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Summary. While widely used as a general method for uncertainty quantification, the boot-
strap method encounters difficulties that raise concerns about its validity in practical appli-
cations. This paper introduces a new resampling-based method, termed calibrated boot-
strap, designed to generate finite sample-valid parametric inference from a sample of size
n. The central idea is to calibrate an m-out-of-n resampling scheme, where the calibration
parameter m is determined against inferential pivotal quantities derived from the cumula-
tive distribution functions of loss functions in parameter estimation. The method comprises
two algorithms. The first, named resampling approzimation (RA), employs a stochastic ap-
prozimation algorithm to find the value of the calibration parameter m = m, for a given
« in a manner that ensures the resulting m-out-of-n bootstrapped 1 — a confidence set is
valid. The second algorithm, termed distributional resampling (DR), is developed to further
select samples of bootstrapped estimates from the RA step when constructing 1 — « con-
fidence sets for a range of o values is of interest. The proposed method is illustrated and
compared to existing methods using linear regression with and without L, penalty, within
the context of a high-dimensional setting and a real-world data application. The paper
concludes with remarks on a few open problems worthy of consideration.

Keywords: Bayesian Bootstrap; L, penalty; Pivotal quantities; Profile likelihood;
Stochastic approximation.

1. Introduction

Bootstrap methods are designed to estimate the sample distribution of the statistic of
interest by resampling the observed data. Since the seminal paper of Efron (1979) (see
also Efron, 2003), these methods have often served as an indispensable tool in the realm
of statistical inference and prediction, due to their simplicity and efficiency (see, e.g.
Efron and Tibshirani, 1993). It has also motivated relevant research in other contexts,
including its Bayesian counterpart (see Rubin, 1981; Efron, 1982; Newton and Raftery,
1994; Efron, 2012; Newton et al., 2021, and references therein).

Nevertheless, practitioners may misuse the bootstrap methods in situations where
no theoretical confirmation has been made (Shao and Tu, 2012). Care must be taken
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in specific applications (Martin, 2015). Firstly, the theoretical underpinnings of the
bootstrap methods predominantly center around its asymptotic validity. Specifically,
researchers primarily concentrate on establishing the property of consistent estimation for
the sampling distribution of the statistic of interest as the sample size approaches infinity
(see, e.g., Bickel and Freedman, 1981; Singh, 1981; Wellner and Zhan, 1996; van der Vaart
and Wellner, 1996; Kosorok, 2008; Efron and Tibshirani, 1993, and references therein).
Secondly, it has been reported that bootstrap can fail, even in its intended applications
based on large-sample theory (see, e.g., Bickel and Freedman, 1983; Abrevaya and Huang,
2005; Chernozhukov et al., 2023, and references therein). For example, the bootstrap has
been shown to provide an inconsistent estimation of the true sampling distribution of
the coefficients in high-dimensional linear regression setting of n — oo while p/n — ¢ for
some ¢ > 0 with p predictors, and the numerical experiments also show that the existing
bootstrap methods give very poor inference on the vector of regression coefficients £
(El Karoui and Purdom, 2018).

To overcome the limitations of the standard bootstrap method (i.e., the bootstrap
with n-out-of-n replacement resampling) in certain scenarios, researchers have explored
alternative resampling approaches. These alternatives, also required to be supported by
their asymptotic validity, include m-out-of-n resampling with replacement and without
replacement, where the latter is also known as subset sampling (Politis and Romano,
1994; Bickel and Sakov, 2008; Bickel et al., 2012), an idea that dates back to Bretagnolle
(1983). However, to the best of our knowledge, there is still a significant gap in the
existing research when it comes to the development of theoretically supported finite
sample inference methods based on resampling.

In order to achieve desirable finite-sample performance, the resampling scheme may
need to adapt itself according to the specific model and observations. In this paper, we
explore adaptive and computationally feasible resampling methods for achieving valid
frequentist inference for model parameters in the finite sample case. That is, for a given
model, the inference method should be able to provide control over the type-I error rates.
For example, the constructed 95% confidence interval of the parameter should cover the
true parameter at least (and close to) 95% of the time. For this, we develop computational
methods with sound theoretical justifications, along the lines of recent developments on
the foundations of statistical inference (Fisher, 1973; Shafer, 1976; Dempster, 2008; Singh
et al., 2007; Xie and Singh, 2013; Hannig, 2009; Hannig et al., 2016; Martin and Liu,
2013, 2015; Martin, 2015; Cella and Martin, 2022), while our exposition will make use of
the basic idea of the familiar pivotal method as much as possible.

Theoretically sound methods for finite-sample valid inference have been well-studied in
the existing literature. However, the computational tools that can be practically applied
to find solutions are generally lacking and often infeasible, especially in high-dimensional
scenarios (Martin, 2015). The primary focus of this paper is to propose a computation-
ally efficient, resampling-based numerical strategy to closely approximate the targeted
theoretical solution. Philosophically, it is at least subtle to make inference via resam-
pling because variability from resampling and uncertainty assessment for inference are
two different concepts. Here, our key idea is to match the variability from resampling to
uncertainty in inference. By looking at inferential problems from the inferential models
(IMs) perspective (Martin and Liu, 2013), which could be considered as rooted in the piv-
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otal method for hypothesis testing and confidence interval construction, we numerically
quantify uncertainty assessment by considering loss functions in the context of parameter
estimation and making use of the cumulative distributions of their sampling distributions
to introduce the needed pivotal quantities or auxiliary random variables. Consequently,
we seek resampling schemes in such a way that the distribution of the loss function based
on the bootstrapped estimates matches the theoretical distribution necessary for valid
inference. Because our primary goal is to create a method that leads to valid frequentist
inference in finite sample scenarios, regardless of the asymptotic relationship between
the sample size n and the number of parameters p, the method inherently possesses the
capacity to be applicable in high-dimensional settings, for which the standard bootstrap
has been known to be problematic as discussed above.

The rest of the paper is arranged as follows. In Section 2, we will briefly review the
generalized association method (Martin, 2015), a foundational approach for valid para-
metric inference, which forms the theoretical basis of our proposed method. In Section
3, we propose a variant of bootstrap that aims to produce valid frequentist inference in
finite sample scenarios. This method, called calibrated bootstrap (CB), consists of two
steps. The first step applies a resampling method, called the resampling approzimation
(RA), to a set of pre-specified coverage probabilities. For each confidence coefficient, RA
performs the m-out-of-n resampling with replacement, with the value of m obtained by
a stochastic approximation algorithm to ensure that the resulting confidence region has
the desired coverage probability. The second step of CB, called the distributional resam-
pling (DR), is optional and selects a common sample of the bootstrapped estimates that
works for a pre-specified range of « values of interest. Although our exposition empha-
sizes joint inference on the unknown parameters, we also discuss marginal inference on a
parameter of interest. The proposed CB method is illustrated with applications in both
easy-to-verify linear regression in Section 3 and challenging L; penalized linear regression
in Section 4, including a real data example from a diabetes study. We conclude with a
few remarks in Section 5.

2. Foundations of Valid Inference: an Overview

2.1. The Generalized Association Method for Parametric Inference

Here, we provide a brief review of the valid inference discussed in Martin (2015), which
will be taken as our starting point in Section 3, where our proposed method will be
introduced. Let y be an observed sample of size n from the true population Y ~ Py,
0 € ©. Suppose that we are interested in inference on #. We consider the problem of
estimating 6 with some loss function ¢(y,6). Here, for our exposition, we focus on the
likelihood-based loss function

Uy,0) = —InL,(0) + x(0), 6€cO (1)

where Ly(#) denotes the likelihood function and 7(#) stands for a penalty function.
Following Martin (2015, see Equation (1)), we take the generalized association function

Ty,@ = é(ya Gy) - f(y’ 6)7 0 e ®7y ey (2)

where 9y = arg ming ¢(y, 0) and it is assumed that ming ¢(y, 6) is finite.
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As discussed in Martin (2015) and Martin and Liu (2015), valid inference can be made
by making use of the distribution of Ty,

Fy(t) =Pypp (Tvp < 1), (3)

where Y ~ Py and 6 € O is the fixed parameter value. The basic idea behind inferential
models is that based on the fact that given the value U of Fy (T}, ), the knowledge we
know about € from the observed data y is exactly represented by the set

{60: Fyp(Ty9)=U}.

This leads to an exact frequentist confidence region {6 : Fy(Ty9) > o} with coverage
probability 1 — « for all @ € (0,1). More precisely, we have the following theoretical
result (c.f., Martin, 2015).

THEOREM 1 (EXACT CONFIDENCE REGION). IfTy g is a continuous random variable
as a function of Y ~ Py, for any o € (0,1), the set {6 : Fp(Typ) > a} is an ezact 1 —a
frequentist confidence region. Namely, for Y ~ Py and the fived parameter value 6§ € O,

Py (0 € {6: Fy(Tyvy) 2 a}) =

PRrOOF. If Ty is a continuous random variable as a function of Y ~ Py, the distri-
bution of Fy(Ty,) follows the standard uniform distribution Uniform(0, 1). Therefore,

Pyg (0 € {0 : Fy(Ty,p) > a}) = Pyjg (Fo(Tyy) < @)

= Oé,
completing the proof.

For the sake of clarity in the context of constructing confidence regions, we formally
define the validity of a confidence-oriented inference procedure, which is consistent with
that used in the bootstrap literature for considering large sample-based validity.

DEFINITION 1 (VALID PARAMETRIC INFERENCE). A confidence-oriented inference pro-
cedure for the model parameter 0 € © is said to be valid at level a € (0,1) if its 1 — «
confidence region C(Y') satisfies

Pyjg (0 ¢ C(Y)) < a
as 'Y ~ Pyg. It is said to be valid if it is valid at all levels.

Thus, from Definition 1 and Theorem 1, we see that the key to obtaining the valid
inference based on T} ¢ is to be able to evaluate Fy(t) defined in (3). Here is a simple
example where Fy(t) can be obtained analytically.

REMARK 1. The pioneering work of Martin (2015), developed in the framework of
IMs, can be viewed as to use the set {0 : Fy(T,9) > a} to construct an exact confidence
region for 0. However, it is not always feasible to derive a closed-form expression of
Fy(Ty9), necessitating Monte Carlo estimation. Meanwhile, evaluating the function value
across a wide range of 0 is required. Consequently, as is pointed out by Martin (2015),
the computational cost can become prohibitively high, especially when dealing with high-
dimensional 6.
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REMARK 2. Besides (2), the generalized association function Tyg can take other
forms (Martin, 2015). Although the algorithm proposed in Section 3 does not depend
on this specific formulation, we choose to adhere to (2) throughout our discussion. The
choice is motivated by the fact that (2) conveniently summarizes all information in y
concerning 0, and (2) is computationally simple compared to other potential forms of

Ty, such as the standardized signed log likelihood ratio (Barndorff-Nielsen, 1986).

2.2. T-Confidence Distribution

Utilizing the valid confidence set {6 : Fy(Ty9) > a} discussed in Section 2.1, suppose
now we are interested in constructing a distribution of a function of both the unknown
parameter 6 and the data y, where y is taken as random variable, such that it assigns
at least probability 1 — « to all the 100(1 — a)% confidence sets. Intuitively, for each
fixed y, our goal is to create a distribution of the parameter 6, denoted by G, such that
for samples drawn from G, and sorted according to the value Fyp(T} ), the proportion
of these values greater than « is at least 1 — « for any o € (0,1). By Theorem 1, this
guarantees the desired property of the distribution G,. Such a distribution will greatly
facilitate the inference procedure, as the choice of o and the confidence set is arbitrary.
Formally, we define such a distribution as a T-confidence distribution as follows (c.f.,
Martin, 2021b, 2023a):

DEFINITION 2 (T-CONFIDENCE DISTRIBUTION). Given the observed datay fromY ~
Py and a function Ty g of y and 0, a distribution G, indexed by y and on the space of 0,

is said to be a T-confidence distribution of the unknown parameter 6 with respect to T g
if Gy satisfies:
Po- (Fo.(Typ.) < a)=a, foranya € (0,1), (4)
or equivalently, Fy (Tye.) ~ Uniform(0,1), when 0, ~ G,.
For simplicity, hereafter we refer to the T-confidence distribution defined above simply

as the confidence distribution. It follows that confidence sets can be produced straight-
forwardly from confidence distributions, as shown in the following theorem.

THEOREM 2. Suppose that G, is a confidence distribution with respect to Ty g for
given the observed data y from'Y ~ Py. For any a € (0,1), let Ug}_o‘ be the subset of ©

determined by fUlfa dGy > 1—a. Then UyI*O‘, as a confidence set for the true parameter
0, has at least 100(1 — «)% coverage probability, that is, for Y ~ Py,

Py (0 ¢ Uy @) < o

PrOOF. The function mapping 6 — Fp(T, ) gives Uyl_o‘ > S;_O‘ C (0,1), with
Py- (Fg* (Tye.) € S;_a) > 1—a. Since Fp, (T4, ) follows the standard uniform distribu-
tion denoted by U, we have f gi-o dU > 1 — «. It follows from Theorem 1 that, when
Y ~ Py,

Pyig (0 ¢ {0: Fy(Typ) € Sy °}) = Pyjp (Fo(Tyvp) € Sy ) < o,
completing the proof.
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REMARK 3. A more rigorous definition of the confidence distribution from the im-
precise probability point of view (Martin, 2021a, 2023a) is given in Supplementary S.1.
Furthermore, Martin (2023a) shows that if well-defined, the fiducial distribution obtained
via the traditional fiducial inference (see, e.g., Zabell, 1992; Liu and Martin, 2015, and
references therein for more discussions on fiducial) is precisely the confidence distribution.

EXAMPLE 1 (INFERENCE ON THE UNKNOWN MEAN OF A NORMAL DISTRIBUTION).
Suppose that we have observed a sample of size n, y := (y1, ..., yn), from the normal dis-
tribution N (6, 1) with unknown 6 € R. We are interested in making valid inference on
the mean parameter . Utilizing T} 9 and its distribution, we have

n n

Tyo = 10.0) €y 0) = 3 | S~ 02 = s~ 02| =20 )
=1 =1

where 6 = 7, the sample mean y = %Z?:l y;. This implies that Ty g ~ —%X%, as the
sampling distribution of y is N(0,1/n). Represent the standard normal distribution as
Z ~ N(0,1) and symbolize its cumulative distribution function as ®(-). For Y ~ Py,

Fy(t) =Pyjp (Tyg < t) =P (xi > —2t)
—20(—v—20), t<0.

Note that {6 : Fy(T, ) > a} gives exactly the same classical (1 — a)% z-interval for 6.

By applying the reverse operation, we obtain the distribution 0, ~ N(y,1/n). We
have Fy_(Typ.) = 2®(—+/n|y — 04|) ~ 2®(—|Z|) where Z ~ N(0,1). Since 2®(—|Z|) ~
Uniform(0, 1), the distribution of 6, satisfies (4), and thus is the confidence distribution
of 6. In other words, any 100(1 — «)% confidence set from N(y,1/n) has at least 1 — «
chance to cover the true parameter 6.

3. The Calibrated Bootstrap Method

In this section, we propose a computationally feasible method to perform valid parametric
inference via an adaptive resampling procedure. This method, termed calibrated bootstrap
(CB), consists of two steps: resampling approximation (RA) and distributional resampling
(DR). The RA step searches for a resampling scheme that can best approximate the exact
confidence region of § € O for each of a set of prespecified confidence coefficients. The
DR step selects samples from the bootstrapped estimates obtained in the RA step to
construct the confidence distribution of the unknown parameter of interests. These two
steps are summarized as two algorithms and are discussed below in Sections 3.1 and 3.4.

3.1. Resampling Approximation

It is seen in Section 2.2 that the key to producing valid inference based on T, ¢ is to
obtain the confidence distribution 6, ~ G, that satifies (4). For the general case, in
the CB context, we are interested in a bootstrapped sample (or, in theory, population)
of estimates ©, represented in terms of the empirical distribution @y based on © and
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referred to as bootstrapped confidence distribution in the sequel, as long as it provides
valid inference in the sense:

~

0.~Gy st. Fy(T,; )~ Uniform(0,1). (6)
It appears difficult to design a resampling scheme to construct a © satisfying (6). Here,

we consider to find ©, with the corresponding empirical distribution G’; such that for
random variable 6, and distribution function GZ that depends on given « and y, when
.~ G,

Py <Fé*(Ty79*) < a) =, for some pre-defined a € (0,1). (7)

This is an easier alternative to finding © as (6) entails (7). The following Lemma suggests
that when 6, ~ GZ, the obtained 1—a confidence region using the a quantile of £, (Ty o)
is exact. o

LEMMA 1. Suppose Ty is a continuous random variable as a function of Y ~ Py for
0 € ©. For a distribution éj such that when 0, ~ ég, (7) holds for some pre-defined
a € (0,1). Denote the distribution of Fé*(Tyﬁ*) as Qy. Suppose that @; has non-zero
density at any Oy € {0 : Fy(Ty9) > a} and zero density at any 0y ¢ ©. Then, the set

{0": Fo(Ty0) 2 Qy ()}, (8)

where each 0’ represents a realization of the random wvariable 0, simulated from G;

provides an exact 1 — « confidence region for 0 as defined in Theorem 1, where Q;l()
denotes the inverse function of Q.

PROOF. Condition (7) implies that @, '(e) = a. Since GZ has non-zero density at
any 0y € {0 : Fp(Typ) > a}, (8) is equivalent to {6 : Fy(T,9) > a}. The exactness
follows from Theorem 1.

Denote by r(-) a resampling scheme 7(-) that is used to generate the resampled data
set § ~ r(y). The variability of the estimates introduced by 7(-) is captured through the
distribution of bootstrap estimates, denoted by 0,. Here, 0, is defined as the estimated
parameter that minimizes the loss function for a given resampled dataset :

0, = argmin£(y,0), y~r(y) 9)
0

Ideally, for valid inference, the variability of the estimates of € in (9) should match
its theoretically quantified uncertainty in (6) or (7). To search for such a resampling
scheme, here we consider a more general method of m-out-of-n bootstrap (Bickel and
Sakov, 2008). That is,

r(y) =A9 - Imt,  m=1 (10)
with g, (¢ = 1,...,m) being a random draw with replacement from {yi,...,y,}. Note

that (10) reduces to the standard bootstrap when m = n. We take m here to be adaptive
to specific models and observations in order to control the variability of the estimates of 6
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(0:Fo(Ty0) = a) {0:Fo(Ty0) > a}

&)

{0.:FoT,0) 2 Q' @)}

{0.:Fo.(T,0) > Q' @)}

(a) m > mq, (b) m < mq

Fig. 1. lllustration of the over-disperseness of 6, with different choice of m. The distribution of
F, (T, 5.) for 0. obtained by the m-out-of-n bootstrap is denoted by Q,,, and its inverse function
is denoted by @, '(-). The optimal m denoted by m,, is the m such that the confidence region

{0, : Fy, (T,5.) =2 Qy !(a)} closely matches the desired confidence region {6 : Fy(T,,9) > a}.

in (9). Numerically, as m — oo, we have 0, % 6, and Fy (T,5.) 2 1, where & denotes
convergence in probability. Theoretically, as a matter of fact an asymptotic normality
result similar to that for the maximum likelihood estimator (see7 e.g., Lehmann, 1991, p.
415) can be established by treating the 6 = arg mingcg £(y, 0) as the true parameter with
respect to resampling, because the same proof for the maximum likelihood estimator can
go through here due to the fact that the expectation of the score function at § = 6 is zero.
Conversely, as m decreases, 0, diverges from 6y, causing the distribution of Fj (T y,é*) to

gradually shift toward 0. The effect of m on the over-disperseness of the estimates 0, is
illustrated in Figure 1.

For theoretical justifications, here we make a mild assumption that the inference
problem is bootstrap e-calibratable at level a. Specifically, for fixed y, there exists a
positive integer m such that the m-out-of-n bootstrapped estimates 6, satisfy
a <Py (£ (T,5)<a)<ate (1)
for some € € [0, @] is the tolerance. This assumption ensures the existence of an approx-
imate solution to (7). Additional insights of such a property are given in Supplemen-
tary S.2.3. The assumption is considered mild for some common choices of « such as
{0.05,0.10,...,0.95} due to the well-documented flexibility and efficiency of the adaptive
m-out-of-n bootstrap in the literature (Bickel and Sakov, 2008; Chakraborty et al., 2013;
Jiang and Liu, 2024). Similarly, we also make another mild assumption that the set of the
finite number of possible values provided by the m-out-of-n bootstrap is dense enough
for practically accurate inference on 6 given y; see the discussion in Section 5 on the use
of weighted likelihood estimation as alternatives to or a generalization of resampling in
the context of bootstrapping.

In the first step of the proposed CB method, our primary objective is to determine
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an optimal value of m, such that the empirical distribution of the obtained bootstrap
estimates of 6 in (9) from the m-out-of-n bootstrap best approximates the distribution of
GZ in (7). This can be done using the stochastic approzimation (SA) algorithm (Robbins
and Monro, 1951). See Syring and Martin (2019) for the application of SA for obtaining

a specific target coverage level in a different context. For an unbiased estimator of the
distribution of Fj ( p.) that is needed for a SA implementation, we consider estimating
the distribution of F ( i _) with the empirical distribution function obtained by B
resampling repetltlons Suppose that after B resampling repetitions, we have B simulated
values

U1 - Féil)(Ty,éil))

UB — FA(B)(T

5 55)),

. y,0.,
~(b

where Hi) (b =1,...,B) denotes the obtained estimation of # by minimizing the loss

functions with regard to the b-th bootstrap samples. For sufficiently large B, objective

(7) is equivalent to
lim — Z (Up<a)=a (12)

where I(-) denotes the indicator function. The approximation of Fy (T , ) for each 0,
* Y,0«

can be done by sampling N new observation vectors y(»), ...,y from the population

P,

F, (T,5) NZ( 6. <Ty5.)- (13)

Alternative approaches, such as by reweighting the observed data using the SIR approach
of Rubin (1987), can also be considered.

The right-hand side of (13) is seen as an unbiased estimator of F_ (T ). Making use
of this fact, we propose a computationally efficient SA method of ﬁndlng the optimal m for
a pre—spemﬁed value of @ € (0, 1) subject to constraints (12). The method is summarized
as Algorithm 1. The step size ¢ used in the algorithm controls the convergence speed,
and one practical choice is ¢ = d-n for some d > 0. In the simulation study in Section 4,
we use d = 10. Additionally, in the illustrative examples presented in this paper, we use
a small number of resampling repetitions, specifically B = 10. This approach has yielded
satisfactory convergence results. The following theorem provides necessary theoretical
results on the required stochastic update in Algorithm 1. The proof is given in the
Supplementary S.2.

THEOREM 3. For a given targeted coverage probability 1 — a (0 < o < 1), let the
observed coverage probability be defined as a function of m:

14 m) =Py (B iy Ty ) < )
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Algorithm 1: The Resampling Approximation algorithm

1 Specify the target coverage level a and choose the number of bootstrap
replications B;

2 Initialize m(©®) with m(

0 = and the iteration number ¢t with ¢ = 0;

s while m® not converged do

4

=]

© ®

10

11

12

13
14

15

16

17

Let m = |m® | + Bernoulli(m® — [m®]), where |m®)] denotes the largest
integer not greater than m*) and Bernoulli(p) a Bernoulli random variable
with parameter p;

Sample {(z},yf): i=1,..., m®} or, in the matrix notation, (X*,Y*) from
{(zi,y:) : 1 =1,...,n} with replacement;

Compute 6, = arg ming (60, X*, Y™*);

Evaluate () = —[¢(0,, X,Y) — £(0, X,Y)];

Initialize P = 0;

for b <1 to B do

Sample {(«}*,y;*) : i =1,...,n} or, in the matrix notation, (X™**,Y**)
from model Pé*;

Compute 6., = arg ming £(6, X**, Y**);

Evaluate S®) = —[0(0,, X**, Y**) — £(0, X**,Y**)];

if S® < () then

L P+ P+1,;
Set 7, « UP/Bsaj—a 2 fl":}_)“;

Update m(+1) = m® + H_%Zt, where ¢ is a predefined constant;
Set t «t+ 1;

18 Return [m® | — 1.
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where 0, (m), with the resulting distribution Gy, is the bootstrap estimate of 6 obtained
with the m-out-of-n bootstrap. The convergence of Algorithm 1 to the desired solution

my, = mind f(m) — a: f%(m) > a}
m>1
is guaranteed with probability one if f*(m) is non-increasing with respect to m and

[f4(mo) — a > [f*(my) — o (14)

for all mg # m},, under the regularity conditions of likelihood function given in Supple-
mentary S.2. Moreover, if the problem is bootstrap e-calibratable by (11), the constructed
confidence interval by (8) is at least at the 1 — « level.

COROLLARY 1. The sufficient conditions of non-increasing f*(m) in Theorem 8 are:

C1. For 01, 03 such that ((y,01) > £(y,02), we have Fp, (Ty0,) < Fy,(Ty0,), and

C2. For any my > mg > 0, £(y,0.(m2)) first-order stochastically dominates £(y,0.(m1)).

Moreover, Theorem & holds asymptotically as m,n — oo, given that the asymptotic nor-
mality of mazimum likelihood estimator (MLE) holds.

REMARK 4. One sufficient condition for C1 in Corollary 1 to hold true is the distri-
bution of Ty g being independent of 0 for Y ~ Pq. Further insights about this sufficient
condition are elaborated in Martin (2015) as well as Supplementary S.3. It can also be
verified that condition C1 is satisfied in commonly used models, such as the linear regres-
ston model. Condition C2, on the other hand, is grounded in the concept that the model
loss decreases as the sample size increases. The demonstration of the example of linear
regression model satisfying these conditions are given in Supplementary S.3.2.

Now, we attempt to approximate the confidence distribution 0, ~Gin (6) with some
resampling scheme. Note that the sufficient condition for (6) is that for all « € (0,1),
(7) holds true. This motivates us to use the SA method to find the optimal m for each
in a range of target coverage probabilities, such as 0.05,0.15,...,0.95. The estimated
resampling scheme is the m-out-of-n bootstrap with a mixture of these m values. Note
that due to the limitation in the versatility of m-out-of-n bootstrap, the confidence
distribution may not be perfectly recovered. In this case, further refinement methods, as
will be dicussed in Section 3.4, are necessary.

3.2. RA with a Simple Example
Consider the example in Section 2.2 on the inference of the mean parameter 6 with y,
a sample containing n observations from the model Y ~ N(0,1). Here we illustrate the
application of RA to numerically approximate the (1 — a)% z-interval for 6 with some
pre-specified a.

By (5), for each bootstrap estimate 0" € O, the Monte-Carlo estimated function value

F, (Ty p.) with B repetitions takes the form

0.
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B
1
Fy. (Ty,@*) ~ B ZI <Ty“’)79* < Ty,é)

b=1
I 1 - (—(b)_ (b))2_1 - (9 _ (b))2 <1 - (—_ 4)2_1 - (9 o ,)2
9 § ) Y, 9 E = — Y; =5 E Yy—UY 5 E * — Yi

i=1 i=1 =1 i=1

1
B

M=

o
Il

1

where 3y is a sample of size n from the model N (6, 1).

In the RA process, an initial value m(® is used to conduct the m-out-of-n bootstrap
on the observed data y to obtain the resample data y, which yields the parameter value
6, = 7, the MLE of the resampled data. Next, the function value Fy (Ty@*) is calculated

by (15), based on which we update m(?) with
¢ W, (T,;)<a}-a
t+1 Ba(l — «)

D) — ()

Y

taking the iteration number as ¢ = 0, where ¢ = 10 - n is a predefined constant. Finally,
we increase the iteration number ¢ by 1 and repeat the whole process for the repetitive
updates of m until convergence.

With the obtained m from the RA step, we can then conduct the m-out-of-n bootstrap

to obtain the resampled @* whose distribution satisfies P@ <F9 (Ty 5 ) < a) ~ «. By

Theorem 1, we wish to construct the 1 — o confidence interval {6, : F, (Tyé ) > a} with

the set of , values obtained from the m-out-of-n bootstrap. It can be seen from (15)
that the distribution of the left hand side of the inequality does not depend on 6. As
a result, for 6y, 02 such that ((y,61) > {(y,02), we have Fy (Ty0,) < Fp,(Ty0,). Thus,
the 1 — a confidence interval can be obtained by the range of the 0, values for which the
corresponding loss function values fall within the lowest 1 — a quantile of all obtained
loss function values.

For numerical evaluations, we experimented with the case n = 50,0 = 1,a = 0.05.
The theoretical interval is (0.757, 1.312) and the proposed RA method gives (0.756, 1.313).

3.3. RA with a Linear Regression Example
To illustrate the proposed method, here we present a study on linear regression under a
high-dimensional setting. Further applications of Algorithm 1 are illustrated in Section 4.

EXAMPLE 2 (HIGH-DIMENSIONAL LINEAR REGRESSION). Consider the linear regres-
sion model
Y =XB+e, &~ N,(0,0%I),3€cRP, (16)

where X is the (n x p) full-rank design matrix, Y is the vector of n observed responses,
1 < p < mn,and 62 > 0 denotes the variance of the noise term. In the context of high-
dimensional linear regression, one may imagine the scenario where p/n — ¢ for some
0<c<1lasn— .
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Table 1. Upper bounds of the constructed confidence Interval for (8 — 3) (X' X)(3 — 3)/p at various
significance levels «, comparing the standard bootstrap and CB. Each method uses 1,000 bootstrap
samples, with the number of observations m resampled from the original dataset (size n = 500), as
determined in the RA step, specified in brackets. All intervals have lower bounds fixed at 0.
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Truth 1.197 1.120 1.075 1.041 1.010 0.981 0.952 0.920 0.881 0.818
1.820 1.650 1.547 1.454 1.385 1.324 1.262 1.190 1.107 0.992
[500]  [500] [500] [500] [500] [500] [500] [500] [500]  [500]
1.176 1.111 1.074 1.032 1.006 0.984 0.938 0.919 0.896 0.801
[651] [630] [617] [611] [603] [597] [598] [584] [569] [557]

Bootstrap

CB

Suppose that the estimand of interest is the unknown vector S of regression coeffi-
cients. Theoretical results from the fiducial inference perspective or, more precisely, the
CIM (Conditional Inferential Models) perspective (see, e.g., Martin and Liu, 2015) shows
that for the estimates

1

B=(X'X)'X'Y, 6=
n—p

V' (I-X(X'X)"'X")Y,

the fiducial or confidence distribution of /3 is given by
B ~ 1y (B,6*(X'X) " —p) (7)

where t,(-) denotes the p-dimensional multivariate student-¢ distribution, and if o is
known,

B~ Ny (Bo(x'x)7) (18)

where N, (-) denotes the p-dimensional multivariate Gaussian distribution. Apparently,
(17) and (18) can be used to construct the classical valid frequentist confidence region
for 5. More relevant details and discussion, focusing on the high-dimensional setting, are
provided in Supplementary S.5 and S.6.

For a simulation study, we took n = 500 and x = p/n = 0.3, a case in the context of
bootstrap for high-dimensional problems as discussed in El Karoui and Purdom (2018).
We set 0 = 1 to be known. Our goal is to conduct a valid and efficient joint inference on
B through resampling. Our numerical experiments indicate that both standard bootstrap
and the residual bootstrap (Freedman, 1981) yield unsatisfactory results in cases where
k = p/n = 0.3, with variations in the choice of n (see Supplementary S.7 for details).
This observation aligns with the results reported in Bickel and Freedman (1983) and
El Karoui and Purdom (2018). Here, we show that the proposed CB method can give
a valid and efficient joint inference on S. The SA algorithm to find the optimal m was
applied to each of 10 equally spaced target coverage probabilities 0.05,0.15, ...,0.95. The
trajectories of the 10 SA runs and the corresponding 10 estimated m-values are shown
in Figure 2 (a). We see that all estimated m values are larger than n in this case. We
compare the constructed frequentist 1 —a confidence intervals for (8—3) (X' X)(8—5)/p
with standard bootstrap and the estimated m-out-of-n bootstrap by RA with the 10
confidence coefficients «. Both bootstrap confidence intervals are constructed by taking
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Fig. 2. lllustration of SA on the Gaussian linear regression with unit error variance, n = 500,
k = p/n = 0.3, a case in the context of bootstrap for high-dimensional problems in El Karoui
and Purdom (2018). Plot (a) shows the trajectories of 10 SA runs for each of 10 equally-
spaced targeted coverage probabilities 0.05,0.15,...,0.95. The trajectories of 10 m-values in
terms of m/n and m/n — 1 are displayed in dotted lines (compressed to half its original length
by displaying the values every two iterations for clarity). The solid lines denote the cumulative
mean values of Fy(T, ¢). The circle “o” points in Plot (b) is the Q-Q plot of 1,000 bootstrap values
of (. — B) (X'X)(B. — B)/p against the theoretical quantiles. The triangle “A” points show the
corresponding quantiles for those obtained by bootstrap with the 10 estimated m values. The
gray vertical lines denote the 10 quantiles correspond to the 10 targeted coverage probabilities.
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0 as the lower bound and 1 — a quantile of the resampled values (3 - B)’(X’X)(B — B)/p
as the upper bound. As a matter of fact, similar to the reasoning in Section 3.2, it can
be shown that in this example, this interval construction method for the proposed RA
is equivalent to (8). The results are summarized in Table 1. It can be seen that our
proposed method gives an estimate numerically very close to the true confidence region
derived theoretically.

Figure 2 (b) compares the distribution of the standard bootstrap estimates of the
confidence distribution (8, — 3) (X'X)(Bs — 3)/p against the theoretical distribution ob-
tained from (18). The corresponding distribution obtained by the m-out-of-n bootstrap
with the mixture of 10 estimated values of m (each with equal probabilities) is also shown.
It can be seen that the resampling scheme found by RA dramatically outperforms the
standard bootstrap in recovering the theoretical distribution of (8, — ) (X'X)(8.—3)/p-
However, it appears challenging to perfectly recover the desired theoretical distribution
via a mixture of the m-out-of-n bootstrap, regardless of the number of mixture compo-
nents. This suggests the potential for exploring alternative resampling schemes that can
provide greater flexibility than the m-out-of-n bootstrap. Furthermore, this leads to our
proposed refinement method that is discussed next in Section 3.4.

3.4. Distributional Resampling of T,

As elaborated in Section 3.1, to approximate the confidence distribution of 6 with boot-
strapped 6,’s, it requires that (6) holds. This motivates a simple refinement method to
resample the bootstrapped estimates 0.’s in (9) obtained in the RA step to create a new
distribution such that the values of Fy (Ty é*) with the resampled 0,’s closely approxi-
mate a sample from the standard uniform distribution. Such resampled distribution can
then be seen as an approximation to the targeted confidence distribution and can be
used for constructing confidence sets at all « € (0, 1) levels by Theorem 2. The proposed
method is summarized into the following three-step algorithm, which is referred to as
distributional resampling (DR).

ALGORITHM 2 (DISTRIBUTIONAL RESAMPLING). Suppose that a set of m values for
the m-out-of-n bootstrap method is obtained by applying the SA algorithm with varying
target coverage level a (e.g. o = {0.05,0.50,0.95}). The DR algorithm creates a sample
of selected bootstrap estimates in three steps:

~(1 N
(a) Create B bootstrapped estimates Gi ), ...,0

values obtained by the SA algorithm.

B
i ) with sufficiently large B using the m

(b) Compute Uy = Féib) (Ty’éib)) with Monte Carlo approzimation in (13) forb=1,..., B.

(c) Set © = 0 as the set of resampled estimates and repeat the following steps for B
times:

(i) Draw u ~ Uniform(0,1);
(i) Find b, = argminy, |Up — ul;

(111) Add 955)*) to set ©.



16 Jiang et al.

1.0

00 O

1.4

FB(Ty)
0.6
1.2

Empirical Quantile

0.4
1.0

0.2

0.8

0.0
|

o O coam a
T T T T T T T T T T
-140 -120 -100 -80 -60 -40 0.8 1.0 12 14

Ty Theoretical Quantile

Fig. 3. lllustration of the DR step after RA. Plot (a) shows the estimate F@* (.) via Monte Carlo
with 1,000 6, values obtained by bootstrapping with the 10 estimated m values explained in
Figure 2. Plot (b) is the Q-Q plot of the bootstrap values of (5. — 8)' (X' X) (8. — B)/p selected
by DR against the theoretical quantiles.

REMARK 5. The DR algorithm can be employed with any sets of@il), e ,9iB). Nonethe-

less, the RA step, which offers a close, albeit not flawless, approximation to the true con-
fidence distribution of 6, can produce a more optimal effective sample size, making it a
more effective choice. The example in Supplementary S.4 shows that the construction of
the confidence distribution via DR can be practically impossible without the RA step. The
effect of the varying o levels used in the RA step on the final result is also empirically
studied in Supplementary S.4, showing that the result is robust to the grid density of «.
Another example in Martin (2023a) where the true confidence distribution is known is
used to demonstrate the efficiency of the approxzimation in step (c) of the DR algorithm
(see Supplementary S.8).

REMARK 6. For computational efficiency, the (a) and (b) steps of the DR algorithm

can be combined into the SA algorithm in the RA step. Specifically, the bootstrapped
)

A (b
estimates Hi as well as the value Féu,) (T ,w) are collected along the SA procedure. The

. b
resulting algorithm is given in Supplementary S.9.

EXAMPLE 2 (CoNT’D). We applied the DR method to the bootstrapped estimates
of 6 obtained with the m values from the RA process. Figure 3 (a) shows the scatter
plot of the initial m-out-of-n bootstrapped values of F} (Ty p.) versus the corresponding

values of T ; . Similar to Figure 2 (b), Figure 3 (b) shows the empirical quantiles of the

)
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Fig. 4. lllustration of the results after RA and DR for marginal inference of 3;. Plot (a) shows
the estimate F@*(.) via Monte Carlo with 1,000 6. values obtained by bootstrapping with the
10 estimated m values through the RA step. Plot (b) is the Q-Q plot of the bootstrap values of
8% — 3, selected by DR against the theoretical quantiles.

resampled estimates (8, — 3)'(X'X) (8. — 3)/p obtained with DR versus the theoretical
quantiles. Comparing Figure 3 (b) to Figure 2 (b), we see that the application of RA
followed by DR creates a nearly perfect approximation to the true confidence distribution.

3.5. Marginal Parametric Inference

In the previous section, it was shown that the proposed RA method followed by the DR
refinement process can provide a valid inference on the model parameters § € ©. In
practice, we might only be interested in the marginal inference of some functions of 6.
For example, when partitioning the model parameter as 6 = (61,602) € © = ©1 X O2, we
are interested in constructing a confidence region for 1, while treating 05 as the nuisance
parameter. Here, we propose a solution inspired by Martin (2015, 2023b), which replaces
the generalized association function (2) with a form of the relative profile likelihood

~

Ty, = Uy, 0y) — meaxﬁ(y, 01,062), feO,yeY. (19)

The idea is to create an association function that depends on #; alone, by marginalizing
out 0 via the profile likelihood.

In our proposed CB method, we conduct the RA process using the generalized asso-
ciation function defined in (19). If the distribution of Ty, as a function of ¥ ~ Py
is independent of 05, the exactness of the constructed confidence region for 6 via
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{01 : Fy,(Ty0,) > a} for a € (0,1), as previously elaborated in Theorem 1 is straight-
forward to establish (see, e.g., Martin, 2015). Even if when T} 9, being independent of
0 is hard to verify, Martin (2023b) demonstrates that inference conducted using the
profile likelihood-based association function (19) remains both theoretically valid and
empirically efficient. This robust theoretical foundation further supports the validity of
the proposed CB approach.

EXAMPLE 2 (CONT’D). We considered the marginal inference of the individual coef-
ficient B1. The RA and DR steps are carried out with the relative profile likelihood (19),
where 61 := 51 and 6 := {;|j # 1}. The results are shown in Figure 4. It can be seen
that the CB method provides a very good approximation to the true fiducial distribution

of |87 — /Bl|

4. Applications in L;-penalized Linear Regression

Revisit the linear regression model (16) articulated in Example 2. The Li-penalized
estimator of 3, also known and popularized as the Lasso estimator (Tibshirani, 1996), is
considered here and can be written as

p
b= argmin (¥ — X3V~ X5) + 13I8l
=1

where A > 0 is the tuning parameter. The Lasso estimator is useful especially when
p > n, as it can provide variable selection by shrinking some coefficients toward zero. The
involvement of the regularization term, allowing for a more robust estimator compared
to the ordinary least squares (OLS) estimator, can result in better prediction power.

Although Lasso is widely used in real data analysis scenarios such as genome-wide as-
sociation studies (GWAS, Uffelmann et al., 2021; Zeng et al., 2015), designing a valid and
efficient inference procedure is generally considered difficult, due to the added penalty
term. Resampling-based approaches, such as bootstrap and permutation tests (Arbet
et al., 2017), are the most commonly used methods for model inference. However, previ-
ous theoretical studies have shown that even in the asymptotic case, the validity of the
bootstrap-based inference procedure for Lasso is difficult to establish (Fu and Knight,
2000; Chatterjee and Lahiri, 2010, 2011).

A remarkable benefit of the proposed CB method lies in its ability to offer a valid
frequentist inference procedure for methods like Lasso, where valid inference is challeng-
ing to derive mathematically. We will first use a simulation study to demonstrate the
efficiency of the proposed method in Section 4.1 and then compare our proposed method
with other methods in a real data example in Section 4.2.

4.1.  Simulation Study

Similar to the high-dimensional setting in Example 2, our simulation studies consider
the scenario where the ratio kK = p/n — 1. Specifically, we increase k by varying its
value with {0.3,0.5,0.9}, alongside an increase in sample size n with {100,200, 500}. We
let X;; ~ N(0,1) and standardize X to have mean 0 and standard deviation 1 in each
column. For the vector of true parameters /3, we assume the signal to be sparse by setting
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Table 2. Estimated coverage probabilities of the true 5 and expected magnitude for the constructed 100(1—«)%
joint confidence region with different values of « using the model settings (p/n — 1). The standard deviation
of each value (estimated with bootstrap) is given in parentheses.

CB Standard Bootstrap Residual Bootstrap
Model [eY Coverage Magnitude Coverage Magnitude Coverage Magnitude
100 005 0952 (0.010) 0.463 (0.002) 0.780 (0.010) _ 0.270 (0.003) 0.958 (0.009) _ 0.471 (0.002)
T 30’ 0.15 0.862 (0.015) 0.328 (0.001) 0.604 (0.022) 0.183 (0.002) 0.872 (0.015) 0.334 (0.001)
p= 0.25 0.780 (0.019) 0.259 (0.001) 0.486 (0.022) 0.142 (0.002) 0.786 (0.018) 0.265 (0.001)
900, 005 0946 (0.010)  0.201 (0.001) 0.446 (0.022) _ 0.077 (0.001) 0.962 (0.009) _ 0.205 (0.000)
b — 100 015 0864(0.015)  0.152 (0.000) 0.298 (0.020)  0.052 (0.001) 0.864 (0.015)  0.154 (0.000)
= 0.25 0.758 (0.019)  0.125 (0.000) 0.192 (0.018)  0.040 (0.001) 0.762 (0.019)  0.127 (0.000)
o — 500 005 0950 (0.010) 0.045 (0.000) 0.844 (0.016) _ 0.034 (0.000) 0.946 (0.010) _ 0.046 (0.000)
— 450 015 0866 (0.015) 0034 (0.000) 0.726 (0.020)  0.026 (0.000) 0.876 (0.015)  0.035 (0.000)
= 0.25 0.762 (0.019)  0.028 (0.000) 0.646 (0.021)  0.023 (0.000) 0.778 (0.019)  0.029 (0.000)
B =1(3,0,...,0). In our data simulation, we set o = 1. When performing inference with

CB, both £ and ¢ are treated as unknown. In the case of Lasso, a key concern is the valid
inference of 5. We consider both the joint inference on  and the marginal inference on
B1 (the true signal). To compare with other bootstrap-based methods, we include the
standard bootstrap (Efron, 1979) as well as the (debiased) residual bootstrap (Chatterjee
and Lahiri, 2010). Specifically, carefully designed residual bootstrap has been shown to
be particularly effective in scenarios where p/n — 1 (Lopes, 2014), offering a powerful
alternative to the standard bootstrap.

To perform the proposed CB, we take m(f) = AY2_,|8]; in (1) to formulate the
association function T}, y with penalized likelihood. The penalty term X used for regular-
ization takes values of A € {20.1,40.2,63.1} correspondingly for the three cases, which
is initially determined by 10-fold cross-validation on the entire observed dataset, and

2 ~2 _ (B=B,)(X'X)(8-8,)
We fbx o at 0% = = o i,
refined estimator given in Reid et al. (2016), where B, denotes the Lasso estimates of 8
on the entire observed dataset. The implementation of CB uses the R package glmnet
(Friedman et al., 2010) and natural (Yu and Bien, 2019).

A valid joint inference aims to provide a close approximation of the true distribution
of the quantity (8—4,) (X'X)(8—3,)/p. We apply the RA step followed by the DR step
the create an approximate confidence distribution for the parameter 3, and construct the
1 —a confidence region {3 : (8—8,) (X'X)(8—8,)/p < q1-a}, Where q1_, is determined
in such a way that 100(1 — )% of the samples j, obtained from the DR step fall within
the region. We refer to ¢1_, as the magnitude of the confidence region, analogous to the
length of the confidence interval in a multidimensional context. The summarized results,
presented in Table 2, demonstrate that CB can achieve the desired joint coverage rate
while the standard bootstrap exhibits significant undercoverage. The residual bootstrap
also performs effectively in such p/n — 1 simulation setting, as validated in Lopes (2014);
however, it tends to yield more conservative intervals than CB.

remains constant across all 500 repetitions.

We also performed the marginal inference on 3;. The confidence interval is constructed
as {1 :|p1 _By,l‘ < q1—a} Where q1_q is chosen such that 100(1—a)% of the samples 3
obtained from the DR step are covered by the interval. The summarized results are shown
in Table 3, demonstrating that CB can achieve the desired marginal coverage rate. In
contrast, the standard bootstrap method continues to exhibit significant undercoverage.
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Table 3. Estimated coverage probabilities of the true 3; and expected length for the constructed 100(1 — «)%
marginal confidence interval with different values of « using the model settings (p/n — 1). The standard
deviation of each value (estimated with bootstrap) is given in parentheses.

CB Standard Bootstrap Residual Bootstrap
Model a Coverage Length Coverage Length Coverage Length
n = 100 0.05  0.950 (0.010) 0.735 (0.002) 0.510 (0.022)  0.409 (0.002) 0.950 (0.010)  0.739 (0.001)
T 30’ 0.15 0.844 (0.016)  0.615 (0.002) 0.320 (0.021)  0.298 (0.001) 0.860 (0.016)  0.616 (0.001)
p= 0.25 0.764 (0.019)  0.544 (0.001) 0.212 (0.018)  0.238 (0.001) 0.756 (0.019)  0.544 (0.001)
= 200 0.05 0.940 (0.011) 0.634 (0.001) 0.218 (0.018)  0.287 (0.001) 0.958 (0.009)  0.639 (0.001)
p= 100’ 0.15  0.858 (0.016)  0.549 (0.001) 0.072 (0.012)  0.210 (0.001) 0.862 (0.015)  0.553 (0.000)
B 0.25  0.746 (0.019)  0.499 (0.001) 0.038 (0.009)  0.167 (0.001) 0.756 (0.019)  0.501 (0.000)
n = 500 0.05  0.942 (0.010)  0.397 (0.001) 0.188 (0.017)  0.178 (0.000) 0.938 (0.011)  0.400 (0.000)
p= 450’ 0.15  0.852 (0.016)  0.344 (0.000) 0.086 (0.013)  0.131 (0.000) 0.862 (0.015)  0.345 (0.000)
- 0.25  0.750 (0.019)  0.313 (0.000) 0.048 (0.010)  0.104 (0.000) 0.760 (0.019)  0.313 (0.000)

4.2. Real Data Example

Consider the diabetes study introduced by Efron et al. (2004). This study encompasses
ten baseline variables (p = 10), including age, sex, body mass index (BMI), mean arterial
pressure (MAP), and six blood serum measurements (S1-S6). The primary response
variable of interest corresponds to a quantitative measure of disease progression, recorded
one year after baseline assessment, for each of the n = 442 diabetes patients in the
dataset.

We start by standardizing the variables so that Y1 | z;; = 0,2 > | x?j =1,for j =
1,...,p and %Z’;:l y; = 0. We also performed a routine linear regression diagnostic
analysis to verify that the basic assumptions of the linear regression model are appropri-
ate. Then, we fit a Lasso version of the model to the dataset for predicting the response
variable of interest, perform variable selection, and make inference on regresion coeffi-
cients of the predictors. The penalty value A = 520 is selected by 10-fold cross-validation,
and o2 is estimated using the residual sum of squares from the standard linear regression
model including all predictors.

Lasso yields a model with seven variables: sex, BMI, MAP, S1, S3, S5 and S6. For
these selected variables, we compare the confidence intervals obtained by our proposed
CB method with those obtained by the standard bootstrap. We also include a recent
method of Lee et al. (2016) designed for post-selective inference of Lasso. The method,
which we refer to as exact POSI, is capable of constructing a valid confidence interval
for the predictors selected by Lasso, while conditioning on the selected model. The
constructed 95% intervals with the three methods are shown in Figure 5. For the three
methods, our method ensures a minimum of 95% coverage under the full model with 10
predictors, in contrast to exact POSI, which guarantees this level of coverage conditional
on the model with seven selected predictors. The standard bootstrap does not warrant
95% coverage. The intervals from our CB method are shown to be comparable in length
to those of other methods but are notably shorter than the exact POSI for S6. The
results also indicate a consensus among all methods regarding the non-significance of S6.

5. Concluding Remarks

In this paper, we proposed a resampling approximation approach that enables valid
finite sample joint inference based on likelihood functions and marginal inference based
on profile likelihood. It can be easily extended to cases where general loss functions
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Fig. 5. Constructed 95% confidence intervals for the seven selected variables by Lasso (A =
520). The intervals constructed with our proposed CB method are shown in red lines. The
intervals constructed with the standard bootstrap are shown in green lines. Exact POSI denotes
the post-selection inference approach of Lee et al. (2016), and the constructed intervals are
shown in blue lines.
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are used for point estimation. Avoiding the limitations associated with conventional
bootstrap techniques, the proposed method is shown to achieve valid inference outcomes
through calibrated resampling and refinements. To our knowledge, this is the first study
to adapt the resampling method for valid inference in finite-sample scenarios. Although
the proposed method does involve higher computational costs compared to conventional
bootstrap techniques, it remains computationally feasible. Moreover, it can be readily
parallelized on modern computer clusters, further enhancing its computational feasibility
and efficiency.

The key idea in our development of resampling-based methods for finite-sample valid
inference is to find a resampling scheme that guarantees the validity of resulting confi-
dence region for a pre-specified confidence level. In the proposed CB method, we created
a stochastic approximation algorithm to find an adaptive m-out-of-n resampling scheme.
Alternative resampling schemes and alternative ways of creating samples of bootstrapped
estimates can be considered in future research and applications. For example, weighted
maximum likelihood estimates with weights drawn from an adaptive Dirichlet(d1) dis-
tribution can be considered, with § representing the calibration parameter. This method
is expected to be especially useful for the case with small observed data samples.

Nevertheless, it is worth noting that obtaining exact marginal inferences for individual
parameters can be a complex undertaking, necessitating further research. This highlights
the broader challenges of conducting finite-sample valid inference in complex models. In
this article, we proposed an approach based on the idea in Martin (2015, 2023b) for
“marginalizing out” nuisance parameters. While this method is shown to be valid and
empirically efficient, it points to a potential direction that invites creative thoughts on
marginal inference, a challenging problem for all existing schools of thought.

The primary focus of this paper is the development of computational methods that
facilitate efficient parametric inference. Cella and Martin (2022) developed an IM frame-
work for approximate inference on risk minimizers in a nonparametric context. Given
that many modern machine learning applications necessitate inference based on unknown
models or loss functions, an intriguing future direction would be to explore whether the
insights from this paper can be effectively adapted for efficient inference under the frame-
work proposed by Cella and Martin (2022).
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