SoK: Virtualization Challenges and Techniques in
Serverless Computing

Vasudha Devarakonda Aleksandr Earnest Chia-Che Tsai
vasudha.devarakonda@tamu.edu arearnest7@tamu.edu chiache@tamu.edu
Texas A&M University Texas A&M University Texas A&M University

College Station, Texas, USA

Abstract

This systematization of knowledge (SoK) paper summarizes
the discussion of virtualization challenges and the corre-
sponding techniques specific to serverless computing. We
examine virtualization solutions, including paravirtualiza-
tion, containers, lightweight hypervisors and kernels, and
unikernels, and their applicability to serverless. Then, we
discuss several challenges, including cold-start optimiza-
tion, resource co-location, benchmarking and the research-
production gap, hoping to inspire future research.

1 Introduction and Background

Serverless computing (denoted as “serverless” below) is one
of the newest cloud computing concepts which shifted the
relationship between cloud users and providers [13, 26]. This
has led to wide adoption of serverless backends [39, 48] to
many businesses as well as popularity among small-scale
developers to host their infrastructure. However, serverless
also introduces new challenges, especially since the model
put more responsibility on the providers to virtualize and op-
timize the clusters. This paper aims to highlight the perspec-
tive of the research community on serverless, how virtual-
ization is applied to serverless, and the remaining challenges
not yet addressed by the community.

What is serverless? Serverless is a distributed computing
paradigm, which can be best described with three primary
properties[26, 53]:

o Pay-per-invocation: Serverless workloads incur no charge
when there is no invocation and the development
model is entirely event-driven.

o Provider-managed stack: Serverless eliminates the “micro-
operations” of managing and monitoring the software
stack and shifts the responsibility of deploying and
scaling system runtimes to the providers.

e Efficient scaling: Some literature [26] mentions that
serverless excels at scaling speed, at reportedly tens
of thousands of invocations per second.

It was worth noting that serverless does not necessarily
equate Function-as-a-Service (FaaS)[18, 35]. Serverless can

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

College Station, Texas, USA

College Station, Texas, USA

be viewed as opposing to the traditional “serverful” paradigm,
which requires reservation of instances and management by
the users.

Serverless Applications and Workflows: Although single func-
tions tend to serve the needs of most users, chained func-
tions, i.e., workflows, are commonly used to build larger
cloud applications comprised of smaller, self-contained func-
tions [29, 37, 38, 53, 60]. Currently, workflow chaining either
relies on calling the gateway for the downstream function or
utilizes a side-car service such as Step Functions[5]. While
uncommon, cyclical behavior[4] and fan-in-fan-out[7, 34,
54] communication does exist among workflows. Applica-
tions for workflows include image processing[37, 38, 61],
machine learning[29, 38] and scientific workloads[54], but
can also consist of simple backends with branching logic
paths[21, 29, 43] expressed as function calls.

Contribution of this paper: This paper focuses on demysti-
fying the use of virtualization, including containerization—
which is a muddy domain of its own—-in the context of server-
less. Further, we summarize several observations regarding
the key challenges in adopting virtualization for serverless
and the potential solutions. Our hope is to draw attention to
the system challenges in virtualizing a serverless framework
and provide hints for future research.

2 Virtualization in Serverless

The textbook often describes virtualization as the process of
creating virtual machines (VMs), but in reality, this topic can
be virtualization is a spectrum. From virtual machines and
containers to more specialized solutions such as MicroVM
[1, 17, 33] and Unikernel [28, 45, 51], a variety of design
choices and trade-offs have been explored in the literature,
from the perspective of efficiency, security, compatibility,
or other properties. Mainly, we examine virtualization tech-
niques based on two aspects, on which many solutions have
experimented with various degrees: (1) How much the guest
kernel is modified to adapt to the hypervisor, or be merged
as part of the host kernel; and (2) Whether the hypervisor
multiplexes (emulates) IOs or lets them pass through. Next,
we will discuss some major categories of solutions and their
applicability to serverless. We illustrate the two spectra with
Figure 1 and highlight the “sweet spots® for serverless.

; : . Bestfor |;
. . .1 serverless]:
T oiaats | Ve | Unikemels| Containers

< »

Unmodified Guests Modified or Integrated Guests

Best for {Unikernels & 1
" / ; serverless ;t__l__|_g_h>tyv_e_|_g_h_t>(§_u_e_s_t_s/- ; VMs w/
sw/ !) i Paravirt. 10 | virtual
vioMMU || COMAIETS T itio) | evices

< >
- :

Pass-through 10 Emulated or virtualized 10

Figure 1. Showing virtualization techniques on two spectra,
one on how much the guest is modified or integrated into the
host, and the other on whether the IO requests from guests
have been pass-through or emulated.

Virtualization and Paravirtualization: Traditionally, "server-
ful" applications (opposite of serverless) make use of virtual
machines, with either type 1 (bare-metal) hypervisors [8—
10] or type 2 (hosted) hypervisors [12, 46, 50], to facilitate
multi-tenancy as a core property of cloud computing. The
formal definition of virtualization by Popek & Goldberg [49]
requires identicality between virtual and physical machines
and thus can incur non-trivial overheads from trapping and
emulating privileged operations in hypervisors. One of the
more efficient choices is paravirtualization [8], which in-
volves modifying the guests with hypercalls and cooperative
IO paths (e.g., ring buffers) to streamline hypervisor emula-
tion. For serverless applications, identicality is typically not a
concern because the entire underlying infrastructure and OS
is completely managed by the provider, so paravirtualized
guests are commonly used. Furthermore, evictable VMs or
VMs allocated on spared resources, such as spot instances [2]
and Harvest VMs [20, 62], are suitable choices for hosting
serverless applications given their ephemeral nature.

Containerization: Containers [19, 24] are lightweight sand-
boxes providing isolated OS and filesystem views for user ap-
plications. Container frameworks fuse two functionally dis-
tinctive layers: a packaging and deployment toolchain [24]
and an OS layer for isolation and virtualization [30]. Con-
tainers became popular for serverless mainly due to its con-
venience and the expensive startup time and resource over-
heads of “traditional” VM. However, containers fundamen-
tally offer only process level isolation and cannot provide the
same level of security isolation as VMs because the shared
host kernels[40, 56]. Solutions that suggest implementation
of more namespaces also risk making the container imple-
mentation more complex and heavy as a regular VM[59]. The
lack of security guarantees from containers leads to cloud
providers stacking containers with virtual machines, causing
even more resource wastes and startup delays [40].

"Lightweight" hypervisors and "Lightweight" guest kernels:
Modern serverless platforms aim to provide isolation and
cater multiple users on a single physical server. In addi-
tion, to maintain isolation between functions, they host one
function or container per lightweight virtual machine [33].
Firecracker [1] and Cloud Hypervisors [32] designed an al-
ternative to heavy-weight emulators like QEMU. Built on
top of KVM to create virtual machines, they simplify the
QEMU code base by eliminating unnecessary drivers and
using virtio for I/O virtualization, making them compatible
for “simple” serverless applications. LightVM [42] is another
strategy that aims to replace the heavy hypervisors like Xen.
It optimizes the creation of VMs by replacing XenStore with
a shared memory that reduces the communication overhead
between the guest VM and Dm0, which controls the creation
of the virtual machines. Further optimization is carried out
by splitting the creation of VM into two phases. The com-
mon stack between the VMs are pre created and kept in a
pool and the configuration file is extracted and built on these
existing shells [42]. RunD [33], adopted by Alibaba, identi-
fied the overheads due to rootfs in microVMs, virtio-fs and
virtio-blk with respect to Kata Containers [17] which host
containers on virtual machines. It divides the rootfs into read
and write and mounts them into the microVM by ovelayfs
to optimize the process of creation of containers when a
function is invoked. Another alternative approach to avoid
the overhead of creating a virtual machine is to use secure
containers. gVisor [23], for instance, limits the number of
system calls to the host OS to avoid information leaks by
traditional containers [22]. It provides a lightweight "linux-
like" interface on Linux kernels. Unlike virtual machines,
gVisor does not provide hardware virtualization. Instead, it
provides a layer that intercepts access to host OS. Gvisor
sandbox consists of two main components; Sentry and Gofer.
Sentry runs the kernel for the containers hosted in the sand-
box. It narrows down the syscalls that can be made to the
host by intercepting them to make the calls on behalf of the
applications hosted on the container. Gofer handles the file
system access which is associated with each container in the
sandbox[23]. Though gVisor introduces security checks to
containers it compromises the performance benefits[45].
While the above optimized hypervisors guarantee isola-
tion and improve the creation of sandbox to deploy functions,
the traditional Linux kernels are redundant and add high
memory footprint per sandbox setup [33, 45]. Linux kernels
have above 400 syscalls and multiple overlapping functions
which increases the need for more security and isolation
for multi tenant environments [42]. RunD [33] proposes a
lightweight Linux kernel by removing some features that
are redundant for serverless. Features like loop device, acpi,
ftrace, graphics-related items, i2c, and ceph are disabled. This
process reduced the kernel image footprint by 16 MB. Further,
it identified that creation of cgroups cannot be parallelized
and hence it maintains a pool of cgroups that are renamed

during sandbox creation. [42] proposed TinyX which is a
“minimalistic” OS which aims to provide lower boot and cre-
ation time. It starts with a base overlayFS on Debian systems
and installs necessary libraries for applications thus making
it lightweight. Amazon Lambda also uses a lightweight Linux
because of its extensive adoption and debugging [1, 11].

Unikernels: The above strategies focus on modification of
the Linux kernel for serverless. However, there has been
research towards replacing Linux kernels with Unikernels
for serverless [28, 45, 51]. Unikernels have small resource
footprint and provide single address space for the applica-
tion and kernel while providing the isolation that traditional
VMs offer [16, 44, 47]. The small address space also reduces
the attack surface [40]. Unikernel Linux (UKL) [51, 52] pro-
poses a Linux-based unikernel to retain its properties as
legacy software. UKL diverts syscalls to its custom library
since application is invoked in the kernel space. The work
focuses on running general Linux compatible applications in
unikernels , improving performance by running applications
in kernel address space. USETL [16] designed a unikernel
based serverless technique for ETL-style functions. The de-
sign simplifies the network and storage virtualization based
on ephemeral and minimalistic nature of serverless. Urunc
[40] is a unikernel container runtime that proposes the idea
of creating unikernels for each function invocation using
Knative stack with unikernel OCI images containing uniker-
nel binaries. Evaluation is carried out with simple HTTP
reply function and compared against Kata containers (with
different hypervisors), generic containers and gVisor. The
performance of urunc is similar to generic containers and
is better than other mechanisms proving that unikernels
offer similar performance as containers with better isolation
in multi tenant environment. UniFaa$S [44] suggests use of
MirageOS, an application-based unikernel as an alternative
to containers. The evaluations using IoT applications show
that the startup time of unikernel based architectures are 3x
better than the "warm" start of Openwhisk containers with
minimal memory and CPU footprints.

Although Unikernels offer security with reduced trusted
computing base (TCB) and isolation requirements of multi-
tenant serverless applications, they are in a naive stage com-
pared to Linux kernels for complete adoption. [44, 45, 51].
Moreover, since OS is bound to the application, we need
a clear definition and requirements to replace traditional
Linux kernel [28]. Further, single process nature makes de-
bugging in unikernels complex with the requirement of a
debugger attached to the hypervisor[45]. The current results
favoring Unikernels over Linux-based kernels are promis-
ing. However, the testing is conducted over basic or no-op
functions. There is still room for evaluations with complex
benchmarks for serverless to motivate migration from Linux
to Unikernels.

3 Open Challenges and Current Solutions

Serverless is yet to be optimized to the extent of other dis-
tributed frameworks. We summarized several notable re-
search directions, and the attempts made by existing work
to resolve the issues. However, all existing virtualization
techniques have pros and cos in regards to solving these
challenges, which we summarize in Table 1.

Cold Start Optimization: Given the virtualization paradigm
of serverless, construction of functions requires cold starts
when a replica is first deployed, thus is a latency cost worth
optimizing. There are three primary forms of research into
improving cold start, that being reducing the number of
deployments via aggregation[29], reducing the cost of de-
ployment via reuse of deployments or previous memory of in-
vocations (i.e. caching or snapshot)[6, 55, 57], and improving
resource scheduling via co-locating invocations[37]. While
these solutions do provide better E2E latency, this comes at
the cost of either further stressing the auto-scheduler un-
der aggregation (i.e. extended packing problem) or causing
co-location of invocations that could cause unintended secu-
rity vulnerabilities given isolation assumptions while giving
resource overhead for provider to keep the containers in a
warm state[37, 53].

Co-Location of Downstream Resources: With the compound-
ing of cold start and end-to-end latency of workflows, re-
searchers have been utilizing techniques to aggregate, usu-
ally into monolithic designs[29, 37], or to co-locate down-
stream functions [25] with the attempt to reduce cold start
and E2E latency. While these approaches are different, funda-
mentally the concept is to compile workflows into singular
containers[29] or construct micro-services that handle the
maximal volume of a request[37], removing inter-function
latency. While the intentions are good, the naive approach
of full aggregation does not account for the unpredictable
resource load on nodes under bursty conditions, which can
lead to resource contention[53]. Furthermore these strate-
gies tend to rely on developers to perform the aggregation
[29, 37], which is ill-suited due to the developer not knowing
of resource load and placement on cluster and assumes near
infinite resources[26, 53].

Debugging and Testing: Debugging and testing is essential for
any developer for creating reliable, secure and efficient appli-
cations [27]. However, unlike monolithic and micro-service
(serverful) applications serverless applications cannot be
tested locally as it is challenging to replicate serverless envi-
ronment [15, 58]. Strategies used for debugging in distributed
systems are not suitable for serverless applications because
of their ephemeral nature, limited control to infrastructure
and lower response time expectations[27]. With no stan-
dardisation in logging and debugging tools, it becomes very
cumbersome to track the root cause of the error in server-
less applciations [58]. [15, 31] conducted interviews to list

Challenges

VMs (w or w/o paravirt.)
for serverless

Lightweight Guests
& Unikernels

Containers

+: No booting of guest kernels

-: Large base footprint (100s of

co-location MBs-GBs)

-: Specialized guest images may
not be reusable or aggregateable

Cold Start +: Easier to checkpoint & restore | +: Streamlined hypervisor & guest | ~ 4 to furth mize th
Optimization -: Complexity and large VMs -: Limited compatibility -+ Hard to further optimize the
host kernel
: i igrati : 11 fi i
Resource +: Mature live migration support | +: Small base footprint +: Shared kernel & user memory

-: Poor migration support

+: Rich OS support in guests

+: Easy for reproduction

+: Easiest for reproduction;

-: Outdated for serverless

crafted apps for motivation

Debuggin, .
& testgiig & -: Too expensive for short-lived |-: Specialized guests may lack de- | DevOps integration
functions bugging support -: No access to host kernel states
R h +: Well studied; many solutions & | +: Cutting-edge research +: Fully open-source ecosystem
esearc benchmarks -: Proprietary/close-source; hand- | (Kubernetes & Docker)
& benchmark

-: Weak security guarantee

Table 1. Comparison of pros (+, in blue) and cons (-, in red) of various virtualization techniques in regards to challenges

specific to serverless.

the challenges for testing serverless applications. Cold starts
variance with different runtime environments, simulation of
network delays and unpredictable invocation patterns makes
it particularly difficult for testing locally. Testing in the cloud
is also challenging because it requires approval from cloud
providers [15]. Therefore, a more standardised and mature
debugging and testing mechanism for these short lived and
distributed applications is necessary.

Benchmarking: Benchmarking is essential to research, espe-
cially computer science, with the primary reason is standard-
ization of results between implementations and designs, how-
ever, serverless presents a unique problem of vendor lock-
in[14] and very little standardized benchmarks existing[21,
41, 61]. This leads to researchers picking a selection of work-
loads familiar to them and adapting to work within the de-
sired framework. Cherry picking in itself is undesirable, but
the reason it occurs is because of the lack of knowledge on
“in the wild” workloads to sample from due to trace data
being the closest representation[36, 53], thus synthesized
benchmarks are created and workloads are selected on need
for arguments. Nuance of data movement, workflow pat-
terns, cold start or even invocation rate is then left to the
side for more “standardized” benchmarks which analyze per-
formance of providers on strengths like small scale function
concurrency, data transfer rates and cost, as trace data and
workloads remain separate[36, 53]. The recommendation of
this paper is for the creation of a framework agnostic bench-
mark suite that evaluates serverless functions and workflows
from multiple disciplines such that proper analysis of work-
load limitations could be performed.

Research-Production Gap: As alluded to in previous sections,
there is a gap in knowledge on what is used in production
environments such as AWS, both in the sense of cluster
information and in terms of “in the wild” functions and
workflows[36, 53]. The reason why this information is ob-
scured or withheld is rather innocent, having more to do with
compliance with privacy laws[3]. This however does not ex-
cuse cluster providers from gathering willing participants
to provide source code and payloads as samples, which can
be done by surveys of developers on the cluster or through
an opt-in toggle for each individual function. The means by
which this information could be collected are numerous, but
providing such information could improve understanding of
the workloads in the wild and how researchers can improve
architecture, including the provider architecture. Without
this knowledge the community is reliant on itself to synthe-
size workloads based on what little data can be scraped from
trace data regarding patterns, which is stripped of context
of internal design and limitations.

4 Conclusion

From studying the literature, we conclude that traditional
virtualization no longer serves the need for rapid deploy-
ment and high density of serverless. Using containers also
leads to stacked virtualization layers due to security con-
cerns. Specialized, lightweight hypervisors and guest ker-
nels suit serverless better and may further resolve server-
less challenges in cold-start optimization and resource co-
location. More importantly, the research community needs
better benchmarks and production frameworks to conduct
meaningful experiments.

References

(1]

—
S
fla?

—
~
—

(10]

(11]

[12

—

[13

—_

(14]

[15

=

(16

—

Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-
dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. 2020. Firecracker: lightweight virtualization for serverless
applications. In Proceedings of the 17th Usenix Conference on Networked
Systems Design and Implementation (Santa Clara, CA, USA) (NSDI’20).
USENIX Association, USA, 419-434.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. 2013. Deconstructing Amazon EC2 Spot Instance Pricing.
ACM Trans. Econ. Comput. 1, 3, Article 16 (sep 2013), 20 pages. https:
//doi.org/10.1145/2509413.2509416

Amazon. 2024. AWS Privacy. https://aws.amazon.com/privacy/.
Amazon. 2024. Recursive patterns that cause run-away Lambda func-
tions - AWS Lambda. https://docs.aws.amazon.com/lambda/latest/
operatorguide/recursive-runaway.html.

Amazon. 2024. Workflow Orchestration - AWS Step Functions - AWS.
https://aws.amazon.com/step-functions/.

Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap:
FaaS made fast using snapshot-based VMs. In Proceedings of the Sev-
enteenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). Association for Computing Machinery, New York, NY,
USA, 730-746. https://doi.org/10.1145/3492321.3524270

awslabs. 2019. GitHub - awslabs/lambda-refarch-mapreduce. https:
//github.com/awslabs/lambda-refarch-mapreduce.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (Bolton Landing, NY, USA)
(SOSP °03). Association for Computing Machinery, New York, NY, USA,
164-177. https://doi.org/10.1145/945445.945462

Broadcom. 2024. VMware ESXI. https://www.vmware.com/products/
cloud-infrastructure/esxi-and-esx.
Broadcom. 2024. VMware Vsphere.
products/cloud-infrastructure/vsphere.
Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.
2023. On-demand Container Loading in {AWS} Lambda. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 315-328.
Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Suger-
man, and Edward Y. Wang. 2012. Bringing Virtualization to the
x86 Architecture with the Original VMware Workstation. ACM
Trans. Comput. Syst. 30, 4, Article 12 (nov 2012), 51 pages. https:
//doi.org/10.1145/2382553.2382554

Alibaba Cloud. 2024. What Is Serverless Computing? What are the
Features of Serverless? https://www.alibabacloud.com/en/knowledge/
what-is-serverless.

Cloudflare. 2024. What is vendor lock-in? | Vendor lock-in and
cloud computing. https://www.cloudflare.com/learning/cloud/what-
is-vendor-lock-in/.

Dilshan De Silva and Lakindu Hewawasam. 2024. The Impact of
Software Testing on Serverless Applications. IEEE Access 12 (2024),
51086-51099. https://doi.org/10.1109/ACCESS.2024.3384459
Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach.
2019. USETL: Unikernels for Serverless Extract Transform and Load
Why should you settle for less?. In Proceedings of the 10th ACM SIGOPS
Asia-Pacific Workshop on Systems (Hangzhou, China) (APSys ’19).
Association for Computing Machinery, New York, NY, USA, 23-30.
https://doi.org/10.1145/3343737.3343750

https://www.vmware.com/

Open Infrastructure Foundation. 2024. Kata Containers. https:
//katacontainers.io/.
The Apache Software Foundation. 2024. OpenWhisk. https://

openwhisk.apache.org/.

The Linux Foundation. 2024. Kubernetes. https://kubernetes.io/.
Alexander Fuerst, Stanko Novakovic, fﬁigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-harvesting
VMs in cloud platforms. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 583-594.
https://doi.org/10.1145/3503222.3507725

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jack-
son, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delim-
itrou. 2019. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems. In
Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Prov-
idence, RI, USA) (ASPLOS °19). Association for Computing Machinery,
New York, NY, USA, 3-18. https://doi.org/10.1145/3297858.3304013
Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and
Haining Wang. 2017. ContainerLeaks: Emerging Security Threats
of Information Leakages in Container Clouds. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN)). 237-248. https://doi.org/10.1109/DSN.2017.49

gVisor. 2008. gVisor. https://gvisor.dev/docs/

Docker Inc. 2024. Docker. https://www.docker.com/.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scal-
able serverless computing for latency-sensitive, interactive microser-
vices. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS °21). Association for Computing Machinery,
New York, NY, USA, 152-166. https://doi.org/10.1145/3445814.3446701
Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. 2019. Cloud Programming Simplified:
A Berkeley View on Serverless Computing. arXiv:1902.03383 [cs.0S]
https://arxiv.org/abs/1902.03383

Shreyas Kharbanda and Pedro Fonseca. 2023. Always-On Recording
Framework for Serverless Computations: Opportunities and Chal-
lenges. In Proceedings of the 1st Workshop on SErverless Systems, Ap-
plications and MEthodologies (Rome, Italy) (SESAME °23). Associa-
tion for Computing Machinery, New York, NY, USA, 41-49. https:
//doi.org/10.1145/3592533.3592810

Ricardo Koller and Dan Williams. 2017. Will Serverless End the Domi-
nance of Linux in the Cloud?. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (Whistler, BC, Canada) (HotOS ’17).
Association for Computing Machinery, New York, NY, USA, 169-173.
https://doi.org/10.1145/3102980.3103008

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
2021. Faastlane: Accelerating Function-as-a-Service Workflows. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 805-820.
presentation/kotni
Petros Koutoupis. 2018.
Linux Containers, Part II: Working with Linux Containers (LXC).

https://www.usenix.org/conference/atc21/
Everything You Need to Know about

https://www.linuxjournal.com/content/everything-you-need-know-
about-linux-containers-part-ii-working-linux-containers-Ixc.
Valentina Lenarduzzi and Annibale Panichella. 2021. Serverless Test-
ing: Tool Vendors’ and Experts’ Points of View. IEEE Software 38, 1
(2021), 54-60. https://doi.org/10.1109/MS.2020.3030803
LLC LF Projects. 2021. Cloud Hypervisor.
cloudhypervisor.org/.

Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao,
Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo. 2022. {RunD}:
a lightweight secure container runtime for high-density deployment

https://www.

(34]

(38]

(39]

(40]

[41]

[42]

[43]

(4]

and high-concurrency startup in serverless computing. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). 53-68.

David H. Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt.
2023. Doing More with Less: Orchestrating Serverless Applications
without an Orchestrator. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 1505-1519. https://www.usenix.org/conference/nsdi23/
presentation/liu-david

OpenFaa$ Ltd. 2024. OpenFaas. https://www.openfaas.com/.

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping
Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing
Microservice Dependency and Performance: Alibaba Trace Analysis.
In Proceedings of the ACM Symposium on Cloud Computing. 412-426.
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and the
Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). USENIX Association, Carlsbad, CA, 303-320.
https://www.usenix.org/conference/osdi22/presentation/mahgoub
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022.
WISEFUSE: Workload Characterization and DAG Transformation for
Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article
26 (jun 2022), 28 pages. https://doi.org/10.1145/3530892

Jesse Maida. 2019. Serverless Architecture Market Size Worth $9.17
Billion by 2023 - Technavio. https://www.businesswire.com/news/
home/20190709005418/en/Serverless-Architecture- Market-Size-
Worth-9.17-Billion-by-2023---Technavio.

Charalampos Mainas, Ioannis Plakas, Georgios Ntoutsos, and Anas-
tassios Nanos. 2024. Sandboxing Functions for Efficient and Secure
Multi-tenant Serverless Deployments. In Proceedings of the 2nd Work-
shop on SErverless Systems, Applications and MEthodologies (Athens,
Greece) (SESAME °24). Association for Computing Machinery, New
York, NY, USA, 25-31. https://doi.org/10.1145/3642977.3652096
Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020.
FaaSdom: a benchmark suite for serverless computing. In Proceedings
of the 14th ACM International Conference on Distributed and Event-
Based Systems (Montreal, Quebec, Canada) (DEBS ’20). Association for
Computing Machinery, New York, NY, USA, 73-84. https://doi.org/
10.1145/3401025.3401738

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (Shanghai, China)
(SOSP °17). Association for Computing Machinery, New York, NY, USA,
218-233. https://doi.org/10.1145/3132747.3132763

Jason Mihalopoulos. 2019. Serverless Data Processing with AWS
Step Functions — An Example. https://servian.dev/serverless-data-
processing-with-aws-step-functions-an-example-6876e9bea4c0.
Chetankumar Mistry, Bogdan Stelea, Vijay Kumar, and Thomas
Pasquier. 2020. Demonstrating the Practicality of Unikernels to Build
a Serverless Platform at the Edge. In 2020 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom). 25-32.
https://doi.org/10.1109/CloudCom49646.2020.00001

Felix Moebius, Tobias Pfandzelter, and David Bermbach. 2024. Are
Unikernels Ready for Serverless on the Edge? arXiv preprint
arXiv:2403.00515 (2024).

Oracle. 2024. Oracle VM VirtualBox. https://www.virtualbox.org/.
Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis:
The Operating System Is the Control Plane. ACM Trans. Comput. Syst.
33, 4, Article 11 (nov 2015), 30 pages. https://doi.org/10.1145/2812806
Informa PLC. 2024. Omdia: serverless computing, valued at $19bn is
the fastest-growing cloud service. https://omdia.tech.informa.com/pr/

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

2024/jun/omdia-serverless-computing-valued-at-19-billion-dollars-
is-the-fastest-growing-cloud-service.

Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements
for virtualizable third generation architectures. Commun. ACM 17,7
(jul 1974), 412-421. https://doi.org/10.1145/361011.361073

Avi Qumranet, Yaniv Qumranet, Dor Qumranet, Uri Qumranet, and
Anthony Liguori. 2007. KVM: The Linux virtual machine monitor.
Proceedings Linux Symposium 15 (01 2007).

Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. 2019. Unikernels: The next stage of linux’s dominance. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 7-13.
Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul So-
hal, Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry
Woodman, Renato Mancuso, Jonathan Appavoo, and Orran Krieger.
2023. Unikernel Linux (UKL). In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 590-605.
https://doi.org/10.1145/3552326.3587458

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, Boston, Massachusetts, USA, 205-218.
https://www.usenix.org/conference/atc20/presentation/shahrad
Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. 2020. Serverless linear algebra. In Proceedings of
the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC °20). Association for Computing Machinery, New York, NY, USA,
281-295. https://doi.org/10.1145/3419111.3421287

Wonseok Shin, Wook-Hee Kim, and Changwoo Min. 2022. Fireworks:
a fast, efficient, and safe serverless framework using VM-level post-
JIT snapshot. In Proceedings of the Seventeenth European Conference
on Computer Systems (Rennes, France) (EuroSys 22). Association for
Computing Machinery, New York, NY, USA, 663-677. https://doi.org/
10.1145/3492321.3519581

Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. 2019. Container
Security: Issues, Challenges, and the Road Ahead. IEEE Access 7 (2019),
52976-52996. https://doi.org/10.1109/ACCESS.2019.2911732

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, analysis, and optimization
of serverless function snapshots. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS °21). As-
sociation for Computing Machinery, New York, NY, USA, 559-572.
https://doi.org/10.1145/3445814.34467 14

Jinfeng Wen, Zhenpeng Chen, and Xuanzhe Liu. 2022. Software en-
gineering for serverless computing. arXiv preprint arXiv:2207.13263
(2022).

Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. 2019. A survey on
security issues in services communication of Microservices-enabled
fog applications. Concurrency and Computation: Practice and Experience
31, 22 (2019), e4436.

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the Data, Not the Function: Rethinking Function Orchestration
in Serverless Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 1489-1504. https://www.usenix.org/conference/nsdi23/
presentation/yu

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th

ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC °20).
Association for Computing Machinery, New York, NY, USA, 30-44.
https://doi.org/10.1145/3419111.3421280

[62] Yanqi Zhang, ffiigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.

Faster and Cheaper Serverless Computing on Harvested Resources.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP "21). Association
for Computing Machinery, New York, NY, USA, 724-739. https:
//doi.org/10.1145/3477132.3483580

	Abstract
	1 Introduction and Background
	2 Virtualization in Serverless
	3 Open Challenges and Current Solutions
	4 Conclusion
	References

