Huang, D. J. H.,
and Young, E. F. Y. (2020b). Pros: A plug-in for

DE-HNN: An effective neural model for Circuit Netlist representation

routability optimization applied in the state-of-the-
art commercial eda tool using deep learning. In Int.
Conf on Computer-Aided Design.

Chen, X., Di, Z., Wu, W., Wu, Q., Shi, J., and Feng,
Q. (2022). Detailed routing short violation predic-
tion using graph-based deep learning model. IEEE

Trans. Circuits and Systems II: Express Briefs,
69(2):564-568.

Chien, E., Pan, C., Peng, J., and Milenkovic, O.
(2022). You are allset: A multiset function frame-
work for hypergraph neural networks. In Interna-
tional Conference on Learning Representations.

Choromanski, K. M., Likhosherstov, V., Dohan, D.,
Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J. Q., Mohiuddin, A., Kaiser, L., Belanger, D. B.,
Colwell, L. J., and Weller, A. (2021). Rethinking
attention with performers. In Int. Conf. on Learning
Representations.

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J.
(2009). Extending persistence using poincaré and
lefschetz duality. Foundations of Computational
Mathematics, 9(1):79-103.

Dey, T. K. and Wang, Y. (2022). Computational
Topology for Data Analysis. Cambridge University
Press. 452 pages.

Dong, Y., Sawin, W., and Bengio, Y. (2020). Hnhn:
Hypergraph networks with hyperedge neurons.

Dwivedi, V. P., Rampa&sek, L., Galkin, M., Parviz, A.,
Wolf, G., Luu, A. T., and Beaini, D. (2022). Long
range graph benchmark. In Advances in Neural In-
formation Processing Systems, volume 35.

Edelsbrunner, H. and Harer, J. (2010). Computational
Topology : an Introduction. American Mathematical
Society.

Edwards, R. T. (2020). Google/skywater and the
promise of the open pdk. In Workshop on Open-
Source EDA Technology.

Fey, M. and Lenssen, J. E. (2019). Fast graph rep-
resentation learning with pytorch geometric. Int.
Conf. on Learning Representations.

Fitzpatrick, P. (1989). Klaus deimling, nonlinear func-
tional analysis.

Ghose, A., Zhang, V., Zhang, Y., Li, D., Liu, W.,
and Coates, M. (2021). Generalizable cross-graph
embedding for gnn-based congestion prediction. In
IEEE/ACM Int. Conf. Computer Aided Design, IC-
CAD, page 1-9.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals,
0., and Dahl, G. E. (2017). Neural message passing

for quantum chemistry. In Int. Conf. on Machine
Learning, ICML, page 1263-1272.

Heydari, S. and Livi, L. (2022). Message Passing
Neural Networks for Hypergraphs, page 583-592.
Springer Nature Switzerland.

Hy, T. S., Trivedi, S., Pan, H., Anderson, B. M., and
Kondor, R. (2019). Covariant compositional net-
works for learning graphs. In Proc. Int. Workshop
on Mining and Learning with Graphs (MLG).

Jegelka, S. (2022). Theory of graph neural networks:
Representation and learning. Int. Congress of Math-
ematicians, ICM.

Kahng, A. B., Kim, M., Kim, S., and Woo, M. (2022).
Rosettastone: Connecting the past, present, and fu-
ture of physical design research. IEEE Design and
Test, 39(5):70-78.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar,
S. (1999). Multilevel hypergraph partitioning: ap-
plications in vlsi domain. IEEE Trans. Very Large
Scale Integr. Syst., 7(1):69-79.

Karypis, G. and Kumar, V. (1998). A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20(1):359-392.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret,
F. (2020). Transformers are RNNs: Fast autoregres-
sive transformers with linear attention. In Int. Conf.
on Machine Learning, ICML.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee,
H., and Hong, S. (2022). Pure transformers are pow-
erful graph learners. In Advances in Neural Infor-
mation Processing Systems, volume 35.

Kipf, T. N. and Welling, M. (2017). Semi-supervised
classification with graph convolutional networks. In
Int. Conf. on Learning Representations.

Kirby, R., Godil, S., Roy, R., and Catanzaro, B.
(2019). Congestionnet: Routing congestion pre-
diction using deep graph neural networks. In
IFIP/IEEE Int. Conf. Very Large Scale Integration,
VLSI-SoC, pages 217-222.

Liang, R., Xiang, H., Pandey, D., Reddy, L., Ramji,
S., Nam, G.-J., and Hu, J. (2020). Drc hotspot pre-
diction at sub-10nm process nodes using customized
convolutional network. In Int. Symposium on Phys-

ical Design, ISPD, page 135-142.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W,
Songhori, E. M., Wang, S., Lee, Y.-J., Johnson, E.,
Pathak, O., Nazi, A., Pak, J., Tong, A., Srinivasa,
K., Hang, W., Tuncer, E., Le, Q. V., Laudon, J.,
Ho, R., Carpenter, R., and Dean, J. (2021). A graph
placement methodology for fast chip design. Nature,
594:207 — 212.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Miiller, L., Morris, C., Galkin, M., and Rampa&sek, L.
(2023). Attending to Graph Transformers. Arziv
preprint.

Ngo, N. K., Hy, T. S., and Kondor, R. (2023). Mul-
tiresolution graph transformers and wavelet posi-
tional encoding for learning long-range and hierar-

chical structures. The Journal of Chemical Physics,
159(3):034109.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32.

Rampaések, L., Galkin, M., Dwivedi, V. P., Luu, A. T\,
Wolf, G., and Beaini, D. (2022). Recipe for a gen-
eral, powerful, scalable graph transformer. In Ad-

vances in Neural Information Processing Systems,
volume 35, pages 14501-14515.

Sutherland, W. A. (2009). Introduction to metric and
topological spaces. Oxford University Press.

Tabaghi, P. and Wang, Y. (2023). Universal Represen-
tation of Permutation-Invariant Functions on Vec-
tors and Tensors. arXiv preprint arXiv:2310.13829.

Tabrizi, A. F., Rakai, L., Darav, N. K., Bustany,
I., Behjat, L., Xu, S., and Kennings, A. (2018).
A machine learning framework to identify detailed
routing short violations from a placed netlist. In
ACM/ESDA/IEEE Design Automation Conference,
DAC), pages 1-6.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D.
(2022). Efficient transformers: A survey. ACM
Comput. Surv., 55(6).

Tian, M. and Wang, Y. (2019). A limit theorem for
the 1st Betti number of layer-1 subgraphs in random
graphs. ArXiv preprint.

Topping, J., Giovanni, F. D., Chamberlain, B. P.,
Dong, X., and Bronstein, M. M. (2022). Under-
standing over-squashing and bottlenecks on graphs
via curvature. In Int. Conf. on Learning Represen-
tations.

Velickovié, P., Cucurull, G., Casanova, A., Romero,
A, Lio, P., and Bengio, Y. (2018). Graph attention
networks. In Int. Conf. on Learning Representa-
tions.

Viswanathan, N., Alpert, C., Sze, C., Li, Z., and Wei,
Y. (2012). The DAC 2012 routability-driven place-
ment contest and benchmark suite. In Annual De-
sign Automation Conference, DAC, page 774-782.

Viswanathan, N., Alpert, C. J., Sze, C., Li, Z., Nam,
G.-J., and Roy, J. A. (2011). The ISPD-2011
routability-driven placement contest and benchmark
suite. In Int. Symposium on Physical Design, ISPD,
page 141-146.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, 1., and
Osborne, M. A. (2019). On the limitations of repre-
senting functions on sets. In Int. Conf. on Machine
Learning, pages 6487-6494. PMLR.

Wang, B., Shen, G., Li, D., Hao, J., Liu, W., Huang,
Y., Wu, H., Lin, Y., Chen, G., and Heng, P. A.
(2022). Lhnn: Lattice hypergraph neural network
for vlsi congestion prediction. In ACM/IEEE Design
Automation Conference, DAC, page 1297-1302.

Xie, Z., Huang, Y.-H., Fang, G.-Q., Ren, H., Fang,
S.-Y., Chen, Y., and Hu, J. (2018). Routenet:
Routability prediction for mixed-size designs using
convolutional neural network. In IEEE/ACM Int.
Conf on Computer-Aided Design, ICCAD, pages 1—-
8.

Xie, Z., Liang, R., Xu, X., Hu, J., Duan, Y., and Chen,
Y. (2021). Net2: A graph attention network method
customized for pre-placement net length estimation.
In Asia and South Pacific Design Automation Con-
ference, ASPDAC, page 671-677.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks? In Int.
Conf. on Learning Representations.

Yan, Z., Ma, T., Gao, L., Tang, Z., and Chen, C.
(2021). Link prediction with persistent homology:
An interactive view. In Int. Conf. on Machine
Learning, pages 11659-11669. PMLR.

Yang, S., Yang, Z., Li, D., Zhang, Y., Zhang, Z., Song,
G., and Hao, J. (2022). Versatile multi-stage graph
neural network for circuit representation. In Ad-
vances in Neural Information Processing Systems,
volume 35.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. In Advances in Neural Information Processing
Systems, volume 30.

Zhang, B., Luo, S., Wang, L., and He, D. (2023). Re-
thinking the expressive power of GNNs via graph
biconnectivity. In The Eleventh Int. Conf. on Learn-
ing Representations.

Zhao, Q., Ye, Z., Chen, C., and Wang, Y. (2020).
Persistence enhanced graph neural network. In Int.
Conf. on Artificial Intelligence and Statistics, pages
2896-2906. PMLR.

DE-HNN: An effective neural model for Circuit Netlist representation

Supplement of the AISTATS submission #1797,
Title: “DE-HNN: An effective neural model for Circuit Netlist
representation”

A More Background

ail

cl | c3 c4d Lo

ya .
! \
e > } o4 L R B
Congestion \ i !
ge oo = - l o5 R :
s outing
2
i Channels
P09 A S
c2 c5

Figure 4: Visulization of a circuit netlits in the post place-and-route stage: Each cell (¢;) is positioned within
the physical layout of the chip and interconnected with other components following the net maps (o).

A.1 Circuit netlists

A circuit netlist is a textual representation of electronic components, such as logical boolean gates, and
the connections between them. Figure 4 provides an example illustrating a circuit netlist consisting of five
components interconnected by five nets. After laying out the netlist in the physical space (placement), during
the routing stage, the edges of the netlist are mapped to the routing channels within the chip’s physical floorplan
(indicated by dashed lines in Figure 4). Routing congestion occurs when the number of edges to be routed in a
specific region of the floorplan exceeds the available routing capacity.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

A.2 Persistence homology based features

Persistent homology is one of the most important development in the field of topological data analysis in the
past two decades. It can encode meaningful topological features in a multi-scale manner and has already been
applied to numerous applications; see books (Edelsbrunner and Harer, 2010; Dey and Wang, 2022). Intuitively,
given a domain X, a p-th homology class (or informally, a p-th homological feature) essentially captures a family
of equivalent p-dimensional “holes” in X; for example, 0-, 1- and 2-dimensional homology captures connected
components, equivalent classes of loops and of 2-dimensional voids, respectively. The p-th homology group H,(X)
(using Zg coeflicients) characterizes the space of p-th homological features of X, and its rank rank(H,(X))
corresponds to the number of independent p-th homological features. For example, rank(Ho(X)) denotes the
number of connected components of space X. If the domain X is a graph, then its 1-st homology group is
homeomorphic the space of cycles (loops), and rank(H; (X)) is simply the number of independent cycles.

Persistent homology is a modern extension of homology, where instead of a single space X, we now inspect a
sequence of growing spaces X; C X» C --- X,,, = X, called a filtration *. Intuitively, we can view this filtration
as an evolution of the space X. As the space grows, we track its corresponding topological features (as captured
by the homology groups introduced above). Sometimes new topological features (e.g., a new component, or a
hole) will appear, and sometimes they will disappear (e.g, a hole is filled and thus “disappear”). The persistent
homology (PH) captures such creation and death of topological features, and outputs a feature summary called
persistent diagram (PD), consisting of the birth-time and death-time of classes of topological features during this
evolution. In short, the PDs provide a multiscale summary for the topological features of X from the perspective
of filtration X; C Xy C --- C X,,. In the past few years, there have been a series of approaches to vectorize
PDs or to kernelize them for ML applications; see Chapter 13 of (Dey and Wang, 2022). In our work, we use
the so-called persistence images (Adams et al., 2017) to convert a PD to a finite dimensional vector to be used
as part of the node feature.

Persistence diagram (PD) induced from Netlists. We compute the persistence diagram (PD) based on the
following directed graph representation of the netlist (instead of using the directed hypergraph representation,
for easier computation of persistence).

In particular, given a netlist, we create a directed graph G = (V, E') where each node in V corresponds to a cell
in the netlist, while a directed edge is formed between the driver cell of some net with each of the sink in that
net; that is, each net o = (v,,S,) gives rise to a set of directed edges {(vy,v)}ves,. We refer to this graph as
the star-graph induced by the input netlist.

Now, for each node v in the star-graph G, we create its k-ring out-flow neighborhood G which is simply the
subgraph in GG spanned by all nodes reachable from v by a path of at most k& hops. Symmetrically, the k-ring
in-flow neighborhood G2** of v is the subgraph of G spanned by all nodes such that v is reachable within k hops.
These two G,s form the local motifs around v. We wish to obtain a feature vector summary for G and G9“*.
To this end, similar to (Yan et al., 2021; Zhao et al., 2020), we use the so-called 0th extended persistence diagram
PD;} (Cohen-Steiner et al., 2009) of G (where x € {in,out}) induced by the shortest path distance function
to v as its summary. For our specific graph settig, using results of (Tian and Wang, 2019), one can show that
PD; computed this way, is a concise summary that encodes rich information around v, including the number
of triangles incident to v, clustering coefficient of v, number of nodes at distance r < k away from v, number of
crossing edges from distance-r nodes to distance (r 4+ 1) nodes, certain “shortest” system of cycle basis passing
through v of G}, and so on. Finally, each PD (for in-flow neighborhood and out-flow neighborhood of v) is
vectorized to persistent images as in (Adams et al., 2017), and we further vectorize (flatten) each image matrix
all together to generate a new vector as the persistent representation vector for each node.

A.3 Metis Partitioning

Metis (Karypis and Kumar, 1998) is currently State-of-the-art (SOTA) algorithm in chip design applications to
provide balanced k-way partitions for large graphs efficiently. We choose Metis due to its practical performance,
that it produces multiple clusters of balanced sizes, and the ease it is to control the size of the clusters. Besides
Metis, hMetis (Karypis et al., 1999) developed on the base of Metis for hypergraph parititioning is an alternative

4Note that persistent homology has been extended for much broader families of filtrations then the growing sequence
we describe here; see (Edelsbrunner and Harer, 2010; Dey and Wang, 2022).

DE-HNN: An effective neural model for Circuit Netlist representation

choice. In our paper we used Metis in case we need partitioning for other graph based methods we compare our
method with, and Metis will give us consistent partitioning. Nevertheless, we expect that hMetis can be used
without much impact to the performance of our pipeline.

B Theoretical Analysis

B.1 Preliminaries

Let D be a domain, such as Q, R, and R%. Consider the set function f : 2” — codom(f) where D) is a countable
domain. Then, we have

VX CD: f(X)=po®(X), ®(X)=) ¢(x), (8)
reX

where ¢ : D — codom(¢) C R, and p : codom(¢) — codom(f). This is the so-called sum-decomposable
representation of f via R in terms of (¢, p) basis functions. We refer to ambient space of codom(¢) (in Eqn (8),
it is R) as the model’s latent space (Zaheer et al., 2017). There is an extended sum-decomposable representation
of f on multisets whose elements are drawn from an uncountable domain (e.g., R?) by restricting the size of
input multisets. Recently, Tabaghi and Wang (2023) proposed an encoder ¢ : R¢ — codom(¢) C R24V such that
for any continuous multiset function f : Xy g — codom(f) we have,

VX e Xnyp: f(X)=po®(X),

where Xy g is the set of multisets of size N with elements drawn from B — a compact subset of R¢ — and
O(X) =, cx (). The latent space dimension of this representation is 2dN. As a result of this representation,
® : Xy — codom(®) is an injective map where codom(®) C R2?N. Furthermore, Tabaghi and Wang (2023)
show that p is continuous over the latent space R??V .

At their core, sum-decomposable models rely on a bijection between multisets and encoded features, that is,
X = ao®(X) for any multiset X € Xy 5 and a bijective map «. In the following proposition, we first generalize
this result to multisets with varied sizes.

Proposition 1. Let B be a connected compact subset of R%. There exists a function ¢ : R — RN such that

VXeXSN,B:X:a<Z¢(x)> =ao®(X)

zeX

where X< g 1s all multisets of size < N with elements from B, o is a continuous map over R24N |

Proof. As mentioned earlier, Tabaghi and Wang (2023) proposed a continuous encoding function ¢’ : R —
R2N such that ®'(z) = >,y ¢'(z) is an injective map over multisets with exactly N elements, that is,
(®)~! 0 ®'(X) = X where elements of multiset X is drawn from R¢ and | X| = N °.

Lemma 1. The function ®' is a homeomorphism.

Proof. The function ®' is continous and injective by contruction. We want to show that (®')~! is continuous

over codom(®’) = {®'(X) : X € Xy} where B is a compact and connected subset of R?. The set Xy g is
compact; refer to Lemma 5 in (Tabaghi and Wang, 2023). Also, codom(®’) C R?*V forms a metric space with £o
metric; Hence, it is also a Hausdorff space. By the inverse function theorem, ®’ — a continuous bijection from a
compact space to a Hausdorff space — has a continuous inverse; see Proposition 13.26 in (Sutherland, 2009). O

To extend the result of Lemma 1 to multisets of variable sizes, we follow the same proof sketch as the one used
for the one-dimensional case (Wagstaff et al., 2019). In particular, let x, € R?\ B where inf,cp ||z — 202 > 0.

5Note that we trivially changed the notation from ¢ to ¢'.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Then, we define ¢(x) = ¢'(z) — ¢'(x,). For any multiset with M < N elements from B, say X, we have

VX € Xanp ®(X) =) da) =Y ¢ () - Mg/ (x0)

reX reX
=& (X U{{zo,...,20}}) + const,
————

N—-M

where const = —N¢'(z,). This is in the sum-decomposable form. Since ®’ is an injective map over Xy 5, @ is
also an injective map over X<y 5. Specifically, we can derive a closed-form expression for its inverse as follows:

(CD’_l o (®(X) — const)) NB= (‘Pl_l 0 @' (X U {{zo, ... 7%}})) nB
N—M
=(XU{zo,...,z:}})NB
—_———
N—M
= X.

In other words, we have ®~(U) = <I>’_1(U — const) N B for all U € codom(®) = {®(X) : X € X<y 5}

The function ® : X<y 5 — codom(®) is a continuous bijection. Its domain is compact because it is a finite
union of comapct spaces, that is, X<y 5 = Uyen) Xy 5. Furthermore, its codomain forms a metric space with
ly distance; Hence, it is also a Hausdorff space. Therefore, by an inverse function theorem, ® has a continuous
inverse; (Sutherland, 2009). If we let « = ®~1, we arrive at the Proposition’s statement. O

Remark 1. Proposition 1 gurantees the continuity of a over a compact set codom(®) C R2N . This function

can be continuously extended to the ambient space R2N ; refer to the continuous extension theorem (Fitzpatrick,
1989).

B.2 Proof of Theorem 1

As discussed in the main text, the general net-value function is nested-permutation invariant and take the form
of Eqn (6) in the main text. In what follows, we provide the detailed version of Theorem 1 and show that such
nested-permutation invariant function adapts a nested sum-decomposition aligned with our DE-HNN’s node and
net update rules.

Theorem 1 (Detailed). Let F be any continuous, nested-permutation invariant, net-value function as in Eqn
(6). For simplicity, assume both input nets and output of M take values in a compact set B C R, a connected
compact subset of RY. We also let N, = max{|Z(v)| : Yo} and N, = max{|S(c)| : Vo}. Then we have that F
can be expressed as the following sum-decomposition:

vc:f({ua/}a'ez(vw{{uaf}ofez(vf)}v,es):p< ST i), Y b Y ¢>1(ua/))),

o' €T (vy) v/ €S, o' €L (v’)

where ¢1 : R — Rd'(d’N“), o9 : R4 (d:Nw) _y Rd”(d’N”’N”), and p : R (d:N) 5 RA"(d:No.No) _y RL gre continuous
functions.

Proof. The general net-value function takes the following form:
Vo :]:<{:U'U’}a’61(vg)7 {{MU'}O”EI(’U') }U/GS)

We assume F is a continuous function that takes values in B, a connected compact subset of R? and N, =
max{|Z(v)| : Yv}. From Proposition 1, there exist continuous functions ¢; and «; such that

VX €Xen,i: X =a1(D ¢i(x)),

zeX

DE-HNN: An effective neural model for Circuit Netlist representation

where codom(¢;) C R2Nv that is, the latent dimension depends on d and N, which we denote as d (d, N,).
Therefore, we apply the result in Proposition 1 to sets of net values (of size at most N,) and express F follows:

Vo : }—<{M”/}GIEI(V")’{{MJ,}GIGI(”/)}U@S(,) (Z b1 (1) { Z o1(o }U’ESU>

o'€T(vy) o’€Z(v')
=i { Moes.)
(5wt { T o),
o' €T (vy) o'€Z(v’)

where F1(2,Y) € F(ay(2), {o1(y)}yey) for all z € codom(®1) = {@1(Y) = X 0y é1(y) : ¥ € X, 5}
and any set Y with elements in codom(®;). Since both a; and F are continuous functions, then Fj is also a
continuous function. 6

Next, we can apply the result of Proposition 1 to F;. The elements of the set {ZU’EI(U’) (;51(0’)} . take
v’ €Sy

values in codom(®;) — a connected compact subset of R¥ (4:Nv) If we assume |S,| < N, for all o, Proposition
1 claims that there exist continuous functions as and ¢o such that the following holds true:

‘v’a:]—'l(Z o1 (1), { Z ¢1 }U/ESG> (Z é1 () 042(2@ Z ¢1))

o'€Z(vy) o’'€Z(v o'€Z(vy) V' €S, o'€Z(v
(z 56 Y o Y tnlo)
o'€Z(vy) v €S, o' €Z(v’)

where p(z,y) gy (z,as(y)) for all € codom(®P;) and y € codom(Ps) 2 {>.cz #2(2) : Z € codom(®y),|Z]| <
N, }. The function p is a composition of continuous functions F; and ag. Therefore, it is a continuous function.
Also, we have codom(¢y) C RQd'(d*NU)N”, that is, the latent dimension depends on d, N,,, and N, which we denote
as d”’(d, N, N,). Finally, functions ¢, and p are continuous over compact domains codom(®1), and codom(®;) x
codom(®s). Therefore, they can be continuously extended to R (d:Nv) apd RY (d:Nv) o R (d:Nw.No), O

C Experimental details

C.1 Dataset Statistics

We report the sizes of each design and their cell/net-degrees distribution in Table 5, and net-based de-
mand/wirelength distributions in the Table 6. We can see that (hyper)graphs in our dataset are large and
sparse, ranging from 400K to 1.3M nodes. with few outliers that have high degrees. We also summarize the
more detailed distributions of net-based demand, net-based wirelength, and cell-based congestion in figureb.

C.2 Experiment Setup

We engineer the input features as Cell features and Net features. None of the following features contained
placement information or are computed from placement information. We engineer cell features as follows:

e We analyze the statistics in a design including the minimum and maximum of all cells’ width, height. Then,
we normalize all these quantities to be in the range [0,1]. We concatenate them with the cell’s discrete
orientation and cell’s degree (number of nets each cell connecting to), that results into the cell’s input
feature vector.

e We calculate the top-10 eigenvectors of the graph Laplacian of the heterogenous graph as the positional
encoding (denoted as LapPE) for every cell and net.

e We compute the persistence diagram (denoted as PD) for each cell-node v on a directed graph G = (V, E),
as we mentioned earlier in A.2, as a common cell-node input feature vector for all baselines, to capture the
local topological information.

5We can use the matching distance to define a metric on multisets; refer to (Tabaghi and Wang, 2023) for details.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

e We also compute the degree distribution for each cell-node v based on their k-ring undirected neighborhood
G, in the star-graph we introduced in A.2 to compute the persistence diagrams. However, we ignore the
direction when we compute the degree distribution.

For the net features, for all models other than linear Transformer, we initialize the features of each net o =
(Vo,So) as the net’s degree (i.e. number of cells each net connecting to). For Linear Transformer, in order to
provide better topology information, we instead initialize the features of each net ¢ = (v,,S,) (denoted as
M (o)) as the average of all the features of the nodes this net contains, computed as,

1

M) =15 57

(m(ve) + Y m(v))). (9)

V' €Sy

As also described in the main text, for GCN and GATv2, we use the bipartite graph representation of the input
netlist, where there are two types of graph nodes: those corresponding to cells and those corresponding nets. If
a cell is contained in a net, then there is an edge between their respective graph nodes. We use heterogenous
message passing, where nodes corresponding to cells use a different message passing mechanism from nodes
corresponding to nets.

For GCN, GATv2, HyperConv, and all other HNN based models, we used 4 layers with 64 dimension each
layer as the setting. For Linear Transformer, we used 2 layers with 64 dimension each layer as the setting. For
Netlist GNN we used 4 layers with node dimension 64 and net dimension 64 as the setting. For E-HNN/DE-HNN
based models, we used 3 layers with node dimension 64.

We report the number of parameters, training time per epoch and total training epochs in the Table 4. We
aim to use similar number of parameters, although currently full-DE-HNNdoes have the highest number of
parameters, with NetlistGNN having the second largest. Interestingly, while they all take similar number of
epochs to converge, our DE-HNN in fact is much faster per epoch, so overall takes less time to train. We
used two NVIDIA A100-SXM4-80GB GPUs on Linux CentOS Stream system (Ver.8) for both single-design and
cross-design experiments.

Model ‘ GCN GATv2 HyperConv Lin. Transformer NetlistGNN AllSet HMPNN HNHN base-DE-HNN full-DE-HNN
Num. of parameters 218113 251905 218625 203201 364743 274433 276513 289565 272165 383105
Time per epoch (single design) 2.77 2.91 1.06 3.72 1.13 0.79 0.69 0.62 0.49 0.65
Total num. of epochs (single design) 878 775 670 636 716 689 691 699 673 810
Time per epoch (cross design) 33.20 36.28 12.28 55.37 16.51 11.35 4.14 5.37 5.26 5.50
Total num. of epochs (cross design) 478 482 473 471 455 460 472 468 479 473

Table 4: Comparison of Model complexity for all the models we used. We compare the number of parameters,
training time per epoch for single design (on average), total training epoches to converge for single design (on
average), trainig time per epoch for cross design, and total training epoches to converge for cross design.

C.3 More experimental results

In the main text, we have reported plots for ablation studies of different strategies used in our model. Here
in Table 7 we report detailed numbers for all three tasks: net-based wirelength regression, net-based demand
regression, and cell-based congestion classification across all the designs.

Besides ablation study over our models, as we mentioned in main paper, adding the persistence diagrams (PDs)
features are beneficial for both our method and baselines. We have already shown the benefits for our model
in the ablation studies in the main text and above. Here in Table 8, we show its benefits to the three best
performing baseline models: NetlistGNN, GCN, GATv2. As we can see, using PDs improve all these models.
Note that in the main text, when we report results of these baseline models, we are already reporting results
with PDs.

We show more detailed experimental results of single-design experiments for net-based wirelength regression in
Table 9, net-based regression in Table 10 and cell-based congestion classification in Table 11 for each design.
We also show more results of cross-design experiments for net-based wirelength regression, net-based demand
regression and cell-based congestion classification in Table 13. Similar to how we report the results in the main
paper, we highlight the models’ results with the best performance in red, and highlight the models (other than
our models) that with second best performance as blue. Interestingly, in the single design case, it appears that

DE-HNN: An effective neural model for Circuit Netlist representation

Design Cells Nets Cell-degree Net-degree

Min Max Mean STD Min Max Mean STD
Superbluel 797,938 821,523 0.0 1243 3.70 5.66 0.0 140605 3.58 155.85
Superblue2 951,166 985,117 0.0 1317 3.51 5.66 0.0 190487 3.39 192.22
Superblue3 901,254 925,667 0.0 2245 3.65 5.23 0.0 168630 3.55 175.91
Superblue5 727,341 803,681 0.0 1381 3.46 5.82 0.0 114259 3.13 128.03
Superblue6 998,122 1049,225 0.0 1689 3.57 4.03 0.0 179410 3.39 175.69
Superblue7 1319,052 1339,522 0.0 849 3.91 3.03 0.0 265765 3.85 230.24
Superblue9 810,812 830.308 0.0 1265 3.83 4.78 0.0 129541 3.74 202.42
Superbluell 923,355 954,144 0.0 1983 3.74 6.97 0.0 203194 3.63 294.36
Superbluel4d 604,921 627,036 0.0 1023 3.90 4.66 0.0 167911 3.76 300.30
Superbluel6 671,284 696,983 0.0 1016 3.77 6.12 0.0 140741 3.63 238.58
Superbluel8 459,495 468,888 0.0 1192 4.22 4.30 0.0 102047 4.14 150.74
Superbluel9 495,234 510,258 0.0 1507 3.58 6.02 0.0 94682 348 135.31

Table 5: Dataset details & statistics. 1st column in the table shows the name of the design, 2nd column and 3rd
column show the number of cells and nets in each design, 4th-7th columns show the distribution of cell-degrees
for each design and 8th-11th columns show the distribution of net-degrees for each design.

Design Net-based demand Net-based wirelength Cell-based congestion

Min Max Mean STD Min Max Mean STD Min Max Mean STD
Superbluel 0.0 103.50 26.24 801 891 2392 1480 245 0.0 12,00 1.21 0.55
Superblue2 0.0 139.37 26.61 852 891 24.61 1521 2.69 0.0 5.00 0.70 0.45
Superblue3 0.0 103.50 24.07 731 891 2383 1491 245 0.0 5.19 0.90 0.47
Superblueb 0.0 1203.25 41.62 32.00 891 24.06 15.68 2.96 0.0 7892 1.27 0.94
Superblue6 0.0 980.33 33.83 2745 891 23.83 14.88 2.57 0.0 7415 135 1.15
Superblue7 0.0 495.25 23.89 534 891 2393 14.89 248 0.0 43.38 1.09 0.33
Superblue9 0.0 79.50 2247 802 891 23.83 14.71 242 0.0 5.0 0.74 0.46
Superbluell 0.0 75.00 20.05 6.54 891 24.17 1511 2.38 0.0 8.0 0.93 0.36
Superbluel4 0.0 401.41 23.42 9.11 8.91 23.67 15.06 2.48 0.0 46.85 1.06 0.65
Superbluel6 0.0 1091.0 28.96 14.09 891 2351 15.01 2.54 0.0 6553 1.29 0.91
Superbluel8 0.0 50.0 20.39 413 891 2326 1498 2.28 0.0 4.0 0.91 0.27
Superbluel9 0.0 87.83 23.06 640 891 2353 14.86 2.36 0.0 6.0 0.96 0.50

Table 6: Dataset details & statistics. This table shows the distribution of net-based demands for each design,
distribution of net-based logged wirelength for each design and the distribution of cell-based congestion values
for each design. Remind that cell-based congestion, as we described in the paper, we classify the cell-based
congestion values (computed as the ratio of demand/capacity) into (a) [0, 0.9], not-congested; and (b) [0.9, inf];
congested.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Wirelength Distribution: superblue1 0.7 Wirelength Distribution: superblue2 0.7 Wirelength Distribution: superblue3 0.7 Wirelength Distribution: superblues 0.7 Wirelength Distribution: superblue6 0.7 Wirelength Distribution: superblue7 0.7
200% = Log? Wirslength | 5. == Log2 Wrelengtn | 400% = Log2 Wirelength | oo, = Log2 Wirelength == Log2 Wirelength = Log2 Wirelength
350%
200%
350% 350%
300% 2005
300% 300%
250% 200% 250
£ 250% 250%
£ 200% 200%
§ 200%
H 150% o 2o
150% 150% e
oo 100% 100% 100% o
o0s0% 050% 050% 050%
o00% 000% o 000% 000% 000%
10 25 B0 75 00 2s W0 15 150 U5 200 25 %0 W0 1S 150 s 20 25 W0 1S 150 IS 20 25 Wo 1S 180 US 20 25 W0 LS 150 Us 20 25
Wirelength superblue 0.7 Wirelength Distribution: superblue11 0.7 Wirelength Distribution: superblue14 0.7 Wirelength Distribution: superblue16 0.7 Wirelength Distribution: superblue18 0.7 Wirelength superblue19 0.7
400%
== Log2 Wielength == Log2 Wielength | 350% == Log? Wirelength | 400% == Log2 Wirelength = Log2 Wiirelengen | 400% == Log2 Wirelength
400%
o 300% 350% a00% 350%
300% 300%
250% 200%
300% 300%
N 250% 250% 250%
1 200%
g 200% 200% 200%
£ 2000 150 200%
150% 150% 150%
100%
100% 100% 100% 200 100%
0s0% 050% 050% 050%
000% 000% 000% 000% 000% 000%
10 25 Bo 75 20 25 W0 25 150 U5 W0 25 W0 25 150 U5 W0 25 Wo 15 150 U5 200 25 Wo L5 150 Us 0 25 W0 15 1|0 U5 200 25
Wirelength Wirelength Wirelength Wirelength Wirelength Wirelength
Net-based Demand Distribution Net-based Demand Distribution Net-based Demand Distribution Net-based Demand Distribution: Met-based Demand Distribution Net-based Demand Distribution
superbluel 0.7 superblue2 0.7 superblue3 0.7 superblues 0.7 superblue6 0.7 superblue7 0.7
60%
= nat.based demand = nat.based demand = nat-based demand | 30.0% = nat-based demand = nat-based demand = nat-based demand
60% 200% 0%
0%
50%
200% 00% 00%
% 0%
H B.0%
H 30% 20% 0.0%
0% 100%
100% 10.0%
10% 50%
00% 00% k 00% 00%
0 4o 0 & 100 o 2 15 6 » o @ @ 10 © 20 40 G0 s b0 1200 6 20 40 o o 1000 6 10 a0 w0 w0 %o
Net-based Demand Distribution- Net-based Demand Distribution Net-based Demand Distribution Net-based Demand Distribution: Met-based Demand Distribution Net-based Demand Distribution
superblueg 0.7 superbluell 0.7 superbluel4 0.7 superblue16 0.7 superblue18 0.7 superblue19 0.7
70%
=t based demand | . = natbased demand | g, = natpased demand | =~ nat-based demand = natbased demand | g g% = nat-based demand
B0% a
200%
00%
g 0% 50% 1
g 200%
2
woo% 15.0%
100% X
0%
s0%
00% 00%
E) 3 EE S © 20 0 o @0 1000 0 £
Demand Demand Demand Demand Demand Demand
Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution
superbluel 0.7 superblue2 0.7 superblue3 0.7 superblues 0.7 superblue6 0.7 superblue7 0.7
[:13
= cellbased congestion | 1 oo el based congeston | = cell.based congestion = cell-based congestion == colbased congestion | = cell.based congestion
B0%
140% 0%
% 0.0% s0%
20% 60%
B0% w% o
& 100% so%
£ 200%
§ 0%
g 80% a0% 0%
&
150%
60%
30% 0% 0%
a0% 20% 10.0%
10% 0%
20% 10% 50%
oo 00% 00% o L o%
0 2 4 & 8 1 1 o 1 2 5 & 5 o 1 1 3 4 5) £ @ E) [} E] [[} 10 LI
Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution Cell-based Congestion Distribution
superblueg 0.7 superblue110.7 superblue14 0.7 07 superblue18 0.7 07
00%
= cell.based congestion = cell-based congestion | 4 05, = cell.based congestion = colbosed congestion | 120% = cell.based congestion = cel.based congestion
0.0%
B0%
B0%
00%
F 5.0% 200%
g 00% 15.0%
&
15.0%
10.0%
100%
so% so%
00% Lf 00%
2 3 ° 2 }] 3] L] » E) & 2 3 IR
Congestion Congestion Congestion Congestion Congestion Congestion

Figure 5: Net-based wirelength, net-based demand and cell-based congestion distributions of each design.

‘ net-based wirelength regression ‘ net-based demand regression ‘ cell-based congestion classification
Model ‘ RMSE | MAE | Pearson T ‘ RMSE | MAE | Pearsont ‘ Precision T Recall ¥ F_score 1

base E-HNN 1.818 1.344 0.731 9.228 5.959 0.591 0.816 0.864 0.829

base DE-HNN 1.751 1.269 0.748 8.997 5.764 0.630 0.824 0.860 0.840

base DE-HNN+PD 1.731 1.257 0.754 8.765 5.526 0.647 0.830 0.869 0.847
base DE-HNN+PD+S. VN 1.724 1.253 0.758 8.687 5.519 0.658 0.832 0.874 0.851
full DE-HNN 1.689 1.245 0.770 8.381 5.334 0.683 0.833 0.876 0.853

Table 7: Ablation Study: Full experimental results to show the improvements from base E-HNN to full DE-HNN.

DE-HNN: An effective neural model for Circuit Netlist representation

‘ net-based wirelength regression ‘ net-based demand regression ‘ cell-based congestion classification

Model | RMSE| MAE| Pearsont |RMSE| MAE | Pearsont | Precision t Recall? F_score 1
NetlistGNN with no PD 1.818 1.344 0.731 9.237 6.060 0.592 0.806 0.855 0.818
NetlistGNN+PD 1.773 1.320 0.740 9.063 5.839 0.623 0.812 0.860 0.831
Improvement ‘ 2.5% 1.8% 1.2% ‘ 1.9% 3.6% 5.2% ‘ 0.7% 0.6% 1.6%
GCN with no PD 1.809 1.326 0.735 9.698 6.453 0.547 0.746 0.837 0.784
GCN+PD 1.762 1.276 0.750 9.321 6.163 0.570 0.761 0.857 0.802
Improvement | 1.9% 3.6% 5.2% | 3.9% 4.5% 4.2% | 2.0% 2.4% 2.3%
GATv2 with no PD 1.920 1.401 0.659 9.710 6.392 0.539 0.802 0.856 0.811
GATv2+4-PD 1.812 1.330 0.687 9.342 6.118 0.561 0.810 0.864 0.835
Improvement | 07% 0.6% 1.6% | 3.8% 4.3% 4.1% | 1.0% 1.0% 3.0%

Table 8: Ablation Study: the effect of using persistence diagrams (PDs) to three best-performing baselines. For
each method, the 3rd row shows the percentage of improvement after using PD as part of the input features.
Note that in the main text, the results we reported are those baselines+PD.

the methods AllSet and NetlistGNN often perform the best among the baselines for net-length and net-based
demand regression tasks, while for the cell-based congestion classification, other models (e.g, GATv2) sometimes
perform the best among baselines. In cross-design experiments, GCN and GATv2 sometimes emerge as winners.
In the cases that a baseline model is better than our model, we highlight that baseline model’s results in red
instead.

Preliminary exploration with placement information. In this paper, we focus on the case when our input
do not have placement information (i.e, coordinates of cells). We also conducted some preliminary experiments to
examine the effect of adding cell placement information to initial node features, and use placement information
based partitioning instead of Metis. We first partition the nodes in netlist circuit (after placement) into k
bounding boxes V; with fixed width and height as 0.8 millimeters. The number k is depending on the width and
height of each netlist circuit. With coordinates of cells added and bounding boxes based partitioning (for full-DE-
HNN), we rerun both single-design and cross-design net-based demand regression experiments on superbluel9.
See Table 12 below. Placement information helps to improve the performance on average around 10% for MAE
and RMSE, and the improvement is more substantial in terms of Pearson Correlation. We aim to explore more
about how to effectively leverage placement information in the future works.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Design Model RMSE | MAE | Pearson 1 Design Model RMSE | MAE | Pearson 1
GCN 1.731 1.243 0.751 GCN 1.819 1.338 0.697
GATv2 1.742 1.253 0.742 GATv2 1.853 1.381 0.683
HyperConv 1.988 1.413 0.645 HyperConv 1.966 1.435 0.639
AllSet 1.700 1.235 0.757 AllSet 1.684 1.238 0.750
Superbluel HMPNN 1.779 1.291 0.727 Superblue9 HMPNN 1.827 1.355 0.695
HNHN 1.813 1.319 0.720 HNHN 1.821 1.335 0.701
Netlist GNN 1.761 1.276 0.735 Netlist GNN 1.805 1.325 0.701
base DE-HNN 1.774 1.274 0.731 base DE-HNN 1.765 1.287 0.720
full DE-HNN 1.657 1.203 0.771 full DE-HNN 1.663 1.226 0.757
Improvement 2.5% 2.6% 1.8% Improvement 1.2% 1.0% 0.9%
GCN 2.011 1.487 0.714 GCN 1.831 1.356 0.694
GATv2 1.931 1.485 0.723 GATv2 1.814 1.349 0.702
HyperConv 2.217 1.661 0.641 HyperConv 1.986 1.468 0.633
AllSet 1.817 1.353 0.775 AllSet 1.717 1.274 0.740
Superblue2 HMPNN 1.981 1.480 0.723 Superbluell HMPNN 1.830 1.369 0.696
HNHN 1.992 1.488 0.724 HNHN 1.834 1.353 0.697
Netlist GNN 1.857 1.410 0.748 Netlist GNN 1.780 1.291 0.707
base DE-HNN 1.933 1.438 0.741 base DE-HNN 1.741 1.290 0.731
full DE-HNN 1.810 1.344 0.778 full DE-HNN 1.690 1.257 0.751
Improvement 0.4% 0.7% 0.4% Improvement 1.6% 1.3% 1.5%
GCN 1.741 1.273 0.738 GCN 1.792 1.331 0.739
GATv2 1.716 1.270 0.748 GATv2 1.794 1.361 0.738
HyperConv 1.941 1.438 0.661 HyperConv 2.116 1.547 0.605
AllSet 1.685 1.239 0.759 AllSet 1.756 1.299 0.750
Superblue3 HMPNN 1.752 1.300 0.734 Superbluel4 HMPNN 1.873 1.415 0.707
HNHN 1.769 1.303 0.729 HNHN 1.895 1.404 0.703
NetlistGNN 1.689 1.239 0.754 Netlist GNN 1.812 1.363 0.731
base DE-HNN 1.765 1.271 0.741 base DE-HNN 1.816 1.336 0.730
full DE-HNN 1.679 1.234 0.761 full DE-HNN 1.728 1.282 0.760
Improvement 0.4% 0.4% 0.3% Improvement 1.6% 1.3% 1.3%
GCN 1.892 1.428 0.801 GCN 1.763 1.265 0.741
GATv2 1.909 1.438 0.793 GATv2 1.741 1.267 0.751
HyperConv 2.114 1.606 0.742 HyperConv 2.047 1.446 0.639
AllSet 1.842 1.361 0.810 AllSet 1.688 1.207 0.772
Superblueb HMPNN 2.224 1.754 0.706 Superbluel6 HMPNN 1.896 1.362 0.701
HNHN 2.069 1.562 0.756 HNHN 1.816 1.312 0.731
NetlistGNN 1.915 1.406 0.790 NetlistGNN 1.773 1.274 0.736
base DE-HNN 1.881 1.393 0.799 base DE-HNN 1.705 1.218 0.767
full DE-HNN 1.795 1.330 0.822 full DE-HNN 1.656 1.194 0.782
Improvement 2.6% 2.3% 1.5% Improvement 1.9% 1.1% 1.3%
GCN 1.811 1.341 0.740 GCN 1.635 1.249 0.739
GATv2 1.782 1.322 0.751 GATv2 1.701 1.246 0.714
HyperConv 1.928 1.435 0.702 HyperConv 1.937 1.345 0.681
AllSet 1.733 1.260 0.766 AllSet 1.664 1.246 0.730
Superblue6 HMPNN 1.851 1.360 0.730 Superbluel8 HMPNN 1.769 1.335 0.686
HNHN 1.859 1.365 0.727 HNHN 1.752 1.314 0.696
NetlistGNN 1.940 1.452 0.725 Netlist GNN 1.625 1.213 0.752
base DE-HNN 1.786 1.296 0.749 base DE-HNN 1.653 1.263 0.735
full DE-HNN 1.689 1.233 0.780 full DE-HNN 1.632 1.219 0.743
Improvement 2.5% 2.1% 1.8% Improvement 0.4% 0.5% 1.2%
GCN 1.842 1.315 0.710 GCN 1.637 1.214 0.762
GATv2 1.847 1.371 0.699 GATv2 1.634 1.198 0.765
HyperConv 2.010 1.479 0.628 HyperConv 1.910 1.405 0.666
AllSet 1.753 1.295 0.733 AllSet 1.582 1.171 0.783
Superblue7 HMPNN 1.889 1.409 0.681 Superbluel9 HMPNN 1.705 1.255 0.739
HNHN 1.858 1.370 0.694 HNHN 1.752 1.288 0.727
Netlist GNN 1.801 1.316 0.721 Netlist GNN 1.635 1.205 0.765
base DE-HNN 1.760 1.291 0.701 base DE-HNN 1.641 1.208 0.763
full DE-HNN 1.719 1.267 0.747 full DE-HNN 1.557 1.153 0.792
Improvement 1.9% 2.2% 1.9% Improvement 1.6% 1.5% 1.1%

Table 9: Average results of single-design net-based hpwl(wirelength) regression for each design, based on 4-fold
cross validations. Last row “Improvement” refers to the improvement of our full DE-HNN model over the best
baseline approach for each metric.

DE-HNN: An effective neural model for Circuit Netlist representation

Design Model RMSE | MAE | Pearsont Design Model RMSE | MAE | Pearson
GCN 6.469 4.979 0.595 GCN 6.871 5.156 0.520
GATv2 6.409 4.964 0.612 GATv2 6.893 5.139 0.512
HyperConv 6.662 4.951 0.224 HyperConv 7.014 5.241 0.289
AllSet 6.100 4.587 0.650 AllSet 6.184 4.576 0.640
HMPNN 6.770 5.206 0.541 HMPNN 7.152 5.367 0.467
Superbluel HNHN 6.394 4.825 0.610 Superblue9 HNHN 6.544 4.884 0.582
Lin. Transformers 7.991 6.046 0.089 Lin. Transformers 8.007 5.934 0.092
NetlistGNN 6.039 4.623 0.660 NetlistGNN 6.511 4.796 0.589
base DE-HNN 6.093 4.670 0.653 base DE-HNN 2.990 2.228 0.696
full DE-HNN 5.674 4.263 0.709 full DE-HNN 5.685 4.237 0.709
Improvement 6.0% 7.1% 7.4% Improvement 8.1% 7.4% 10.8%
GCN 6.556 5.245 0.641 GCN 5.693 4.224 0.502
GATv2 6.736 5.288 0.616 GATv2 5.684 4.203 0.504
HyperConv 7.654 6.151 0.374 HyperConv 6.243 4.523 0.105
AllSet 6.430 4.981 0.659 AllSet 5.115 3.792 0.625
HMPNN 6.982 5.501 0.579 HMPNN 5.974 4.402 0.418
Superblue2 HNHN 6.699 5.217 0.625 Superbluell HNHN 5.277 3.882 0.592
Lin. Transformers 8.251 6.356 0.313 Lin. Transformers 6.576 4.678 0.034
NetlistGNN 6.259 4.932 0.682 NetlistGNN 5.176 3.830 0.617
base DE-HNN 6.399 5.035 0.663 base DE-HNN 5.214 3.855 0.608
full DE-HNN 5.966 4.637 0.718 full DE-HNN 4.918 3.677 0.666
Improvement 4.7% 6.0% 5.3% Improvement 3.9% 3.0% 6.6%
GCN 5.789 4.512 0.612 GCN 7.261 4.827 0.584
GATv2 5.837 4.558 0.565 GATv2 7.370 4.825 0.545
HyperConv 6.468 5.149 0.265 HyperConv 8.210 5.241 0.210
AllSet 5.265 4.014 0.695 AllSet 7.162 4.565 0.619
HMPNN 6.022 4.713 0.572 HMPNN 7.687 4.992 0.540
Superblue3 HNHN 5.686 4.338 0.631 Superbluel4 HNHN 7.327 4.693 0.597
Lin. Transformers 7.046 5.493 0.264 Lin. Transformers 8.853 6.168 0.176
NetlistGNN 5.414 4.214 0.673 NetlistGNN 6.872 4.444 0.642
base DE-HNN 5.423 4.188 0.670 base DE-HNN 6.874 4.453 0.639
full DE-HNN 5.041 3.837 0.725 full DE-HNN 6.533 4.211 0.684
Improvement 4.3% 4.4% 4.3% Improvement 4.9% 5.2% 6.5%
GCN 27.169 14.867 0.504 GCN 11.774 8.242 0.391
GATv2 27.343 14.754 0.508 GATv2 12.853 8.283 0.377
HyperConv 29.563 15.817 0.107 HyperConv 16.501 9.486 0.175
AllSet 27.881 14.632 0.490 AllSet 12.558 7.837 0.469
HMPNN 28.753 15.485 0.439 HMPNN 13.539 8.582 0.312
Superblueb HNHN 28.314 15.309 0.473 Superbluel6 HNHN 12.720 8.082 0.446
Lin. Transformers 32.614 16.889 0.076 Lin. Transformers 14.020 8.827 0.003
NetlistGNN 27.586 14.470 0.515 NetlistGNN 12.982 8.385 0.353
base DE-HNN 27.205 14.129 0.536 base DE-HNN 12.282 7.946 0.465
full DE-HNN 26.684 13.512 0.565 full DE-HNN 11.867 7.644 0.520
Improvement 1.8% 6.6% 9.7% Improvement - 2.5% 10.9%
GCN 21.963 12.692 0.607 GCN 3.061 2.262 0.681
GATv2 21.492 12.119 0.629 GATv2 3.102 2.285 0.672
HyperConv 25.615 13.356 0.128 HyperConv 4.013 2.915 0.255
AllSet 17.945 10.156 0.759 AllSet 3.057 2.294 0.674
HMPNN 21.868 12.633 0.611 HMPNN 3.246 2.446 0.624
Superblue6 HNHN 17.735 10.094 0.767 Superbluel8 HNHN 3.208 2.377 0.637
Lin. Transformers 28.807 14.583 0.119 Lin. Transformers 4.090 2.913 0.154
NetlistGNN 20.238 11.696 0.697 NetlistGNN 2.882 2.173 0.726
base DE-HNN 19.935 11.227 0.694 base DE-HNN 2.990 2.228 0.696
full DE-HNN 16.946 9.680 0.790 full DE-HNN 2.855 2.136 0.730
Improvement 4.4% 4.1% 3.0% Improvement 0.9% 1.7% 0.6%
GCN 4.243 3.064 0.600 GCN 5.034 3.734 0.616
GATv2 4.403 3.247 0.561 GATv2 4.949 3.691 0.636
HyperConv 4.689 3.327 0.225 HyperConv 5.746 3.974 0.312
AllSet 4.201 2.991 0.621 AllSet 4.682 3.474 0.685
HMPNN 4.527 3.246 0.541 HMPNN 5.294 3.980 0.571
Superblue7 HNHN 4.458 3.165 0.557 Superbluel9 HNHN 5.063 3.750 0.620
Lin. Transformers 5.245 3.752 0.139 Lin. Transformers 6.315 4.565 0.127
NetlistGNN 4.115 2.986 0.634 NetlistGNN 4.683 3.520 0.681
base DE-HNN 4.110 2.957 0.631 base DE-HNN 4.946 3.720 0.632
full DE-HNN 3.971 2.860 0.662 full DE-HNN 4.429 3.317 0.723
Improvement 3.5% 4.2% 4.4% Improvement 5.4% 4.5% 5.5%

Table 10: Results of single-design net-based demand regression for each design.

Luo, Hy, Tabaghi, Defferrard, Rezaei, Carey, Davis, Jain, Wang

Design Model Precision T Recall T F _score 1 Design Model Precision T Recall T F_score 1
GCN 0.839 0.944 0.888 GCN 0.684 0.556 0.613
GATv2 0.867 0.944 0.904 GATv2 0.719 0.613 0.666
HyperConv 0.873 0.966 0.917 HyperConv 0.716 0.605 0.656
Superbluel AllSet 0.880 0.955 0.916 Superblued AllSet 0.675 0.505 0.577
P HMPNN 0.866 0.968 0.916 P HMPNN 0.612 0.418 0.495
HNHN 0.868 0.969 0.916 HNHN 0.664 0.447 0.529
Lin. Transformers 0.853 0.941 0.895 Lin. Transformers 0.649 0.551 0.596
Netlist GNN 0.862 0.936 0.920 NetlistGNN 0.778 0.568 0.656
base DE-HNN 0.876 0.967 0.920 base DE-HNN 0.740 0.647 0.690
full DE-HNN 0.885 0.969 0.925 full DE-HNN 0.695 0.653 0.673
Improvement 1.6% 0.5% 0.5% Improvement - 6.5% 1.1%
GCN 0.741 0.657 0.697 GCN 0.634 0.896 0.743
GATv2 0.782 0.739 0.760 GATv2 0.706 0.844 0.769
HyperConv 0.779 0.706 0.741 HyperConv 0.644 0.910 0.755
Superblue2 AllSet 0.727 0.664 0.694 Superbluel 1 AllSet 0.620 0.946 0.749
P HMPNN 0.730 0.587 0.649 P HMPNN 0.627 0.927 0.748
HNHN 0.718 0.633 0.670 HNHN 0.628 0.897 0.738
Lin. Transformers 0.752 0.530 0.621 Lin. Transformers 0.671 0.691 0.680
Netlist GNN 0.765 0.614 0.682 Netlist GNN 0.691 0.914 0.787
base DE-HNN 0.796 0.717 0.755 base DE-HNN 0.677 0.863 0.759
full DE-HNN 0.797 0.767 0.782 full DE-HNN 0.719 0.850 0.789
Improvement 1.2% 9.7% 2.9% Improvement 1.1% - 0.3%
GCN 0.731 0.837 0.780 GCN 0.763 0.891 0.822
GATv2 0.768 0.840 0.798 GATv2 0.834 0.889 0.860
HyperConv 0.770 0.815 0.792 HyperConv 0.830 0.886 0.857
Superblued AllSet 0.728 0.773 0.747 Superblucl4 AllSet 0.809 0.863 0.835
perbiue HMPNN 0.711 0.777 0.739 perbue HMPNN 0.819 0.858 0.838
HNHN 0.706 0.777 0.737 HNHN 0.800 0.855 0.826
Lin. Transformers 0.749 0.757 0.753 Lin. Transformers 0.735 0.764 0.749
NetlistGNN 0.786 0.814 0.799 NetlistGNN 0.827 0.870 0.787
base DE-HNN 0.791 0.819 0.805 base DE-HNN 0.856 0.876 0.866
full DE-HNN 0.817 0.816 0.816 full DE-HNN 0.856 0.902 0.878
Improvement 0.7% - 2.1% Improvement 3.7% 10.6% 2.1%
GCN 0.745 0.932 0.834 GCN 0.713 0.926 0.807
GATv2 0.783 0.923 0.848 GATv2 0.864 0.928 0.894
HyperConv 0.827 0.935 0.878 HyperConv 0.855 0.833 0.844
Superblues AllSet 0.795 0.939 0.861 Superbluel6 AllSet 0.844 0.827 0.833
I HMPNN 0.788 0.932 0.853 I HMPNN 0.838 0.821 0.829
HNHN 0.786 0.932 0.852 HNHN 0.831 0.819 0.822
Lin. Transformers 0.798 0.911 0.851 Lin. Transformers 0.810 0.831 0.815
Netlist GNN 0.844 0.933 0.885 NetlistGNN 0.779 0.912 0.865
base DE-HNN 0.842 0.938 0.887 base DE-HNN 0.874 0.823 0.847
full DE-HNN 0.852 0.940 0.894 full DE-HNN 0.895 0.910 0.903
Improvement 4.9% 1.3% 1.0% Improvement 8.5% - 1.0%
GCN 0.837 0.921 0.877 GCN 0.779 0.845 0.811
GATv2 0.876 0.920 0.897 GATv2 0.798 0.848 0.822
HyperConv 0.851 0.916 0.891 HyperConv 0.790 0.888 0.836
Superblie6 AllSet 0.817 0.940 0.874 Superbluels AllSet 0.753 0.892 0.816
pe ’ HMPNN 0.809 0.965 0.879 P HMPNN 0.763 0.888 0.821
HNHN 0.815 0.947 0.875 HNHN 0.749 0.881 0.810
Lin. Transformers 0.833 0.906 0.868 Lin. Transformers 0.775 0.852 0.812
Netlist GNN 0.819 0.928 0.889 Netlist GNN 0.868 0.939 0.902
base DE-HNN 0.859 0.928 0.892 base DE-HNN 0.798 0.890 0.842
full DE-HNN 0.885 0.930 0.906 full DE-HNN 0.807 0.886 0.845

Improvement 0.7% - 1.0% Improvement - - -

GCN 0.839 0.980 0.904 GCN 0.812 0.894 0.851
GATv2 0.863 0.981 0.920 GATv2 0.857 0.899 0.878
HyperConv 0.899 0.967 0.932 HyperConv 0.879 0.877 0.878
Superblue? AllSet 0.888 0.956 0.921 Superblueld AllSet 0.870 0.866 0.868
P HMPNN 0.874 0.962 0.916 P HMPNN 0.861 0.862 0.862
HNHN 0.875 0.955 0.913 HNHN 0.865 0.835 0.848
Lin. Transformers 0.792 0.870 0.891 Lin. Transformers 0.809 0.880 0.843
NetlistGNN 0.868 0.918 0.923 NetlistGNN 0.869 0.946 0.856
base DE-HNN 0.900 0.938 0.887 base DE-HNN 0.883 0.885 0.884
full DE-HNN 0.908 0.969 0.937 full DE-HNN 0.895 0.910 0.903
Improvement 5.6% - 0.5% Improvement 0.4% - 2.8%

Table 11: Results of single-design cell-based congestion classification for each design.

DE-HNN: An effective neural model for Circuit Netlist representation

‘ Single-Design without placement ‘ Single-Design with placement ‘ Cross-Design without placement ‘ Cross-Design with placement
Model ‘ RMSE MAE Pearson ‘ RMSE (imp.) MAE (imp.) Pearson (imp.) ‘ RMSE MAE Pearson ‘ RMSE (imp.) MAE (imp.) Pearson (imp.)
GCN 5.034 3.734 0.616 4.495 (10.7%) 3.334 (10.7%) 0.717 (16.4%) | 6.571 5.024 0.365 6.126 (6.8%) 4.709 (6.3%) 0.440 (20.5%)
GATv2 4.949 3.691 0.636 4.382 (11.4%) 3.112 (15.7%) 0.758 (19.2%) | 6.623 5.137 0.363 5.812 (10.8%) 4.695 (8.6%) 0.442 (21.8%)
full DE-HNN ‘ 4.429 3.317 0.723 ‘ 4.005 (9.6%) 2.987 (10.0%) 0.785 (8.6%) ‘ 6.037 4.670 0.372 ‘ 5.795 (4.0%) 4.337 (7.1%) 0.452 (21.5%)

Table 12: Results of net-based demand regression for Superbluel9. For each metric, the (imp.) refers to the
improvements when placement information added.

Wirelength Regression Demand Regression Congestion Classification
Design Model RMSE| MAE | Pearsont RMSE| MAE | Pearson? Precision] Recallt F_score !
GCN 1.691 1.276 0.746 6.571 5.024 0.365 0.633 0.997 0.773
GATv2 1.717 1.281 0.737 6.623 5.137 0.363 0.630 0.999 0.765
Lin. Transformer 2.159 1.588 0.521 6.564 4.819 0.086 0.618 0.859 0.772
NetlistGNN 1.762 1.324 0.718 8.328 6.839 0.367 0.647 0.953 0.771
Superbluel9
HyperConv 2.390 1.788 0.558 8.569 5.294 0.241 0.655 0.923 0.778
Allset 1.837 1.348 0.695 6.120 4.820 0.345 0.645 0.964 0.773
HMPNN 1.785 1.335 0.710 6.979 5.356 0.306 0.633 0.999 0.773
HNHN 1.754 1.333 0.701 6.390 4.870 0.358 0.648 0.939 0.767
base DE-HNN 1.731 1.291 0.730 6.778 5.085 0.337 0.653 0.990 0.774
full DE-HNN 1.677 1.242 0.754 6.037 4.670 0.372 0.660 0.986 0.780
Improvement 1.9% 2.6% 1.8% 1.4% 4.1% 1.4% 0.7% - 0.3%

Table 13: Results of cross-design net-based hpwl(wirelength) regression, net-based demand regression and cell-
based congestion classification for different netlist design, including comparisons with other HNN models.

	Introduction
	Modeling netlists as directed hypergraphs
	DE-HNN: a neural network for directed hypergraphs
	Base-DE-HNN
	Theoretical analysis of DE-HNN
	Augmenting base-DE-HNN to DE-HNN

	Experiments
	Datasets
	Setup
	Results

	Conclusion
	More Background
	Circuit netlists
	Persistence homology based features
	Metis Partitioning

	Theoretical Analysis
	Preliminaries
	Proof of thm:nestedpermutationinvariant

	Experimental details
	Dataset Statistics
	Experiment Setup
	More experimental results

