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ABSTRACT

Unmanned Aircraft Systems (UAS) play an essential role

in providing high-resolution information for precision agri-

culture (PA). Global Navigation Satellite System (GNSS)

Reflectometry (GNSS-R) from a UAS can provide higher

spatial and temporal resolution for soil moisture (SM) re-

trievals. This study summarizes and analyzes of a three-year-

long field campaign including comprehensive GNSS-R and

ancillary data from crop fields. The field data collections

were conducted on 210 by 110 m (2.31 ha) corn and cotton

fields over 3 years from 2021 to 2023. The results indicate

that high-resolution SM measurement can be achieved with a

low-cost GNSS-R system onboard a mid-size UAS platform

for use in PA applications.

Index Terms— GNSS-R, Soil moisture, UAS

1. INTRODUCTION

Unmanned Aircraft Systems (UAS) play an essential role in

providing high-resolution information for precision agricul-

ture (PA) [1]. Accurate and high-resolution soil moisture

(SM) measurement is one of the critical inputs for site-

specific PA management. Efficient irrigation management

enhances crop quality, yield, and resource conservation [2].

Using SM probes is a traditional and reliable method for ac-

curately measuring volumetric soil moisture [3]. However,

high-resolution SM observations through SM probes can be

time-consuming, costly, and inefficient for large heteroge-

neous fields.

UAS-based technologies have various applications in

PA, such as vegetation trait and stress monitoring [4], weed

mapping [5], and irrigation management [6]. However, SM

measurements using UAS are currently very limited and not

yet fully developed. Several existing UAS-based SM esti-

mation studies aim to obtain field-level SM results. These

studies are mainly based on optical sensing focused on soil
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or vegetation spectral reflectance from UAS. Soil spectral

reflectance studies showed that reflectance level decreases as

SM increases due to a darkening of the soil surface color [7].

The main drawbacks of soil spectral reflectance are that the

performance depends only on soil color and texture, while SM

is affected by many factors. In addition, the penetration depth

of the optical sensing is highly limited to the uppermost layer

of soil, and the sensing modality requires atmospheric com-

pensation for higher sensitivity. Using an inversion model of

SM based on vegetation spectral indices is an alternative for

SM retrieval. The principle is to use remotely sensed spec-

tral observations strongly linked with SM [8]. The studies

show that many canopy spectral indices and biophysical and

biochemical parameters are strongly correlated with SM [9].

However, this technique observes vegetation rather than the

soil, depends on vegetation type and fertilizer usage, and is

not available for barren and sparsely vegetated areas. Ad-

ditionally, changes in spectral indices can lag changes in

climate/irrigation/precipitation. This lag may vary between

20 and 45 days depending on vegetation type [10]. As an al-

ternative, radio frequency (RF) signals transmitted by Global

Navigation Satellite System (GNSS) satellites at L-band fre-

quencies can penetrate soil and the reflections are sensitive

to SM in the top 5 cm depth [11]. The ability of GNSS-R to

sense SM has already been demonstrated from space-borne

[12], airborne [13], UAS-based [14], and tower platforms

[15]. Many research groups have developed models and algo-

rithms to retrieve SM from land observations using NASA’s

recent spaceborne GNSS-R mission, Cyclone Global Navi-

gation Satellite System (CYGNSS) [16, 17]. Although global

CYGNSS-based SM estimations have shown high correla-

tion with SM observations of Soil Moisture Active Passive

(SMAP), it has spatial resolutions of several kilometers, and

because of this reason it is not directly usable for PA which

requires sub-field level SM information.

To bring the GNSS-R technique into PA applications, we

utilize a low-altitude (15 m) mid-size UAS equipped with a

GNSS receiver, which collects signals only reflected from the



land surface. In this article, we summarized three years of

UAS-based GNSS-R data collection campaign and analyzed

calculated surface reflectivity compared to in-situ SM mea-

surements. Our initial findings indicate that the surface reflec-

tivity calculated using GNSS-R was closely correlated with

the measured SM, with a correlation coefficient ranging from

0.65 to 0.71.

2. METHODOLOGY

Our research objective is to explore the feasibility of em-

ploying an off-the-shelf, cost-effective GNSS receiver and a

UAS platform for the retrieval of high-resolution surface SM

at the field scale using the GNSS-R technique. We demon-

strated the practicability of this technique in [18]. The mea-

surement methodology entails attaching a GNSS receiver to a

small UAS platform, with a downward-facing GNSS receiver

antenna positioned beneath the UAS on an 18-inch meshed

plate. This arrangement ensures that the GNSS receiver ac-

quires only the ground-reflected GNSS signal, with the direct

signal obstructed by the meshed ground plate. Another iden-

tical GNSS receiver is positioned in an unobstructed open-

sky area to capture the direct GNSS signal for future analysis.

The L1-band (1575.42 MHz) GNSS signal having a wave-

length of ∼ 19.5-cm penetrates the soil up to ∼ 5-cm. The

airborne GNSS receiver receives these ground-reflected sig-

nals using its onboard receiver system. The simplified mea-

surement configuration is shown in Fig. 1.

Fig. 1: Simplified structure of the proposed approach. UAS

collects reflected GNSS signals from the specular points via

U-blox GNSS receiver.

2.1. Instruments

In this experiment, we employed a custom mid-size UAS plat-

form constructed from carbon fiber. The UAS can carry ap-

proximately 20 pounds as payload during a 15-minute flight.

The GNSS receiver used in the experiment is the U-blox ap-

plication board, accompanied by its L-band linear polarized

antenna. This antenna is affixed to an 18-inch meshed ground

plate made of aluminum (resembling a pizza pan). The GNSS

receiver antenna is positioned in a downward-facing orien-

tation to maximize the reception of ground-reflected GNSS

signals. For the reference, an identical U-blox GNSS receiver

and a linear antenna were used. However, the antenna for the

reference receiver is upward-facing and placed on top of an

18-inch meshed ground plate, enabling it to receive only the

direct, unobstructed GNSS signal.

2.2. Study field and data collection

2.2.1. Study Area Description

The investigation was conducted in a field measuring

210 m by 110 m (2.31 ha), located at the R. R. Foil

Plant Science Research Center, Mississippi State University,

Starkville, MS, USA, with coordinates at the lower left cor-

ner 33o28
′

15.70”N and 88o46
′

27.53”W . Figure 2 exhibits

the flight paths over the defined field area and a nearby wa-

ter body for the data collection in this study. The average

annual precipitation is around 1,329 mm, and humidity fluc-

tuates between 55% and 66% monthly. The field is situated

at an elevation of 92 m above sea level, featuring rows spaced

96.5 cm apart. The North side of the study field comprises a

large water body and a small creek. Table 1 shows the crop

planting changes through the 3-year experiment period.

2.2.2. Data Collection

A total of 337 GNSS-R flights were performed during the

study period at an altitude of 15m with a flight speed of 5m/s.

Besides GNSS-R data, we collect multispectral images and

LIDAR point cloud data weekly, using MicaSense RedEdge

MX and Geocue TrueView 51, respectively. The data collec-

tion flight statistics over the years are highlighted in Table 2.

Fig. 2: Flight path of the data collection: a total of 9 flight

lines in the North-South direction cover both field 1 and field

2. Middle 2 lines pass over a water body.

2.2.3. In-situ Data Collection

The ground truth SM data was collected by EC-5 volumetric

water content sensors using the capacitance method and man-

ufactured by METER Group Inc., Pullman, WA, USA. Sen-

sors were placed in different locations in the study field. Each



Fig. 3: Average measured in-situ SM of the study field for different years (2021-2023) and available flights of each year.

Table 1: Field-Section, Plantation, and Harvest Timeline of

the Crops.

Year Crop Type Field Section Plantation Time Harvest Time

2021
Corn South / Field 2 April 07 September 17

Cotton North / Field 1 May 23 November 05

2022
Corn North / Field 1 March 28 September 08

Cotton South / Field 2 April 29 October 18

2023
Corn South / Field 2 April 20 September 12

Cotton North / Field 1 May 16 October 18

Table 2: Flights and statistics of collected data

Year 2021 2022 2023 (up to Aug.)

# of flights

GNSS-R 122 136 79

Multispectral 40 45 40

LIDAR 34 27 21

GNSS-R data

# of PNR 3,369 3,029 1,361

# of Specular Point 1,761,126 1,853,839 670,151

# of SM probe 16 26 19

probe provides SM measurements for the top 5 cm SM every

three hours. All SM probes were kept in the field throughout

the year except for cover and main crop planting and harvest-

ing periods. Fig. 3 shows the average measured SM of the

study field through the experiment years.

2.3. GNSS-R data extraction

A GNSS receiver on the UAS receives and processes signals

sent by GNSS satellites. As an output, a GNSS receiver pro-

vides National Marine Electronics Association (NMEA) mes-

sages, which is a standard data and communication format

for electronic instruments, including GNSS receivers. GNSS

receivers’ NMEA messages provide time, position, veloc-

ity, and satellite information. From recorded NMEA mes-

sages, we have decoded RMC (recommended minimum spe-

cific GPS/Transit data) and GSV (satellites in view) messages

to extract the date/time information of the receiver and in-

view satellite information, respectively. From the GSV mes-

sage, we obtained the pseudo-random noise (PRN) number,

which is an identification number, elevation, azimuth, and sig-

nal strength value, carrier-to-noise density ratio (C/N0), for

each visible GNNS satellite.

2.4. UAS telemetry data and specular point calculation

Besides GNSS-R measurements, we also save the UAS

telemetry data during each flight campaign. The flight con-

troller of UAS saves all telemetry data to the controller’s

onboard memory at a 20Hz sampling rate. From teleme-

try data, we extracted data/time, UAS orientation pitch, roll

and yaw, and location information latitude, longitude, and

altitude. Then, we aggregated both datasets (GNSS-R and

telemetry) based on time stamps.

In the assumption of coherent surface reflection, we deter-

mined all specular reflection points (SP) by using local plane

reflection approximation theory for each reflected signal us-

ing the position of the UAS and the GNSS satellites. We have

used the elevation and azimuth angles information obtained

from the GNSS receiver to calculate SPs.

3. RESULTS

GNSS-R is a type of passive bistatic radar configuration that

involves the acquisition of reflected signals from the Earth’s

surface by a GNSS receiver. The main measurement taken

for remote sensing is the power of the reflected signal that

reaches the receiver. In most land observations, there is a sig-

nificant coherent component in the signal, which means that

the received signal power can be calculated in a formalized

manner, as described in [19].

Pr =
PtGt

4Ã(Rts +Rsr)2
Gr¼

2

4Ã
Γ (1)

, where Pt represents the transmitted power, Gt, is the gain

of the transmitting antenna, Rts is the distance between the

transmitter and the specular reflection point, Rsr is the dis-

tance between the specular reflection point and the receiver.

In UAS-based GNSS-R, the distance from specular points to

receiver Rts is much smaller compared to the distance of

specular points to the transmitter. Γ is the surface reflectiv-

ity, Gr is the gain of the receiving antenna, and ¼ is the GPS

wavelength (0.19 m).



3.1. Surface reflectivity calculation from C/N0

Reflected signal power, which is measured from a UAS plat-

form, is not only a function of SM but also multiple factors

that can affect received signal power, such as the transmitted

power of GNSS satellites, the distance between the satellite

and the SP, and the receiver antenna pattern/gain. On the field

side, surface roughness and vegetation effects are two main

factors. In our flight path, we included a 0.9 ha area of the irri-

gation reservoir that has a known reflection coefficient. Using

reflected measurements from this surface will help eliminate

unknown incident power variations such as transmitter power,

distance, elevation angle, and receiver antenna gain.

The reflection coefficient in the perpendicular polarization

case for nonmagnetic dielectric media can be calculated as,

Γ⊥ =
cos¹i −

√

ϵ2/ϵ1 − sin2¹i

cos¹i +
√

ϵ2/ϵ1 − sin2¹i
(2)

where, ϵ2 and ϵ1 are the relative permittivity of water (81) and

air(1), respectively. ¹i is the incident angle. We have calcu-

lated the water reflectivity for the viable GNSS satellites using

incident angle during flight. We can formalize the measured

C/N0 over the water and land as,

C/N0

water

pnr [dB.Hz] = Gr(¹, ϕ)[dB.Hz] + Γ(¹)
water

pnr [dB] (3)

C/N0

land

pnr [dB.Hz] = Gr(¹, ϕ)[dB.Hz] + Γ(¹)
land

pnr [dB] (4)

where, Gr(¹, ϕ) is the angle-dependent antenna factor,

Γ(¹)
water

pnr is the calculated water reflectivity and Γ(¹)
land

pnr is the

estimated land reflectivity. If we ignore small UAS orienta-

tion differences over the flight, the antenna factor will be the

same for the water and land. We can estimate land surface

reflectivity as,

Γ(¹)
land

pnr [dB.Hz] = C/N0

land

pnr [dB.Hz]−

[C/N0

water

pnr [dB.Hz]− Γ(¹)
water

pnr [dB]]
(5)

,where, C/N0

water

pnr is the average measured C/N0 over the wa-

ter for each PNR. The equation 5 not only calibrates the re-

ceiver antenna factor but also adjusts for incident power varia-

tions caused by differences in transmitter power and distance.

3.2. Correlation with in-situ SM

Table 3 displays the correlation coefficient between estimated

surface reflectivity and the averaged SM of crop fields. The

daily average SM of crop fields is determined by taking in-

situ measurements from all available probes in the area dur-

ing flights. In the same manner, we averaged the estimated

reflectivity of the specular points daily for each crop field.

The results show that the estimated reflectivity is positively

correlated with ground truth SM measurements for both crop

fields and different years except for the cotton field in 2021.

There were only 8 SM probes in the cotton field in 2021, and

the limited number of in-situ SM probes in the area may not

accurately represent the overall SM of the cotton field in 2021.

Table 3: Correlation coefficient of estimated reflectivity with

measured average SM.

Corn Cotton

R #of days R #of days

2021 0.70 60 0.39 66

2022 0.71 91 0.71 93

2023 0.65 45 0.71 39

(a) Corn

(b) Cotton

Fig. 4: Estimated average surface reflectivity, NDVI, and av-

eraged measured SM for 2022 flight days. (a) corn, (b) cotton

field.

Figure 4 provides a temporal comparison of UAS-based

reflectivity estimation against SM probe measurements for

2022. We averaged daily specular point reflectivity estima-

tions and SM probe measurements of each crop field. This

figure shows that estimated reflectivity closely follows the in-

situ measurements for both crop fields.

4. CONCLUSION

In this study, we demonstrated that the use of GNSS-R data

collected via UASs can be leveraged to determine surface re-

flectivity, which is a proxy measure of surface SM. We ap-

plied a correction procedure to eliminate unknowns such as

transmitter power, distance, and antenna factor by using water

body measurements. In this study, we did not include other

factors, such as vegetation biomass, surface roughness, and

receiver antenna orientation changes. Ongoing efforts correct

these factors with ancillary data to estimate soil moisture at a

subfield scale.
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