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Abstract

Continual learning (or class incremental learning) is a realistic learning scenario for
computer vision systems, where deep neural networks are trained on episodic data, and
the data from previous episodes are generally inaccessible to the model. Existing re-
search in this domain has primarily focused on avoiding catastrophic forgetting, which
occurs due to the continuously changing class distributions in each episode and the in-
accessibility of the data from previous episodes. However, these methods assume that
all the training samples in every episode are annotated; this not only incurs a huge anno-
tation cost, but also results in a wastage of annotation effort, since most of the samples
in a given episode will not be accessible to the model in subsequent episodes. Active
learning algorithms identify the salient and informative samples from large amounts of
unlabeled data and are instrumental in reducing the human annotation effort in inducing a
deep neural network. In this paper, we propose ACIL, a novel active learning framework
for class incremental learning settings. We exploit a criterion based on uncertainty and
diversity to identify the exemplar samples that need to be annotated in each episode, and
will be appended to the data in the next episode. Such a framework can drastically reduce
annotation cost and can also avoid catastrophic forgetting. Our extensive empirical anal-
yses on several vision datasets corroborate the promise and potential of our framework
against relevant baselines.

1 Introduction

Deep neural networks (DNNs) have pushed the boundaries of computer vision and have
achieved state-of-the-art performance in a variety of applications [11, 19, 40]. In many
real-world applications, the training data arrives in episodes over time, with each episode
containing samples from a different set of classes. Further, this episodic data is ephemeral
and cannot be held for long due to storage and privacy constraints [12, 20, 22]. The DNN is
expected to learn incrementally about the new classes, from their episodic data; at the same
time, it should retain knowledge about the formerly learned classes in previous episodes,
whose data is no longer accessible. This learning paradigm is called Class Incremental
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Learning (CIL), which aims to continually induce a holistic classifier among all the classes
encountered. A problem is CIL is catastrophic forgetting, which occurs when optimizing
the network to recognize the new classes erases its knowledge about the former classes (in
previous episodes), resulting in a degradation in performance. Thus, developing algorithms
to mitigate catastrophic forgetting has been the primary focus in CIL research [47].

However, another aspect that has been overlooked in this context is the cost of data
annotation; CIL algorithms assume that all the training samples in each episode are annotated
with their class labels. This incurs a huge cost as data annotation is an expensive process in
terms of time, labor and human expertise. Moreover, this results in a wastage of annotation
effort, since most of the data samples in a given episode will not be accessible to the deep
model in subsequent episodes. This necessitates a strategy to more efficiently utilize the
human annotation effort in CIL settings.

Active Learning (AL) algorithms have gained popularity in reducing the human annota-
tion effort in inducing a machine learning / deep learning model [38]. When faced with large
amounts of unlabeled data, these algorithms automatically identify the salient and the most
informative samples that need to be annotated manually. AL has been successfully used in
a variety of applications, such as computer vision [45], text mining [42], medical diagnosis
[44] and bioinformatics [30] among others.

In this paper, we introduce ACIL, a novel Active learning framework for Class Incremental
Learning. Contrary to existing CIL settings, we assume that in each episode, only a small
portion of the data is annotated; majority of the samples are unlabeled in each episode. In
each episode, we are allowed to select an exemplar set of size k (where k is a pre-determined
number) which will be manually annotated and appended to the data in the next episode. The
exemplar set can contain samples from the labeled and unlabeled sets in the current episode
as well as samples from the exemplar set obtained from the previous episode. We formulate
a criterion based on diversity and uncertainty and use weighted set partitioning techniques
to select the set of exemplar samples. Such a framework can drastically reduce the data an-
notation cost, as only a small fraction of the samples is annotated in each episode. It can
also potentially avoid catastrophic forgetting, as the exemplar samples in each episode are
propagated to subsequent episodes.

2 Related Work

Class Incremental Learning: Class Incremental Learning (CIL) has attracted signifi-
cant research attention in recent years in the computer vision and machine learning commu-
nities; please refer to [47] for a detailed taxonomy and survey. CIL can be broadly organized
into three categories: data-centric, model-centric and algorithm-centric. Data-centric CIL
methods attempt to alleviate catastrophic forgetting with the help of extra data, called ex-
emplars, and are further categorized into data replay and data regularization. Replay based
methods attempt to overcome catastrophic forgetting by revisiting exemplar samples from
past episodes; these methods sample an exemplar set from each episode, which is appended
to the data in the following episode. In each episode, the deep model is trained using the data
from that episode, as well as the exemplars obtained from previous episodes [1, 8]. Several
strategies have been explored to select the exemplar set, such as Rainbow Memory [3] which
selects uncertain samples given by the variance of the model predictions on a pertubed set of
samples; GDumb [31] which greedily selects samples with the constraint to asymptotically
balance the class distribution of the selected samples; and iCaRL [34] which iteratively con-
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structs the exemplar set such that the newly added exemplar causes the average feature vector
over all the exemplars to best approximate the average feature vector over all the training ex-
amples. Generative replay based methods have also been studied, which attempt to model the
distribution of data in former episodes and generate samples accordingly [14, 39]. Model-
centric methods either regularize the model parameters or expand the network structure for
stronger representation ability [13, 43]. Algorithm-centric CIL methods focus on designing
algorithms to maintain the model’s knowledge in former tasks to mitigate catastrophic for-
getting. Knowledge distillation-based CIL methods fall in this category, where the goal is to
build a mapping between old and new models and transfer the knowledge of the old model
in inducing the new model [24, 49, 50].

Active Learning: Active Learning (AL) is a well-studied problem in the machine vision
literature [38]. With the popularity of deep neural networks, deep active learning (DAL) has
attracted research attention, where the goal is to query informative unlabeled samples for
manual annotation and simultaneously learn discriminating feature representations using a
deep neural network [36]. Common DAL techniques include a task agnostic scheme which
learns a loss prediction function to predict the loss value of an unlabeled sample and queries
samples accordingly [45], a greedy technique to query a coreset of samples that represent the
whole dataset [37], a sampling technique based on diverse gradient embeddings (BADGE)
[2], a strategy based on temporal output discrepancy that queries samples based on the dis-
crepancy of outputs given by the models at different optimization steps during training [18]
and an AL framework that queries unlabeled samples that can provide the most positive in-
fluence on model performance [26]. Techniques based on adversarial learning have depicted
particularly impressive performance in DAL [10, 41, 48].

Even though both CIL and AL have been well-researched, their combination has received
significantly less attention. A body of research has focused on updating the deep model on-
the-fly (rather than retraining from scratch) with actively sampled training data [6]; this setup
assumes that the entire training and unlabeled sets are accessible to the deep model through-
out the process, which is different from the classical CIL setting. Active class selection has
also been studied in the context of CIL, where the incremental learner selects the classes to
receive additional training instances from [27]; this is also different from the classical CIL
setting, where the learner has no control over the classes of the samples arriving in each
episode. Belouadah et al. studied the performance of AL algorithms in a CIL setup [4].
However, ACIL differs from [4] in the following two fundamental ways: (i) [4] assumes all
the samples are annotated in the first episode, which may restrict its application; ACIL does
not make this assumption and is thus more realistic. (i) The active sampling criterion in [4]
is applied only on the unlabeled data in each episode to create the exemplar set; in contrast,
ACIL samples intelligently from the unlabeled set and also the exemplar set obtained from
the previous episode, and thus addresses catastrophic forgetting more efficiently. This has
been empirically validated in Section 4, where ACIL has been compared against this method
with two state-of-the-art AL techniques: Coreset and BADGE.

3 Proposed Framework

3.1 Problem Setup

The setup of ACIL is depicted in Figure 1. The training data arrives sequentially over N
episodes (numbered 0,1,...N — 1); we consider the disjoint CIL setup [3], where the sam-
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ples in a given episode belong to different classes compared to the samples in all the previous
episodes. The data in a particular episode n consists of two parts: a labeled part X and an
unlabeled part XV (|XL| < |XV]). Except episode 0, each episode also contains a labeled
exemplar set E,_, which contains a subset of samples from all the previous episodes. From
each episode n, we are allowed to select an exemplar set E, of a fixed size k, containing
a subset of samples from X%, XV and E,_;. The samples in the selected exemplar set E,
are annotated and appended to the data in the next episode (n+ 1). Note that, since X- and
E,_ are already annotated, annotating the samples in the selected exemplar set E,, amounts
to annotating only the samples selected from XY. In each episode e, a deep neural network
is trained on the labeled data X% and E,,_;. Note that the size (budget) of the exemplar set
remains constant throughout the learning process and does not increase with increasing num-
ber of episodes; this appropriately captures a real-world learning setup where the memory
budget is fixed. Also note that the learning setup in ACIL is similar in spirit to replay based
methods in data-centric CIL; however, these methods require all the samples to be anno-
tated in each episode, which entails significant manual labor. In contrast, ACIL identifies
an exemplar set in each episode without requiring all the samples to be annotated, and thus
results in substantial savings in annotation effort.

Episode 0 Episode 1 Episode 2 Episode 3 Episode 4
U
Xy XIU XZU
(0,1) (2,3) (4,5)
XL
2
(4,5)

1)

Figure 1: Learning setup of ACIL. The numbers in parentheses denote the class labels present
in the corresponding set. We consider the disjoint CIL setup [3], where the samples is a given
episode belong to different classes compared to the samples in all the previous episodes.
Please refer to the text for more details.

In the following sections, we detail how we split the budget & to select samples from the
sets XX, XU and E,_; in a given episode 7, our strategy to actively select the samples from
each set and the loss function used to train the deep neural network in each episode.

3.2 Budget Splitting Strategy

Conventional AL algorithms select all the samples only from the unlabeled set. However, in
our setup, selecting all the k£ samples from the unlabeled set will only capture information
about the data in the current episode; this will fail to capture any knowledge about the data
in former episodes, which may result in catastrophic forgetting. We therefore also need to
select samples from the exemplar set E,_, as it contains useful information about the data
encountered in the previous episodes. Hence, we propose a split of the allowed budget k to
select samples both from the labeled exemplar set and the unlabeled set in each episode.
Let Cerempiar denote the set of classes in the exemplar set E,,1; this can be easily obtained
since the exemplar set is fully labeled. Also, let C,pjs0q. denote the set of classes that are
contained in the current episodic data; this can be obtained since a part of the episodic data
XL is labeled (we assume X contains at least one sample from each class that is present in
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the current episodic data). Our rationale is to split the budget k between XV and E,,_; in the
same proportion as the number of classes in the two sets. Thus, the number of samples to be
selected from the episodic unlabeled set XV is:

|Cepis0de‘
Kunlabeled = < k (1)
et |Cepisode| + |Cexemplar‘

Similarly, the number of samples to be selected from the episodic exemplar set E,,_ is:

ICexem plar | )
exemplar |Cepisod€| + |Cexemplar|

Such a split ensures that we have more budget allocated for the set that contains more
classes. Further, our active sampling strategy (detailed below) is applied class-wise on XY

and E,_1. Thus, the budget for each class in XV is f(’;i’”“% and that for each class in E,_;
k

episode
is % Since the samples in XU are unlabeled, we use the pseudo-labels furnished by
exemplar

the deep neural network obtained in episode n — 1 to select samples from each class in XV
Such a budget allocation strategy ensures that the exemplar set E, selected from episode n
contains a good representation of all the classes seen so far; thus, when it is appended to the
data in episode (n+ 1), the deep model trained in episode (n+ 1) will potentially mitigate
catastrophic forgetting. We do not select any samples from X’ in E,, as X% contains the
same classes as XV and since |XY| > |XL|, it most likely contains more informative samples
than XL. Thus, the budget for the current episode is completely allocated to XV

3.3 Active Sampling Strategy

We use the same active sampling strategy to select samples from each class separately in
the sets XU and E,,_;. In this section, we present the general algorithm to actively sample a
subset of a given size from a given set of samples. Let X = {x},xp,...x.} denote a set of L
samples, from which we are tasked to select a batch of B samples in our exemplar set. Let
F(x;) denote the feature embedding of sample x;, obtained from the trained DNN. We exploit
a strategy based on uncertainty and diversity to select the B samples. Specifically, we identify
the diverse samples by partitioning the set X into B diverse sets using a partition function
P:X — {X1,X2,...Xp}. Let {c1,c2,...cp} denote the corresponding centroid of each set.
Our objective is to group similar instances in the feature space into a set X;,, b=1,2,...B
that is, each partition X}, should have low variance o2 (Xp)- Using the difference method [46],
the variance 6(X,) of partition X}, can be computed as:

1

2
o (Xp) = ——
( h) 2|Xb|2

Y F ) = Fep)l? 3)

X,',XjEXh

To incorporate the prediction uncertainty in sample selection, we reformulate the set
partitioning problem to minimize the weighted variance within each partition (instead of the
simple variance), where each sample is weighted based on its prediction uncertainty [33].
The objective function for set partitioning using weighted variance can be posed as:

argmlnz Z Z(xX)||F(x) fchz 4)

=1x€X,
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where Z(x) denotes the prediction uncertainty of sample x, computed using the Shannon’s

entropy as:
C

I(x) = -} p(x)ilogp(x); ©)
i=1
where p(x); denotes the probability of sample x with respect to class i and C is the total
number of classes. Entropy is a widely used measure of uncertainty in AL research [36].
The optimization problem in Equation (4) in NP-hard. We use the weighted k-means
algorithm [25] to approximate the solution to this problem, where & is taken to be equal to
the budget B. After clustering, the sample closest to the weighted mean in each partition Xj,
is selected in the exemplar set. Weighted k-means has been used to solve set partitioning
problems with promising results [5, 32].

3.4 Loss Function

In each episode n, a deep neural network is trained on the labeled episodic data X- and
the labeled exemplar set E, 1 obtained from the previous episode. Since typically, [X%| >
|Eq—1], there may exist a class imbalance in the labeled set X,,L UE,_i. We therefore use a
weighted cross entropy loss [17] on the labeled set; for a sample x; in the labeled set, the loss
is computed as:

C
[fWCf,‘ xz = Z (vi ——] wjlog pi; (6)

Here 6(.) is the indicator function (whose value is 1 if the argument is true and 0 otherwise),
pij denotes the probability of sample x; with respect to class j obtained using the soft-max
activation of the DNN. w; denotes the importance weight assigned to class j and is inversely
proportional to the number of samples in class j in the labeled set: w; = %, where n; is the

number of samples in class j. The total loss over all the labeled samples is given by:

IL|
Lyyee = & Zﬁwcs (xi) @)

Further, knowledge distillation has proved to be effective in CIL, where knowledge from
the deep model M,,_1, trained in episode n — 1, is distilled to train the deep model M,, in
episode n. M,,_ is applied on the exemplar set E,_; and a distillation loss L is computed
between the predictions furnished by M,, and M,,_; on E,_;. Please refer to [7, 35] for
details about computing the distillation loss in a CIL setting. The total loss to train the DNN
in episode n is thus:

L= Lwee+ALp (8)

where A is a weight parameter controlling the relative importance of the two terms. The
pseudo-code of ACIL is provided in the Supplemental File. As evident from the pseudo-
code, our algorithm is computationally lightweight, simple and easy to implement.

4 Experiments and Results

Datasets: We used six computer vision datasets to study the performance of ACIL:
MNIST [9], SVHN [29], CIFAR 10 [21], CIFAR 100 [21], COIL [28] and Tiny ImageNet
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[23]. The sizes of the labeled set X, unlabeled set XU and exemplar set E, for each dataset
are detailed in the Supplemental file.

Comparison Baselines: We used methods from both IL and AL as comparison base-
lines in our work: (i) AL baselines: We used 3 active learning techniques as comparison
baselines: Random Sampling, which queries a batch of samples at random from the current
episode; Coreset [37]; and BADGE [2]. Both Coreset and BADGE are widely used AL algo-
rithms [36]. Similar to ACIL, the AL baselines do not require all the samples to be annotated
in each episode and operate on X% and XU. As proposed in [4], the samples in the exem-
plar set are selected from the unlabeled data only in each episode, by applying different AL
techniques. (ii) CIL baselines: We used the following CIL methods as baselines in our
research: iCaRL [34]; GDumb [31]; Rainbow Memory [3]; and Finetuning [47]. Note that,
iCaRL, GDumb and Rainbow Memory are all recently proposed replay based CIL techniques
which use an exemplar set in each episode to mitigate catastrophic forgetting; these were se-
lected since ACIL closely resembles a replay based CIL setting. Finetuning is a control CIL
baseline, which does not use an exemplar set, instead it uses the same model that was trained
on the previous episode and incrementally updates it using the data in the current episode.

Evaluation Metrics: We used the following metrics to evaluate the performance of our
framework: (i) Accuracy, which depicts how well the deep model generalizes on test data
containing classes seen in the current and all the previous episodes; after each episode n, this
metric was computed as the average accuracy of the model on the test set of each episode
1,2,...,n. (ii) Annotation effort, computed as the number of samples that had to be anno-
tated in each episode. (iii) Retention (a metric for forgetting), which quantifies how much
information the model retains from the first episode, and was computed as the accuracy of
the model on the test set from the first episode. Accuracy and retention are commonly used
metrics in CIL [47] while human annotation effort is used to quantify the performance of AL
algorithms [36].

Implementation Details: We used ResNet-34 [15] as the backbone architecture in our
work. The model was trained for 240 epochs in each episode, with a batch size of 128 and a
learning rate of 0.001, using the Adam optimizer.

4.1 Main Results

The learning performance results are depicted in Figure 2 (accuracy) and Table 1 (annotation
effort). In each graph in Figure 2, the x-axis denotes the episode number, and the y-axis de-
notes the accuracy. Each plot represents the mean results of three runs to rule out the effects
of randomness. Since the deep model is continually updated with new class information, the
accuracy decays as more classes are incorporated with increasing episodes.

Accuracy: ACIL vs. AL baselines: ACIL comprehensively outperforms all the AL
baselines, and depicts much better accuracy. This is because, even though the AL baselines
select an exemplar set in each episode, the samples are selected completely from the un-
labeled set of the corresponding episode, as proposed in [4]; thus, they fail to capture the
knowledge from the former episodes and hence are not effective in mitigating catastrophic
forgetting.

Accuracy: ACIL vs. CIL baselines: ACIL depicts comparable performance as the
CIL baselines, iCaRL, GDumb and Rainbow. Our framework selects an exemplar set in each
episode, based on an uncertainty and diversity based criterion, and is thus able to retain useful
information about the former episodes, which enables it to mitigate catastrophic forgetting.
Thus, the accuracy drops at more or less the same rate as the CIL baselines, with increasing
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number of episodes. Finetuning depicts much worse performance, as it does not use an
exemplar set to retain knowledge from previous episodes.

We note that ACIL sometimes depicts slightly better learning performance than the CIL
baselines (where all the samples are labeled in all the episodes); for instance, it is better than
iCaRL for Tiny ImageNet. iCaRL selects the exemplar set iteratively such that the mean
feature vector of the exemplar is a good approximation of the mean feature vector of all
the training samples in a given episode. This does not necessarily guarantee a good set of
exemplars. For instance, it is possible to select a batch of uninformative / redundant samples
whose mean is very close to the mean of all the samples. ACIL on the other hand, selects
samples by optimizing a criterion based on uncertainty and diversity, and thus selects a better
set of exemplars to append to the next episode. Thus, even though all the samples are labeled
in all the episodes in iCaRL, by selecting a better set of exemplars to propagate from episode
to episode, ACIL is able to obtain a better learning performance.

ACIL also performs better than GDumb in the later episodes of CIFAR 10 and COIL.
GDumb selects the exemplars to ensure that the class distributions are balanced; it does not
consider the quality / informativeness of the exemplars. ACIL propagates a more informative
set of exemplars to the subsequent episode, which explains its marginally better performance.

T MNIST 1 CIFAR 10 SVHN
- - F ‘Random icaRL
S - F Coreset —I—Rainbow
0.8 -F 'BADGE —i—GDumb
-~ - L —J—FT —F—Proposed -
§ § 0.6 E
3 0. 3 3
8 804 8
< < | T~ Tl xS <
0.2
0
1 2 3 4 1 2 3 4
Episode Number Episode Number Episode Number
(a) MNIST (b) CIFAR 10 (c) SVHN
COIL CIFAR 100 Tiny ImageNet
08 08 - - ‘Random ——iCaRL
- - ‘Coreset ——Rainbow
0.7 - - 'BADGE —— GDumb
- 5,06 > F~o —FT ——Proposed
o © © 0.6
g e g -
3 3 3
8o. 804 gos
< < -} ‘Random iCaRL < 4
- -Coreset —I—Rainbow |- 0.
0.2 -} ‘BADGE —}-GDumb
—-FT —+Proposed 0.3 -
0 1 2 3 4 0 10 20 30 40 50
Episode Number Episode Number Episode Number
(d) COIL (e) CIFAR 100 (f) Tiny ImageNet

Figure 2: Performance analysis of ACIL. The AL baselines (Random, Coreset, BADGE) are
shown with dotted lines; the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb) and the
proposed ACIL method are shown with solid lines. The error bars have been omitted from
the Tiny ImageNet results for better visualization. Best viewed in color.

Annotation effort: Table | reports the average number of samples that had to be an-
notated per episode (including the episodic labeled set X) for all the methods. The CIL
baselines require all the samples to be annotated in each episode, which incurs substantial
annotation effort. The AL baselines depict much less annotation effort, as only k unlabeled
samples need to be annotated in each episode. ACIL depicts the least annotation effort, as it
splits the budget k to select samples from the exemplar set E,_ and the unlabeled set XV in
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CIL Baselines AL Baselines Proposed
MNIST 12,000 +478.12 3,359.6+483.43 2,899.6 +447.38
CIFAR 10 10,000 =+ 0.00 2,800+414.04 2,417.2+344.90
SVHN 14,651.40+5,542.22 4,530+£1,181.98 3,763.60 £ 1,455.34
COIL 570+ 0.00 204 +30.51 153.33+25.38
CIFAR 100 5,000+0.00 1,450+ 152.56 1,158 £131.53
Tiny ImageNet 1,000 +0.00 299 +9.97 232.07+£21.92

Table 1: Average (£ std) number of samples that needed to be annotated per episode (includ-
ing the episodic labeled set X,ZL) by the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb),
AL baselines (Random, Coreset, BADGE) and the proposed method (ACIL).

episode n; since the exemplar set is already annotated, only the samples selected from XY
need to be annotated in each episode for ACIL. For the CIFAR 10 dataset, for instance, ACIL
results in about 4.13 fold reduction in annotation effort on average in each episode, com-
pared to the CIL baselines, while furnishing performance very similar to these baselines.
Thus, ACIL depicts comparable (and sometimes marginally better) performance than the
CIL baselines at substantially reduced annotation effort; it also depicts much better perfor-
mance than the AL baselines, at slightly reduced annotation effort. ACIL is thus a promising
solution for real-world incremental learning applications.

Coreset
0.3940.01
0.2940.03

0.33£0.1
0.17+0.02

Random
0.4140.03
0.374+0.03
0.4940.09
0.24+0.05

BADGE FT
0.41+0.02 0.20+0.01
0.27+0.17 0.18 +0.04
0.224+0.02 0.23+0.08
0.11+0.02 0.02+0.02
0.25+0.03 0.22+0.08 0.24+0.04 0.254+0.10 0.49+0.05 0.454+0.10 0.46 +0.06 0.4540.08
0.31+0.01 0.30+0.03 0.26 +0.04 0.35+0.02 0.29+0.02 0.38 +0.05 0.39+0.04 0.36+0.04

Table 2: Average (= std) accuracy after the last episode achieved by the CIL baselines (Fine-
tuning, iCaRL, Rainbow, GDumb), AL baselines (Random, Coreset, BADGE) and the pro-
posed method (ACIL). Best results are marked in bold and second best results are underlined.

iCaRL
0.96+0.01
0.42+0.06
0.70+0.02
0.32+0.01

GDumb
0.96£0.01
0.43+0.01
0.75+0.01

0.5+0.03

Rainbow
0.97£0.01

0.5+0.02
0.75+0.03
0.56+0.04

Proposed
0.98 +0.02
0.47+0.02
0.751+0.04
0.56+0.02

MNIST
CIFAR 10
SVHN
COIL
CIFAR 100
Tiny ImageNet

Table 2 reports the accuracy obtained after the last episode for all the methods. We note
that the proposed method achieves the highest accuracy in 3 out of the 6 datasets and the
second highest accuracy in 1 dataset. These results further corroborate the fact that ACIL
depicts competitive performance as the CIL baselines, at much reduced annotation effort.

4.2 Study of the exemplar set size (query budget)

The goal of this experiment was to study the effect of the exemplar set size (budget) on
the learning performance. The results on the SVHN dataset with budgets 500, 1,000 and
2,500 are depicted in Figure 3 (accuracy) and Table 3 (annotation effort) (the default budget
in Figure 2(c) was 2,000). We note that the accuracy shows an increasing trend with an
increase in budget, which is intuitive. A similar pattern is evident for all the budgets, where
ACIL depicts accuracy comparable to the CIL baselines (iCaRL, GDumb and Rainbow) and
much better than the AL baselines.

From Table 3, it is also evident that ACIL results in substantial savings in the human
annotation effort compared to the CIL methods. The CIL baselines need all the samples to
be annotated in all the episodes, so their annotation cost is not affected by the budget of the
exemplar set. ACIL, on the other hand, distributes the available budget between the unla-
beled samples in a given episode and the exemplar set obtained from the previous episode.
The results demonstrate that ACIL depicts comparable performance to the CIL baselines at
substantially reduced human annotation effort; it depicts much better performance than the
AL baselines at slightly reduced annotation effort. These results depict the robustness of
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ACIL to the budget of the exemplar set. This result is particularly important from a practi-
cal standpoint, since the budget of the exemplar set is dependent on the available memory /
resources of a given application, and is different for different applications.

SVHN: Budget 500

SVHN: Budget 1000 SVHN: Budget 2500

Accuracy
Accuracy
< I
(]
e
"
/"
/
4
/1
"
.
Accuracy

- F ‘Random
- F “Coreset —i— Rainbow
0.2 - F ‘BADGE —I—GDumb
—F—FT —F—Proposed
1 2

Episode Number

icaRL |-

Episode Number Episode Number

(a) Budget 500 (b) Budget 1000 (c) Budget 2500

Figure 3: Study of the exemplar set size (budget) on the SVHN dataset. The AL baselines
(Random, Coreset, BADGE) are shown with dotted lines; the CIL baselines (Finetuning,
iCaRL, Rainbow, GDumb) and the proposed ACIL method are shown with solid lines. Best
viewed in color.

CIL Baselines AL Baselines Proposed

SVHN: Budget 500

14,651.4045,542.22

3,330+ 1,068.78

3,139.20+1,166.54

SVHN: Budget 1,000

14,651.40+5,542.22

3,730+ 1,068.41

3,347.20+1,246.61

SVHN: Budget 2,500

14,651.4045,542.22

4,930£1,285.86

3,972.80+1,577.21

Table 3: Average number of samples that needed to be annotated per episode (including the
episodic labeled set XnL) by the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb), AL
baselines (Random, Coreset, BADGE) and the proposed method (ACIL) for different budgets
of the exemplar set on the SVHN dataset

We also conducted the following experiments and the results are reported in the Sup-
plemental File: (i) study of the backbone network architecture; (ii) learning performance
with varying number of episodes; (iii) an analysis of the computation time of all the meth-
ods studied; (iv) ablation studies to analyze the importance of the uncertainty and diversity
components in our framework; and (v) performance analysis of our framework using the
retention metric.

5 Conclusion and Future Work

In this paper, we proposed ACIL, a novel active learning framework for class incremental
learning settings. Contrary to existing CIL techniques, ACIL does not require all the samples
in each episode to be annotated; it selects an exemplar set in each episode, which is annotated
and appended to the data in the next episode, so that the deep neural network trained in a
given episode can retain knowledge of the classes encountered in past episodes. We formu-
lated a criterion based on uncertainty and diversity to select the exemplar set in each episode;
we also proposed a budget splitting strategy to ensure the exemplar set captures informative
samples from all classes seen in former episodes. Our extensive empirical analyses on six
vision datasets corroborated that ACIL can not only mitigate catastrophic forgetting and de-
liver accuracy comparable to state-of-the-art CIL methods, but can also result in substantial
savings of human annotation effort. As part of future work, we plan to extend our framework
to address IL in the regression setup, which has attracted research attention recently [16].
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