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Abstract

The distinguishing power of graph transformers is
tied to the choice of positional encoding: features
used to augment the base transformer with infor-
mation about the graph. There are two primary
types of positional encoding: absolute positional
encodings (APEs) and relative positional encod-
ings (RPEs). APEs assign features to each node
and are given as input to the transformer. RPEs
instead assign a feature to each pair of nodes, e.g.,
shortest-path distance, and are used to augment
the attention block. A priori, it is unclear which
method is better for maximizing the power of the
resulting graph transformer. In this paper, we aim
to understand the relationship between these dif-
ferent types of positional encodings. Interestingly,
we show that graph transformers using APEs and
RPEs are equivalent in their ability to distinguish
non-isomorphic graphs. In particular, we demon-
strate how to interchange APEs and RPEs while
maintaining their distinguishing power in terms
of graph transformers. However, in the case of
graphs with node features, we show that RPEs
may have an advantage over APEs. Based on our
theoretical results, we provide a study of different
APEs and RPEs—including the shortest-path and
resistance distance and the recently introduced
stable and expressive positional encoding (SPE)—
and compare their distinguishing power in terms
of transformers. We believe our work will help
navigate the vast number of positional encoding
choices and provide guidance on the future design
of positional encodings for graph transformers.
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1. Introduction
Graph transformers (GTs) (Dwivedi & Bresson, 2021; Ying
et al., 2021) have recently emerged as a competitor to mes-
sage passing neural networks (MPNNs) (Gilmer et al., 2017)
for graph representation learning. While MPNNs only con-
sider the immediate neighbors of a node when updating that
node’s feature, GTs consider all nodes in the graph. Accord-
ingly, graph transformers can capture global information
of graphs that can potentially be used to address the issue
of oversquashing faced by MPNNs. Likewise, the atten-
tion mechanism of transformers can address the issue of
oversmoothing faced by MPNNs. See (Müller et al., 2024).

However, one caveat in applying transformers to graph data
is that transformers are equivariant, meaning they treat
nodes symmetrically and cannot distinguish two nodes at
different positions in the graph. Accordingly, much of the re-
search on graph transformers has been focused on the design
of positional encodings that incorporate information about
the graph structure into the input or architecture of trans-
formers. There are currently two major types of positional
encodings:

Absolute positional encodings (APEs) encode the graph
structure as an embedding of the vertices ϕ : V → Rd.
APEs are either added to or concatenated with the initial
vertex features that are the input to the transformer. Typical
examples are the Laplacian eigenvectors (Dwivedi & Bres-
son, 2021) or information about random walks (Rampášek
et al., 2022). Recent works have also proposed learnable
APEs (Lim et al., 2022; Huang et al., 2024).

Relative positional encodings (RPEs) encode the graph
structure as an embedding of pairs of vertices ψ : V ×V →
Rd. RPEs are incorporated into a GT via a modified atten-
tion mechanism. Examples of RPEs include the shortest-
path distance (Ying et al., 2021), resistance distance (Zhang
et al., 2023), and heat kernels (Choromanski et al., 2022).
The adjacency matrix can also serve as an RPE, which will
result in an RPE GT with the same distinguishing power as
MPNNs (Corollary 4.17).

Although different kinds of APEs and RPEs have been pro-
posed to encode graph structure and enhance the perfor-
mance of GTs, there is a lack of understanding of how
different positional encodings compare—e.g., shortest-path
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vs. resistance distance—for distinguishing non-isomorphic
graphs. Only a few works (Zhang et al., 2023) have at-
tempted to compare different RPEs, let alone conduct a
systematic study comparing APEs and RPEs. This results
in a lack of guidance for the design of positional encod-
ings for GTs: which type of positional encoding—absolute
or relative—should be used in practice? Furthermore, this
could lead to inefficiency in constructing positional encod-
ings. In some recent works on designing APEs like Basis-
Net (Lim et al., 2022) and the stable and expressive posi-
tional encoding (SPE) (Huang et al., 2024), the authors first
construct well-defined RPEs and then use some extra ma-
chinery to artificially transform RPEs into APEs. This raises
the natural question of whether the transition is worthwhile
given the expensive extra computation.

Our contributions. We establish a theoretical framework
for comparing positional encodings, not only for those in
the same category, i.e., absolute or relative, but also across
APEs and RPEs. Our main contributions are as follows:

(1) In Section 3, we establish that specific types of APE and
RPE GTs (cf. Definition 2.2) are equivalent in their ability to
distinguish non-isomorphic graphs. In particular, we show
how to map APEs to RPEs and vice versa while maintaining
their distinguishing power. We empirically validate our
theoretical results on several graph classification datasets.

(2) We show that RPEs may have an advantage over APEs
for distinguishing graphs with node features. In particular,
we show that transforming an RPE to an APE results in a
GT that is able to distinguish strictly fewer graphs with node
features than a GT that uses the RPE directly.

(3) The techniques for proving the above results enable us
to compare the distinguishing power of different positional
encodings. In Section 4, we provide a case study on several
popular APEs and RPEs by comparing their distinguishing
power. For example, we prove that GTs using SPE (Huang
et al., 2024) as an APE are stronger than the GTs using
resistance distance as an RPE (Zhang et al., 2023).

(4) In the process of establishing our main results, we iden-
tify a new variant of the Weisfeiler-Lehman (WL) test (We-
isfeiler & Leman, 1968) that we call the RPE-augWL test
that allows us to connect the distinguishing power of RPEs
and corresponding GTs. This RPE-augWL test is interesting
in itself as a way to further the theoretical formulation of the
representation power of graph learning frameworks. We gen-
eralize the equivalence between the WL and 2-WL tests to
our RPE-augWL test and establish the equivalence between
the resistance distance and the pseudoinverse of the Lapla-
cian in terms of distinguishing power via the RPE-augWL
test. Furthermore, we identify a class of RPEs resulting in a
family of RPE GTs at least as strong as MPNNs.

2. Positional Encodings and Graph
Transformers

In this section, we introduce some preliminaries on posi-
tional encodings and graph transformers, as well as some
auxiliary results that will be used to prove our main results.

Let G = (V,E) denote an unweighted graph, which
can be either directed or undirected. A featured graph
(G,X) includes node features X ∈ R|V |×d, indicating a
d-dimensional feature X(v) for each node in v ∈ V . Let
A denote the adjacency matrix, D the diagonal matrix of
the degrees, and L = D − A the graph Laplacian matrix.
To prevent ambiguity when working with multiple graphs,
we use G as a subscript in our notations, such as VG for the
vertex set or XG for the node features of graph G.

For two graphs G and H , a graph isomorphism is a bijec-
tion σ : VG → VH such that {u, v} ∈ EG if and only if
{σ(u), σ(v)} ∈ EH . Two graphs G and H are isomorphic
if there is a graph isomorphism σ : VG → VH .

2.1. Positional Encodings

A positional encoding (PE) of a graph is a way of summa-
rizing structural or positional information of the graph. In
their most general form, there are two types of positional
encodings we consider in this paper:

Definition 2.1. (Positional Encodings)
An absolute positional encoding (APE) ϕ assigns each
graph G a map ϕG : VG → Rl such that for any two
isomorphic graphs G and H and graph isomorphism σ :
VG → VH , one has that ϕG = ϕH ◦ σ.
A relative positional encoding (RPE) ψ assigns each graph
G a map ψG : VG × VG → Rk such that for any two
isomorphic graphs G and H and graph isomorphism σ :
VG → VH , one has that ψG = ψH ◦ (σ × σ).

An APE is also naturally expressed as a matrix in R|VG|×l

and an RPE as a tensor R|VG|×|VG|×k.

Note: While node features and APEs both assign a vector
to each node, we emphasize that the difference between
node features and APEs is that APEs are dependent on the
topology of a graph, while two isomorphic graphs can have
different node features.

One of the simplest APEs is the degree map deg: for any
graph G, degG(u) is the degree of the vertex u. Any graph
distance is an RPE, e.g., shortest-path distance (SPD) or
resistance distance (RD).

Laplacian eigenvectors are commonly used as APEs
(Dwivedi & Bresson, 2021; Kreuzer et al., 2021). How-
ever, there is no unique choice of eigenvector for a given
eigenspace. Therefore, Laplacian eigenvectors are not a
well-defined APE by our definition, as isomorphic graphs
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may have different eigenvector encodings due to the choice
of basis. However, the projection matrices onto the
eigenspaces are a well-defined RPE (Lim et al., 2022).

2.2. Graph Transformers

A transformer is an architecture T composed of multi-
headed attention layers T = MHA(L) ◦ · · · ◦ MHA(1),
where a multiheaded attention layer with heads 1 ≤
h ≤ H is a map MHA(l) that sends X(l) ∈ Rn×d to
MHA(l)(X(l)) = X(l+1) ∈ Rn×d as defined below:

A(l,h)(X(l)) = softmax

(
X(l)W

(l,h)
Q (X(l)W

(l,h)
K )T

√
dh

)

Y (l) = X(l) +

(
H∑
h=1

A(l,h)(X(l))X(l)W
(l,h)
V

)
W

(l)
O

X(l+1) = Y (l) + σ
(
Y (l)W

(l)
1

)
W

(l)
2

where W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ,W

(l)
O ∈ Rd×dh , W1 ∈

Rdh×dr , W (l)
2 ∈ Rdr×d and σ is an activation function.

Here Q,K, V refer to “query”, “key” and “value”, respec-
tively, in the terminology of the attention literature (Vaswani
et al., 2017), and dh and dr are the dimension of the hidden
layer and the dimension of the residual layer, respectively.
The activation function σ is usually the Gaussian error linear
units (GELU) (Hendrycks & Gimpel, 2016).
Fact 1 (Transformers are Permutation Equivariant). Let T
be a transformer. Let X ∈ Rn×d. Let P ∈ Rn×n be a
permutation matrix. Then PT (X) = T (PX).

When applying a transformer to a graph G, the input is a
set of node features XG ∈ R|VG|×d; however, initial node
features often do not contain any information about the
topology of a graph, so two graphs with the same multiset
of features but different topologies will have the same output
from a transformer. Graph transformers augment the trans-
former by incorporating information about the input graph
in the form of absolute or relative positional encodings.
Definition 2.2 (Graph Transformers). An APE graph trans-
former with APE ϕ (ϕ-APE-GT) is a transformer that ei-
ther: concatenates the node featuresXG ∈ R|VG|×d with the
APE ϕG ∈ R|VG|×l, i.e. X̂G = [XG|ϕG] ∈ R|VG|×(d+l),
or adds the node features and APE, i.e. X̂G = XG + ϕG,
before passing them through a transformer.

An RPE graph transformer with RPE ψ (ψ-RPE-GT) is a
transformer whose attention layer is modified as follows for
a graph G with node features X ∈ R|VG|×d:

A(X) = f1(ψG)⊙softmax

(
XWQ(XWK)T√

dh
+ f2(ψG)

)
where f1, f2 : Rk → R are functions applied entrywise to
the tensor ψG ∈ R|VG|×|VG|×k.

The original transformer (Vaswani et al., 2017) used sines
and cosines as APEs for sequences. Transformers for se-
quences with RPEs were subsequently proposed by Shaw
et al. (2018). The first instance of an APE-GT for graphs was
proposed by Dwivedi & Bresson (2021) using the Laplacian
eigenvectors. The first instance of an RPE-GT was proposed
by Ying et al. (2021) using the shortest-path distance, while
the form of RPE-GT we consider was proposed by Zhang
et al. (2023). Although other ways of incorporating an RPE
into a transformer have been proposed (Mialon et al., 2021;
Ma et al., 2023), in this paper, APE-GT and RPE-GT only
refer to transformers of the forms in Definition 2.2.

2.3. Properties of RPEs

In this subsection, we describe two special types of RPEs
that will be useful later.

Diagonally-Aware RPEs. One benefit of using graph dis-
tances as RPEs—compared to e.g., the adjacency matrix—is
their distinct diagonal entries are all zeros, in contrast to the
positive off-diagonal terms. We characterize this property as
“diagonal-awareness”. As we will see throughout the paper,
this property is important as it allows various algorithms to
distinguish the feature at a node from all other features.

Definition 2.3. An RPE ψ is diagonally-aware if for any
two graphs G and H and vertices v ∈ VG and x, y ∈ VH ,
then ψG(v, v) = ψH(x, y) only if x = y.

Diagonal-awareness is a very mild condition as one can al-
ways augment an RPE so that it becomes diagonally-aware:

Definition 2.4. The diagonal augmentationDψ of an RPE
ψ is defined, for a graphG, as the stackingDψ

G := (IG, ψG)
where IG is the identity matrix.

For any graphG, the diagonal augmentationDψ
G(u, v) has a

1 in the first coordinate iff u = v and 0 otherwise. Therefore,
Dψ is diagonally-aware:

Proposition 2.5. Let ψ be an RPE. The diagonal augmen-
tation Dψ is diagonally-aware.

Asymmetric RPEs. Most popular RPEs for undirected
graphs are symmetric. However, for directed graphs, it is
natural to consider asymmetric RPEs such as the adjacency
matrix, the directed distance matrix, or the Laplacian matrix.

We identify the following special type of (possibly asym-
metric) RPEs, which will be useful later:

Definition 2.6 (Pseudo-symmetric RPEs). Let ψ be an
RPE valued in Rk for either directed or undirected graphs.
Let f : Rk → Rk be any injective function such that
f ◦f = Id. Then, ψ is (f -)pseudo-symmetric if ψG(u, v) =
f(ψG(v, u)) for any graph G and any vertices u, v ∈ VG.
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Examples of f satisfying f ◦ f = Id include the iden-
tify map, the reflection map, and any coordinate switch-
ing map. Obviously, any symmetric RPE ψ is Id-
pseudo-symmetric. Any skew-symmetric matrix is pseudo-
symmetric for f(x) = −x. If we consider complex-valued
RPEs, then any Hermitian matrix is pseudo-symmetric for
f(x) = x, the complex conjugate map.

Although the adjacency or the Laplacian matrix of a di-
rected graph can also serve as RPEs, they are in general not
pseudo-symmetric. In order to guarantee pseudo-symmetry,
given any RPE ψ, we can define an augmented RPE
Sψ := (ψ,ψT ), i.e., for any graph G, SψG := (ψG, ψ

T
G).

Lemma 2.7 (Pseudo-symmetric augmentation). Let ψ be
any RPE. Define f : R2k → R2k by letting (x, y) 7→ (y, x)
for any x, y ∈ Rk. Then, Sψ is f -pseudo-symmetric.

3. Comparison of APE-GT and RPE-GT
In this section, we establish the equivalence of the distin-
guishing power of APE and RPE GTs for distinguishing
graphs without node features. This is done by showing that
any RPE can be mapped to an APE without changing its
distinguishing power and vice versa. Our strategy is to relate
the distinguishing power of APE and RPEs, as well as the
maps between the two, to variants of the Weisfeiler-Lehman
tests. This approach generalizes the method of Zhang et al.
(2023) for studying the expressive power of the Graphormer-
GD. Our main results are summarized in Figure 1.

However, for the case of graphs with node features, we
prove that our map from RPEs to APEs can result in a strict
decrease in the distinguishing power of the corresponding
GTs. In this way, our results suggest that (1) the two types of
positional encodings are theoretically equivalent for solving
graph isomorphism problems but (2) RPE GTs may be better
suited for tasks where graph node features are involved.

Our theoretical results are tested empirically in Appendix C.

3.1. Distinguishing Power: PEs vs. Graph Transformers

Positional encodings provide a way of distinguishing differ-
ent, non-isomorphic graphs. In their most basic form, two
graphs can be distinguished by a positional encoding if it
takes different values on the two graphs. For graphs with
node features, a positional encoding can distinguish two
graphs if it takes different values on nodes with different
features. Specifically, two featured graphs (G,XG) and
(H,XH) are indistinguishable by an APE ϕ if the concate-
nation of their features with their images by the APE ϕ are
the same multiset, i.e., {{(XG(v), ϕG(v)) : v ∈ VG}} =
{{(XH(v), ϕH(x)) : x ∈ VH}}, and G and H are indistin-
guishable by an RPE ψ if {{(XG(u), XG(v), ψG(u, v)) :
(u, v) ∈ VG × VG}} = {{(XH(x), XH(y), ψH(x, y)) :
(x, y) ∈ VH × VH}}. Likewise, two graphs are indistin-

guishable by a graph transformer if their outputs have the
same multiset of node features.

Next, we compare the distinguishing power of positional
encodings and GTs using these positional encodings.

APE vs. APE-GT. Interestingly, APE-GTs are only as
strong as their initial APEs in distinguishing power. This
was previously noted by Müller et al. (2024, Section 2.1),
although we include a short proof (which follows from the
permutation-equivariance of transformers) in Appendix A.4
for completeness.

Lemma 3.1 (Equivalence of APEs and APE-GT). Any two
graphs (G,XG) and (H,XH) are indistinguishable by an
APE ϕ iff (G,XG) and (H,XH) are indistinguishable by
all ϕ-APE-GTs.

RPE vs. RPE-GT. An analogous result does not hold for
RPEs and RPE-GTs, as using an RPE in an RPE-GT can
increase its distinguishing power; see Appendix A.1 for an
example. In fact, one can obtain a stronger notion of distin-
guishing power of RPEs via a variation of the Weisfeiler-
Lehman (WL) graph isomorphism test (Weisfeiler & Leman,
1968). This new notion of indistinguishability for RPEs will
be equivalent to the indistinguishability of RPE-GTs.

We first recall the standard WL algorithm, which iteratively
assigns colors to the vertices of a graph and utilizes the mul-
tisets of node colors to distinguish non-isomorphic graphs.
The color updating process is defined explicitly as follows:

Definition 3.2. Let G be a graph. The Weisfeiler-Lehman
(WL) algorithm assigns a coloring to the vertices χ(t)

G :
VG → Ct for each t ≥ 0 defined by

χ
(0)
G (v) = 1, (1 denotes an arbitrary constant)

χ
(t+1)
G (v) = (χ

(t)
G (v), {{χ(t)

G (u) : {v, u} ∈ EG}}).

However, to understand the distinguishing power of RPE
transformers, we need to consider the following augmented
WL test for graphs with node features and RPEs.

Definition 3.3. Let ψ be an RPE. Let (G,XG) be a featured
graph. The Weisfeiler-Lehman algorithm augmented with
RPE ψ (RPE-augWL or ψ-WL) assigns a coloring to the
vertices χ(t)

ψG
: VG → Ct for each t ≥ 0 defined by

χ
(0)
ψG

(v) = XG(v),

χ
(t+1)
ψG

(v) = (χ
(t)
ψG

(v), {{(χ(t)
ψG

(u), ψG(v, u)) : u ∈ VG}}).

Note: For unfeatured graphs, ψ-WL is defined by setting
χ
(0)
ψG

(v) = 1 (where 1 is an arbitrary constant.) We adopt
this convention for all later constructions.

Note that the RPE-augWL algorithm has a different color
updating mechanism from the WL algorithm: RPE-augWL
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APE-GT APEs

RPE-GT RPE-augWL RPE-2-WL

DeepSets
Lemma 3.7

Lemma 3.1

Theorem 3.5Lemma 3.6

EGNs
Lemma 3.9Theorem 3.8Theorem 3.10

Figure 1. Illustration of main results. Arrows denote non-decreasing in distinguishing power. Our main results are the two red arrows on
the left. The proofs of the two theorems are illustrated by other parts of the diagram. Our contributions are in bold. The two-head arrow
from RPE-2-WL to APEs indicates that the non-decreasing property only holds for unfeatured graphs.

considers all nodes in the update stage, whereas WL con-
siders only neighbors. However, when the RPE is the
adjacency matrix A, A-WL is equivalent to WL (cf. Propo-
sition B.16). Hence, we consider RPE-augWL to be a gen-
eralization of the WL algorithm.

The definition of RPE-augWL is inspired by the GD-WL
test of Zhang et al. (2023) where the new feature is updated
as χ̂(t+1)

ψG
(v) = {{(χ̂(t)

ψG
(u), ψG(v, u)) : u ∈ V }}, where

ψG is a graph distance. We note that GD-WL is equivalent
to our ψ-WL; in GD-WL, the previous color of the node
can be deduced from the fact that ψG(v, v) = 0 since ψG is
a graph distance.

The WL algorithm has a family of higher-order general-
izations called the k-WL algorithms that assign colors to
k-tuples of nodes. While Definition 3.3 augments the WL
test by using RPEs within the feature updating step, we can
also directly use RPEs as the initial colors for 2-WL.

Definition 3.4. Let ψ be an RPE. Let (G,X) be a featured
graph. The 2-Weisfeiler-Lehman algorithm with RPE ψ
(RPE-2-WL or ψ-2-WL) assigns a color to each pair of
vertices χ(t)

2 : V × V → Ct for each t ≥ 0 defined by1

χ
(0)
2,ψG

(u, v) = (XG(u), XG(v), ψG(u, v)),

χ
(t+1)
2,ψG

(u, v) =
(
χ
(t)
2,ψG

(u, v), {{χ(t)
2,ψG

(u,w) : w ∈ V }},

{{χ(t)
2,ψG

(w, v) : w ∈ V }}
)
.

Because RPEs are dependent on the graph structure and will
be the same (up to permutation) for two isomorphic graphs,
we can use the RPE-augWL or RPE-2-WL as heuristics to
distinguish non-isomorphic graphs. We say two featured
graphs (G,XG) and (H,XH) are ψ-WL indistinguishable
if {{χ(t)

ψG
(v) : v ∈ VG}} = {{χ(t)

ψH
(v) : v ∈ VH}} for all

t ≥ 0. We denote this as χψ(G) = χψ(H). Likewise, they

1In the literature (Chen et al., 2020), a pair (u, v) is colored
differently from ours at the 0-th step by considering both its iso-
morphism type and its RPE: χ(0)

2,ψ(u, v) = (1u=v, Auv, ψ(u, v)).
We ignore the first two terms as one can easily augment ψ with
these terms to obtain a new RPE that reflects the isomorphism type
if needed; see Section 4.5 for a further discussion.

are ψ-2-WL indistinguishable if {{χ(t)
2,ψG

(u, v) : u, v ∈
VG}} = {{χ(t)

2,ψH
(u, v) : u, v ∈ VH}} for all t ≥ 0. We

denote this as χ2,ψ(G) = χ2,ψ(H).

ψ-WL and ψ-2-WL indistinguishability can be used as a
heuristic test for a special type of graph isomorphism. Two
featured graphs (G,XG) and (H,XH) are feature isomor-
phic if there is a graph isomorphism σ : VG → VH such that
XG(v) = XH(σ(v)) for all v ∈ VG. Two feature isomor-
phic graphs will be ψ-WL and ψ-2-WL indistinguishable.
Fact 2. If (G,XG) and (H,XH) are feature isomorphic,
then (G,XG) and (H,XH) are ψ-WL indistinguishable
and ψ-2-WL indistinguishable for any RPE ψ.

Interestingly, these two WL tests—RPE-augWL and RPE-
2-WL—are equivalent for pseudo-symmetric RPEs. See
Appendix A.2 for a proof.
Theorem 3.5 (Equivalence of RPE-augWL and
RPE-2-WL.). Let ψ be a pseudo-symmetric RPE.
Then two featured graphs (G,XG) and (H,XH) are ψ-WL
indistinguishable iff they are ψ-2-WL indistinguishable.

This result generalizes the well-known fact that the WL and
2-WL tests are equivalent; see (Huang & Villar, 2021).

Finally, in contrast to Lemma 3.1, we have the following
slight generalization of (Zhang et al., 2023, Theorem 4) who
only consider the case where the RPE is a distance function.
See Appendix A.6 for a sketch of the proof.
Lemma 3.6 (Equivalence of RPE-augWL and RPE-GT).
Let ψ be a diagonally-aware RPE. Let (G,XG) and
(H,XH) be featured graphs. Then (G,XG) and (H,XH)
are indistinguisable by the ψ-WL test iff (G,XG) and
(H,XH) are indistinguisable by all ψ-RPE-GTs.

3.2. Main Results: APE vs RPE Transformers

In this section, we show that any APE can be turned into an
RPE without changing its distinguishing power in terms of
transformers and vice versa.

Mapping APEs to RPEs. Let S be any set, and let
Mul2(S) denote the collection of all 2-element multi-
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subsets of S. For a map f : S → Rd, define the map
hf : Mul2(S) → Rd as hf ({{x, y}}) = f(x) + f(y). The
map hf is a special case of the DeepSets network (Zaheer
et al., 2017) as it operates on multisets. Accordingly, we
refer to hf as a DeepSet network in this paper.

We propose the following way of mapping APEs to RPEs:
given a function f and an APE ϕ, we define the RPE ψf for
a graph G as ψfG(u, v) := hf ({{ϕG(u), ϕG(v)}}}). Our key
observation is that given an APE ϕ, there exists a universal
function f whose induced RPE ψf distinguishes the same
pairs of graphs as ϕ (Lemma 3.7). The main Theorem 3.8
will then follow. Proofs of these results can be found in
Appendix A.7.

Lemma 3.7. Let ϕ be an APE. Then there is a function f
such that any two featured graphs (G,XG) and (H,XH)
are indistinguishable by ϕ iff (G,XG) and (H,XH) cannot
be distinguished by the ψf -2-WL test.

Theorem 3.8. For any APE ϕ, there exists a function f
such that any two graphs (G,XG) and (H,XH) are indis-
tinguishable by all ϕ-APE-GTs iff they are indistinguishable
by all ψf -RPE-GTs.

Mapping RPEs to APEs. In the other direction, we can
transform an RPE ψ to an APE ϕg by passing ψ through
a 2-equivariant graph network (2-EGN) g. (See (Maron
et al., 2019b) or Appendix A.3 for a definition of 2-EGN.)
As 2-EGNs are permutation equivariant, the output ϕg will
be a well-defined APE in the sense of Definition 2.1. This
is the approach taken by Lim et al. (2022) to compute an
APE from the eigenspaces of the graph Laplacian. It turns
out that mapping RPEs to APEs using 2-EGNs can preserve
their ability to distinguish non-featured graphs; however,
mapping an RPE to an APE may decrease its ability to dis-
tinguish featured graphs. Proofs of the following theorems
and example can be found in Appendix A.8.

Lemma 3.9. Let ψ be a diagonally-aware RPE.

For any 2-EGN g, if (G,XG) and (H,XH) are indistin-
guishable by the ψ-2-WL test then (G,XG) and (H,XH)
are indistinguishable by ϕg .

Moreover, for any finite set of unfeatured graphs G, there is
a 2-EGN g such that if G,H ∈ G are indistinguishable by
ϕg , then G and H are indistinguishable by the ψ-2-WL test.

Theorem 3.10. Let ψ be a diagonally-aware RPE.

For any 2-EGN g, if (G,XG) and (H,XH) are indistin-
guishable by all ψ-RPE-GTs, then (G,XG) and (H,XH)
are indistinguishable by ϕg .

Moreover, for any finite set of unfeatured graphs G, there is
a 2-EGN g such that if G,H ∈ G are indistinguishable by
all ϕg-APE-GTs, then G and H are indistinguishable by all
ψ-RPE-GTs.

Example 1. There exists an RPE ψ and featured graphs
(G,XG) and (H,XH) that are distinguishable by ψ-2-WL
but are indistinguishable by ϕg for any 2-EGN g.
Remark 3.11. Even in the case of unfeatured graphs, there
is still a slight asymmetry in the statements of the results
for APEs (Theorem 3.8) and RPEs (Theorem 3.10), as the
result for APEs does not have the restriction on “a finite set”
of graphs. This restriction arises because there is no known
universal 2-EGN equal in power to the RPE-2-WL test. This
is in part due to the fact that known 2-EGNs would need
an unbounded hidden dimension and number of layers to
distinguish all pairs of graphs (Maron et al., 2019a).

More expressive RPE to APE maps. Theorem 3.10
shows that RPEs can be transformed into equally-powerful
(for unfeatured graphs) APEs using 2-EGNs. However, it
is worth noting that RPEs can be turned into APEs that
are even more powerful than the original RPE using k-
EGNs for k > 2 (Maron et al., 2019a). In the extreme
case of k ∈ Ω(n), k-EGNs can distinguish all pairs of non-
isomorphic graphs with n vertices. Such techniques for con-
structing APEs from RPEs have been previously explored in
the literature (Huang et al., 2024); for example, Expressive
BasisNet (Lim et al., 2022). However, the downside to these
techniques is that their computational cost increases with
their expressive power; k-EGNs take Θ(nk) time as they
operate on tensors of size Θ(nk). In practice, techniques
that map RPEs to APEs typically only use 2-EGNs because
of the computational cost of higher k-EGNs.

Restrictions and Implications. Our main findings (Theo-
rem 3.8 and Theorem 3.10) show that APE-GTs and RPE-
GTs have comparable distinguishing capabilities for unfea-
tured graphs. However, in practice, learning the DeepSet
(to serve as f ) in Theorem 3.8 or the 2-EGN (to serve as
g) in Theorem 3.10 may not always yield the desired maps.
Hence, it remains an interesting open question to figure out
whether it is theoretically easier to learn the DeepSet or
the 2-EGN. For example, one would benefit in designing
architectures from understanding which method requires a
lower dimension for hidden layers.

Finally, we would like to point out that converting RPEs to
APEs to fit a specific graph transformer architecture is not
recommended, as shown by Example 1. See also discus-
sion in Remark 4.5 and Appendix C.3 for some empirical
validation of this point.

4. Comparing Graph Transformers with
Different Positional Encodings

In this section, we compare the distinguishing power of
graph transformers with different (absolute or relative) po-
sitional encodings. The main results are summarized in
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Adjacency & Laplacian WL & MPNN Combinatorially-Aware RPEs SPD

SPE Spectral Kernels Powers of L L† RD

Proposition 4.10 Theorem 4.16 SPD is combinatorially-aware

Corollary 4.3Lemma B.13
?

Theorem 4.6

L† is a spectral kernel

Theorem 4.4

Figure 2. Hierarchy of PEs. The arrows indicate that the corresponding positional encoding is less strong than the one it points to in
terms of distinguishing power. The two-head arrow indicates that the non-decreasing property only holds for unfeatured graphs. The
dotted arrow between SPD and RD refers to some partial evidence (cf. Theorem B.18) that RD is stronger than SPD in some respects;
however, it is an open question how the two compare as RPEs.

Figure 2. Intuitively, by Theorem 3.8, APE-GTs can be
turned into RPE-GTs preserving the distinguishing power.
This enables us to compare APE-GTs with RPE-GTs. When
comparing two RPE-GTs, by Lemma 3.6 we simply need to
compare the corresponding RPEs via the RPE-augWL test.
For two RPEs ψ1 and ψ2, we say that ψ1-WL is at least as
strong as ψ2-WL if for any two featured graphs (G,XG)
and (H,XH) such that χψ1

(G) = χψ1
(H), then we have

χψ2
(G) = χψ2

(H). Moreover, we say that ψ1-WL and
ψ2-WL are equally strong if for any two featured graphs
(G,XG) and (H,XH), we have that χψ1(G) = χψ1(H) iff
χψ2

(G) = χψ2
(H).

Some highlights of this section include a comparison of
SPE-APE-GTs with RD-RPE-GTs (Theorem 4.4), identifi-
cation of a class of RPEs whose corresponding RPE-GTs
are at least as strong as MPNNs (Proposition 4.10 and Corol-
lary 4.17), and suggesting new RPEs for directed graphs
(Proposition 4.12).

4.1. Resistance Distance, Spectral Kernels, and SPE

Many popular APEs (such as BasisNet (Lim et al., 2022)
and SPE (Huang et al., 2024)) and RPEs (such as RD (Zhang
et al., 2023)) are defined using the spectrum of the Lapla-
cian L. While BasisNet and SPE have been shown to be
equivalent (Huang et al., 2024, Proposition 3.2), it is unclear
how either of these compares to RD in terms of transform-
ers. More generally, it is unknown how much information
RD-WL carries about the spectrum of L.

In this section, we establish that SPE-APE-GTs are stronger
than resistance distance RPE-GTs (Theorem 4.4). As one
step to prove this, we show that two graphs are indistinguish-
able by RD-WL iff they are indistinguishable by L†-WL
where L† is the pseudoinverse of L (Corollary 4.3). This
result gives a partial answer to the question of how much
information RD-WL carries about the Laplacian spectrum.
This is weaker than saying that RD-WL indistinguishable

graphs have the same L† up to permutation, but it does
show that L† of these graphs are indistinguishable when
combined with RPE-augWL (and thus RPE-GTs).

In fact, our result about RD-WL is a corollary to a stronger
result about the equivalence of RPE-augWL tests with spec-
tral distance and spectral kernel as RPEs.

Definition 4.1. Let L =
∑n
i=2 λiziz

T
i be the spectral de-

composition, where {λ2, . . . , λn} are the non-zero eigen-
values and {z2, . . . , zn} is an orthonormal basis of eigen-
vectors. Let f : R+ → R+ be a function. The spectral
kernel (Hammond et al., 2011) corresponding to f is the
matrix Kf

G =
∑n
i=2 f(λi)ziz

T
i . The spectral distance cor-

responding to f is defined

dfG(u, v) :=

√
Kf
G(u, u) +Kf

G(v, v)− 2Kf
G(u, v).

Example 2. The diffusion distance (at time t) (Coifman &
Lafon, 2006) is the spectral distance Df for the function
f(x) = e−tx. The heat kernel is the corresponding spectral
kernel denoted byH(t) =

∑n
i=2 e

−λitziz
T
i , which has been

proposed as an RPE by Choromanski et al. (2022).

Note: Although eigenvectors are not unique due to the
choice of bases for eigenspaces, the spectral kernel and
spectral distance are unique up to graph isomorphism and
so are well-defined RPEs.

Let Df denote the RPE assigning the matrix of spectral dis-
tance dfG to a graph G and let Kf denote the RPE assigning
the matrix of spectral kernel Kf

G.

Theorem 4.2. Let f : R+ → R+. Df -WL is at least as
strong as Kf -WL. Kf -WL with diagonal augmentation is
at least as strong as Df -WL.

Theorem 4.2 is the result of the fact that the spectral distance
and kernel are the distance and Gram matrix, respectively,
of a point cloud in Rd. A variant of the WL-algorithm
for general distance matrices of point clouds was studied
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by delle Rose et al. (2023) as a heuristic for determining
if two point clouds are isometric, so our proof may have
implications for these algorithms as well. A proof of this
theorem can be found in Appendix B.2.

The resistance distance (RD) is the squared spectral dis-
tance of the function f(x) = x−1, and the pseudoinverse
of the Laplacian L† is the corresponding spectral kernel,
so Theorem 4.2 applies to RD and L†. Interestingly, RD has
additional properties that allow us to drop the assumption of
diagonal augmentation. A proof of the following theorem
can be found in Appendix B.2.
Corollary 4.3. RD-WL and L†-WL are equally strong.

Finally, as an immediate consequence of Corollary 4.3 (com-
bined with Theorem 3.10), we compare RD-RPE-GT, with
existing APE-GPTs using the so-called Stable and Expres-
sive Positional Encodings (SPE) (Huang et al., 2024). A
proof of this theorem can be found in Appendix B.3.
Theorem 4.4. For unfeatured graphs, diagonally aug-
mented SPE-APE-GT is at least as strong as RD-RPE-GT.
Remark 4.5. In Appendices C.1 and C.2, we empirically val-
idate this theorem by showing that SPE-APE-GTs perform
similarly to RD-RPE-GTs on some unfeatured graph classi-
fication/isomorphism tasks. However, when node features
are involved, the theorem may not hold since the 2-EGN
involved in the construction of SPE-APE-GT may have
weaker distinguishing power than the RD-RPE-GT (cf. Ex-
ample 1). In Appendix C.3, we empirically observe that for
graph regression tasks when node features are involved, us-
ing RD-RPE-GT can indeed give us an edge in performance
over SPE-APE-GT.

4.2. Resistance Distance and Cut Edges.

The first proposed RPE for graph transformers was the
shortest-path distance (SPD) (Ying et al., 2021). Later,
Zhang et al. (2023) proposed to use the stack of RD and
SPD as an RPE. It is natural to wonder how RD-WL com-
pares with SPD-WL. While this remains an open question,
we prove that RD-WL is at least as strong as SPD-WL in at
least one regard.

Zhang et al. (2023) showed that SPD-WL could distinguish
cut edges but not cut vertices in unfeatured graphs. Further-
more, the authors showed that RD-WL could distinguish
cut vertices. However, it was not known whether or not
RD-WL could distinguish cut edges in a graph. We answer
this open question in the affirmative: RD-WL can distin-
guish cut edges in a graph. See Theorem B.18 for a precise
theorem statement and proof.

However, our experiments on the BREC dataset (Wang &
Zhang, 2024) suggest (but do not prove) that RD-WL may
not be strictly stronger than SPD-WL, as there are pairs of
graphs in this dataset that an SPD-RPE-GT was able to learn

to distinguish, while we were unsuccessful in training a RD-
RPE-GT to distinguish these graphs. See Appendix C.2 for
details.

4.3. Powers of Matrices and Spectral Kernels

Another common type of RPE is the stack of powers of some
matrix associated with the graph; for example, GRIT (Ma
et al., 2023) uses a stack of powers of the random-walk
adjacency matrix of a graph called the relative random-
walk positional encoding (RRWP). In this section, we show
that using stacks of various matrices as an RPE is at least as
strong as any spectral kernel RPEs for any f : R+ → R+.
Proofs for this section can be found in Appendix B.4.

We first prove that using sufficiently many powers of the
Laplacian is at least as strong as any spectral kernel.
Theorem 4.6. (I, L, . . . , L2n−1)-WL is at least as strong
as Kf -WL on graphs with at most n nodes.
Remark 4.7. While it may seem excessive to consider 2n
powers of L to match the power of a single spectral kernel,
this is not computationally more expensive than computing
the spectral kernel in the first place, which requires adding
n matrices f(λi)zizTi of size n2, which takes O(n3) time.

A variant of RRWP that uses stacks powers of
the symmetrically-normalized adjacency matrix Â =
D−1/2AD−1/2 is at least as strong as spectral kernels us-
ing the symmetrically-normalized Laplacian K̂f (see Ap-
pendix B.4 for definition).
Theorem 4.8. (I, Â, . . . , Â2n−1)-WL is at least as strong
as K̂f -WL on graphs with at most n nodes.

Finally, we show that stacked heat kernels H(t) (cf. Exam-
ple 2) are also at least as strong as any spectral kernel.
Theorem 4.9. (I,H(1), . . . ,H(2n−1))-WL is at least as
strong as Kf -WL on graphs with at most n nodes.

4.4. RPEs: Common Matrices for Graphs

There are multiple common matrices used to characterize
graphs, such as the adjacency matrix, Laplacian matrix and
their normalized versions. We will examine their corre-
sponding RPEs and compare their distinguishing power.

Undirected graphs. For undirected graphs, we show that
various common matrices lead to equivalent RPEs.

Let Ã = D−1A. Let L̂ = I − Â and L̃ = I − Ã denote
the symmetrically-normalized and the random-walk graph
Laplacians, respectively. These, along with A, L and Â,
give rise to six RPEs and hence five corresponding RPE-
augWL tests. The following result suggests that in practice,
perhaps there is no need to use more than one such type of
information with RPE-GTs and one can interchangeably use
any of the matrix as RPE.
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Proposition 4.10. A, Â, Ã, L, L̂ and L̃ induce equivalent
RPE-augWL tests. In particular, all of these RPE-augWL
tests are equally strong as the WL test.

Directed graphs. Directed graphs are sometimes turned
into a magnetic graph to obtain a Hermitian matrix called
the magnetic Laplacian (Fanuel et al., 2018). Let G be
a directed graph with adjacency matrix A. Let A∗ :=
(A + AT )/2 and let D∗ denote the corresponding degree
matrix. Then, given a parameter α, the magnetic Laplacian
is defined as

Lα := D∗ − Tα ⊙A∗,

where Tαij = exp(ι · 2πα · sgn(Aji − Aij)) and ι is the
imaginary unit. As mentioned in Section 2, Lα can serve
as a pseudo-symmetric RPE. In fact, Lα can be obtained
via the pseudo-symmetric augmentation (A,AT ) of A (cf.
Lemma 2.7) as well as an extra augmentation via D∗:
Lemma 4.11. Lα = fα((D∗, A,AT )) where fα : R3 →
R is applied to each channel n× n× · such that

fα(x, y, z) := x− exp(ι2πα · sgn(z − y)) · y + z

2
.

In this way, we obtain an RPE (D∗, A,AT ) more general
than the magnetic Laplacian matrix. Hence, instead of us-
ing magnetic Laplacian as positional encoding, one should
consider using (D∗, A,AT )-RPE-GT.
Proposition 4.12. The (D∗, A,AT )-WL test is at least as
strong as the Lα-WL test for any α.

4.5. RPEs: Combinatorial-Awareness and WL

It is an interesting question what information about a graph
a transformer can extract from a positional encoding. In
Definition 2.2, the learnable functions in an RPE-GT fi are
applied elementwise to the RPEs. Moreover, the functions
are also applied elementwise to the attention scores. In other
words, given an RPE ψ, even though certain graph structure
can be obtained indirectly through more complicated opera-
tions on ψ, such hidden information may not be accessible
to the transformer because of the limited set of operations it
can perform on the RPE. For example, while a graph can be
reconstructed from its resistance distance matrix, an RPE-
GT may not have access to the edges of a graph as it cannot
perform the necessary operations to reconstruct the graph.

One basic piece of information a GT may want to access
through an RPE is—of course—the adjacency matrix. We
identify a desirable type of RPE where a GT will have this
information.
Definition 4.13. An RPE ψ is combinatorially-aware if for
any two graphs G and H and vertices u, v ∈ VG and x, y ∈
VH , then ψG(u, v) = ψH(x, y) iff one of the following
conditions hold: (i) {u, v} ∈ EG and {x, y} ∈ EH (ii)
{u, v} /∈ EG and {x, y} /∈ EH .

As it turns out, elementwise operations are insufficient for
reconstructing the graph structure from the resistance dis-
tance, as evidenced by the following example.

Example 3. The shortest-path distance (SPD) is
combinatorially-aware as SPD(u, v) = 1 iff {u, v} ∈ E.
The resistance distance is, however, not combinatorially-
aware. See Appendix B.7 for a counterexample.

As in the case of diagonal-awareness, given any RPE, one
can always augment it to be combinatorially-aware.

Definition 4.14 (Combinatorial Augmentation). Let ψ
be any RPE. We define its combinatorial augmenta-
tion Cψ as follows: for any graph G, CψG(u, v) :=
(AG(u, v), ψG(u, v)) for any u, v ∈ V , where AG denotes
the adjacency matrix of G.

This in fact provides an equivalent characterization of
combinatorially-aware RPEs.

Proposition 4.15. An RPE ψ is combinatorially-aware if for
any G, the following condition holds for all u, v, x, y ∈ VG:
ψG(u, v) = ψG(x, y) iff CψG(u, v) = CψG(x, y).

The reason combinatorially-aware RPEs are important is
because RPE-augWL with combinatorially-aware RPEs are
at least as strong as the WL test (Weisfeiler & Leman, 1968).
A proof of this theorem can be found in Appendix B.6.

Theorem 4.16. Let ψ be a combinatorially-aware RPE.
Then, ψ-WL is at least as strong as WL.

Theorem 4.16 is of interest because the WL test is equally
strong at distinguishing graphs as message passing graph
neural networks (MPNNs) (Xu et al., 2018).

Corollary 4.17. Let ψ be a combinatorially-aware RPE.
Then ψ-RPE-GTs are at least as strong as MPNNs.

5. Conclusion and Open Questions
We have established a framework for comparing different
types of positional encodings. Future work can continue
this line of work of comparing different specific positional
encodings, e.g. shortest-path vs. resistance distance or resis-
tance distance vs. SPE. Furthermore, our theoretical results
provide some suggestions for designing new positional en-
codings, e.g., one may not want to convert RPEs into APEs
as done in the literature. Finally, it would be interesting to
shift the focus of research on positional encodings for graph
transformers from coarse-grained distinguishing-power re-
sults (what pairs of graphs can GTs distinguish) to more
fine-grained results on expressive power, for example, ap-
proximation results (Azizian & Lelarge, 2021) or results
using RPE-augWL-inspired distances to study graph trans-
formers (Chen et al., 2022; 2023; Böker et al., 2024).

9



Comparing Graph Transformers via Positional Encodings

Acknowledgements
This work was supported by the NSF (Grants CCF-2217058
for GM, ZW, and YW; CCF-2112665 and CCF-2310411
for YW; and CCF-2311180 and CCF-1941086 for MB and
AN). MB would like to thank YW for supporting a visit to
UCSD where this research was initiated.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of potentially more effective graph learning
models due to our work, none of which we feel must be
specifically highlighted here.

References
Azizian, W. and Lelarge, M. Expressive power of invariant

and equivariant graph neural networks. In ICLR 2021-
International Conference on Learning Representations,
2021.
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A. Details from Section 3
A.1. Example of RPE vs RPE-augWL

Figure 3. Left: G. Right: H

In this section, we show that RPE-augWL can distinguish graphs that are indistinguishable by just their RPE. By Lemma 3.6,
this also means the graphs are distinguishable by some RPE transformer. Consider the graphs G and H in Figure 3 and the
RPE A that assigns each graph its adjacency matrix. Both graphs have 4 vertices and 4 edges, so their adjacency matrices
AG and AH are indistinguishable. However, after one iteration of A-WL, all vertices of G will have the same color, while
the degree 1 vertex in H will have a different color from all vertices in G. Therefore, G and H are distinguishable by A-WL.

A.2. Equivalence of RPE-augWL and RPE-2-WL: Proof of Theorem 3.5

Our proof of Theorem 3.5 is based on the following lemma.

Lemma A.1. Let ψ be a pseudo-symmetric RPE. Let (G,XG) and (H,XH) be featured graphs. Let u, v ∈ VG and
x, y ∈ VH . Then χ(t)

2,ψG
(u, v) = χ

(t)
2,ψH

(x, y) iff ψG(u, v) = ψH(x, y), χ(t)
ψG

(u) = χ
(t)
ψH

(x), and χ(t)
ψG

(v) = χ
(t)
ψH

(y).

Proof of Lemma A.1. We prove this by induction on t. For t = 0, this is follows directly from definition as χ(t)
ψG

(v) = XG(v)

and χ(0)
2,ψG

(u, v) = (XG(u), XG(v), ψG(u, v)).

Now inductively suppose this is true for some value t; we will show this is true for t+ 1.

First assume that χ(t+1)
2,ψG

(u, v) = χ
(t+1)
2,ψH

(x, y). Then, it follows from the definition that

1. χ(t)
2,ψG

(u, v) = χ
(t)
2,ψH

(x, y).

2. {{χ(t)
2,ψG

(u,w) : w ∈ VG}} = {{χ(t)
2,ψH

(x, z) : z ∈ VH}};

3. {{χ(t)
2,ψG

(w, v) : w ∈ VG}} = {{χ(t)
2,ψH

(z, y) : z ∈ VH}}.

By induction, Item 1 implies that

4. ψG(u, v) = ψH(x, y), and by pseudo-symmetry, ψG(v, u) = ψH(y, x);

5. χ(t)
ψG

(u) = χ
(t)
ψH

(x) and χ(t)
ψG

(v) = χ
(t)
ψH

(y);

By item 2, there is a bijection σ : VG → VH such that χ(t)
2,ψG

(u,w) = χ
(t)
2,ψH

(x, σ(w)). The inductive hypothesis implies

that ψG(u,w) = ψH(x, σ(w)) and χ(t)
ψG

(w) = χ
(t)
ψH

(σ(w)). Therefore, the ψ-WL colors of u and x at t+1 are the same as

χ
(t+1)
ψG

(u) = (χ
(t)
ψG

(u), {{ (χ(t)
ψG

(w), ψG(u,w)) : w ∈ VG }})

= (χ
(t)
ψH

(x), {{ (χ(t)
ψH

(z), ψH(x, z)) : z ∈ VH }}) = χ
(t+1)
ψH

(x).

By item 3, there is a bijection σ′ : VG → VH such that χ(t)
2,ψG

(w, v) = χ
(t)
2,ψH

(σ′(w), y). The inductive hypothesis

implies that ψG(w, v) = ψH(σ′(w), y) and χ(t)
ψG

(w) = χ
(t)
ψH

(σ′(w)). By pseudo-symmetry, one also has that ψG(v, w) =

12
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ψH(y, σ′(w)). Therefore, the ψ-WL colors of v and y at t+ 1 are the same as

χ
(t+1)
ψG

(v) = (χ
(t)
ψG

(v), {{ (χ(t)
ψG

(w), ψG(v, w)) : w ∈ VG }})

= (χ
(t)
ψH

(y), {{ (χ(t)
ψH

(y), ψH(y, z)) : z ∈ VH }}) = χ
(t+1)
ψH

(y).

Conversely, assume that ψG(u, v) = ψH(x, y), χ(t+1)
ψG

(u) = χ
(t+1)
ψH

(x), and χ(t+1)
ψG

(v) = χ
(t+1)
ψH

(y). By definition of the ψ-

WL, we have that χ(t)
ψG

(u) = χ
(t)
ψH

(x) and χ(t)
ψG

(v) = χ
(t)
ψH

(y). Hence, by induction, we have that χ(t)
2,ψG

(u, v) = χ
(t)
2,ψH

(x, y).
Moreover, there exist bijections σux : VG → VH and σvy : VG → VH such that

1. for any w ∈ VG, χ(t)
ψG

(w) = χ
(t)
ψH

(σux(w)) and ψG(u,w) = ψH(x, σux(w));

2. for any w ∈ VG, χ(t)
ψG

(w) = χ
(t)
ψH

(σvy(w)) and ψG(v, w) = ψH(y, σvy(w)), and by pseudo-symmetry, we also have
that ψG(w, v) = ψH(σvy(w), y).

For any given w ∈ VG, by induction, one has that χ(t)
2,ψG

(u,w) = χ
(t)
2,ψH

(x, σux(w)) and χ(t)
2,ψG

(w, v) = χ
(t)
2,ψH

(σvy(x), y).

Therefore, {{χ(t)
2,ψG

(u,w) : w ∈ VG}} = {{χ(t)
2,ψH

(x, z) : z ∈ VH}} and {{χ(t)
2,ψG

(w, v) : w ∈ VG}} = {{χ(t)
2,ψH

(z, y) : z ∈
VH}}. This implies that χ(t+1)

2,ψG
(u, v) = χ

(t+1)
2,ψH

(x, y) which concludes the proof.

Now we are ready to prove our main theorem in this section.
Theorem 3.5 (Equivalence of RPE-augWL and RPE-2-WL.). Let ψ be a pseudo-symmetric RPE. Then two featured graphs
(G,XG) and (H,XH) are ψ-WL indistinguishable iff they are ψ-2-WL indistinguishable.

Proof of Theorem 3.5. For the forward direction, we will show that for all t ≥ 0, if {{χ(t+1)
ψG

(u) : u ∈ VG}} = {{χ(t+1)
ψH

(v) :

v ∈ VH}}, then {{χ(t)
2,ψG

(u, v) : u, v ∈ VG}} = {{χ(t)
2,ψH

(x, y) : x, y ∈ VH}}. This implies that if G and H are indistinguish-
able by the ψ-WL, they are indistinguishable by the ψ-2-WL.

We first prove the base case of t = 0. As {{χ(1)
ψG

(u) : u ∈ VG}} = {{χ(1)
ψH

(v) : v ∈ VH}}, then there is a bijection σ : VG →
VH such that χ(1)

ψG
(u) = χ

(1)
ψG

(σ(u)). Moreover, by the definition of χ(1)
ψ , for each u ∈ V , there is a bijection σu : VG → VH

such that ψG(u, v) = ψH(σ(u), σu(v)). Therefore, we can define a bijection Φ : VG × VG → VH × VH defined Φ(u, v) =

(σ(u), σu(v)) such that ψG(u, v) = ψH(Φ(u, v)). Therefore, {{χ(0)
2,ψG

(u, v) : u, v ∈ VG}} = {{χ(0)
2,ψH

(x, y) : x, y ∈ VH}}.

We now prove that for each t ≥ 1, if {{χ(t+1)
ψG

(u) : u ∈ VG}} = {{χ(t+1)
ψH

(v) : v ∈ VH}}, then {{χ(t)
2,ψG

(u, v) : u, v ∈ VG}} =

{{χ(t)
2,ψH

(x, y) : x, y ∈ VH}}. Assume that both graphs are assigned k(t+1) colors by χ(t+1). More specifically, assume there

are partitions VG = V
(t+1)
G,1 ∪ · · · ∪ V (t+1)

G,k(t+1) and VH = V
(t+1)
H,1 ∪ · · · ∪ V (t+1)

H,k(t+1) such that

1. |V (t+1)
G,i | = |V (t+1)

H,i |;

2. for any u ∈ V
(t+1)
G,i and v ∈ V

(t+1)
G,j , χ(t+1)

ψG
(u) = χ

(t+1)
ψG

(v) iff i = j;

3. for any u ∈ V
(t+1)
G,i and x ∈ V

(t+1)
H,i , χ(t+1)

ψG
(u) = χ

(t+1)
ψH

(x).

We can define analogous partitions for χ(t)
ψ .

These partitions induce a partition on the set of pairs of vertices VG × VG = ∪1≤i≤k(t+1) ∪1≤j≤k(t) V
(t+1)
G,i × V

(t)
G,j and

VH × VH = ∪1≤i≤k(t+1) ∪1≤j≤k(t) V
(t+1)
H,i × V

(t)
H,j ; see Figure 4 for an illustration of the decomposition.

We show that χ(t)
2,ψ has the same multiset of colors on V (t+1)

G,i × V
(t)
G,j and V (t+1)

H,i × V
(t)
H,j . By the definition of the partitions,

there exists a bijection σ(t+1)
i : V

(t+1)
G,i → V

(t+1)
H,i such that χ(t+1)

ψG
(u) = χ

(t+1)
ψH

(σ
(t+1)
i (u)) for any u ∈ V

(t+1)
G,i . By

definition of ψ-WL, we have that χ(t)
ψG

(u) = χ
(t)
ψH

(σ
(t+1)
i (u)) for any u ∈ V

(t+1)
G,i . Furthermore, for any u ∈ V

(t+1)
G,i ,

{{ (χ(t)
ψG

(w), ψG(u,w)) : w ∈ VG }} = {{ (χ(t)
ψH

(z), ψH(σ
(t+1)
i (u), z)) : z ∈ VH }}.

13
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V
(t)
G,1 V

(t)
G,2

V
(t+1)
G,1

V
(t+1)
G,2

V
(t+1)
G,3

V
(t+1)
G,4

Figure 4. Decomposition of VG × VG.

Now for each 1 ≤ j ≤ k(t), consider the sub-multiset {{ (χ(t)
ψG

(w), ψG(u,w)) : w ∈ V
(t)
G,j }} of {{ (χ(t)

ψG
(w), ψG(u,w)) :

w ∈ VG }}, then we have that

{{ (χ(t)
ψG

(w), ψG(u,w)) : w ∈ V
(t)
G,j }} = {{ (χ(t)

ψH
(z), ψH(σ

(t+1)
i (u), z)) : z ∈ V

(t)
H,j }}.

This is because when j ̸= b, one has that χ(t)
ψG

(w) ̸= χ
(t)
ψH

(z) for w ∈ V
(t)
G,j and z ∈ V

(t)
H,b.

Therefore,

{{(ψG(u,w), χ(t)
ψG

(u), χ
(t)
ψG

(w)) : w ∈ V
(t)
G,j}}

={{(ψH(σ
(t+1)
i (u), z), χ

(t)
ψH

(σ
(t+1)
i (u)), χ

(t)
ψH

(z)) : z ∈ V
(t)
H,j}}.

Therefore, by Lemma A.1, one has that

{{χ(t)
2,ψG

(u,w) : w ∈ V
(t)
G,j}} = {{χ(t)

2,ψH
(σ

(t+1)
i (u), z) : z ∈ V

(t)
H,j}}.

Since σ(t+1)
i is bijective, we conclude that

{{χ(t)
2,ψG

(u, v) : u ∈ V
(t+1)
G,i , v ∈ V

(t)
G,j}} = {{χ(t)

2,ψH
(x, y) : x ∈ V

(t+1)
H,i , y ∈ V

(t)
H,j}}.

Taking the multiset union over 1 ≤ i ≤ k(t+1) and 1 ≤ j ≤ k(t), this implies that {{χ(t)
2,ψG

(u, v) : u, v ∈ VG}} =

{{χ(t)
2,ψH

(x, y) : x, y ∈ VH}}.

Conversely, we will show that for t ≥ 0, if {{χ(t)
2,ψG

(u, v) : u, v ∈ VG}} = {{χ(t)
2,ψH

(x, y) : x, y ∈ VH}}, then {{χ(t)
ψG

(u) : u ∈
VG}} = {{χ(t)

ψH
(x) : x ∈ VH}}.

For the base case of t = 0, we have that {{(XG(u), XG(v), ψG(u, v)) : u, v ∈ VG}} = {{(XH(x), XH(y), ψH(x, y)) :
x, y ∈ VH}}. Therefore, {{(XG(u), XG(v)) : u, v ∈ VG}} = {{(XH(x), XH(y)) : x, y ∈ VH}} and hence {{XG(u) =: u ∈
VG}}2 = {{XH(x) : x ∈ VH}}2. Now we apply the following fact:

Fact 3. Let A and B be two finite multisets. If A2 = B2, then A = B.

Then, we have that {{χ(0)
ψG

(u) = XG(u) : u ∈ VG}} = {{χ(0)
ψH

(x) = XH(x) : x ∈ VH}}.

Now assume that for k ≥ 1, we have that

{{χ(t)
2,ψG

(u, v) : u, v ∈ VG}} = {{χ(t)
2,ψH

(x, y) : x, y ∈ VH}}.

Lemma A.1 implies that

{{(ψG(u, v), χ(t)
ψG

(u), χ
(t)
ψG

(v)) : u, v ∈ VG}} = {{(ψH(x, y), χ
(t)
ψH

(x), χ
(t)
ψH

(y)) : x, y ∈ VH}}.

Dropping the ϕ term, one has that

{{(χ(t)
ψG

(u), χ
(t)
ψG

(v)) : u, v ∈ VG}} = {{(χ(t)
ψH

(x), χ
(t)
ψH

(y)) : x, y ∈ VH}}.

14
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This implies that the following Cartesian products are equal:

{{χ(t)
ψG

(u) : u ∈ VG}}2 = {{χ(t)
ψH

(x) : x ∈ VH}}2.

Then, by Fact 3 again, we have that

{{χ(t)
ψG

(u) : u ∈ VG}} = {{χ(t)
ψH

(x) : x ∈ VH}}.

This means that G and H are indistinguishable by ψ-WL.

We now end this proof by proving Fact 3.

Proof of Fact 3. We let C := A ∪B denote the set of all distinct elements in A and B. Let C = {c1, . . . , cn} and assume
that A contains rAi many ci and B contains rBi many ci for each i = 1, . . . , n. Then, A2 contains rAi r

A
j many (ci, cj)

and B2 contains rBi r
B
j many (ci, cj). Therefore, A2 = B2 implies that rAi r

A
j = rBi r

B
j for all i, j = 1, . . . , n. For each

i = 1, . . . , n, we let j = i and hence (rAi )
2 = (rBi )

2. Since we are dealing with nonnegative integers, we must have that
rAi = rBi . Therefore, A = B.

A.3. RPE-2-WL vs 2-EGN

Equivariant or invariant graph networks (EGNs and IGNs) (Maron et al., 2019b) are another important type of graph neural
networks. These models will be important when trying to understand the distinguishing power of positional encodings later.

Definition A.2 (EGNs). A kth order Equivariant Graph Network (k-EGN) is a function F : Rnk×d0 → Rns×do for
s ≤ k of the form

F = h ◦m ◦ L(T ) ◦ σ ◦ · · · ◦ σ ◦ L(1)

where h and L(t) : Rn
kt−1×dt−1 → Rnkt×dt are equivariant linear layers for each t = 1, . . . , T such that kt ≤ k, k0 = k

and kL = s, σ is an activation function, and m is a pointwise MLP. When s = 0, the resulting k-EGN is also called a kth

order Invariant Graph Network (k-IGN).

Note: Some implementations of 2-IGNs and 2-EGNs (e.g. (Maron et al., 2019b)) stack the adjacency matrix to the input W .
In this paper, unless otherwise stated, the adjacency matrix is not stacked to the input.

EGNs are permutation equivariant in the sense that permutation of the order of input tensors will result in a corresponding
permutation of the order of output tensors. Likewise, IGNs are permutation invariant as any permutation of the input tensors
results in the same output.

We are interested in 2-EGNs and 2-IGNs since they are closely related to the 2-WL graph isomorphism test. Let ψ be an
RPE valued in Rk and let g : Rn2×k → Rn×l be any 2-EGN. Recall that for any graph G with n vertices, the RPE ψG can
be represented as a tensor in Rn2×k. If XG ∈ Rn×l are node features for G, let row(XG), col(XG) ∈ Rn2×l be the tensors
where each row or column respectively are the node feature XG, e.g. row(XG)[i, :, :] = XG and col(XG)[:, j, :] = XG for
all 1 ≤ i, j ≤ n.

We now show that 2-EGNs with the input [ψG, row(XG), col(XG)] ∈ Rn2×(k+2l) have the same distinguishing powers as
the ψ-2-WL test.

Proposition A.3 (Equivalence of RPE-2-WL and 2-EGN). Let ψ be a diagonally-aware RPE valued in Rk. Let G be any
finite set of featured graphs. Then there exists a 2-EGN g : Rn2×k → Rn×l such that any (G,XG), (H,XH) ∈ G can be
distinguished by g with the input [ψ, row(X), col(X)] iff G and H can be distinguished by the ψ-2-WL test.

This result is a generalization of existing results showing that 2-IGNs of the form g : Rn2×k → Rm are equivalent to the
2-WL test (Maron et al., 2019a; Chen et al., 2020).

Proof of Proposition A.3. We will prove the forward and backward direction of this statement separately in the following
lemmas. However, we emphasize that only Lemma A.5 needs the assumption of diagonal-awareness. Moreover, we
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emphasize that the “proofs” of both of these lemmas are just slightly adapting existing results connecting 2-IGNs to the
2-WL test.

Lemma A.4 (2-EGNs are stronger than RPE-2-WL). Let ψ be an RPE valued in Rk. Let G be a finite set of graphs. Then,
there exists a 2-EGN g : Rn2×(k+2l) → Rn×m such that if any (G,XG), (H,XH) ∈ G can be distinguished by ψ-2-WL
test then {{g([ψG, row(XG), col(XG)])(u) : u ∈ VG}} ̸= {{g([ψH , row(XH), col(XH)])(v) : v ∈ VH}}.

Proof. This follows from the proof by Maron et al. (2019a, Theorem 1) showing that there exists a 2-EGN that can
distinguish any two graphs from a finite set of graphs well as the classical 2-WL algorithm. (While their statement of
Theorem 1 is only for two graphs, their proof explains why this can be generalized to a finite set of graphs.) This lemma
shows how this result can be generalized to the RPE-2-WL test.

Their proof is broken into two steps. First, the authors show that given a tensor W ∈ Rn2×(e+1) of a diagonal feature matrix
stacked with the adjacency matrix, there is a 2-equivariant linear layer f : Rn2×(e+1) → Rn2×4×(e+2) such that, for each
pair (u, v), the vector f(W )[u, v, :] corresponds to the isomorphism type of (u, v), which is the initial color of (u, v) in the 2-
WL test. Second, they show that there is a d layers 2-EGN f = L(d)◦σ◦· · ·◦σ◦L(1) : Rn2×k → Rn2×l that can implement
d iterations of the 2-WL algorithm; that is to say, f(AG)(u, v) = f(AH)(u, v) iff χ(d)(u, v) = χ(d)(x, y). Finally, they
show that there exists an MLP m, together with a final layer h of summing over all entries, such that g = h ◦ m ◦ f
implements the 2-WL test, i.e. g(AG) = g(AH) iff χ(G) = χ(H).

The difference between the 2-WL test and the RPE-2-WL test lies in the initialization step. In the classical 2-WL test, a pair
(u, v) is colored with its isomorphism type, while in the RPE-2-WL test, the initial color is (XG(u), XG(v), ψG(u, v)). If
the input to the 2-EGN is the RPE matrix concatenated with the node features (i.e. the initial coloring), we can skip the
initialization step and just perform the update steps of the RPE-2-WL through a 2-EGN f = L(d) ◦ σ ◦ · · · ◦ σ ◦ L(1) :

Rn2×k → Rn2×l. Finally, instead of taking the sum of all entries, we can apply the operation of row sum (which is
equivariant) to the output of f to obtain our target 2-EGN g : Rn2×k → Rn×l.

Lemma A.5 (RPE-2-WL is stronger than 2-EGNs). Let ψ be a diagonally-aware RPE. Let (G,XG) and (H,XH) be
graphs. If G and H cannot be distinguished by ψ-2-WL, then (G,XG) and (H,XH) cannot be distinguished by any 2-EGN
with input [ψ, row(X), col(X)].

Proof. This follows directly from the proof showing that if two graphs cannot be distinguished by the 2-WL, they cannot be
distinguished by 2-EGNs (Chen et al., 2020, Lemma 4.2). The only reason we cannot apply this proof directly is that it
relies on the fact that the initial colors to the 2-WL—and therefore all subsequent colors—are diagonally-aware (Chen et al.,
2020, Lemma D.1), which is not necessarily the case for the initial colors of RPE-2-WL for general RPEs. However, if the
RPE is diagonally-aware, then our lemma can be proven following the proof of Chen et al. (2020, Lemma 4.2).

Importance of diagonal-awareness. In the proof of Proposition A.3 (specifically in Lemma A.5), we show that RPE-
2-WL is at least as strong as 2-EGNs if the RPE is diagonally-aware. We emphasize that if we drop the assumption
of diagonal-awareness, the lemma does not hold. Therefore, 2-EGN can be strictly stronger than th RPE-2-WL test for
non-diagonally-aware RPEs, as shown by the following simple example.

Consider the two graphs on two vertices G and H where G has an edge and H does not. (In this example, the graphs have
no node features.) Consider the (artificial) RPE ψ that assigns

ψG =

[
1 0
0 1

]
, ψH =

[
0 1
1 0

]
.

Note that ψ is not diagonally-aware, as the values 0 and 1 appear on both the diagonal and off-diagonal elements.

The ψ-2-WL colorings for t = 0 are

χ
(0)
2,ψ(G) =

[
1 0
0 1

]
, χ

(0)
2,ψ(H) =

[
0 1
1 0

]
.
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These are, in fact, already stable ψ-2-WL colorings, as another iteration of ψ-2-WL gives the same partition. This means
further iterations of ψ-2-WL won’t be able to distinguish these two graphs. For example,

χ
(1)
2,ψ(G) =

[
(1, ({{0, 1}}, {{0, 1}})) (0, ({{0, 1}}, {{0, 1}}))
(0, ({{0, 1}}, {{0, 1}})) (1, ({{0, 1}}, {{0, 1}}))

]

χ
(1)
2,ψ(H) =

[
(0, ({{0, 1}}, {{0, 1}})) (1, ({{0, 1}}, {{0, 1}}))
(1, ({{0, 1}}, {{0, 1}})) (0, ({{0, 1}}, {{0, 1}}))

]
,

As χ(0)
2,ψ(G) and χ(0)

2,ψ(H) have the same multiset of colors {{0, 0, 1, 1}}, they are indistinguishable by ψ-2-WL. However,
there is a 2-IGN that distinguishes these graphs. Specifically, one invariant linear matrix is B : Rn×n → R that maps
B(W ) =

∑
v∈V Wvv. (In the language of the original IGN paper (Maron et al., 2019b), this corresponds to the partition

γ = {{1, 2}}.) Then B(ψG) = 2 ̸= B(ψH) = 0, so this 2-IGN distinguishes ψG and ψH .

A.4. Equivalence of APEs and APE-GTs: Proof of Lemma 3.1

Lemma 3.1 (Equivalence of APEs and APE-GT). Any two graphs (G,XG) and (H,XH) are indistinguishable by an APE
ϕ iff (G,XG) and (H,XH) are indistinguishable by all ϕ-APE-GTs.

Proof. Let T be any transformer, and let (G,XG) and (H,XH) indistinguishable by ϕ. The initial input to T are
X̂G = [XG|ϕG] and X̂H = [XH |ϕH ]. As G and H are indistinguishable by ϕ, then there is a permutation P such that
PX̂G = X̂H ; however, as transformers are permutation-equivariant (Fact 1), then T (X̂H) = T (PX̂G) = PT (X̂G), so the
theorem follows.

Now we prove the inverse. Consider the transformer T with all weight matrices set to the zero matrix. The transformer T is
exactly the identity map. Thus, if G and H are distinguishable by ϕ, then they are distinguishable by T .

A.5. Isomorphic implies WL Indistinguishable: Proof of Fact 2

Fact 2. If (G,XG) and (H,XH) are feature isomorphic, then (G,XG) and (H,XH) are ψ-WL indistinguishable and
ψ-2-WL indistinguishable for any RPE ψ.

Proof. Let (G,XG) and (H,XH) be feature isomorphic graphs connected by isomorphism σ : VG → VH . Let ψ be an
RPE. We will prove the stronger statement that χ(t)

ψG
(u) = χ

(t)
ψH

(σ(u)) for all v ∈ VG and t ≥ 0. For the base case of t = 0,

this is trivial as χ(0)
ψG

(u) = XG(u) = XH(σ(u)) = χ
(0)
ψH

(σ(u)) for all v ∈ VG by the definition of feature isomorphism.

Now suppose the statement is true for t, and we will show it is true for t+ 1. Let u ∈ VG. Consider the colors χ(t+1)
ψG

(u) =

(χ
(t)
ψG

(u), {{(χ(t)
ψG

(v), ψG(u, v)) : v ∈ VG}}) and χ(t+1)
ψH

(σ(u)) = (χ
(t)
ψH

(σ(u)), {{(χ(t)
ψH

(v), ψH(σ(u), v)) : v ∈ VH}}). By

induction, we know that the first coordinates χ(t)
ψG

(u) = χ
(t)
ψH

(σ(u)). Moreover, by the inductive hypothesis and the definition

of RPE, we know that (χ(t)
ψG

(v), ψG(u, v)) = (χ
(t)
ψH

(σ(v)), ψH(σ(u), σ(v))), which implies the second coordinates are
equals. Therefore, the theorem holds.

A similar argument shows that χ(t)
2,ψG

(u, v) = χ
(t)
2,ψH

(σ(u), σ(v)) for all u, v ∈ VG and t ≥ 0.

A.6. Equivalence of RPE-augWL and RPE-GTs: Proof of Lemma 3.6

Lemma 3.6 (Equivalence of RPE-augWL and RPE-GT). Let ψ be a diagonally-aware RPE. Let (G,XG) and (H,XH)
be featured graphs. Then (G,XG) and (H,XH) are indistinguisable by the ψ-WL test iff (G,XG) and (H,XH) are
indistinguisable by all ψ-RPE-GTs.

Proof. We will denote the input at the l-th layer of the RPE-GT for graph G as X(l)
G ∈ R|VG|×ℓ, and for each node u ∈ VG,

its feature is denoted by X(l)
G (u). Note X(0)

G (u) = XG(u). We adopt similar notations for H .

For the forward direction, it suffices to show that ifG andH are indistinguishable by the ψ-WL test, they are indistinguishable
by any ψ-RPE-GT. We will prove the stronger statement that if the multiset of colors {{χ(t)

ψG
(u) : v ∈ VG}} = {{χ(t)

ψH
(x) :

17
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x ∈ VH}}, then any bijection σ(t) : VG → VH such that χ(t)
ψG

(u) = χ
(t)
ψH

(σ(t)(u)) will satisfy the following property:

X
(t)
G (u) = X

(t)
H (σ(t)(u)) for all u ∈ VG, and hence {{X(t)

G (u) : u ∈ VG}} = {{X(t)
H (x) : x ∈ VH}}. We will prove this by

induction on t.

The key observation is that the only part of the transformer architecture that is not applied separately to the node features
X(t)(u) is the multiplication by the attention matrix A(l,h)(X(l))X(l), meaning for all other parts of the transformer, if the
inputs X(t)

G (u) = X
(t)
H (x) are equal, then the outputs at u and x are equal.

For the base case of t = 0, the statement holds as the initial node features equals the ψ-WL colors for t = 0, i.e. {{χ(0)
ψG

(v) :

v ∈ VG}} = {{X(0)
G (v) : v ∈ VG}}.

Now suppose the theorem inductively holds for some t. Assume that {{χ(t+1)
ψG

(u) : v ∈ VG}} = {{χ(t+1)
ψH

(x) : x ∈ VH}} and

let σ(t+1) : VG → VH denote any bijection such that χ(t+1)
ψG

(u) = χ
(t+1)
ψH

(σ(t+1)(u)) for any u ∈ VG. By the definition of

χψ and the inductive hypothesis, we have that {{χ(t)
ψG

(u) : v ∈ VG}} = {{χ(t)
ψH

(x) : x ∈ VH}}, χ(t)
ψG

(u) = χ
(t+1)
ψH

(σ(t)(u))

and X(t)
G (u) = X

(t)
H (σ(t+1)(u)) for all u ∈ VG.

Now for any v ∈ VG and y ∈ VH such that X(t)
G (v) = X

(t)
H (y), we have that

X
(t)
G (u)WQ(X

(t)
G (v)WK)T = X

(t)
H (σ(t+1)(u))WQ(X

(t)
H (y)WK)T (1)

for any matrices WQ and WK .

Now, for any u ∈ VG, χ(t+1)
ψG

(u) = χ
(t+1)
ψH

(σ(t+1)(u)) implies that

{{(χ(t)
ψG

(v), ψG(u, v)) : v ∈ VG}} = {{(χ(t)
ψH

(y), ψH(σ(t+1)(u), y)) : y ∈ VH}}.

Hence,
{{(X(t)

G (v), ψG(u, v)) : v ∈ VG}} = {{(X(t)
H (y), ψH(σ(t+1)(u), y)) : y ∈ VH}}.

Note that for any given value a,

{{ψG(u, v) : v ∈ VG, X
(t)
G (v) = a}} = {{ψH(σ(t+1)(u), y) : y ∈ VH , X

(t)
H (y) = a}}. (2)

Then, we have that

[A(t,h)(X
(t)
G )X

(t)
G ](u) =

∑
v

A(t,h)(X
(t)
G )(u, v)X

(t)
G (v)

=
∑
v

f1(ψG(u, v))softmax(X
(t)
G (u)WQ(X

(t)
G (·)WK)T /

√
dh + f2(ψG(u, ·)))(v)X(t)

G (v)

=
∑
y

f1(ψH(σ(t+1)(u), y))softmax(X
(t)
H (σ(t+1)(u))WQ(X

(t)
H (·)WK)T /

√
dh + f2(ψH(σ(t+1)(u), ·)))(y)X(t)

H (y)

= [A(t,h)(X
(t)
H )X

(t)
H ](σ(t+1)(u)).

Here the third equation follows from Equation (1) and Equation (2).

It is then easy to check that X(t+1)
G (u) = X

(t+1)
H (σ(t+1)(u)) for any u ∈ VG and this concludes the proof.

For the other direction, the proof follows from the one of Zhang et al. (2023, Theorem 4); More precisely, Zhang et al. (2023)
are dealing with the case when the RPE ψ is taking value from a finite set D for graphs with bounded sizes. Furthermore,
their RPE ψ is a distance (or a stack of distance functions) so that ψG(u, v) = 0 iff u = v ∈ VG for any graph G. In this
way, elements in D can be written as 0 = r0 < r1 < · · · rH . Note that, for one step of ψ-WL, the second argument can be
decomposed by

{{(χ(t)
ψG

(u), ψG(v, u)) : u ∈ VG}} =
⋃
ri

{{(χ(t)
ψG

(u), ri) : ψG(v, u) = ri, u ∈ VG}}.
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Then, Zhang et al. (2023) explicitly constructed H + 1 different RPE attention heads AhRPE which can simulate
{{(χ(t)

ψG
(u), ri) : ψG(v, u) = rh, u ∈ VG}} in an injective manner for each h = 0, . . . ,H . In this way, they argue

that by concatenating these heads, one can simulate their GD-WL test where each step is updated by χ̂
(t+1)
ψG

(v) =

{{(χ̂(t)
ψG

(u), ψG(v, u)) : u ∈ VG}}. But as mentioned already in Section 3.1, this GD-WL test is equivalent to the ψ-WL
test when ψ is a graph distance (or a stack of graph distances), so their one layer RPE transformer can simulate one step of
ψ-WL in an injective manner.

Recall that GD-WL is equivalent to ψ-WL due to the fact that ψ takes value 0 on diagonal entries and ψ takes non-zero values
on off-diagonal entries. This is the reason why one can drop the first argument in (χ

(t)
ψG

(v), {{(χ(t)
ψG

(u), ψG(v, u)) : u ∈ V }})
without losing distinguishing power. Hence, the same argument in the proof of (Zhang et al., 2023, Theorem 4) can be
applied to the setting of diagonally-aware RPEs due to the following simple result.

Lemma A.6. When ψ is a diagonally-aware RPE, then ψ-WL is equivalent to the following variant of ψ-WL:

χ̂
(0)
ψG

(v) = XG(v),

χ̂
(t+1)
ψG

(v) = {{(χ̂(t)
ψG

(u), ψG(v, u)) : u ∈ V }}.

Now, to prove our theorem, we simply let D := {ψG(u, v) : u, v ∈ VG} ∪ {ψH(x, y) : x, y ∈ VH} and apply the same
argument as in the proof of (Zhang et al., 2023, Theorem 4) to conclude the proof.

A.7. Mapping APEs to RPEs: Proof of Lemma 3.7 and Theorem 3.8

We first recall a key lemma from Xu et al. (2018). For any set S, we let Mul(S) denote the collection of all finite
multi-subsets of S and recall that Mul2(S) denotes the collection of all multi-subsets of size 2 in S.

Lemma A.7 ((Xu et al., 2018, Lemma 5)). If S is countable, then there exists a function f : S → R such that the map
hf : Mul(S) → R defined by sending hf (X) =

∑
x∈X f(x) is injective.

As a direct consequence, we immediately have the following corollary.

Corollary A.8. If S is countable, then there exists a function f : S → R such that the map hf : Mul2(S) → R defined by
sending hf ({{x, y}}) = f(x) + f(y) is injective.

Lemma 3.7. Let ϕ be an APE. Then there is a function f such that any two featured graphs (G,XG) and (H,XH) are
indistinguishable by ϕ iff (G,XG) and (H,XH) cannot be distinguished by the ψf -2-WL test.

Proof. Let S = ∪G∈G imϕG where G is the set of all finite graphs. We first note that S is countable as the set of all finite
graphs is countable. Let f be any function such that hf that is injective on S; such a function must exist by Corollary A.8
as S is countable. Assume that G and H are indistinguishable by the ψf -2-WL test. This, in particular, implies that the
multisets of initial colors are the same:

{{(XG(u), XG(v), ψ
f
G(v, w)) : u, v ∈ VG}} = {{(XH(x), XH(y), ψfH(x, y)) : x, y ∈ VH}}.

By the definition of ψf and the fact that hf is injective, one has that

{{(XG(u), XG(v), ϕG(u), ϕG(v)) : u, v ∈ VG}} = {{(XH(x), XH(y), ϕH(x), ϕH(y)) : x, y ∈ VH}}.

Hence, the following two Cartesian products of multisets are equal:

{{(XG(u), ϕG(u)) : u ∈ VG}}2 = {{(XH(x), ϕH(x)) : x ∈ VH}}2.

By Fact 3, we have that {{(XG(u), ϕG(u)) : u ∈ VG}} = {{(XH(x), ϕH(x)) : x ∈ VH}}.

Conversely, assume that (G,XG) and (H,XH) are indistinguishable by ϕ. Then {{(XG(u), ϕG(u) : u ∈ VG}} =
{{(XH(x), ϕH(x)) : x ∈ VH}}. Let σ : VG → VH be a bijection such that ϕG(v) = ϕH(σ(v)) and XG(v) = XH(σ(v))
for all v ∈ VG. We will prove that (G,XG) and (H,XH) are indistinguishable by ψf -WL for any function f . In fact, we
will prove the stronger statement that χ(t)

ψf
G

(v) = χ
(t)

ψf
H

(σ(v)) for all t ≥ 0. This is stronger than proving they are ψf -WL

indistinguishable as we use the same bijection for all iterations t.
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We prove this by induction on the iteration t. For t = 0, this is true as the initial ψf -WL colors χ(t)

ψf
H

(v) are just the node

features XG(v), which are implied by the definition of indistinguishability by an APE. Now suppose this is true for some
iteration t; we will show it is true for t+ 1. Let v ∈ VG. The inductive hypothesis implies that the first element of the colors
are equal χ(t)

ψf
G

(v) = χ
(t)

ψf
H

(σ(v)). Moreover, if we consider the second element of the colors, we find that

{{(χ(t)

ψf
G

(w), ψfG(v, w)) : w ∈ VG}} ={{(χ(t)

ψf
G

(w), f(ϕG(v)) + f(ϕG(w))) : w ∈ VG}} (defintion of ψfG)

={{(χ(t)

ψf
G

(w), f(ϕH(σ(v))) + f(ϕH(σ(w)))) : w ∈ VG}} (defintion of σ)

={{(χ(t)

ψf
H

(σ(w)), f(ϕH(σ(v)) + f(ϕH(σ(w))))) : w ∈ VG}} (inductive hypothesis)

={{(χ(t)

ψf
H

(σ(w)), ψfH(σ(v), σ(w))) : w ∈ VG}} (defintion of ψfH )

={{(χ(t)

ψf
H

(w), ψfH(σ(v), w)) : w ∈ VH}}. (σ is a bijection)

Therefore, χ(t+1)

ψf
G

(v) = χ
(t+1)

ψf
H

(σ(v)) as claimed.

Theorem 3.8. For any APE ϕ, there exists a function f such that any two graphs (G,XG) and (H,XH) are indistinguishable
by all ϕ-APE-GTs iff they are indistinguishable by all ψf -RPE-GTs.

Proof. By Lemma 3.1, two graphs (G,XG) and (H,XH) are indistinguishable by all APE transformers with APE ϕ iff they
are indistinguishable by ϕ. By Lemma 3.7, this is equivalent to being indistinguishable by ψf -2-WL. Hence, by Lemma 3.6,
this is equivalent to being indistinguishable by any RPE transformer with RPE ψf .

A.8. Mapping RPE to APE: Proof of Theorem 3.10

Lemma 3.9. Let ψ be a diagonally-aware RPE.

For any 2-EGN g, if (G,XG) and (H,XH) are indistinguishable by the ψ-2-WL test then (G,XG) and (H,XH) are
indistinguishable by ϕg .

Moreover, for any finite set of unfeatured graphs G, there is a 2-EGN g such that if G,H ∈ G are indistinguishable by ϕg,
then G and H are indistinguishable by the ψ-2-WL test.

Proof. Let (G,XG) and (H,XH) be featured graphs that are indistinguishable by ψ-2-WL. By Lemma A.5, this means that
for any 2-EGN g of the appropriate dimension, g([ψG, row(XG), col(XG)]) = g([ψG, row(XG), col(XG)]). In particular,
for any 2-EGN h of appropriate dimension, there is a 2-EGN gh such that gh([ψG, XGX

T
G ]) = [h(ψG), X

2
G]; the 2-EGN gh

runs h on the first columns of [ψG, row(XG), col(XG)] and then copies the mean of the rows of row(XG) on the remaining
columns. The output of gh is exactly the APE ψhG concatenated to the node features XG.

For the backward direction of the case of graphs without node features, this follows directly from Lemma A.4.

Theorem 3.10. Let ψ be a diagonally-aware RPE.

For any 2-EGN g, if (G,XG) and (H,XH) are indistinguishable by all ψ-RPE-GTs, then (G,XG) and (H,XH) are
indistinguishable by ϕg .

Moreover, for any finite set of unfeatured graphs G, there is a 2-EGN g such that if G,H ∈ G are indistinguishable by all
ϕg-APE-GTs, then G and H are indistinguishable by all ψ-RPE-GTs.

Proof. By Lemma 3.6 and Theorem 3.5, G and H are indistinguisable by an RPE transformer with RPE ψ iff G and H
are indistinguisable by the ψ-2-WL test. By Lemma 3.9, this is equivalent to G and H being indistinguishable by ϕg. By
Lemma 3.1, this is equivalent to G and H being indistinguishable by any APE transformer with APE ϕg .

We now show that RPEs are strictly stronger than APEs derived from RPEs for graphs with node features.
Example 1. There exists an RPE ψ and featured graphs (G,XG) and (H,XH) that are distinguishable by ψ-2-WL but are
indistinguishable by ϕg for any 2-EGN g.
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34

Figure 5. Left: (G,XG). Right: (H,XH).

Proof. The graph G and H are both be the cycle graph on 4-vertices C4. The RPE ψ is the adjacency matrix. The node
features are XG = [1, 2, 3, 4] and XH = [1, 3, 2, 4]. See Figure 5.

We first prove these graphs are distinguishable by ψ-WL. If we consider the first ψ-WL colors χ(1)
ψ , we see that G has a

node of color (1, {{(2, 1), (3, 0), (4, 1)}}); however, H has no node of that color, as the only node with feature 1 has color
(1, {{(3, 1), (2, 0), (4, 1)}}).

We next prove that are indistinguishable by the APE ϕg for any 2-EGN g. The first thing to observe is that the APE ϕg

will assign the same value to each node in G and H; this follows from the definition of APE and the fact that for any two
nodes u, v ∈ VG, there is a graph isomorphism σ : VG → VG such that σ(u) = v; likewise for any two nodes x, y ∈ VH
or nodes u ∈ VG and x ∈ VH . Therefore, as (G,XG) and (H,XH) have the same multiset of node features and ϕg has
uniform entries, they cannot be distinguished by ϕg .

B. Details from Section 4
B.1. A Lemma for RPE-augWL Composition.

In this section, we will repeatedly use the following useful property of composing the RPE-augWL test. Let ψ be an RPE
valued in Rd, and let f : Rd → R be a function. Consider the composition f ◦ ψ defined by (f ◦ ψ)G(u, v) := f(ψG(u, v))
for any graph G. One naturally wonders about the distinguishing power of ψ-WL versus f ◦ ψ-WL. In fact, ψ-WL will
always be at least as strong as f ◦ ψ-WL, and under mild conditions on the input, there will exist a function f such that
ψ-WL and f ◦ ψ-WL are equally strong.

Proposition B.1. Let ψ be an RPE. Let G and H be graphs. Let u ∈ VG and v ∈ VH .

1. If χ(t)
ψG

(u) = χ
(t)
ψH

(v), then for any function f : Rd → R, χ(t)
f◦ψG

(u) = χ
(t)
f◦ψH

(v). In particular, ψ-WL is as strong as
f ◦ ψ-WL.

2. For any set Ω ⊂ Rd and any function f : Rd → R injective on Ω, if imψG ∪ imψH ⊂ Ω and χ(t)
ψG

(u) ̸= χ
(t)
ψH

(v), then

χ
(t)
f◦ψG

(u) ̸= χ
(t)
f◦ψH

(v). In particular, f ◦ ψ-WL is as strong as ψ-WL.

Proof. For item 1, it follows from (Zhu et al., 2023, Theorem 3).

For item 2, we choose the function f to be any function that is injective on Ω; such a function exists as Ω are finite. The
lemma follows by induction of the iteration t.

Remark B.2. It is quite common that RPEs will be drawn from a finite set Ω ⊂ Rd. In particular, if we consider any RPE
defined on unweighted graphs with n vertices that is purely a function of its topology, e.g., the shortest-path distance or
Laplacian eigenspace projection, then because there are only finitely many unweighted graphs on n vertices, then the image
of the PE in Rd will be finite.
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B.2. Proof of Theorem 4.2 and Corollary 4.3

Euclidean Distance and Gram Matrices. Let P = {p1, . . . , pn} ⊂ Rd be a point cloud. The Gram matrix of P is
denoted GP ∈ Rn×n where (GP )ij = pTi pj . The distance matrix of P is denoted DP ∈ Rn×n where (DP )ij = ∥pi− pj∥.
A point cloud P is centered if

∑n
i=1 pi = 0.

Theorem B.3. Assume that for any graph G, there is an embedding of the nodes PG : V → Rd such that imPG is centered.
Let ψd and ψg be RPEs that are the distance and Gram matrix of the point set imPG, respectively. Then, ψd-WL is at least
as strong as are as ψg-WL. Conversely, ψg-WL with diagonal augmentation is at least as strong as ψd.

The proof is based on the following key lemma. We define the squared distance matrix of P to be the matrix D2
P ∈ Rn×n

where (D2
P )ij = ∥pi − pj∥2.

Lemma B.4. Let ψd and ψg be RPEs such that, for any graph G, ψd,G and ψg,G are the squared distance and Gram matrix
of a centered point set PG ⊂ Rd. Then ψd-WL is at least as strong as are as ψg-WL. Conversely, ψg-WL with diagonal
augmentation is at least as strong as ψd.

Proof of Theorem B.3 assuming Lemma B.4. As the square root function is injective, then by Proposition B.1, G and H are
indistinguishable by ψd-WL if and only if D2

P and D2
Q are indistinguishable by ψg-WL.

Now we proceed to prove Lemma B.4.

Lemma B.5. Let P = {p1, . . . , pn} ⊂ Rd be a centered point cloud. For any 1 ≤ k ≤ n, (GP )ii = 1
n

∑n
i=1(D

2
P )ik −

1
2n2

∑n
i=1

∑n
j=1(D

2
P )ij .

Proof. Observe that (D2
p)ij = pTi pi + pTj pj − 2pTi pj . Therefore, the first term simplifies to

1

n

n∑
i=1

(D2
P )ik =pTk pk +

1

n

n∑
i=1

pTi pi −
2

n

n∑
i=1

pTi pk

=pTk pk +
1

n

n∑
i=1

pTi pi. (as
∑n
i=1 pi = 0)

The second term simplifies to:

1

2n2

n∑
i=1

n∑
j=1

(D2
P )ij =

1

2n2

n∑
i=1

n∑
j=1

(
pTi pi + pTj pj − 2pTi pj

)

=
1

2n2

n∑
i=1

npTi pi + n∑
j=1

pTj pj −
n∑
j=1

2pTi pj


=

1

2n2

n∑
i=1

npTi pi + n∑
j=1

pTj pj

 (as
∑n
i=1 pi = 0)

=
1

2n2

n∑
i=1

2npTi pi

=
1

n

n∑
i=1

pTi pi.

Therefore,

1

n

n∑
i=1

(D2
P )ik −

1

2n2

n∑
i=1

n∑
j=1

(D2
P )ij =p

T
k pk +

1

n

n∑
i=1

pTi pi −
1

n

n∑
i=1

pTi pi

=pTk pk

=(GP )kk.
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Lemma B.6. Let ψd and ψg be RPEs such that, for any graph G, ψd,G and ψg,G are the squared distance and Gram
matrix of a centered point set PG ⊂ Rd. Let (G,XG) and (H,XH) be featured graphs. If χ(2)

ψd,G
(u) = χ

(2)
ψd,H

(x), then
(GPG

)uu = (GPH
)xx.

Proof. We will prove this using Lemma B.5. First, the fact that χ(1)
ψd,G

(u) = χ
(1)
ψd,H

(x) implies {{(D2
PG

)uv : v ∈ VG}} =

{{(D2
PH

)xy : y ∈ VH}}, which in particular implies that 1
n

∑
v∈VG

(D2
PG

)uv =
1
n

∑
y∈VH

(D2
PH

)xy . Second, as χ(2)
ψd,G

(u) =

χ
(2)
ψd,H

(x), then as the second coordinate of these colors are equal, there is a bijection σ : VG → VH such that χ(1)
ψd,G

(v) =

χ
(1)
ψd,H

(σ(v)) for all v ∈ VG. In particular, this implies that {{(D2
PG

)vw : w ∈ VG}} = {{(D2
PH

)σ(v)z : x ∈ VH}}
for all v ∈ VG. Therefore, PG and PH have the same multiset of distances, and 1

2n2

∑
v∈VG

∑
w∈VG

(D2
PG

)vw =
1

2n2

∑
y∈VH

∑
z∈VH

(D2
PH

)yz . These two observations and Lemma B.5 imply the lemma.

Proposition B.7 (Forward Direction of Lemma B.4). Let ψd and ψg be RPEs such that, for any graph G, ψd,G and ψg,G
are the squared distance and Gram matrix of a centered point set PG ⊂ Rd. Let (G,XG) and (H,XH) be featured graphs.
Let u ∈ VG and x ∈ VH . If χ(t+2)

ψd,G
(u) = χ

(t+2)
ψd,H

(x), then χ(t)
ψg,G

(u) = χ
(t)
ψg,H

(x). Moreover, if (G,XG) and (H,XH) are
indistinguishable by ψd-WL, then (G,XG) and (H,XH) are indistinguishable by ψg-WL.

Proof. We prove this by induction on t. For t = 0, this is obvious as χ(2)
ψd,G

(u) = χ
(2)
ψd,H

(x) implies that χ(0)
ψg,G

(u) =

XG(u) = XH(v) = χ
(0)
ψg,H

(x)

Now suppose the proposition is true for a natural number t, and let u ∈ VG and x ∈ VH such that χ(t+3)
ψd,G

(u) = χ
(t+3)
ψd,H

(x).

By induction, we know that χ(t+2)
ψd,G

(u) = χ
(t+2)
ψd,H

(x) implies χ(t)
ψg,G

(u) = χ
(t)
ψg,H

(x), so the first coordinates of χ(t+1)
ψg,G

(u) and

χ
(t+1)
ψg,H

(x) are equal.

We now show the second coordinates are equal. The fact that χ(t+3)
ψd,G

(u) = χ
(t+3)
ψd,H

(x) implies there is a bijection σ : VG →
VH such that (χ(t+2)

ψd,G
(v), (D2

PG
)uv) = (χ

(t+2)
ψd,H

(σ(v)), (D2
PH

)xσ(v)) for all v ∈ VG. As χ(t+2)
ψd,G

(v) = χ
(t+2)
ψd,H

(σ(v)) implies
(GPG

)vv = (GPH
)σ(v)σ(v) by Lemma B.6, then we know that

(GPG
)uv =

1

2

(
(GPG

)vv + (GPG
)uu − (D2

PG
)uv
)
=

1

2

(
(GPH

)σ(v)σ(v) + (GPH
)xx − (D2

PH
)xσ(v)

)
= (GPQ

)xσ(v).

Moreover, χ(t+2)
ψd,G

(v) = χ
(t+2)
ψd,H

(σ(v)) implies χ(t)
ψg,G

(v) = χ
(t)
ψg,H

(σ(v)) by the inductive hypothesis. Therefore, as σ is a

bijection, the second coordinates of χ(t+1)
ψg,G

(u) and χ(t+1)
ψg,H

(x) are equal:

{{(χ(t)
ψg,G

(v), (GPG
)uv) : v ∈ VG}} = {{(χ(t)

ψg,H
(y), (GPH

)xy) : y ∈ VH}}.

Proposition B.8 (Backward Direction of Lemma B.4). Let ψd and ψg be RPEs such that, for any graph G, ψd,G and
ψg,G are the squared distance and Gram matrix of a centered point set PG ⊂ Rd. Let ψ′

g = (ψg, I) be the diagonal

augmentation of ψg . Let (G,XG) and (H,XH) with featured graphs. Let u ∈ VG and x ∈ VH . If χ(t+1)
ψ′

g,G
(u) = χ

(t+1)
ψ′

g,H
(x),

then χ(t)
ψd,G

(u) = χ
(t)
ψd,H

(x). In particular, ψ′
g-WL with diagonal augmentation is at least as strong as ψd-WL.

Proof. We prove this by induction on t. For t = 0, this is obvious as χ(1)
ψ′

g,G
(u) = χ

(1)
ψ′

g,H
(x) implies χ(0)

ψ′
g,G

(u) = XG(u) =

XH(v) = χ
(0)
ψ′

g,H
(x) and equivalently χ(0)

ψd,G
(u) = XG(u) = XH(v) = χ

(0)
ψd,H

(x).

Now suppose the proposition is true for a natural number t, and suppose that χ(t+2)
ψ′

g,G
(u) = χ

(t+2)
ψ′

g,H
(x). By induction, we

know that χ(t+1)
ψ′

g,G
(u) = χ

(t+1)
ψ′

g,H
(x) implies χ(t)

ψd,G
(u) = χ

(t)
ψd,H

(x), so the first coordinates of χ(t+1)
ψd,G

(u) and χ(t+1)
ψd,H

(x) are
equal.

We now show the second coordinates are equal. As χ(t+2)
ψ′

g,G
(u) = χ

(t+2)
ψ′

g,H
(x), then there is a bijection σ : VG → VH such

that (χ(t+1)
ψ′

g,G
(v), (GPG

, I)uv) = (χ
(t+1)
ψ′

g,H
(σ(v)), (GPG

, I)xσ(v)) for all v ∈ VG. The diagonal augmentation implies that
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(GPG
, I)uu = (GPH

, I)xx as a diagonal element of (GPG
, I) can only equal a diagonal element of (GPH

, I). By a similar
argument, the fact that χ(t+1)

ψ′
g,G

(v)) = χ
(t+1)
ψ′

g,H
(σ(v)) implies that (GPG

, I)vv = (GPH
, I)σ(v)σ(v). Therefore,

(D2
PG

)uv =(GPG
)uu + (GPG

)vv − 2(GPG
)uv

=(GPH
)xx + (GPH

)σ(v)σ(v) − 2(GPH
)xσ(v) = (D2

PH
)xσ(v).

Therefore, the second coordinates of χ(t+1)
ψd,G

(u) and χ(t+1)
ψd,H

(x) are equal, i.e.,

{{(χ(t)
ψd,G

(v), (D2
PG

)uv) : v ∈ VG}} = {{(χ(t)
ψd,H

(v), (D2
PH

)uv) : v ∈ VH}}.

Now we can prove Theorem 4.2 below:

Theorem 4.2. Let f : R+ → R+. Df -WL is at least as strong as Kf -WL. Kf -WL with diagonal augmentation is at least
as strong as Df -WL.

Proof of Theorem 4.2. Note that for given graph G with n points, any spectral decomposition of the Laplacian L =∑n
i=2 λiziz

T
i , and any function f : R+ → R+, we can define the point cloud PG = {

√
f(L)1v : v ∈ V }, where√

f(L) =
∑n
i=2

√
f(λi)ziz

T
i The spectral kernel Kf

G is the Gram matrix of this point cloud and the spectral distance
Df
G is the distance matrix of this point cloud. (While different choice of bases for the eigenspace result in different point

clouds PG, these point clouds will always have the same Gram and distance matrices regardless of choice of basis.) This
point cloud is centered as

∑
v∈V

√
f(L)1v =

∑
v∈V

∑n
i=2

√
f(L)λiziz

T
i 1v = 0 by the fact that each eigenvector zi is

orthogonal to the all-1s vector, which is the eigenvector of L corresponding to λ1 = 0. The result for RPE-augWL with
RPEs Kf

G and Df
G holds by directly applying Theorem B.3.

RD-WL and L†-WL In this section, we prove Corollary 4.3 by showing that it is unnecessary to perform diagonal
augmentation on L† in order for L†-WL to be as strong as RD-WL. In particular, we show that vertices u and v with the
same L†-WL color after one iteration have the same diagonal entry L†(u, u) = L†(v, v). This is the point in the proof
of Proposition B.8 where diagonal augmentation is used, so because this holds for L†-WL, we can drop the diagonal
augmentation.

For background, the pseudoinverse of the Laplacian is L† =
∑n
i=2

1
λi
ziz

T
i , and the resistance distance between nodes u

and v in a graph is RD(u, v) = (1u − 1v)
TL†(1u − 1v), where 1u is the vector whose u-th entry is 1 and other entries are

0. The resistance distance is a squared spectral distance, but remarkably, it is also a metric (see for example (Spielman,
2019, Section 12.8)), which is not true in general for the square of distances.

In particular, we prove the following lemma:

Lemma B.9. Let G and H be graphs. Let u ∈ VG and v ∈ VH such that χ(1)

L†
G

(u) = χ
(1)

L†
H

(v). Then L†
G(u, u) = L†

H(v, v).

The proof is based on several auxiliary results.

Lemma B.10. Let G be a connected graph with more than 1 vertex and let L denote its graph Laplacian. Then, for any
u ̸= v ∈ V , we have that L†(v, v) > L†(u, v).

Proof. By the fact that RD(u, v) = L†(u, u) + L†(v, v)− 2L†(u, v), we have that

L†(v, v)− L†(u, v) =
1

2
(RD(u, v) + L†(v, v)− L†(u, u))

Therefore, to prove that L†(v, v) > L+
uv , it suffices to prove that

RD(u, v) > L†(u, u)− L†(v, v).
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By Lemma B.5, we have that

L†(u, u)− L†(v, v) =
1

n

(∑
w∈V

RD(u,w)−
∑
w∈V

RD(v, w)

)

=
1

n

∑
w∈V

RD(u,w)−RD(v, w)

=
1

n

∑
w∈V \{u,v}

RD(u,w)−RD(v, w) (as RD(v, u) = 0)

≤ 1

n

∑
w∈V \{u,v}

RD(u, v) (Triangle inequality.)

=
n− 2

n
RD(u, v) < RD(u, v).

Lemma B.11. Let G be a graph and let L denote its graph Laplacian. Let u ∈ V . Then either

1. L†(u, u) > L†(u, v) for all v ∈ V , or

2. L†(u, v) = 0 for all v ∈ V .

Proof. Let G1, · · · , Gk denote the connected components of G. Then, we have that L = L1 ⊕ · · · ⊕ Lk and thus
L† = L†

1 ⊕ · · · ⊕L†
k. For each connected component Gl, if it contains more than 1 vertex, then by Lemma B.10, L†

l satisfies
the condition that the diagonal entries are strictly larger than all other entries in the corresponding rows. If Gl contains only
1 vertex, then L†

l = 0 and hence the corresponding row and column in L† is always 0. This concludes the proof.

Now, we finish the proof of Lemma B.9.

Proof of Lemma B.9. By the definition of the L†-WL test, χ(1)

L†
G

(u) = χ
(1)

L†
H

(v) implies that {{L†
G(u,w) : w ∈ VG}} =

{{L†
H(v, x) : x ∈ VH}}. By Lemma B.11, we know that either the multisets {{L†

G(u,w) : w ∈ VG}} = {{L†
H(v, x) :

x ∈ VH}} are all 0s, in which case L†
G(u, u) = 0 = L†

H(v, v), or they have the same maximal element, which is
L†
G(u, u) = L†

H(v, v).

B.3. SPE APE-GT is Stronger than RD-RPE-GT

Background. First, we provide the definition of SPE (Huang et al., 2024). Denote the eigenvalues and eigenvectors of
the Laplacian as λ1 ≤ . . . ≤ λ|V | and z1, . . . , z|V |. Let Λ := [λ1, . . . , λ|V |] ∈ R|V | and V := [z1| · · · |z|V |] ∈ R|V |×|V |, so
L = V diag(Λ)V T .

Stable and expressive positional encoding (SPE) is the APE

SPE(V,Λ) = g(V diag(f(Λ))V T ),

where f : Rn → Rn is a permutation-equivariant function like an elementwise MLP or DeepSets (Zaheer et al., 2017) and
g : Rn×n → Rn is any graph neural network. In our context, we assume that f is a DeepSets network and g is a 2-EGN.

By removing the final layer of 2-EGN from SPE, one obtains a natural RPE that we call the relative-SPE (RSPE):
RSPE(V,Λ) = V diag(f(Λ))V T .

Lemma B.12. If a chosen RSPE is diagonally-aware (or diagonally augmented), then there exists a 2-EGN g such that
RSPE-RPE-GT is equivalent to SPE-APE-GT in terms of distinguishing power.

Proof. This follows from Theorem 3.10.

Notice that when f is an elementwise function, RSPE reduces to a spectral kernel and we hence have the following result;
however, RSPE is more general than spectral kernels as f(Λ)i may be a function of all the eigenvalues, not just the ith
eigenvalue. Accordingly, we have the following lemma.
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Lemma B.13. RSPE can compute any spectral kernel.

Based on the lemma, we are able to prove our main result in this section.

Theorem 4.4. For unfeatured graphs, diagonally augmented SPE-APE-GT is at least as strong as RD-RPE-GT.

Proof. The precise statement of the result is that there exists a choice of RSPE with the diagonal augmentation such that its
corresponding SPE-APE-GT is at least as strong as RD-RPE-GT.

By Lemma B.12, we know that there exists a 2-EGN g such that RSPE-RPE-GT is equivalent to SPE-APE-GT in terms
of distinguishing power. Therefore, it suffices to show that RSPE-RPE-GT is at least as strong as RD-RPE-GT. Since the
pseudoinverse of the Laplacian L† is a spectral kernel, by Lemma B.13 RSPE can be chosen so that its corresponding
RSPE-WL is at least as strong as L†-WL. Since the extra diagonal augmentation of the two RPEs will not change the relative
distinguishing power of their RPE-augWL test, by Lemma 3.6 and the fact that RD is diagonally-aware, we conclude the
proof.

B.4. Powers of Matrices and Spectral Kernels: Proofs from Section 4.3

We want to show that the multidimensional RPE (I, L, . . . , Lk) is equivalent to spectral kernels in distinguishing power. To
prove this, we will use a basic result from the interpolation literature showing that any function on k points can be fit exactly
by a (k − 1)-degree polynomial p.

Lemma B.14. Let f : R → R be any function and let {x1, . . . , xn} ⊂ R. Then there exists an (n− 1)-degree polynomial
p : R → R such that p(xi) = f(xi) for all 1 ≤ i ≤ n.

Theorem 4.6. (I, L, . . . , L2n−1)-WL is at least as strong as Kf -WL on graphs with at most n nodes.

Proof. LetG andH be graphs such thatKf -WL distinguishesG andH . Let {λG,1, . . . , λG,n} and {λH,1, . . . , λH,n} be the
spectra of the LaplaciansLG andLH respectively, and denote their union {λG1 , . . . , λGn }∪{λG1 , . . . , λGn } = {λ0, . . . , λ2n−1}
(without loss of generality, we assume these elements are distinct). Let p(x) =

∑2n−1
i=0 cix

i be the polynomial guaranteed
by Lemma B.14 for the point cloud {λ0, . . . , λ2n−1} and for the function f in defining Kf . Let pl : R2n → R be the linear
function with the same coefficients as p, i.e. pl(x) =

∑2n−1
i=0 cixi. By linearity, if we apply pl elementwise on the tensor

(I, LG, . . . , L
2n−1
G ), we find that it equals Kf for G:

pl(I, LG, . . . , L
2n−1
G ) =

2n−1∑
i=0

ciL
i
G =

2n−1∑
i=0

n∑
j=2

ciλ
i
G,jzjz

T
j =

n∑
j=2

p(λG,j)zjz
T
j =

n∑
j=2

f(λG,j)zjz
T
j = Kf

G

The same calculation holds for H . Therefore, as Kf -WL distinguishes G and H , then pl ◦ (I, L, . . . , L2n−1)-WL
distinguishes G and H .

Moreover, Proposition B.1 implies (I, L, . . . , L2n−1)-WL distinguishes G and H . As the above argument can be repeated
(using different polynomials p) to show that (I, L, . . . , L2n−1) can distinguish any pair of graphs that Kf can, then
(I, L, . . . , L2n−1)-WL is as strong as Kf -WL on graphs with n nodes.

The following theorem uses normalized versions of the adjacency matrix and Laplacian. Recall that D denotes the degree
matrix, A denotes the adjacency matrix, and L denotes the graph Laplacian. The symmetrically-normalized adjacency
matrix is Â = D−1/2AD−1/2, and its symmetrically-normalized Laplacian is L̂ = D−1/2AD−1/2 = I − Â. We let
µ1 ≤ · · · ≤ µn denote eigenvalues of Â and let ν1 ≤ · · · ≤ νn denote eigenvalues of L̂

Note that νi = 1−µi. Moreover, Â and L̂ they have the same set of eigenvectors {x1, . . . , xn} (up to choice of orthonormal
basis). For a function f : R+ → R+, we define the normalized spectral kernel as K̂f =

∑n
i=2 f(νi)xix

T
i .

Theorem 4.8. (I, Â, . . . , Â2n−1)-WL is at least as strong as K̂f -WL on graphs with at most n nodes.

Proof. This theorem follows as the eigenvalues µi of Â and νi of L̂ can be matched as µi = 1− νi. The rest of the proof is
the same as Theorem 4.6 by using polynomials to fit the function f̂(x) = f(1− x).

Theorem 4.9. (I,H(1), . . . ,H(2n−1))-WL is at least as strong as Kf -WL on graphs with at most n nodes.
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Proof. This theorem follows as the eigenvalues of H(t) are e−tλi = (e−λi)t, so the proof is the same as the proof of
Theorem 4.6 by using polynomials to fit the function f̂(x) = f(− log(x)).

B.5. Common Matrices: Proof of Proposition 4.10

Proposition 4.10. A, Â, Ã, L, L̂ and L̃ induce equivalent RPE-augWL tests. In particular, all of these RPE-augWL tests
are equally strong as the WL test.

Proof. By Proposition B.16 below, we know that A-WL is equivalent to the WL test. Hence, we only need to show that all
other RPE-augWL tests are equivalent to A-WL.

Choose any featured graphs (G,XG) and (H,XH). Pick u ∈ VG and v ∈ VH . First of all, we observe the following fact.

Fact 4. χ(1)
AG

(u) = χ
(1)
AH

(v) simplies that degG(u) = degH(v).

Ã: We inductively prove that χ(t)
AG

(u) = χ
(t)
AH

(v) iff χ(t)

ÃG
(u) = χ

(t)

ÃH
(v). The case when t = 0 trivially holds. Assume that

the statement holds for some t ≥ 0. Then, we first assume that χ(t+1)
AG

(u) = χ
(t+1)
AH

(v). This implies that χ(1)
AG

(u) = χ
(1)
AH

(v).

By Fact 4, we have that degG(u) = degH(v). By induction, we have that χ(t)

ÃG
(u) = χ

(t)

ÃH
(v) and

{{(χ(t)

ÃG
(x), ÃG(u, x)) : x ∈ VG}} = {{(χ(t)

ÃH
(y), ÃH(v, y)) : y ∈ VH}}.

Hence, we have that

{{(χ(t)

ÃG
(x), AG(u, x)/ degG(u)) : x ∈ VG}} = {{(χ(t)

ÃH
(y), AH(v, y)/ degH(v)) : y ∈ VH}},

and thus χ(t+1)

ÃG
(u) = χ

(t+1)

ÃH
(v).

Conversely, assume that χ(t+1)

ÃG
(u) = χ

(t+1)

ÃH
(v). This implies that χ(1)

ÃG
(u) = χ

(1)

ÃH
(v). Similarly to Fact 4, we have that

degG(u) = degH(v). Then, the above argument can be repeated to show that χ(t+1)
AG

(u) = χ
(t+1)
AH

(v).

Therefore, Ã-WL is equivalent to A-WL.

Â: We prove that Â-WL is equivalent to Ã-WL and hence A-WL by showing that for any u ∈ VG and v ∈ VH , one has
for all t ≥ 0 that

χ
(t)

ÂG
(u) = χ

(t)

ÂH
(v) implies χ(t)

ÃG
(u) = χ

(t)

ÃH
(v) and χ(t+1)

ÃG
(u) = χ

(t+1)

ÃH
(v) implies χ(t)

ÂG
(u) = χ

(t)

ÂH
(v)

The case when t = 0 holds trivially.

Now assume that the statement holds for any t ≥ 1. χ(t+1)

ÂG
(u) = χ

(t+1)

ÂH
(v) implies that

(χ
(t)

ÂG
(u), {{(χ(t)

ÂG
(x), AG(u, x)/

√
degG(u) degG(x)) : x ∈ VG}})

= (χ
(t)

ÂH
(v), {{(χ(t)

ÂH
(y), AH(v, y)/

√
degH(v) degH(y)) : y ∈ VH}}).

By counting the number of non-zero elements on both sides, we have that degG(u) = degH(v). Hence,

(χ
(t)

ÂG
(u), {{(χ(t)

ÂG
(x), degG(u), AG(u, x)/

√
degG(x)) : x ∈ VG}})

= (χ
(t)

ÂH
(v), {{(χ(t)

ÂH
(y), degH(v), AH(v, y)/

√
degH(y)) : y ∈ VH}})

and thus

(χ
(t)

ÂG
(u), {{(χ(t)

ÂG
(x), degG(u), AG(u, x)) : x ∈ VG}})

= (χ
(t)

ÂH
(v), {{(χ(t)

ÂH
(y), degH(v), AH(v, y)) : y ∈ VH}}).
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Finally, by the inductive hypothesis we have that

χ
(t+1)

ÃG
(u) = (χ

(t)

ÃG
(u), {{(χ(t)

ÃG
(x), ÃG(u, x)) : x ∈ VG}})

= (χ
(t)

ÃH
(v), {{(χ(t)

ÃH
(y), ÃH(v, y)) : y ∈ VH}}) = χ

(t+1)

ÃH
(v).

For the other direction, assume that χ(t+2)

ÃG
(u) = χ

(t+2)

ÃH
(v). This implies that

(χ
(t+1)

ÃG
(u), {{(χ(t+1)

ÃG
(x), ÃG(u, x)) : x ∈ VG}})

= (χ
(t+1)

ÃH
(v), {{(χ(t+1)

ÃH
(y), ÃH(v, y)) : y ∈ VH}}).

It is obvious that degG(u) = degH(v). Let σ : VG → VH denote a bijection such that (χ(t+1)

ÃG
(x), ÃG(u, x)) =

(χ
(t+1)

ÃH
(σ(x)), ÃH(v, σ(x))) for all x ∈ VG. Then, we have that degG(x) = degH(σ(x)). Hence,

(χ
(t+1)

ÃG
(x), ÂG(u, x)) = (χ

(t+1)

ÃH
(σ(x)), ÂH(v, σ(x))). By the inductive hypothesis, we have that (χ(t)

ÂG
(x), ÂG(u, x)) =

(χ
(t)

ÂH
(σ(x)), ÂH(v, σ(x))). Therefore,

χ
(t+1)

ÂG
(u) = (χ

(t)

ÂG
(u), {{(χ(t)

ÂG
(x), ÂG(u, x)) : x ∈ VG}})

= (χ
(t)

ÂH
(v), {{(χ(t)

ÂH
(y), ÂH(v, y)) : y ∈ VH}}) = χ

(t+1)

ÂH
(v).

L, L̂, L̃: Note that the graph Laplacian L is combinatorially-aware. Hence by Theorem 4.16, L-WL is at least as strong as
the WL test and hence A-WL test. For the other direction, we prove the stronger result that χ(t)

AG
(u) = χ

(t)
AH

(v) implies that

χ
(t)
LG

(u) = χ
(t)
LH

(v) for any u ∈ VG and v ∈ VH .

The statement trivially holds when t = 0. Assume that the statement holds for some t ≥ 0. Then, we assume that
χ
(t+1)
AG

(u) = χ
(t+1)
AH

(v). This implies that χ(1)
AG

(u) = χ
(1)
AH

(v). By Fact 4, we have that degG(u) = degH(v). By definition,

χ
(t)
AG

(u) = χ
(t)
AH

(v) and hence by induction hypothesis, χ(t)
LG

(u) = χ
(t)
LH

(v). Now, from the fact that {{(χ(t)
AG

(x), AG(u, x)) :

x ∈ VG}} = {{(χ(t)
AH

(y), AH(v, y)) : y ∈ VH}}, we obtain a bijection σ : VG → VH such that (χ(t)
AG

(x), AG(u, x)) =

(χ
(t)
AH

(σ(x)), AH(v, σ(x))) for all x ∈ VG. We assume that σ(u) = v (otherwise we can modify σ so that the assumption

holds). Then, by inductive hypothesis we have that χ(t)
LG

(x) = χ
(t)
LH

(σ(x)) for all x ∈ VG. Furthermore, from the fact
that AG(u, x) = AH(v, σ(x)), σ(u) = v and degG(u) = degH(v), we have that LG(u, x) = LH(v, σ(x)) for all x ∈ VG.
Hence, {{(χ(t)

LG
(x), LG(u, x)) : x ∈ VG}} = {{(χ(t)

LH
(y), LH(v, y)) : y ∈ VH}}. Therefore, χ(t+1)

LG
(u) = χ

(t+1)
LH

(v). This
concludes the proof.

Therefore, L-WL is equivalent to A-WL. Similarly, L̂-WL is equivalent to Â-WL and L̃-WL is equivalent to Ã-WL. Hence,
all of these RPE-augWL tests are equivalent to the WL test.

B.6. Combinatorial-Awareness: Proof of Theorem 4.16

Theorem 4.16. Let ψ be a combinatorially-aware RPE. Then, ψ-WL is at least as strong as WL.

For any two featured graphs (G,XG) and (H,XH), we prove the following stronger lemma that immediately implies Theo-
rem 4.16.

Lemma B.15. Let ψ be a combinatorially-aware RPE. Let u ∈ G and v ∈ H . If χ(t)
ψG

(u) = χ
(t)
ψH

(v), then χ(t)
G (u) = χ

(t)
H (v).

Proof. We prove this by induction on the iteration. The case t = 0 holds trivially by definition of the two WL tests.

Now inductively suppose the theorem is true for iteration t. Let u ∈ G and v ∈ H such that χ(t+1)
ψG

(u) = χ
(t+1)
ψH

(v).

First, by definition, χ(t)
ψG

(u) = χ
(t)
ψH

(v). This and the inductive hypothesis imply χ(t)
G (u) = χ

(t)
H (v).
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Next, by definition, there is a bijection σ : VG → VH such that (χ(t)
ψG

(w), ψG(u,w)) = (χ
(t)
ψH

(σ(w)), ψH(v, σ(w)))
for all w ∈ VG. This implies ψG(u,w) = ψH(v, σ(w)) if and only if both {u,w} and {v, σ(w)} are edges or non-
edges; therefore, {{χ(t)

ψG
(w) : {u,w} ∈ EG}} = {{χ(t)

ψH
(x) : {v, x} ∈ EH}}. This and the inductive hypothesis imply

{{χ(t)
G (w) : {u,w} ∈ EG}} = {{χ(t)

H (x) : {v, x} ∈ EH}}. This and the observation from the previous paragraph imply
χ
(t+1)
G (u) = χ

(t+1)
H (v).

Note that the adjacency matrix A is trivially combinatorially-aware and hence A-WL is at least as strong as the WL. In fact,
the other direction also holds and hence we have that the A-WL and WL are equally strong.

Proposition B.16 (RPE-augWL generalizes WL). Consider the RPE given by the adjacency matrix A. Given two graphs G
and H , then χ(G) = χ(H) iff χA(G) = χA(H).

Proof. We only need to prove the direction that the WL is at least as strong as the A-WL. Let (G,XG) and (H,XH) be two
featured graphs. We prove the following stronger statement:

Lemma B.17. Assume that {{χ(t)
G (u) : u ∈ VG}} = {{χ(t)

H (v) : v ∈ VH}}. Let u ∈ G and v ∈ H . If χ(t)
G (u) = χ

(t)
H (v), then

χ
(t)
AG

(u) = χ
(t)
AH

(v) and hence {{χ(t)
AG

(u) : u ∈ VG}} = {{χ(t)
AH

(v) : v ∈ VH}}.

Proof of Lemma B.17. We prove this by induction on the iteration. The case t = 0 holds trivially by definition of the two
WL tests.

Now inductively suppose the theorem is true for iteration t. Let u ∈ G and v ∈ H such that χ(t+1)
G (u) = χ

(t+1)
H (v). By

definition, χ(t)
G (u) = χ

(t)
H (v) and {{χ(t)

G (w) : {u,w} ∈ EG}} = {{χ(t)
H (x) : {v, x} ∈ EH}}. By induction assumption, we

have that χ(t)
G (u) = χ

(t)
H (v). Furthermore, there is a bijection σ : NG(u) → NH(v) such that χ(t)

G (w) = χ
(t)
H (σ(w)) for

all w ∈ NG(u). Now, since {{χ(t)
G (x) : x ∈ VG}} = {{χ(t)

H (y) : y ∈ VH}}, we have that {{χ(t)
G (x) : x ∈ VG\NG(u)}} =

{{χ(t)
H (y) : y ∈ VH\NH(v)}}. Hence there exists a bijection τ : VG\NG(u) → VH\NH(v) such that χ(t)

G (x) = χ
(t)
H (τ(x))

for all x ∈ VG\NG(u). Now, we define a bijection Φ : VG → VH as the union of σ and τ . In this way, we have that for any
x ∈ VG, AG(u, x) = AH(v,Φ(x)) and χ(t)

A (x) = χ
(t)
A (Φ(x)). Hence, we have that

(χ
(t)
AG

(u), {{(χ(t)
AG

(x), AG(u, x)) : x ∈ VG}}) = (χ
(t)
AH

(v), {{(χ(t)
AH

(y), AH(v, y)) : y ∈ VH}}).

This implies that χ(t+1)
AG

(u) = χ
(t+1)
AH

(v) and we hence concludes the proof.

This concludes the proof.

B.7. Resistance Distance is not Combinatorially-Aware

In Figure 6, we show a graph G so that RD(1, 3) = RD(4, 5) = 1 but {4, 5} ∈ EG and {1, 3} /∈ EG. This proves that the
resistance distance is not combinatorially-aware.

1

2

3

4 5

Figure 6. RD(1, 3) = RD(4, 5) = 1.
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B.8. Resistance Distance and Block Cut-Edge Component Trees

For a connected graphG, a cut edge is an edge e ∈ EG such thatG\{e} is disconnected. An (edge-)biconnected component
of G is a maximal subset U ⊂ VG such that the subgraph of G induced by U is connected and has no cut edges. The
block cut-edge tree of G is the tree whose vertices are the edge-biconnected components BCC(G) of G and its edges are
{{C1, C2} : C1 ̸= C2 ∈ BCC(G), ∃{u, v} ∈ EG such that u ∈ C1 & v ∈ C2}, i.e. the edges of the block cut-edge tree
correspond to cut edges in G that connect two edge-biconnected components.

Similarly, a cut vertex is a vertex v ∈ VG such that G \ {v} is disconnected.

In this section, we prove the following theorem.

Theorem B.18. Let G and H be unfeatured graphs.

1. Let {u, v} ∈ EG and {x, y} ∈ EH . If {{χ(t)
RDG

(u), χ
(t)
RDG

(v)}} = {{χ(t)
RDH

(x), χ
(t)
RDH

(y)}} for all t ≥ 0, then {u, v} is
a cut edge if and only if {x, y} is a cut edge.

2. If χRD(G) = χRD(H), then the block cut-edge trees of G and H are isomorphic.

Background The following are well-known facts about effective resistance that will be useful for proving this theorem.

Lemma B.19. Let G be a graph with {u, v} ∈ EG. Then RDG(u, v) ≤ 1. Moreover, RDG(u, v) = 1 if and only if {u, v}
is a cut edge.

Lemma B.20. Let G be a graph with u, v, w ∈ V . Then RDG(u, v) +RDG(v, w) = RDG(u,w) if and only if v is a cut
vertex such that u and w are disconnected in G \ {v}.

Notation For any pair of vertices u and v of a graph G, their resistance distance is denoted by RDG(u, v); however, we
may drop the subscript G when it is clear from the context.

Recall that the notation χRD(G) = χRD(H) means that two graphs G and H have the same multisets of the RD-WL
colorings of their vertices for all t ≥ 0, i.e. {{χ(t)

RDG
(v) : v ∈ VG}} = {{χ(t)

RDH
(v) : v ∈ VH}}, where χRDG

and χRDH
are

RD-WL colorings of G and H , respectively. Similarly, we define χRDG
(u) as the ordered tuple (χ

(0)
RDG

(u), χ
(1)
RDG

(u), . . .).

In other words, χRDG
(u) = χRDH

(v) if and only if χ(t)
RDG

(u) = χ
(t)
RDH

(v) for all t ≥ 0. We call these the colors of the
graphs and nodes, respectively. We prove the following lemma about this new notation.

Lemma B.21. Let u ∈ VG and u′ ∈ VH be such that χRDG
(u) = χRDH

(u′). Then {{(χRDG
(v), RDG(u, v)) : v ∈

VG}} = {{(χRDH
(v′), RDH(u′, v′)) : v′ ∈ VH}}.

Proof. If not, then there is some iteration t such that {{(χ(t)
RDG

(v), RDG(u, v)) : v ∈ VG}} ̸= {{(χ(t)
RDH

(v′), RDH(u′, v′)) :

v ∈ VH}}. In this case, clearly χ(t+1)
RDG

(u) ̸= χ
(t+1)
RDH

(u′).

Lemma B.22. Let C be any set of colors. Let u ∈ VG and u′ ∈ VH be such that χRDG
(u) = χRDH

(u′). Let D(u)
(respectively, D(u′)) be the multisets of the resistance distances of all vertices of G (respectively, H) with color C
from u (respectively, u′), i.e. D(u) = {{RDG(u, v) : v ∈ VG, χRDG

(v) ∈ C}} and D(u′) = {{RDH(u′, v′) : v′ ∈
VH , χRDH

(v) ∈ C}}. Then D(u) = D(u′). In particular, the mean, minimum, and maximum of the multisets D(u) and
D(u′) are equal.

Proof. If these sets are not the same, then by Lemma B.21, it cannot be the case that χRDG
(u) = χRDH

(u′).

Lemma B.23. Let {u, v} be a cut edge in G, and let Su and Sv be the vertex sets of the connected components of G \ {u, v}
such that u ∈ Su and v ∈ Sv. Let Cuv ⊂ V be the subset of all vertices that have RD-WL-color χRDG

(u) or χRDH
(v).

Then Su ∩ Cuv = {u} or Sv ∩ Cuv = {v}.

Proof. Let x be the farthest vertex of Cuv (with respect to the resistance distance) from the set {u, v} in G. Assume x ̸= u
and x ̸= v, otherwise the statement of the lemma trivially holds. Without loss of generality assume x ∈ Su. We show that
Cuv ∩ Sv = {v}.
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Let y ∈ Sv, and y ̸= v. Let my, mu an mv be the maximum (resistance) distance of y, u and v from any vertex in
Cuv. Note mu = RD(u, x), and mv = RD(v, x) = 1 + RD(u, x) because of the choice of x. Further, we have
my ≥ RD(y, v) + RD(v, x) = RD(y, v) + mv > mv, and that my ≥ RD(y, u) + RD(u, x) = RD(y, u) + mu =
RD(y, v) + 1 +mu > mu as {u, v} is a cut edge. Thus, my ̸= mu and my ̸= mv. In particular, the list of distances of
both v and u to vertices in Cu,v are different from the list of distances of y to these vertices. Hence, by Lemma B.22, the
color χRDG

(y) is different from both of the colors χRDG
(u) and χRDG

(v).

Theorem B.24. Let G and H be two graphs with the same RD-WL colorings. Let {u, v} ∈ EG be a cut edge, and let
{u′, v′} ∈ EH be such that χRDG

(u) = χRDH
(u′) and χRDG

(v) = χRDH
(v′). Then, {u′, v′} is a cut edge in H .

Proof. Let Su and Sv be the vertex sets of the connected components of G\{u, v} such that u ∈ Su and v ∈ Sv. Also,
let CGuv (respectively, CHu′v′) be the set of all vertices that are colored χRDG

(u) or χRDG
(v) in G (respectively, in H). By

Lemma B.23, and without loss of generality, we assume CGuv ∩ Sv = {v}. Therefore, the closest vertex of CGuv to v is u,
which is at distance 1 to v since {u, v} is a cut edge; the vertex u is the closest to v as there are no other vertices besides v in
CGuv ∩ Sv , and any vertex in CGuv ∩ Su is at distance at least 1 from v via the series formula of the resistance distance.

Since χRDG
(v) = χRDH

(v′), the closest vertex in CHu′v′ to v′ has distance 1 from v′—otherwise χRDH
(v′) would be

different from χRDG
(v) by Lemma B.22. Moreover, RDH(u′, v′) ≤ 1 as {u′, v′} ∈ EH . Thus, RDH(u′, v′) = 1 and, by

Lemma B.19, {u′, v′} is a cut edge.

Lemma B.25. Let G and H be two graphs with the same RD-WL colorings. Let {u, v} be a cut edge in G and Su, Sv be
the partitions of G\{u, v}. Let {u′, v′} be a cut edge in H such that χRDG

(u) = χRDH
(u′) and χRDG

(v) = χRDH
(v′),

and let S′
u′ , S′

v′ be partitions of H\{u′, v′}. Let C be any subset of colors used in these equivalent colorings. Let
Dv = {{d1, . . . , dk}} be the list of distances of vertices with color C in Sv from v and let Lu = {{ℓ1, . . . , ℓt}} be the list of
distances of vertices with color C in Su from u. Similarly, let D′

v′ = {{d′1, . . . , d′k′}} be the list of distances of vertices with
color C in S′

v′ from v′ and let L′
u′ = {{ℓ′1, . . . , ℓ′t′}} be the list of distances of vertices with color C in S′

u′ from u′. Then, we
have Dv = D′

v′ and Lu = L′
u′ . In particular, |Dv| = |D′

v′ | and |Lu| = |L′
u′ |.

Proof. Without loss of generality, by permuting indices, let DI = Dv ∩ D′
v′ = {{d1, . . . , dp}} = {{d′1, . . . , d′p}}, and

LI = Lu ∩ L′
u′ = {{ℓ1, . . . , ℓq}} = {{ℓ′1, . . . , ℓ′q}}. Hence,

D′
v′ = {{d1, . . . , dp, d′p+1, . . . , d

′
k′}},

and
L′
u′ = {{ℓ1, . . . , ℓq, ℓ′q+1, . . . , ℓ

′
t′}}.

By the definition of DI ,
{{d′p+1, . . . , d

′
k′}} ∩ {{dp+1, . . . , dk}} = ∅, (3)

and
{{ℓ′q+1, . . . , ℓ

′
t′}} ∩ {{ℓq+1, . . . , ℓt}} = ∅. (4)
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Since χRDG
(v) = χRDH

(v′), by Lemma B.22, the list of distances of vertices with color C from v in G is the same as the
list of vertices with color C from v′ in H . As {u, v} and {u′, v′} are cut edges, then Dv ∪ (Lu + 1) = D′

v′ ∪ (L′
u′ + 1),

where +1 is applied to all elements of a multiset. Specifically,

{{d1, . . . , dk, ℓ1 + 1, . . . , ℓt + 1}} = {{d′1, . . . , d′k′ , ℓ′1 + 1, . . . , ℓ′t′ + 1}}
= {{d1, . . . , dp, d′p+1, . . . d

′
k′ , ℓ1 + 1, . . . , ℓq + 1, ℓ′q+1 + 1 . . . ℓ′t′ + 1}}

Therefore, removing DI and LI from these multisets, we conclude

{{dp+1, . . . , dk, ℓq+1 + 1, . . . , ℓt + 1}} = {{d′p+1, . . . d
′
k′ , ℓ

′
q+1 + 1 . . . ℓ′t′ + 1}}

Equations (3) and (4) imply

{{dp+1, . . . , dk}} = {{ℓ′q+1 + 1 . . . ℓ′t′ + 1}},

and

{{ℓq+1 + 1, . . . , ℓt + 1}} = {{d′p+1, . . . d
′
k′}}. (5)

On the other hand, since the list of distances of vertices with color C from u in G is the same as the list of vertices with
color C from u′ in H , i.e. (Dv + 1) ∪ Lu = (D′

v′ + 1) ∪ L′
u′ . Specifically,

{{d1 + 1, . . . , dk + 1, ℓ1, . . . , ℓt}} = {{d′1 + 1, . . . , d′k′ + 1, ℓ′1, . . . , ℓ
′
t′}}

= {{d1 + 1, . . . , dp + 1, d′p+1 + 1, . . . d′k′ + 1, ℓ1, . . . , ℓq, ℓ
′
q+1 . . . ℓ

′
t′}}.

Therefore,

{{dp+1 + 1, . . . , dk + 1, ℓq+1, . . . , ℓt}} = {{d′p+1 + 1, . . . d′k′ + 1, ℓ′q+1 . . . ℓ
′
t′}}.

Again, Equations (3) and (4), imply

{{dp+1 + 1, . . . , dk + 1}} = {{ℓ′q+1 . . . ℓ
′
t′}},

and

{{ℓq+1, . . . , ℓt}} = {{d′p+1 + 1, . . . d′k′ + 1}}. (6)

Combining Equations (5) and (6), we conclude

{{ℓq+1, . . . , ℓt}} = {{d′p+1 + 1, . . . d′k′ + 1}} = {{ℓq+1 + 2, . . . , ℓt + 2}}.

Thus, {{ℓq+1, . . . , ℓt}} is empty, implying Lu = L′
u′ , and Dv = D′

v′ , as desired.

Lemma B.26. Let G and H be two graphs with the same RD-WL colorings. Let (i) {u, v} be a cut edge in G, (ii) u′ ∈ VH
such that χRDG

(u) = χRDH
(u′), (iii) v′ ∈ VH such that χRDH

(v′) = χRDG
(v), and RDH(u′, v′) = 1. Then, {u′, v′}

must be a cut edge in H .

Note that the lemma does not trivially follow from Lemma B.19 since {u′, v′} is not assumed to be an edge a priori.

Proof. Let Cuv be the set of all vertices that are colored χRDG
(u) or χRDG

(v) in G. By Lemma B.23, Su ∩ Cuv = {u} or
Sv ∩ Cuv = {v}. Assume that Sv ∩ Cuv = {v}; the other case is similar.

Suppose, to derive a contradiction, that {u′, v′} is not a cut edge. Letw′ be a neighbor of v′ that resides in the same connected
component as u′ in H\{v′}. (In particular, if v′ is not a cut vertex w′ can be any neighbor of v′). Such a w′ exists and is
distinct from u′, otherwise {u′, v′} would be a cut edge. We know that RDH(w′, u′) < RDH(w′, v′) +RDH(v′, u′) =
RDH(w′, v′) + 1; the triangle inequality implies the inequality, and it is a strict inequality because, in the case of equality,
v′ would a cut vertex separating w′ and u′, contradicting the choice of w′. Let ℓ = RDH(w′, v′), and note that ℓ < 1, as
otherwise {w′, v′} is a cut edge between v′ and u′ implying that RDH(u′, v′) > 1.
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Since χRDG
(v) = χRDH

(v′), there must exist a vertexw ∈ VG such that χRDG
(w) = χRDH

(w′) andRDG(v, w) = ℓ < 1.
Since all vertices in Su are at a distance at least one from v, we have w ∈ Sv . Let Lw be the list of distances of vertices in
Cuv from w. Since Sv ∩ Cuv = {v}, the smallest distance in Lw is ℓ and the second smallest distance in ℓ+ 1, to v and u,
respectively.

Let Cu′v′ be the set of all vertices in H that are colored χRDH
(u′) = χRDG

(u) or χRDH
(v′) = χRDG

(v). Then, let Lw′

be the list of all distances of w′ to vertices in Cu′v′ . Since χRDH
(w′) = χRDG

(w), then Lw′ = Lw by Lemma B.22. In
particular, the smallest two numbers in Lw′ are ℓ and ℓ + 1. We know RDH(w′, v′) = ℓ, and by the triangle inequality
RDH(w′, u′) ≤ RDH(w′, v′) + 1 = ℓ + 1. Since, the second smallest number in the list is ℓ + 1, and not smaller, the
inequality must be tight, i.e. RDH(w′, u′) = RDH(w′, v′) + 1 = RDH(w′, v′) + RDH(v′, u′). Therefore, v′ is a cut
vertex separating u′ and w′, contradicting the choice of w′.

Lemma B.27. Let G and H be two graphs with the same RD-WL colorings. Let {u, v} be a cut edge in G and {u′, v′}
a cut edge in H such that χRDG

(u) = χRDH
(u′) and χRDG

(v) = χRDH
(v′). Furthermore, let Bv (resp. B′

v′) be the
biconnected component of v (resp. v′) in G (resp. H). Finally, let K (resp. K ′) be the set of all cut edges except {u, v}
(resp. {u′, v′}) with one endpoint in Bv (resp. {u′, v′}). Then there exists a bijection between f : K → K ′, such that
for any {x, y} ∈ K and {w, z} = f({x, y}), if x in on v’s side in G\{x, y} and w is on v′’s side in H\{w, z}, then
χRDG

(x) = χRDH
(w) and χRDG

(y) = χRDH
(z).

Proof. Let Sv (resp. S′
v′) be the vertex set of the connected component of G\{u, v} (resp. H\{u′, v′}) that contains v

(resp. v′).

Let X = {x1, . . . , xk} be the set of endpoints of K that are in Bv ordered such that RD(v, x1) ≤ . . . ≤ RD(v, xk). (Note
that each xi may be connected to multiple cut edges of K.)

By Lemma B.25, there exists X ′ = {x′1, . . . , x′k} ⊂ S′
v′ such that for every i ∈ [k]

(1) χRDG
(xi) = χRDH

(x′i) and

(2) RDG(v, xi) = RDH(v′, x′i).

(Let CX be the set of all vertices that are colored by the colors {χRDG
(x1), . . . , χRDG

(xk)} in Sv . Note, CX is a (possibly
proper) superset of {x1, . . . , xk}. Therefore, by Lemma B.25, there exists a set C ′

X ⊆ Sv′ , such that there is a one-to-one
correspondence between CX and C ′

X with corresponding pairs have the same color and distance to v and v′. The existence
of X ′ with the aforementioned properties follows as X ⊆ CX .)

For each i ∈ [k], let Yi be the set of all vertices that are adjacent to xi with a cut edge in K. Since χRDG
(xi) = χRDH

(x′i),
by Lemma B.26, for each i ∈ [k], there exists Y ′

i such that (1) for all y′ ∈ Y ′
i , {x′i, y′} is a cut edge, and (2) the multisets

{{χRDG
(y)}}y∈Yi

= {{χRDH
(y′)}}y′∈Y ′

i
.

Next, we show for every i ∈ [k] and every y′ ∈ Y ′
i , RDH(v′, x′i) < RDH(v′, y′i), or equivalently, v′ is in the connected

component of x′i in H\{x′i, y′}. We prove this by induction on i.

For each i ∈ [k], and each y ∈ Yi, let Sy be the set of all vertices on the y side in G\{xi, y}, and let Si =
⋃
y∈Yi

Sy. For
all h < i, and each y′ ∈ Y ′

h, let S′
y′ be the set of all vertices on the y′ side in H\{x′h, y′}, and let S′

h =
⋃
y′∈Y ′

h
S′
y′ . Note

Sv\
⋃
h<i Sh contains v and, by the induction hypothesis, S′

v′\
⋃
h<i S

′
h contains v′.

By Lemma B.25 and that RDG(v, xh) = RDH(v′, x′h), Sh and S′
h induce the same set of color/distance pairs from v

and v′, respectively; i.e. there is a one-to-one map f from Sh to S′
h such that for each pair (q, f(q)), (i) q and f(q) have

the same color, and (ii) RDG(v, q) = RDH(v′, f(q)). Thus, Bv,i = Sv\
⋃
h<i Sh and B′

v,i = S′
v′\
⋃
h<i S

′
h induce the
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same set of color/distance pairs from v and v′, respectively. Let C be the set of colors of vertices that are incident to
cut edges. The ith smallest distance with color from C in Bv,i corresponds to xi. We know x′i has the same color as xi,
and RDG(v, xi) = RDH(v′, x′i). If there exists y′ ∈ Y ′

i such that the RDH(v′, y′) < RDH(v′, xi) then the ith smallest
number in B′

v,i would be smaller than RDG(v, xi) which is a contradiction. Hence, RDH(v′, x′i) < RDH(v′, y′) for all
y′ ∈ Y ′

i , as desired.

Therefore, B′
v′ = S′

v′\
⋃
i∈[k] S

′
i is connected, and it has the same set of colors as Bv = Sv\

⋃
i∈[k] Si. So, it must be the

biconnected component that contains v′.

Theorem B.28. If two graphs G and H have the same RD-WL colorings, then their block cut-edge trees are isomorphic.

Proof. Let {u, v} be a cut edge in G such that Su is a biconnected component. Let {u′, v′} be an edge in H with
χRDG

(u) = χRDH
(u′) and χRDG

(v) = χRDH
(v′). By Lemma B.27, S′

u′ is a biconnected component of H . Root the
block cut-edge tree of G at Su and the block cut-edge tree of H at S′

u′ so all cut edges are directed away from Su and S′
u′ .

For a directed cut edge u→ v, define TG[v] the be the block cut-edge subtree rooted at the biconnected component of v. We
use induction on the size of TG[v] to show that for two same colored edges with the same direction u → v and u′ → v′,
TG[v] and TH [v′] are isomorphic.

Let Bv and B′
v′ be the biconnected components of v in G and v′ in H respectively. For the base case that Bv = Sv,

then by Lemma B.27, B′
v′ = S′

v′ and the statement holds. Alternatively, also by Lemma B.27, the outgoing directed
edges of Bv and B′

v′ are in one-to-one correspondence with matching head and tail colors. Let these sets of edges be K
and K ′, respectively, and let f be the bijection between them that preserves colors. For any x → y ∈ K, and its image
f(x) → f(y) = w → z ∈ K ′, by the induction hypothesis, the block cut-edge subtrees TG[y] and TH [z] are isomorphic.
Therefore, TG[v] and TH [v′] are isomorphic.

C. Experiments
In this section, we carry out experiments to validate our two main results Theorem 3.8 and Theorem 3.10. Our code is
adapted from the GraphGPS module (Rampášek et al., 2022) and subsequent fork from Müller et al. (2024).

C.1. Graph Isomorphism: CSL

Table 1. Test performance on the CSL dataset of different APEs. Results are shown in the form of mean ± standard deviation. Experiments
are averaged over 5 runs.

CSL Dataset: Classification Accuracy (↑)
HKdiagSE RWSE

APE-GT 100± 0.00 100± 0.00
DeepSet RPE-GT 100± 0.00 100± 0.00

Table 2. Test performance on the CSL dataset of different RPEs. Results are shown in the form of mean ± standard deviation. Experiments
are averaged over 5 runs. The result for GIN was taken from Müller et al. (2024).

CSL Dataset: Classification Accuracy (↑)
RSPE Powers of Adjacency RD SPD Adjacency

RPE-GT 100± 0.00 100± 0.00 100± 0.00 90± 0.00 10± 0.00
EGN APE-GT 100± 0.00 100± 0.00 100± 0.00 90± 0.00 10± 0.00

GIN 10± 0.00

We consider the graph classification task on the Circular Skip Links (CSL) dataset (Dwivedi et al., 2023). The goal of the
CSL dataset is to classify graphs according to their isomorphism type. This is classified as a “Hard” task by Müller et al.
(2024).

To validate Theorem 3.8, we consider two different APEs: Random Walk Structural Encoding (RWSE) and Heat Kernel
Diagonal Structural Encoding (HKdiagSE) from the GraphGPS Library (Rampášek et al., 2022). For both APEs, we used
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times {1, ..., 20}. We test these APEs with APE-GTs and their corresponding RPEs by applying a DeepSet and the result
GTs are denoted DeepSet RPE-GTs.

To validate Theorem 3.10, we consider four different RPEs: RSPE (Huang et al., 2024), a stack of 20 powers of the
adjacency matrix (inspired by RRWP (Ma et al., 2023)), the resistance distance (RD), the shortest-path distance (SPD), and
the adjacency matrix. We then consider their corresponding APEs by applying a 2-EGN and the result GTs are denoted
EGN APE-GTs. We ran the RPE-GT and APE-GT for 1000 epochs each. Our results are averaged over 5 random seeds.
See Table 1 and Table 2 for the results.

As our theoretical results (Theorems 3.8 and 3.10) predict, RPE-GTs and EGN APE-GTs have the same classification
accuracy when using the same RPE. Likewise, APE-GT and DeepSets RPE-GT have the same classification accuracy when
using the same APE. This validates our main theorems.

Moreover, note that the accuracy of Adjacency-RPE-GT and GIN are equal, which agrees with Corollary 4.17.

C.2. Graph Isomorphism: BREC

Table 3. Performance of different RPEs on the BREC dataset. Basic, Regular, Extension, and CFI are subsets of the BREC dataset. Results
are shown in the form of mean ± standard deviation. Experiments are averaged over 5 runs.

BREC Dataset: Pair-Distinguishing Accuracy (↑)
Basic Regular Extension CFI Total

RPE: Resistance Distance (RD)
RPE-GT 100.00± 0.00 35.71± 0.00 100.00± 0.00 7.60± 1.14 54.40± 0.29

EGN APE-GT 100.00± 0.00 35.71± 0.00 100.00± 0.00 7.00± 1.23 54.25± 0.31
RPE: Shortest-Path Distance (SPD)

RPE-GT 26.67± 0.00 9.29± 0.00 40.8± 0.45 6.8± 0.11 19.15± 0.22
EGN APE-GT 26.67± 0.00 9.42± 0.28 41.00± 0.00 11.80± 0.45 20.50± 0.18

RPE: Stable Positional Encoding (SPE)
RPE-GT 97.00± 2.17 34.71± 0.57 96.00± 1.87 3.2± 4.47 51.5± 0.73

EGN APE-GT 0.97± 2.17 33.14± 0.97 98.80± 0.84 8.80± 1.30 53.05± 0.54
RPE: Stack of Powers of Adjacency Matrix

RPE-GT 100.00± 0.00 35.00± 00 94.6± 0.00 9.80± 0.84 53.55± 0.28
EGN APE-GT 83.00± 1.39 32.86± 0.00 88.20± 1.79 3.00± 00 46.75± 0.47

RPE: Adjacency Matrix
RPE-GT 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

EGN APE-GT 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 4. Performance of different APEs on the BREC dataset. Basic, Regular, Extension, and CFI are subsets of the BREC dataset.
Results are shown in the form of mean ± standard deviation. Experiments are averaged over 5 runs.

BREC Dataset: Pair-Distinguishing Accuracy (↑)
Basic Regular Extension CFI Total

APE: Heat Kernel Diagonal Structural Encoding (HKdiagSE)
APE-GT 56.00± 4.50 26.00± 0.57 38.00± 3.16 3.00± 00 27.75± 1.43

DeepSets RPE-GT 59.00± 4.01 18.86± 1.84 59.60± 6.11 1.2± 1.30 30.65± 1.57
APE: Random Walk Structural Encoding (RWSE)

APE-GT 84.33± 3.65 31.29± 0.83 62.40± 4.39 1.00± 0.00 39.45± 1.10
DeepSets RPE-GT 69.67± 5.32 21.29± 2.73 63.80± 2.39 0.4± 0.55 33.95± 1.81

We consider the graph isomorphism benchmark dataset BREC (Wang & Zhang, 2024). The BREC dataset tests a graph
neural network architecture’s ability to distinguish pairs of non-isomorphic graphs. Unlike the CSL dataset which poses the
graph isomorphism problem as a graph classification problem, the BREC dataset considers pairs of non-isomorphic graphs
and tests whether a graph neural networks can learn different representations for the two graphs. The graph neural network
is trained via contrastive learning on sets of graphs pairs with randomly permuted node indices. The graph neural network
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is then evaluated using the T 2 test on the learned features for each of the two graphs. The exact training and evaluation
procedures can be found in the original BREC dataset paper (Wang & Zhang, 2024).

We compared several RPEs on the BREC dataset. We found that RD, SPE, and a stack of 20 powers of the adjacency matrix
all perform similarly well and perform better than SPD in terms of total accuracy. Moreover, the adjacency matrix achieves
0% accuracy, which matches the theoretical results of Proposition 4.10 as all pairs of graphs in the BREC dataset are WL
indistinguishable.

We also compared two APEs on the BREC dataset: RWSE and HKdiagSE from the GraphGPS library (Rampášek et al.,
2022). For both APEs, we used times {1, ..., 20}. We found that RWSE slightly outperformed HKdiagSE.

Finally, for the most part, both RPEs and APEs achieved similar performance for their different architectures, i.e. RPE-GT
and EGN APE-GT or APE-GTs and DeepSets RPE-GT. This matches our theoretical results (Theorems 3.8 and 3.10).

However, one interesting thing we found is that there are several graph pairs in the CFI subset that SPD-GTs were able to
learn to distinguish while RD-GTs did not. This suggests that SPD-WL and RD-WL may be incomparable. Zhang et al.
(2023) show there are graphs that RD-WL can distinguish that SPD-WL cannot; this suggests the converse is true too,
although it is not a definitive proof of this fact and should not be interpreted as such. A question for future research would
be to prove that these pairs of graphs are indistinguishable by RD-WL or to find a RD-GT that could distinguish these pairs
of graphs.

Hyperparameter search was performed for each pair of PE and architecture.

C.3. Graph Regression: ZINC

Table 5. Test performance on the Small ZINC dataset. Results are shown in the form of mean ± standard deviation. Experiments are
averaged over 3 runs.

ZINC Dataset: MAE (↓)
# Parameters RD SPD SPE

RPE-GT 573922 0.096± 0.002 0.130± 0.010 0.132± 0.007
EGN APE-GT 520514 0.196± 0.004 0.217± 0.011 0.200± 0.007

# Parameters RD+EF SPD+EF SPE+EF
RPE-GT 696226 0.069± 0.004 0.092± 0.010 0.092± 0.001

EGN APE-GT 664818 0.110± 0.003 0.132± 0.004 0.126± 0.003

Although our theoretical results are for the distinguishing power of graph transformers and apply most directly to graph
classification/isomorphism tasks, we would also like to compare RPEs and APEs on real-world tasks beyond those. In
this experiment, we compare RPE-GTs and EGN APE-GTS for graph regression on the small ZINC dataset containing
12k graphs (Dwivedi et al., 2023). We consider the RPEs resistance distance (RD), shortest-path distance (SPD), and
SPE (Huang et al., 2024). See Table 5 for the results.

We test the models both with and without the use of edge features of graphs in the ZINC dataset. Edge features are distinct
from RPEs as they are not dependent on the graph structure and are associated to edges and not a pairs of vertices. For
the ZINC dataset, the features are one-hot encodings of the bond type (e.g. single, double, triple). When we include edge
features, we concatenate them to the RPE and pass the concatenated tensor to the model in place on the RPE. This use of
edge features is not captured by our theoretical results, and it is not clear if this is the best or most natural way of including
edge features in a graph transformer. Other papers have proposed different ways of incorporating edge features into a graph
transformer (Ma et al., 2023; Jin et al., 2023).

From Table 5, we see that the performance of EGN APE-GT is worse than the corresponding RPE-GT. This could be
partially explained by Theorem 3.10, which states that RPE-GTs have stronger distinguishing power than EGN APE-GTs
for graphs with node features (as the graphs in ZINC do). Additionally, we suspect that the training of the extra EGN layer
introduces additional difficulty in the training process, leading to worse performance of APE-GT compared to RPE-GT.
This result aligns with our expectations, suggesting that instead of converting an RPE into an APE, it may be better to use
the RPE directly in a RPE-GT.
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Hyperparameters & experimental setup. Our results are averaged over 3 random seeds. We ran the RPE-GT and
APE-GT for 1000 epochs each.

Following Zhang et al. (2023), the functions f1 and f2 in the RPE-GT head are embeddings into Gaussian kernels followed
by an MLP.

Hyperparameter search was performed for RPE-GTs and EGN APE-GTs. We chose the final hyperparameters for each
architecture to have similar numbers of parameters. Hyperparameters involved in our models are listed in Table 6.

Table 6.
Hyperparameters for ZINC Experiment

RPE GTs
# Transformer Layers: 14
# Transformer Heads: 8
# Gaussian Kernels 16

# MLP Layers 2
MLP Hidden Dimension (No Edge Features) 16

MLP Hidden Dimension (Edge Features) 16
EGN APE GTs

# Transformer Layers: 8
# Transformer Heads: 8

# EGN Layers 6
EGN Hidden Dim (No Edge Features) 48

EGN Hidden Dim (Edge Features) 64
APE Type Add

SPE
# DeepSets Layers 3

DeepSets Hidden Dimension 64
# Parameters 17217

C.4. Code

Code for all experiments can be found at https://github.com/blackmit/comparing_graph_transformers_via_
positional_encodings
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