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ABSTRACT

Unmanned Aircraft Systems (UAS) play an essential role
in providing high-resolution information for precision agri-
culture (PA). Global Navigation Satellite System (GNSS)
Reflectometry (GNSS-R) from a UAS can provide higher
spatial and temporal resolution for soil moisture (SM) re-
trievals. This study summarizes and analyzes of a three-year-
long field campaign including comprehensive GNSS-R and
ancillary data from crop fields. The field data collections
were conducted on 210 by 110 m (2.31 ha) corn and cotton
fields over 3 years from 2021 to 2023. The results indicate
that high-resolution SM measurement can be achieved with a
low-cost GNSS-R system onboard a mid-size UAS platform
for use in PA applications.

Index Terms— GNSS-R, Soil moisture, UAS
1. INTRODUCTION

Unmanned Aircraft Systems (UAS) play an essential role in
providing high-resolution information for precision agricul-
ture (PA) [1]. Accurate and high-resolution soil moisture
(SM) measurement is one of the critical inputs for site-
specific PA management. Efficient irrigation management
enhances crop quality, yield, and resource conservation [2].
Using SM probes is a traditional and reliable method for ac-
curately measuring volumetric soil moisture [3]. However,
high-resolution SM observations through SM probes can be
time-consuming, costly, and inefficient for large heteroge-
neous fields.

UAS-based technologies have various applications in
PA, such as vegetation trait and stress monitoring [4], weed
mapping [5], and irrigation management [6]. However, SM
measurements using UAS are currently very limited and not
yet fully developed. Several existing UAS-based SM esti-
mation studies aim to obtain field-level SM results. These
studies are mainly based on optical sensing focused on soil
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or vegetation spectral reflectance from UAS. Soil spectral
reflectance studies showed that reflectance level decreases as
SM increases due to a darkening of the soil surface color [7].
The main drawbacks of soil spectral reflectance are that the
performance depends only on soil color and texture, while SM
is affected by many factors. In addition, the penetration depth
of the optical sensing is highly limited to the uppermost layer
of soil, and the sensing modality requires atmospheric com-
pensation for higher sensitivity. Using an inversion model of
SM based on vegetation spectral indices is an alternative for
SM retrieval. The principle is to use remotely sensed spec-
tral observations strongly linked with SM [8]. The studies
show that many canopy spectral indices and biophysical and
biochemical parameters are strongly correlated with SM [9].
However, this technique observes vegetation rather than the
soil, depends on vegetation type and fertilizer usage, and is
not available for barren and sparsely vegetated areas. Ad-
ditionally, changes in spectral indices can lag changes in
climate/irrigation/precipitation. This lag may vary between
20 and 45 days depending on vegetation type [10]. As an al-
ternative, radio frequency (RF) signals transmitted by Global
Navigation Satellite System (GNSS) satellites at L-band fre-
quencies can penetrate soil and the reflections are sensitive
to SM in the top 5 cm depth [11]. The ability of GNSS-R to
sense SM has already been demonstrated from space-borne
[12], airborne [13], UAS-based [14], and tower platforms
[15]. Many research groups have developed models and algo-
rithms to retrieve SM from land observations using NASA’s
recent spaceborne GNSS-R mission, Cyclone Global Navi-
gation Satellite System (CYGNSS) [16, 17]. Although global
CYGNSS-based SM estimations have shown high correla-
tion with SM observations of Soil Moisture Active Passive
(SMAP), it has spatial resolutions of several kilometers, and
because of this reason it is not directly usable for PA which
requires sub-field level SM information.

To bring the GNSS-R technique into PA applications, we
utilize a low-altitude (15 m) mid-size UAS equipped with a
GNSS receiver, which collects signals only reflected from the



land surface. In this article, we summarized three years of
UAS-based GNSS-R data collection campaign and analyzed
calculated surface reflectivity compared to in-situ SM mea-
surements. Our initial findings indicate that the surface reflec-
tivity calculated using GNSS-R was closely correlated with
the measured SM, with a correlation coefficient ranging from
0.65 to 0.71.

2. METHODOLOGY

Our research objective is to explore the feasibility of em-
ploying an off-the-shelf, cost-effective GNSS receiver and a
UAS platform for the retrieval of high-resolution surface SM
at the field scale using the GNSS-R technique. We demon-
strated the practicability of this technique in [18]. The mea-
surement methodology entails attaching a GNSS receiver to a
small UAS platform, with a downward-facing GNSS receiver
antenna positioned beneath the UAS on an 18-inch meshed
plate. This arrangement ensures that the GNSS receiver ac-
quires only the ground-reflected GNSS signal, with the direct
signal obstructed by the meshed ground plate. Another iden-
tical GNSS receiver is positioned in an unobstructed open-
sky area to capture the direct GNSS signal for future analysis.
The L1-band (1575.42 MHz) GNSS signal having a wave-
length of ~ 19.5-cm penetrates the soil up to ~ 5-cm. The
airborne GNSS receiver receives these ground-reflected sig-
nals using its onboard receiver system. The simplified mea-
surement configuration is shown in Fig. 1.
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Fig. 1: Simplified structure of the proposed approach. UAS
collects reflected GNSS signals from the specular points via
U-blox GNSS receiver.

2.1. Instruments

In this experiment, we employed a custom mid-size UAS plat-
form constructed from carbon fiber. The UAS can carry ap-
proximately 20 pounds as payload during a 15-minute flight.
The GNSS receiver used in the experiment is the U-blox ap-
plication board, accompanied by its L-band linear polarized
antenna. This antenna is affixed to an 18-inch meshed ground
plate made of aluminum (resembling a pizza pan). The GNSS
receiver antenna is positioned in a downward-facing orien-
tation to maximize the reception of ground-reflected GNSS
signals. For the reference, an identical U-blox GNSS receiver
and a linear antenna were used. However, the antenna for the
reference receiver is upward-facing and placed on top of an

18-inch meshed ground plate, enabling it to receive only the
direct, unobstructed GNSS signal.

2.2. Study field and data collection
2.2.1. Study Area Description

The investigation was conducted in a field measuring
210 m by 110 m (2.31 ha), located at the R. R. Foil
Plant Science Research Center, Mississippi State University,
Starkville, MS, USA, with coordinates at the lower left cor-
ner 33°28'15.70" N and 88°46 27.53" W. Figure 2 exhibits
the flight paths over the defined field area and a nearby wa-
ter body for the data collection in this study. The average
annual precipitation is around 1,329 mm, and humidity fluc-
tuates between 55% and 66% monthly. The field is situated
at an elevation of 92 m above sea level, featuring rows spaced
96.5 cm apart. The North side of the study field comprises a
large water body and a small creek. Table 1 shows the crop
planting changes through the 3-year experiment period.

2.2.2. Data Collection

A total of 337 GNSS-R flights were performed during the
study period at an altitude of 15m with a flight speed of Sm/s.
Besides GNSS-R data, we collect multispectral images and
LIDAR point cloud data weekly, using MicaSense RedEdge
MX and Geocue TrueView 51, respectively. The data collec-
tion flight statistics over the years are highlighted in Table 2.
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Fig. 2: Flight path of the data collection: a total of 9 flight
lines in the North-South direction cover both field 1 and field
2. Middle 2 lines pass over a water body.

2.2.3. In-situ Data Collection

The ground truth SM data was collected by EC-5 volumetric
water content sensors using the capacitance method and man-
ufactured by METER Group Inc., Pullman, WA, USA. Sen-
sors were placed in different locations in the study field. Each
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Fig. 3: Average measured in-situ SM of the study field for different years (2021-2023) and available flights of each year.

Table 1: Field-Section, Plantation, and Harvest Timeline of
the Crops.

Year | Crop Type | Field Section | Plantation Time | Harvest Time
2021 Corn South / Field 2 April 07 September 17
Cotton North / Field 1 May 23 November 05
2002 Corn North / Flield 1 Marc.h 28 September 08
Cotton South / Field 2 April 29 October 18
2023 Corn South / Field 2 April 20 September 12
Cotton North / Field 1 May 16 October 18

Table 2: Flights and statistics of collected data

Year 2021 2022 2023 (up to Aug.)
GNSS-R 122 136 79
# of flights Multispectral 40 45 40
LIDAR 34 27 21
# of PNR 3,369 3,029 1,361
GNSS-R data | # of Specular Point | 1,761,126 | 1,853,839 | 670,151
# of SM probe 16 26 19

probe provides SM measurements for the top 5 cm SM every
three hours. All SM probes were kept in the field throughout
the year except for cover and main crop planting and harvest-
ing periods. Fig. 3 shows the average measured SM of the
study field through the experiment years.

2.3. GNSS-R data extraction

A GNSS receiver on the UAS receives and processes signals
sent by GNSS satellites. As an output, a GNSS receiver pro-
vides National Marine Electronics Association (NMEA) mes-
sages, which is a standard data and communication format
for electronic instruments, including GNSS receivers. GNSS
receivers’ NMEA messages provide time, position, veloc-
ity, and satellite information. From recorded NMEA mes-
sages, we have decoded RMC (recommended minimum spe-
cific GPS/Transit data) and GSV (satellites in view) messages
to extract the date/time information of the receiver and in-
view satellite information, respectively. From the GSV mes-
sage, we obtained the pseudo-random noise (PRN) number,
which is an identification number, elevation, azimuth, and sig-
nal strength value, carrier-to-noise density ratio (C'/Np), for
each visible GNNS satellite.

2.4. UAS telemetry data and specular point calculation

Besides GNSS-R measurements, we also save the UAS
telemetry data during each flight campaign. The flight con-
troller of UAS saves all telemetry data to the controller’s
onboard memory at a 20Hz sampling rate. From teleme-
try data, we extracted data/time, UAS orientation pitch, roll
and yaw, and location information latitude, longitude, and
altitude. Then, we aggregated both datasets (GNSS-R and
telemetry) based on time stamps.

In the assumption of coherent surface reflection, we deter-
mined all specular reflection points (SP) by using local plane
reflection approximation theory for each reflected signal us-
ing the position of the UAS and the GNSS satellites. We have
used the elevation and azimuth angles information obtained
from the GNSS receiver to calculate SPs.

3. RESULTS

GNSS-R is a type of passive bistatic radar configuration that
involves the acquisition of reflected signals from the Earth’s
surface by a GNSS receiver. The main measurement taken
for remote sensing is the power of the reflected signal that
reaches the receiver. In most land observations, there is a sig-
nificant coherent component in the signal, which means that
the received signal power can be calculated in a formalized
manner, as described in [19].
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, Where P, represents the transmitted power, G, is the gain
of the transmitting antenna, R;s is the distance between the
transmitter and the specular reflection point, R, is the dis-
tance between the specular reflection point and the receiver.
In UAS-based GNSS-R, the distance from specular points to
receiver R;s; is much smaller compared to the distance of
specular points to the transmitter. I is the surface reflectiv-
ity, G- is the gain of the receiving antenna, and X is the GPS
wavelength (0.19 m).



3.1. Surface reflectivity calculation from C'/N,

Reflected signal power, which is measured from a UAS plat-
form, is not only a function of SM but also multiple factors
that can affect received signal power, such as the transmitted
power of GNSS satellites, the distance between the satellite
and the SP, and the receiver antenna pattern/gain. On the field
side, surface roughness and vegetation effects are two main
factors. In our flight path, we included a 0.9 ha area of the irri-
gation reservoir that has a known reflection coefficient. Using
reflected measurements from this surface will help eliminate
unknown incident power variations such as transmitter power,
distance, elevation angle, and receiver antenna gain.

The reflection coefficient in the perpendicular polarization
case for nonmagnetic dielectric media can be calculated as,

r, - cost; — \/ea/e1 — sz:nQHi )
cost; + \/ea/e1 — sin?0;
where, €3 and € are the relative permittivity of water (81) and
air(1), respectively. 6; is the incident angle. We have calcu-
lated the water reflectivity for the viable GNSS satellites using
incident angle during flight. We can formalize the measured
C/Ny over the water and land as,

C/No**'[dB.Hz] = G..(0, ¢)[dB.Hz] + T'(6)***[dB] (3)
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where, G,.(0,¢) is the angle-dependent antenna factor,
F(Q)::rter is the calculated water reflectivity and I‘(G)L?rd is the
estimated land reflectivity. If we ignore small UAS orienta-
tion differences over the flight, the antenna factor will be the
same for the water and land. We can estimate land surface
reflectivity as,

I'(6)™[dB.Hz] = C/No"[dB.Hz]—

pnr pnr

—————water water (%)
[C/Nopnr [dBHZ] - F(e) [dBH

pnr
,where, C /No;vr:er is the average measured C'/ N over the wa-
ter for each PNR. The equation 5 not only calibrates the re-
ceiver antenna factor but also adjusts for incident power varia-
tions caused by differences in transmitter power and distance.

3.2. Correlation with in-situ SM

Table 3 displays the correlation coefficient between estimated
surface reflectivity and the averaged SM of crop fields. The
daily average SM of crop fields is determined by taking in-
situ measurements from all available probes in the area dur-
ing flights. In the same manner, we averaged the estimated
reflectivity of the specular points daily for each crop field.
The results show that the estimated reflectivity is positively
correlated with ground truth SM measurements for both crop
fields and different years except for the cotton field in 2021.

There were only 8 SM probes in the cotton field in 2021, and
the limited number of in-situ SM probes in the area may not
accurately represent the overall SM of the cotton field in 2021.

Table 3: Correlation coefficient of estimated reflectivity with
measured average SM.

Corn Cotton
R #of days | R #of days
2021 | 0.70 | 60 0.39 | 66
2022 | 0.71 | 91 0.71 | 93
2023 | 0.65 | 45 0.71 | 39
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Fig. 4: Estimated average surface reflectivity, NDVI, and av-
eraged measured SM for 2022 flight days. (a) corn, (b) cotton
field.

Figure 4 provides a temporal comparison of UAS-based
reflectivity estimation against SM probe measurements for
2022. We averaged daily specular point reflectivity estima-
tions and SM probe measurements of each crop field. This
figure shows that estimated reflectivity closely follows the in-
situ measurements for both crop fields.

4. CONCLUSION

In this study, we demonstrated that the use of GNSS-R data
collected via UASs can be leveraged to determine surface re-
flectivity, which is a proxy measure of surface SM. We ap-
plied a correction procedure to eliminate unknowns such as
transmitter power, distance, and antenna factor by using water
body measurements. In this study, we did not include other
factors, such as vegetation biomass, surface roughness, and
receiver antenna orientation changes. Ongoing efforts correct
these factors with ancillary data to estimate soil moisture at a
subfield scale.
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