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Abstract. We study geometric monodromy groups Ggeom,Fq of the local sheaves Fq on the affine

line over F2 of rank D =
√
q(q − 1), q = 22n+1, constructed in [Ka5]. The main result of the paper

shows that Ggeom,Fq is either the Suzuki simple group 2B2(q), or the special linear group SLD.

We also show that F8 has geometric monodromy group 2B2(8), and arithmetic monodromy group
Aut(2B2(8)) over F2, thus establishing [Ka5, Conjecture 2.2] in full in the case q = 8.
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Introduction

In an earlier paper [Ka5], one of us, inspired by a paper [Gr] of Gross, defined, for each n ≥ 1, a
local system on A1/F2 of rank 2n(22n+1− 1), whose geometric monodromy group we conjectured to
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be the Suzuki group Sz(q) := 2B2(q), q = 22n+1, in one of its two lowest dimensional nontrivial irre-
ducible representations. These representations, complex conjugates of each other, are of dimension
2n(22n+1 − 1) and have traces in Z[i], the Gaussian integers.

The definition involved p-Witt vectors of length 2 for p = 2, with values in F2-algebras. We
identify W2(F2) with Z/4Z, by the map [a, b] 7→ a2 + 2b, with the usual convention that we first
lift a, b to Z and then reduce a2 + 2b modulo 4. We take the additive character of Z/4Z given by
n 7→ in, and view it as the additive character ψ2 : W2(F2)→ µ4(Z[i]) given by

ψ2([a, b]) := ia
2+2b.

Attached to a Witt vector of length 2 with coefficients in F2[x], say [a(x), b(x)], is the Artin-
Schreier-Witt sheaf Lψ2([a(x),b(x)]) on A1/F2. It is lisse of rank one, and its trace function is given
as follows. For k/F2 a finite extension, and x ∈ k,

Trace(Frobx,k|Lψ2([a(x),b(x)])) = ψ2(TraceW2(k)/W2(F2)([a(x), b(x)]).

If instead we take a(x), b(x) ∈ k0[x] for some finite extension k0/F2, then the Artin-Schreier-Witt
sheaf Lψ2([a(x),b(x)]) is lisse of rank one on A1/k0, and for k/k0 a finite extension and x ∈ k, the trace
of Frobx,k is given by the same formula (which only makes sense when k is an extension of k0).

The unique nontrivial additive character ψ of F2 is related to ψ2 by the formula

ψ(b) = ψ2([0, b]);

this is simply the identity (−1)b = i2b.
Under Witt vector addition, [a, b] = [a, 0] + [0, b]. Thus we have the factorization

Lψ2([a(x),b(x)]) = Lψ2([a(x),0]) ⊗ Lψ(b(x)).

When both a(x) and b(x) are polynomials of degree prime to p = 2, Lψ2([a(x),0]) has Swan con-
ductor Swan∞ = p deg(a(x)), while Lψ(b(x)) has Swan∞ = deg(b(x)). So in this case, Lψ2([a(x),b(x)])

has Swan∞ = max(p deg(a(x)), deg(b(x))).
Quite generally, for an Artin-Schreier-Witt sheaf L := Lψ2([a(x),b(x)]) on A1/k0 with Swan conduc-

tor Swan∞ = n ≥ 2, its Fourier transform FTψ(L) on A1/k0 is an Airy sheaf in the sense of Šuch
[Such]. It is lisse of rank n − 1, and all its ∞-slopes are n

n−1 . It is pure of weight one. Its trace

function is given as follows: for k/k0 a finite extension, and t ∈ k,

Trace(Frobt,k|FTψ(L)) = −
∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([a(x), b(x) + tx])

)
.

Some key facts about Airy sheaves and their monodromy groups are due to Šuch [Such], and are
fundamental for the investigations reported on here.

We now turn to the Suzuki “candidates” of [Ka5]. Here

n ≥ 1 , q0 := 2n, q := 2q2
0, t(q) := q + 1− 2q0.

We take the Witt vector

[xt(q),
n∑
i=1

x(1+2i)t(q)],

form the Artin-Schreier-Witt sheaf

L := L
ψ2([xt(q),

∑n
i=1 x

(1+2i)t(q)])
,
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form its FTψ(L), and twist by the constant field twist ( 1
1−(−1)n i)

deg, to arrive at the local system

Fq on A1/F2, whose trace function is given as follows. For k/F2 a finite extension, and t ∈ k,

Trace(Frobt,k|Fq) =
−1(

1− (−1)n i
)deg(k/F2)

∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([x

t(q),

n∑
i=1

x(1+2i)t(q) + tx])
)
.

A key fact about Fq is that the input Witt vector [xt(q),
∑n

i=1 x
(1+2i)t(q)] is a function of xt(q). So

in the trace formula for Fq, if we restrict to t 6= 0 and make the substitution x 7→ x/t, the formula
becomes

Trace(Frobt,k|Fq) =
−1(

1− (−1)n i
)deg(k/F2)

∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([

xt(q)

tt(q)
,

n∑
i=1

x(1+2i)t(q)

t(1+2i)t(q)
+ x])

)
,

which is a function of tt(q). Thus Fq|Gm has a descent to a lisse sheaf Gq on Gm/F2 whose trace
function is given by

Trace(Frobt,k|Fq) =
−1(

1− (−1)n i
)deg(k/F2)

∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([

xt(q)

t
,
n∑
i=1

x(1+2i)t(q)

t(1+2i)
+ x])

)
,

and such that under the t(q) Kummer pullback,

[t(q)]?Gq = Fq|Gm.

For the case n = 1, i.e. for 2B2(8), we prove in Theorem 6.1 that F8 has the predicted geometric
monodromy group Ggeom,F8 = 2B2(8) and arithmetic monodromy group Garith,F8,F2 = Aut(2B2(8))
over F2, and thus establish [Ka5, Conjecture 2.2] in full in this case. For each n ≥ 1, we show
that Ggeom,Fq is either 2B2(q) or SLD for D = rank(Fq) = q0(q − 1). A (huge) calculation of fourth
moment for F8 shows that Ggeom,F8 cannot be SL14. It remains an open problem to prove (or
disprove) that each Fq has Ggeom,Fq = 2B2(q) when q ≥ 32.

In fact, we show in Theorem 8.4 that we have such a dichotomy of possible geometric monodromy
groups Ggeom, either 2B2(q) or SLD, D = q0(q − 1), for a general class of local systems of “the
same shape” as Fq (see Remark 8.6 and Theorem 9.18 for examples of such local systems with
Ggeom = SLD). Key to our investigation is the fact that these sheaves all satisfy the condition (S+)
of [KT1, Definition 1.2]. Somewhat to our surprise, the most difficult part of establishing condition
(S+) was to show the sheaves in question are geometrically primitive, i.e. that the representation of
their Ggeom is not induced. Our proof utilizes the existence of primitive prime divisors of the integer
t(q), cf. Theorem 3.4. We give a second proof which will be useful in future studies of geometric
monodromy groups of quite general Airy sheaves. Condition (S+) implies that for each of these
sheaves, either Ggeom is a finite, almost quasisimple group, or has G◦geom acting irreducibly. This
initial dichotomy, plus a substantial group-theoretic analysis, in which Theorem 4.5 plays a key
role, is what leads to the 2B2(q)/SLD dichotomy. Pursuing the study of primitive prime divisors,
we prove in Theorems 3.4, 3.7, and Corollary 3.5 the existence of primitive prime divisors in the
orders of maximal tori of the Suzuki-Ree groups 2B2(q), 2G2(q), and 2F4(q). We also extend in §7 the
classification of low-dimensional representations of classical groups in characteristic p ≥ 0, beyond
the bounds in [KlL] and [Lu]. These results will be useful in other situations as well. Finally, the
structure of arithmetic monodromy groups, assuming finiteness, is determined in Theorem 9.14.

1. Descents of Suzuki candidates and moment calculations

For each odd power q = 22n+1 of 2, starting with q = 8, the finite simple group 2B2(q) has
two (complex conjugate) lowest dimensional nontrivial irreducible representations, of dimension
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d(q) := q0(q − 1), with q0 := 2n. In each case we have a factorization

1 + d(q) = (q0 + 1)t(q) with t(q) := q + 1− 2q0.

In [Ka5], for each such q there is proposed an Airy sheaf in the sense of Šuch [Such], call it Fq
on A1/F2 which is lisse of rank d(q) and with Swan∞(Fq) = 1 + d(q). Its I(∞)-representation is

irreducible of dimension d(q), with all ∞-slopes 1+d(q)
d(q) . Moreover, Fq is given [Ka5, Section 4] with

an explicit descent to a lisse sheaf Gq on Gm/F2 whose Kummer pullback by t(q)th power is (the
restriction to Gm/F2 of) Fq:

[t(q)]?Gq ∼= Fq|Gm.

Thus Gq is lisse on Gm/F2, tame at 0 with I(0)-representation a direct sum of Kummer characters
of order dividing t(q), and whose I(∞)-representation is irreducible of dimension d(q), with all

∞-slopes q0+1
d(q) = q0+1

q0(q−1) .

Next we give a slight improvement of [KRLT2, Theorem 6.5].

Theorem 1.1. Let H0 be a lisse sheaf on Gm/Fq which is tame at 0 and pure of weight zero. Let
a, b be nonnegative integers, and consider the moment Ma,b. Denote by

Ha,b0 := H⊗a0 ⊗ (H∨0 )⊗b.

Denote by A,B,C,D the following constants.

C := dimension of the space of I(0)-invariants in Ha,b0 ,

D := dimension of the space of I(∞)-invariants in Ha,b0 ,

B := Swan∞(Ha,b0 ) +Ma,b,

A := B +Ma,b − C −D.
Then we have the following estimate.∣∣∣∣ 1

q − 1

∑
u∈F×q

Trace(Frobu,Fq |H
a,b
0 )

∣∣∣∣ ≤ q

q − 1
Ma,b +

A
√
q

q − 1
+
B −A
q − 1

.

Proof. For any lisse sheaf F on Gm, the Lefschetz trace formula gives∑
u∈F×q

Trace(Frobu,Fq |F) = Trace
(
FrobFq |H2

c (Gm/Fq,F)
)
− Trace

(
FrobFq |H1

c (Gm/Fq,F)
)
.

If F is pure of weight zero, then H2
c is pure of weight 2, and H1

c is mixed of weight ≤ 1, indeed

H1
c = H1

c (wt = 1)⊕H1
c (wt ≤ 0).

Thus for F pure of weight zero,∣∣ ∑
u∈F×q

Trace(Frobu,Fq |F)
∣∣ ≤ qh2

c +
√
qh1

c(wt = 1) + h1
c(wt ≤ 0).

When F is tame at 0, the Euler-Poincaré formula gives

Swan∞(F) = h1
c − h2

c .

To compute the dimension of H1
c (wt = 1), we use the fact that for the inclusion j : Gm ⊂ P1, the

group H1(P1/Fq, j?F) is pure of weight one. We exploit this by looking at the short exact sequence

of sheaves on P1/Fq given by

0→ j!F → j?F → (FI(0))0 ⊕ (FI(∞))∞ → 0,
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where the last two summands are skyscraper sheaves at 0 and ∞. The group

H2(P1/Fq, j?F) = H2
c (Gm/Fq,F)

is the Tate-twisted group of πgeom
1 co-invariants in F , but as F is pure, the action of πgeom

1 is
semisimple, so this is also the (Tate-twisted) group of πgeom

1 invariants. The group

H0(P1/Fq, j?F) = H0(Gm/Fq,F)

is the space of πgeom
1 invariants in F , so has dimension h0 = h2

c . Consider the long exact sequence

0→ H0(P1/Fq, j?F)→ FI(0) ⊕F I(∞) → H1
c (Gm/Fq,F)→ H1(P1/Fq, j?F0)→ 0.

Apply it with F taken to be Ha,b0 . Then h0 = h2
c is Ma,b, and the Euler-Poincaré formula gives

h1
c = Swan∞(Ha,b0 ) +Ma,b.

Thus we have the equalities

h1
c(wt = 1) = h1

c + h0 − dimFI(0) − dimFI(∞) = A,

and
h1
c(wt ≤ 0) = B −A.

Then the estimate

|
∑
u∈F×q

Trace(Frobu,Fq |F)| ≤ qh2
c +
√
qh1

c(wt = 1) + h1
c(wt ≤ 0)

becomes ∣∣ ∑
u∈F×q

Trace(Frobu,Fq |H
a,b
0 )
∣∣ ≤ qMa,b +A

√
q + (B −A).

�

We will now apply this estimate to the descent G8 to Gm/F2 of the lisse sheaf F8 on A1/F2.
Recall from [Ka5, §2] that F8 is the Fourier transform of the Artin-Schreier-Witt sheaf Lψ2([x5,x15]),

with a constant field twist by 1
1+i . Thus for k/F2 a finite extension, and t ∈ k,

Trace(Frobt,k|F8) = −(
1

1 + i
)deg(k/F2)

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
5, x15 + tx])).

The descent G8 is the lisse sheaf on Gm/F2 whose trace function is given as follows. For k/F2 a
finite extension, and t ∈ k×,

Trace(Frobt,k|G8) = −(
1

1 + i
)deg(k/F2)

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
5/t, x15/t3 + x])).

Thus one visibly has, for t ∈ k×, the identity

Trace(Frobt,k|F8) = Trace(Frobt5,k|G8),

simply by the substitution x 7→ x/t in the formula for F8.
In any extension field k/F2 such that gcd(5,#k×) = 1, the map t 7→ t5 is bijective on k×. Such

k/F2 are precisely those whose degree over F2 is not divisible by 4. For such a k/F2, the traces
Trace(Frobt,k|G8) as t runs over k× are precisely the traces Trace(Frobt,k|F8) as t runs over k×. An

extensive calculation shows that over F×
218

, the seven traces which occur, with their multiplicities,
are

• −2i, multiplicity 16256,
• −2, multiplicity 4095,
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• −1, multiplicity 52429,
• 0, multiplicity 112347,
• 1, multiplicity 60495,
• 2i, multiplicity 16512,
• 14, multiplicity 9.

[We have not been able to find any conceptual explanation for the multiplicities of these traces, let
alone for the fact that all traces are algebraic integers. Had we known that the traces of all Frobenii
over all finite extensions of F2 are algebraic integers, we would have been able to conclude that G8

has finite geometric monodromy group Ggeom, and the proof of the main result Theorem 6.1 would
have been much simpler.]

This computation was carried out using Magma 2.26-6 [BCP] at the University of Auckland. It
exploited a new feature of Magma which supports running tasks in parallel on multiple processors:
each task performed the necessary computation for a given t ∈ k×. Using 55 3.0GHz processors,
the computation completed in 5.75 days, taking about 7500 hours of CPU time.

The empirical M2,2 for G8 over F×
218

is thus approximately 3.99963378766551080898593515753.
Applying Theorem 1.1, we find

Corollary 1.2. For the lisse sheaf G8 on Gm/F2, M2,2 > 2.

Proof. The sheaf F8 is a geometrically irreducible Airy sheaf, lisse on A1/F2 of rank 14, whose I(∞)
representation is irreducible, with all slopes 15/14. Its descent G8 is thus lisse and geometrically
irreducible on Gm, its I(0) representation is the direct sum with multiplicities of the characters of
order dividing 5, and its I(∞) representation is irreducible, with all slopes 3/14.

Let us denote by

K := (G8)⊗2 ⊗ (G∨8 )⊗2.

In the proof of Theorem 1.1, the estimate∣∣∑
t∈F×q

Trace(Frobt,Fq |K)
∣∣ ≤ qh2

c +
√
qh1

c(wt = 1) + h1
c(wt ≤ 0)

can first be weakened to∣∣∑
x∈F×q

Trace(Frobu,Fq |K)
∣∣ ≤ qh2

c +
√
qh1

c(wt = 1) + h1
c .

The equality

h1
c(wt = 1) = Swan∞(K) + 2M2,2 − dimKI(0) − dimKI(∞)

can be weakened to

h1
c(wt = 1) ≤ Swan∞(K) +M2,2 − dimKI(0),

simply because in the exact sequence, the space H0 of global invariants of K injects into the space
KI(∞) of I(∞)-invariants.

Thus K is lisse on Gm, its I(0) representation is the direct sum with multiplicities of the characters
of order dividing 5, and all its I(∞) slopes are ≤ 3/14. So we have the crude estimate

Swan∞(K) ≤ rank(K)(biggest slope) ≤ 144(3/14) = 8232.

The I(0) representation of K is End(End(the I(0)-representation of G8)).
We now turn to the I(0) representation of G8. The action of I(0) is through µ5. So in terms of

a fixed character χ of order 5, it is a direct sum

a1 + bχ+ cχ2 + dχ3 + eχ4,
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with non-negative integers a, b, c, d, e which sum to 14. We also know from Deligne’s “independence
of `” result [De2, Theorem 9.8] or from Serre-Tate [Se-Ta, Theorem 2(ii)], that the character of this
representation of I(0) has values in the field Q(i) (because G8 is part of a compatible system over
Q(i)). On the other hand, this character has values in Q(ζ5). But the intersection Q(i) ∩ Q(ζ5) is
just Q, so the trace has values in Q. In other words, the quantity

a+ bζ5 + cζ2
5 + dζ3

5 + eζ4
5

lies in Q. This in turn forces b = c = d = e, and so a+bζ5 +bζ2
5 +bζ3

5 +bζ4
5 = a−b. But a+4b = 14,

so there are only four possibilities for the character, namely

21 + 3χ+ 3χ2 + 3χ3 + 3χ4, , 61 + 2χ+ 2χ2 + 2χ3 + 2χ4, 101 + 1χ+ 1χ2 + 1χ3 + 1χ4, 141.

More intrinsically, let us denote by Reg the regular representation of µ5:

Reg = 1 + χ+ χ2 + χ3 + χ4.

Then the I(0) representation of G8 is one of

−1 + 3Reg, 41 + 2Reg, 91 + Reg, 141.

Because the character takes real (in fact integer) values, dimKI(0) is the coefficient of 1 in the fourth
power of the character. For each of our four candidates, this is easily computed by hand, because
Reg2 = 5Reg, Reg3 = 52Reg, Reg4 = 53Reg. The least of the possible values of dimKI(0) is 7684,
the value attained by the candidate −1 + 3Reg. So the weakened estimate becomes∣∣ ∑

t∈F×
218

Trace(Frobt,F218
|K)
∣∣ ≤ 218M2,2 + (8232 +M2,2 − 7684)29 + (8232 +M2,2).

Dividing by 218 − 1, we get

3.999 ≤ 218

218 − 1
M2,2 +

(548 +M2,2)29

218 − 1
+

8232 +M2,2

218 − 1
.

Here 218 − 1 = 262143, and 29/(218 − 1) ≤ (29 + 1)/(218 − 1) = 1/(29 − 1) = 1/511.
Thus if M2,2 were 2, we would get

3.999 ≤ (1 + (1/262143))2 + 550/511 + 8332/262143,

which is nonsense. �

2. Background results on determinants, rationality, and slopes

Theorem 2.1. Let p be a prime, k/Fp a finite extension, ν ≥ 1 an integer, and F a lisse Q`

sheaf on a smooth, geometrically connected scheme U/k which is pure of weight zero and part of
a compatible system of lisse sheaves on U whose trace functions take values in Q(ζpν ). Denote by
Ggeom ≤ Garith the geometric and arithmetic monodromy groups of F . Then we have the following
results.

(i) det(Garith) has finite order dividing 2pν if p is odd, dividing 2ν if p = 2.
(ii) det(Ggeom) has finite order dividing 2pν if p is odd, dividing 2ν if p = 2.

(iii) Suppose that U is a dense open set of P1, and that at each point x ∈ P1(k)\U(k), all I(x)-slopes
of F are < 1. Then det(Ggeom) has order dividing 2, and is trivial if p = 2.

Proof. (i) For any finite extension L/k and any point t ∈ U(L), det(Frobt,L|F) lies in Q(ζpν ). It has
absolute value 1 at every archimedean place of Q(ζpν ) (purity of weight zero), and is a λ-adic unit
at every finite place λ of residue characteristic 6= p (being part of a compatible system). Because
Q(ζpν ) has a unique place above p, the product formula tells us that this determinant is a unit at
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all finite places. Thus it is a root of unity in Q(ζpν ), so of order dividing 2pν for p odd, and of order
dividing 2ν if p = 2.

As Ggeom is a subgroup of Garith, we trivially obtain (ii).
To prove (iii), the slope hypotheses imply that det as a character of Ggeom has slope < 1, hence

0, at each missing point, and thus is everywhere tame, and hence (being on a dense open set of P1)
has order prime to p. �

Theorem 2.2. Let p be a prime, k/Fp a finite extension, ν ≥ 1 an integer, and F a lisse Q`

sheaf on a smooth, geometrically connected scheme U/k which is pure of weight zero and part of
a compatible system of lisse sheaves on U whose trace functions take values in a number field E.
Suppose further that there exists a proper smooth curve with geometrically connected fibres

π : C → U,

a finite group Γ of automorphisms of C/U , and a linear character

χ : Γ→ E×

such F is isomorphic to the χ-component of R1π?(Q`). Then we have the following results.

(i) For any finite extension L/k and any point t ∈ U(L), the action of Frobt,L|F is semisimple.

(ii) If U is a curve, with complete nonsingular model X, then for each point x ∈ X(k) \U(k), the
character of the action of the inertia group I(x) acting on F has values in K.

Proof. The semisimplicity of Frobenii on H1 of curves goes back to Weil. By Serre-Tate [Se-Ta,
Theorem 2(ii)], the character of I(x) on R1π?(Q`) has values in Z. When we project the I(x) action
onto the χ component, the character of the resulting I(x) action has values in Q(χ), a subfield of
K. �

Remark 2.3. Theorem 2.2 applies to the Airy sheaves of Šuch [Such] and any of their descents,
where the family of curves in question is a family of Artin-Schreier-Witt coverings of A1 (compact-
ified by adding its one point at ∞).

Next we record a general result on Ggeom of lisse sheaves on open sets of A1:

Theorem 2.4. Let U be a dense open set of A1/Fp, and F a lisse Q`-sheaf on U , with ` 6= p. Suppose
all the ∞-slopes of F are at most σ, for some 0 < σ < 1. Suppose the geometric monodromy group
G = Ggeom of F admits a representation Φ : G→ GLd(F) over some algebraically closed field F of
characteristic 6= p, of dimension d < 1/σ. Then Φ is tame at ∞.

Proof. The hypothesis that all ∞-slopes of F are ≤ σ is that for all y > σ, the upper numbering
subgroup I(∞)y acts trivially on F , i.e. dies in Ggeom, and hence dies under Φ. Thus all ∞-slopes
of F are ≤ σ, and hence Swan∞(Φ) ≤ dσ < 1. As Swan conductors are non-negative integers,
Swan∞(Φ) = 0. This means P (∞) acts trivially in Φ, i.e. Φ is tame at ∞. �

Now we prove a generalization of [KT1, Theorem 4.16]:

Theorem 2.5. Let U be a dense open set of A1/Fp, F a lisse Q`-sheaf on U , with ` 6= p, and let
G be the geometric monodromy group of H. Suppose that the following hold:

(a) All ∞-slopes of H are at most σ for some 0 < σ < 1, and H is not tame at ∞;
(b) G is a finite almost quasisimple group: S�G/Z(G) ≤ Aut(S) for some finite non-abelian simple

group S;
(c) For some normal subgroup R of G/Z(G) containing S, R admits either a faithful d-dimensional

linear representation
Φ : R→ GLd(F),
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or an e-dimensional projective representation

Ψ : R→ PGLe(F)

which is nontrivial over S, over some algebraically closed field F of characteristic 6= p.

Then
1/σ ≤ d · [G/Z(G) : R] ≤ d · |Out(S)|,

respectively
1/σ ≤ (e2 − 1) · [G/Z(G) : R] ≤ (e2 − 1) · |Out(S)|.

Proof. Note that the given Ψ is faithful. Indeed, Ker(Ψ) � R does not contain S, so it intersects
S trivially by simplicity of S. Because both S and Ker(Ψ) are normal in R, the commutator
[S,Ker(Ψ)] ⊂ S ∩ Ker(Ψ) = 1. Thus Ker(Ψ) ≤ CR(S) ≤ CAut(S)(S) = 1. Hence R is embedded
in PGL(U), where U = Fe. Composing this embedding with the faithful action of PGL(U) on
End0(U) = End(U)/scalars, we obtain a faithful action of R on a module of dimension ≤ e2 − 1.
Thus it suffices to prove the bound 1/σ ≤ d · [G/Z(G) : R] when Φ : R→ GL(V ) is given.

So assume the contrary: Φ : R→ GL(V ) is faithful for some V with dim(V ) = d, but

(2.5.1) 1/σ > d · [G/Z(G) : R].

Let Ṽ denote the Ḡ-module IndḠR(V ) for Ḡ := G/Z(G). Note that Ḡ acts faithfully on Ṽ . Indeed,

let K � Ḡ denote the kernel of the action of Ḡ on Ṽ . By the construction of V as the induced
representation, the R-module Ṽ contains V as a submodule. But S acts faithfully on V , hence
S ∩K = 1. As S � Ḡ, it follows that [S,K] = 1, and so

K ≤ CḠ(S) ≤ CAut(S)(S) = 1.

We also note that
dim(Ṽ ) = [Ḡ : R] · dim(V ) = d · [Ḡ : R] < 1/σ

by (2.5.1).

Now view Ṽ as a representation of G, of dimension < 1/σ. By Theorem 2.4, this representation

is tame at ∞. Thus the image Q in G of P (∞) acts trivially on Ṽ . But G/Z(G) acts faithfully

on Ṽ . Therefore Q lands in Z(G). Recall that I(∞) has finite image J in G, and J/Q is cyclic.
As Q ≤ Z(J), it follows that J is abelian. Thus all simple J-summands in H are one-dimensional,
and at least one of them is wild, as H is not tame at ∞. Each one-dimensional wild component
has Swan a strictly positive integer, which is also its slope, contradicting the hypothesis that all
∞-slopes of H are < 1. �

3. Primitive prime divisors for Suzuki-Ree groups

The order of a finite group of Lie type G(Fq) over a field Fq is usually a product of a power

of q = pf (p the defining characteristic) and the values at q of cyclotomic polynomial Φm(q) for
various m. In a number of problems on G(Fq), the existence of primitive prime divisors ppd(q,m)
or ppd(p,mf) for certain m was helpful. Recall [Zs] that for a,m ∈ Z≥2, a primitive prime divisor

` = ppd(a,m) is a prime divisor of am − 1 that does not divide
∏m−1
i=1 (ai − 1); such a prime divisor

always exists unless (a,m) = (2, 6) or m = 2 and a + 1 is a 2-power. For the Suzuki-Ree groups
2B2(q) with q = 2n, 2 - n ≥ 3, 2G2(q) with q = 3n, 2 - n ≥ 3, and 2F4(q) with q = 2n, 2 - n ≥ 3, some
factor Φm(q) of |G(Fq)| decomposes further into values at

√
q of polynomials over Z[

√
2] or Z[

√
3].

More precisely,
Φ4(q) = q2 + 1 = (q −

√
2q + 1)(q +

√
2q + 1)

for 2B2(q),

Φ6(q) = q2 − q + 1 = (q −
√

3q + 1)(q +
√

3q + 1)
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for 2G2(q), and

Φ12(q) = q4 − q2 + 1 = (q2 − q
√

2q + q −
√

2q + 1)(q2 + q
√

2q + q +
√

2q + 1)

for 2F4(q). In applications, it is desirable to prove that these factors also possess primitive prime
divisors ppd(p, 4n), respectively ppd(p, 6n), ppd(p, 12n), whose existence does not follow from [Zs].
The main results of this section establish the existence of such prime divisors for Suzuki-Ree groups.

3A. Almost equidistribution of coprime integers in congruence classes. For n ∈ Z≥1, let
φ(n) denote the Euler function of n, let µ(n) denote the Möbius function of n, and let ω(n) denote
the number of distinct prime divisors of n (not counting multiplicities). First we prove the following

Proposition 3.1. Let m,n ∈ Z≥1 be coprime integers. For any integer 0 ≤ a ≤ m− 1, the number
Na of integers 1 ≤ k ≤ n such that gcd(k, n) = 1 and k ≡ a (mod m) satisfies∣∣Na −

φ(n)

m

∣∣ < 2ω(n).

Proof. For k ∈ Z≥1, define F (k) := 0 if gcd(k, n) > 1 and F (k) := 1 if gcd(k, n) = 1. By [MNZ,
Theorem 4.7], F (k) =

∑
d| gcd(k,n) µ(d). Now

(3.1.1) Na =
∑

1≤k≤n, k≡a (mod m)

F (k) =
∑

1≤k≤n, k≡a (mod m)

∑
d| gcd(k,n)

µ(d) =
∑
d|n

µ(d)N(a, d),

with

N(a, d) :=
∑

1≤k≤n, k≡a (mod m), d|k

1.

If d|n, then gcd(d,m) = 1, so we can find 1 ≤ e ≤ m − 1 such that de ≡ 1 (mod m). Now write
every 1 ≤ k ≤ n with d|k as k = dl with 1 ≤ l ≤ n/d. Then the condition that k ≡ a (mod m)
is equivalent to l ≡ ea (mod m), in which case we can write l = s + mi with 0 ≤ r ≤ m − 1,
ea ≡ r (mod m), and i ∈ Z. To count the number N(a, d) of i occurring, write n/d = qm+ r with
0 ≤ r ≤ m− 1 and q ∈ Z≥0. Certainly, every 0 ≤ i ≤ q − 1 works, but neither i = −1 nor i = q + 1
can occur. It follows that

(3.1.2) n/md− 1 < q ≤ N(a, d) ≤ q + 1 < n/md+ 1.

We also note by [MNZ, (4.1)] that φ(n) =
∑

d|n µ(d)n/d and that
∑

d|n |µ(d)| is the number of

square-free divisors of n and hence equals to 2ω(n). Combining with (3.1.1) and (3.1.2), this yields∣∣Na −
φ(n)

m

∣∣ =
∣∣∑
d|n

µ(d)(N(a, d)− n/md)
∣∣ <∑

d|n

|µ(d)| = 2ω(n).

�

We will also need the following analogue of Proposition 3.1:

Proposition 3.2. Let n ∈ Z≥1 be an odd integer divisible by 3. For any integer 0 ≤ a ≤ 11 coprime
to 3, the number Na of integers 1 ≤ k ≤ n such that gcd(k, n) = 1 and k ≡ a (mod 12) satisfies∣∣Na −

φ(n)

8

∣∣ < 2ω(n)−1.

Proof. As in the proof of Proposition 3.2, we have

Na =
∑

1≤k≤n, k≡a (mod 12)

F (k) =
∑

1≤k≤n, k≡a (mod 12)

∑
d| gcd(k,n)

µ(d) =
∑
d|n

µ(d)N(a, d),



LOCAL SYSTEMS AND SUZUKI GROUPS 11

with

N(a, d) :=
∑

1≤k≤n, k≡a (mod 12), d|k

1.

Now, if d|n but 3|d, then N(a, d) = 0 since 3 - a. Hence,

(3.2.1) Na =
∑

d|n, 3-d

µ(d)N(a, d).

Next, µ(d) = 0 if 9|d, and µ(d) = −µ(d/3) if 3|d. It follows from [MNZ, (4.1)] that

(3.2.2)
φ(n)

n
=
∑
d|n

µ(d)

d
=

∑
d|n, 3-d

µ(d)

d
−

∑
3d′=d|n,3-d′

µ(d′)

3d′
=

2

3

∑
d|n, 3-d

µ(d)

d
.

If d|n and 3 - d, then gcd(d, 12) = 1, so we can find 1 ≤ e ≤ 11 such that de ≡ 1 (mod 12). The
proof of (3.1.2) repeated verbatim shows that

n/12d− 1 < q ≤ N(a, d) ≤ q + 1 < n/12d+ 1.

Combining with (3.2.1) and (3.2.2), this yields∣∣Na −
φ(n)

8

∣∣ =
∣∣ ∑
d|n, 3-d

µ(d)(N(a, d)− n/12d)
∣∣ < ∑

d|n, 3-d

|µ(d)| = 2ω(n)−1.

�

3B. Primitive prime divisor for Suzuki groups. We make the choice
√

2 > 0. For odd n ∈ Z≥1

and a = 1, 3, set

P2,a(n) :=
∏

1≤k<8n, gcd(k,n)=1, k≡a (mod 8)

(
3− 2

√
2 cos

kπ

4n

)
.

Proposition 3.3. If 2 - n ≥ 2603 and a = 1, 3, then P2,a(n) > 2n.

Proof. (i) First we note that

(3.3.1) φ(n) ≥ max
(
22.2ω(n), n6/7

)
when 2 - n and n 6= 1, 3, 9, 15, 21, 33, 45, 75, 105, 165, 195. Indeed, suppose s := ω(n) ≥ 1 and write
n =

∏s
i=1 p

ai
i for some prime divisors 2 < p1 < p2 < . . . < ps of n. If p1 ≥ 5, then

n

φ(n)
=

s∏
i=1

pi
pi − 1

≤ (5/4)s < 5s/7 ≤ n1/7,

and so φ(n) > n6/7. If p1 ≥ 7, then

φ(n) =
s∏
i=1

paii (1− 1/pi) ≥ 6s > 22.5s.

If p1 = 5 and s ≥ 2, then

φ(n) =

s∏
i=1

paii (1− 1/pi) ≥ 4 · 6s−1 > 22.25s.

If p1 = 5 and s = 1, but n 6= 5 then φ(n) ≥ 20 > 24s.
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In the rest of the proof of (3.3.1), we may assume that p1 = 3. First suppose that s ≥ 4. As
(116/107)s−3 < (2 · 4 · 6)7/(3 · 5 · 7)6,

n

φ(n)
=

s∏
i=1

pi
pi − 1

≤ 3

2
· 5

4
· 7

6
·
(11

10

)s−3
<
(
3 · 5 · 7 · 11s−3

)1/7
< n1/7.

Also, φ(n) ≥ 2 · 4 · 6 · 10s−3 > 22.23s.
Next suppose that s = 3. If p3 ≥ 11, then

n

φ(n)
=

s∏
i=1

pi
pi − 1

≤ 3

2
· 5

4
· 11

10
<
(
3 · 5 · 11

)1/7
< n1/7.

If p3 < 11 then (p1, p2, p3) = (3, 5, 7); thus if n 6= 105 then n > 3 · 105 and so

n/φ(n) = (3 · 5 · 7)/(2 · 4 · 6) < n1/7.

Also, if n 6= 105, 165, 195, then φ(n) ≥ 2 · 6 · 10 > 22.2s.

Suppose now that s = 2. If p2 ≥ 13, then n/φ(n) ≤ (3/2) · (13/12) < (3 · 13)1/7 ≤ n1/7. If

p3 = 11 and n 6= 33, then n/φ(n) = (3/2) · (11/10) < (3 · 3 · 11)1/7 ≤ n1/7. If p3 = 7 and

n 6= 21, then n/φ(n) = (3/2) · (7/6) < (3 · 3 · 7)1/7 ≤ n1/7. If p3 = 5 and n 6= 15, 45, 75, then

n/φ(n) = (3/2) · (5/4) < (6 · 3 · 5)1/7 < n1/7. Also, if n 6= 15, 21, 33, 45, then φ(n) ≥ 24 > 22.2s.

Finally, assume that s = 1, and n = 3a with a ≥ 3. Then n/φ(n) = 3/2 < 3a/7 = n1/7, and
φ(n) ≥ 18 > 24s, completing the proof of (3.3.1).

(ii) Now assume that n ≥ 2602. By (3.3.1) m := φ(n) ≥ n6/7 > 846, so m ≥ 847, and

2ω(n) ≤ m5/11.
Fix a ∈ {1, 3} and let Sj := {(j−1)n ≤ k < jn | gcd(k, 8n) = 1, k ≡ a (mod 8)} for 0 ≤ j ≤ 7. For

each j, observe that k ∈ Sj if and only if 0 ≤ k′ := k−jn < n is coprime to n and k′ ≡ a−jn (mod 8).
By Proposition 3.1,

|Sj | = |{0 ≤ k′ < n | gcd(k, n) = 1, k′ ≡ a− jn (mod 8)}|

satisfies φ(n)/8− 2ω(n) < |Sj | < φ(n)/8 + 2ω(n). By the above,

(3.3.2) m/8−m5/11 < |Sj | < m/8 +m5/11.

Now, if k ∈ S0∪S7, then 3−2
√

2 cos(kπ/4n) ≥ 3−2
√

2. If k ∈ S1∪S6, then 3−2
√

2 cos(kπ/4n) ≥ 1.
If k ∈ S2 ∪ S5, then 3− 2

√
2 cos(kπ/4n) ≥ 3. Finally, if k ∈ S3 ∪ S4, then 3− 2

√
2 cos(kπ/4n) ≥ 5.

It follows from (3.3.2) that

P2,a(n) ≥ (3− 2
√

2)m/4+2m5/11 · 15m/4−2m5/11
= Am/4B−2m5/11

with A := 15(3− 2
√

2) and B := 15(3 + 2
√

2).

Setting f(t) := At/4B−2t5/11t−7/6,

g(t) := log f(t) = (t/4) log(A)− 2t5/11 log(B)− (7/6) log(t).

Now g′(t) = log(A)/4 − log(B)/(1.1t6/11) − (7/6t) is increasing, so g′(t) ≥ g′(847) > 0.13 when
t ≥ 847. It follows that g(m) ≥ g(847) > 0.75, and so f(m) = exp(g(m)) > 2.11. Thus, for
m = φ(n) ≥ 847

P2,a(n) ≥ f(m)m7/6 > 2m7/6 > 2n,

as desired. �

As we will see in part (iii) of the proof of the following theorem, Proposition 3.3 actually holds
for all odd n ≥ 7.
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Theorem 3.4. Let q = 2n with 2 - n. If n ≥ 7 then t(q) = t−(q) := q −
√

2q + 1 is divisible by
a primitive prime divisor ppd(2, 4n) of q2 + 1. In all cases, t+(q) := q +

√
2q + 1 is divisible by a

primitive prime divisor ppd(2, 4n) of q2 + 1.

Proof. (i) The second statement is obvious for n ≤ 5; also note that t(2) = 1, t(8) = 5. Henceforth
we may assume n ≥ 7. Consider the sets

Aj := {1 ≤ k ≤ 4n | gcd(k, 2n) = 1, k ≡ j (mod 8)},
Bj := {4n+ 1 ≤ k ≤ 8n | gcd(k, 2n) = 1, k ≡ j (mod 8)}

for j = 1, 3, 5, 7. Then the map k 7→ 8n− k yields bijections

A1 ←→ B7, A7 ←→ B1, A3 ←→ B5, A5 ←→ B3,

and the map k 7→ k + 4n yields bijections

A1 ←→ B5, A5 ←→ B1, A3 ←→ B7, A7 ←→ B3.

It follows that

(3.4.1) |A1| = |A3| = |B5| = |B7|, |A5| = |A7| = |B1| = |B3|.
Since tj=1,3,5,7

(
Aj tBj

)
= {1 ≤ k < 8n | gcd(k, 8n) = 1}, we now see that

(3.4.2) |Aj |+ |Bj | = φ(8n)/4 = φ(n)

for each j = 1, 3, 5, 7.

(ii) Make the choice of ζ := ζ8n = exp(πi/4n) and consider the cyclotomic polynomial

Φ8n(X) =
∏

1≤k<8n, gcd(k,2n)=1

(
X − ζk

)
.

If 1 ≤ k < 4n then (X − ζk)(X − ζk+4n) = (X − ζk)(X + ζk) = X2 − ζk4n. It follows that

Φ8n(X) =
∏

1≤k<4n, gcd(k,2n)=1

(
X2 − ζk4n

)
= Φ4n(X2).

In particular,

(3.4.3) Φ4n(2) = Φ8n(
√

2).

Setting

(3.4.4) Φ8n,a(X) :=
∏

1≤k<8n, gcd(k,2n)=1, k≡±a (mod 8)

(
X − ζk

)
,

for a = 1, 3, we have Φ8n(X) = Φ8n,1(X)Φ8n,3(X). Next, since

(
√

2− ζk)(
√

2− ζ8n−k) = 3− 2
√

2 cos
kπ

4n

for each 1 ≤ k < 8n, using the bijection k 7→ 8n− k in (3.4.1)

(3.4.5) P2,a(n) = Φ8n,a(
√

2),

for a = 1, 3. Using (3.4.3) also

(3.4.6) P2,1(n)P2,3(n) = Φ4n(2).

(iii) To show that P2,1(n) and P2,3(n) are integers, we use gcd(8, n) = 1 to write 1 = ns + 8t

for some s, t ∈ Z with gcd(s, 8) = gcd(t, n) = 1, and set ζ = ζ8n = αβ with α := ζns, a 8th root
of unity, and β := ζ8t, an nth root of unity. When k runs over A1 t B1, ζk = αkβk = αβk, and
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k (mod n) runs over units in Z/nZ, each at most once. Using (3.4.2), we see that each unit is met
exactly once. Repeating the same argument for k ∈ A7 tB7, we get

Φ8n,1(X) :=
∏

l unit mod n

(
X − αβl

)(
X − α−1βl

)
=

∏
l unit mod n

(X2 − (α+ α−1)ζ lnX + ζ2l
n ).

Note that α+ α−1 = ε
√

2 for some ε = ±1. It follows from (3.4.5) that

P2,1(n) = Φ8n,1(
√

2) =
∏

l unit mod n

(2− 2εζ ln + ζ2l
n )

is the norm NormQ(ζn)/Q of the algebraic integer 2 − 2εζn + ζ2
n, hence it is an integer. The same

arguments show that P2,3(n) is the norm NormQ(ζn)/Q of the algebraic integer 2 + 2εζn + ζ2
n, hence

it is an integer.
Using this norm interpretation for P2,1(n) and P2,3(n), a calculation with Magma shows that

P2,a(n) > 2n for odd integers 7 ≤ n ≤ 2601. Together with Proposition 3.3, this shows that

(3.4.7) P2,a(n) > 2n

for a = 1, 3 and odd n ≥ 7.

(iv) We also set

f−(X) := X2n −
√

2Xn + 1, f+(X) := X2n +
√

2Xn + 1,

so that

t−(q) = f−(
√

(2)), t+(q) = f+(
√

(2)), f−(X)f+(X) = X4n + 1.

Certainly, any root of X4n + 1 is ζk for some odd integer 1 ≤ k < 8n. If k ≡ ±1 (mod 8), then

f−(ζk) = exp(kπi/2) + 1−
√

2 exp(kπi/4) = 0.

Similarly, if k ≡ ±3 (mod 8), then

f+(ζk) = exp(kπi/2) + 1 +
√

2 exp(kπi/4) = 0.

It follows that

f−(X) =
∏

1≤k<8n, k≡±1 (mod 8)

(
X − ζk

)
, f+(X) =

∏
1≤k<8n, k≡±3 (mod 8)

(
X − ζk

)
.

Comparing to (3.4.4) and (3.4.5), we see that

f−(
√

2)/P2,1(n) =
∏

1≤k<8n, gcd(k,2n)>1, k≡±1 (mod 8)

(√
2− ζk

)
is an algebraic integer. But f−(

√
2) = t−(q) is an integer, and P2,1(n) is an integer by (iii). Hence

P2,1(n) divides t−(q). Similarly, P2,3(n) divides t+(q).

(v) By (3.4.7), P2,1(n) > n. Consider any prime divisor ` of P2,1(n), which then divides t−(q) by
the result of (iv), and divides Φ4n(2) by (3.4.6). Suppose that ` is not a primitive prime divisor of
24n− 1. By [Lun, Satz 1] (cf. [Ro, Proposition 2]) `|n, and moreover `2 - Φ4n(2). It follows that the
`-part of P2,1(n) is `. Hence, if t−(q) is not divisible by any primitive prime divisor of 24n− 1, then
P2,1(n) divides n, a contradiction.

The proof for t+(q) is entirely similar. �

Corollary 3.5. Let q = 2n with 2 - n. If n ≥ 3 then Φ′′24 := q2 − q
√

2q+ q−
√

2q+ 1 is divisible by
a primitive prime divisor ppd(2, 12n) of q4 − q2 + 1. In all cases, Φ′24 := q2 + q

√
2q + q +

√
2q + 1

is divisible by a primitive prime divisor ppd(2, 12n) of q4 − q2 + 1.
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Proof. Note that if n = 1 then Φ′′24 = 1 and Φ′24 = 13. Assume that n ≥ 3. By Theorem 3.4,

t−(q3) = q3 − q
√

2q + 1 = (q +
√

2q + 1)(q2 − q
√

2q + q −
√

2q + 1) = t+(q)Φ′′24

is divisible by a primitive prime divisor `1 = ppd(2, 12n). Since t+(q)|(q2 + 1) and `1|(q4 − q2 + 1),
we see that `1 - t+(q), and so `1|Φ′′24. The argument for Φ′24 is similar, using

t+(q3) = q3 + q
√

2q + 1 = (q −
√

2q + 1)(q2 + q
√

2q + q +
√

2q + 1) = t−(q)Φ′24.

�

3C. Primitive prime divisor for Ree groups. The results in this subsection are not needed for
the rest of the paper, however they will be used elsewhere [KT2]. We make the choice

√
3 > 0. For

odd n ∈ Z≥1 and a = 1, 5, set

P3,a(n) :=
∏

1≤k<12n, gcd(k,n)=1, k≡a (mod 12)

(
4− 2

√
3 cos

kπ

6n

)
.

Proposition 3.6. If 2 - n ≥ 3 and a = 1, 5, then P3,a(n) > 2n.

Proof. A computation with Mathematica shows that P3,a(n) > 2n when 3 ≤ n ≤ 353. Now assume

that n ≥ 354. By (3.3.1) m := φ(n) ≥ n6/7 > 153, so m ≥ 154, and 2ω(n) ≤ m5/11.
Fix a ∈ {1, 5} and let Rj := {(j − 1)n ≤ k < jn | gcd(k, 12n) = 1, k ≡ a (mod 12)} for

0 ≤ j ≤ 11. For each j, observe that k ∈ Rj if and only if 0 ≤ k′ := k− jn < n is coprime to n and
k′ ≡ a− jn (mod 12). If 3 - n, then according to Proposition 3.1,

|Rj | = |{0 ≤ k′ < n | gcd(k, n) = 1, k′ ≡ a− jn (mod 12)}|

satisfies φ(n)/12 − 2ω(n) < |Rj | < φ(n)/12 + 2ω(n). On the other hand, if 3|n then 3 - (a − jn), so
by Proposition 3.2,

|Rj | = |{0 ≤ k′ < n | gcd(k, n) = 1, k′ ≡ a− jn (mod 12)}|

satisfies φ(n)/8− 2ω(n)−1 < |Rj | < φ(n)/8 + 2ω(n)−1.
Setting b := 12 when 3 - n and b := 8 when 3|n, by the above consideration now

(3.6.1) m/b−m5/11 < |Rj | < m/b+m5/11.

Now, if k ∈ S0∪S11, then 4−2
√

3 cos(kπ/6n) ≥ 4−2
√

3. If k ∈ S1∪S10, then 4−2
√

3 cos(kπ/6n) ≥ 1.
If k ∈ S2 ∪ S9, then 4− 2

√
3 cos(kπ/6n) ≥ 4−

√
3. If k ∈ S3 ∪ S8, then 4− 2

√
3 cos(kπ/6n) ≥ 4. If

k ∈ S4∪S7, then 4−2
√

3 cos(kπ/6n) ≥ 4+
√

3. Finally, if k ∈ S5∪S6, then 4−2
√

3 cos(kπ/6n) ≥ 7.
It follows from (3.6.1) that

P3,a(n) ≥
(
4− 2

√
3
)2m/b+2m5/11

·
(
(4−

√
3) · 4 · (4 +

√
3) · 7

)2m/b−2m5/11

= A2m/bB−2m5/11 ≥ Am/6B−2m5/11

with A := 364(4− 2
√

3) and B := 364/(4− 2
√

3).

Setting f(t) := At/6B−2t5/11t−7/6,

g(t) := log f(t) = (t/6) log(A)− 2t5/11 log(B)− (7/6) log(t).

Now g′(t) = log(A)/6−log(B)/(1.1t6/11)−7/6t is increasing, so g′(t) ≥ g′(154) > 0.48 when t ≥ 154.
It follows that g(m) ≥ g(154) > 0.74, and so f(m) = exp(g(m)) > 2.09. Thus, for m = φ(n) ≥ 154

P3,a(n) ≥ f(m)m7/6 > 2m7/6 > 2n,

as desired. �
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Theorem 3.7. Let q = 3n with 2 - n. If n ≥ 3 then t(q) = t−(q) := q −
√

3q + 1 is divisible by a
primitive prime divisor ppd(3, 6n) of q2 − q + 1. In all cases, t+(q) := q +

√
3q + 1 is divisible by a

primitive prime divisor ppd(3, 6n) of q2 − q + 1.

Proof. (i) Note that t(3) = 1. Henceforth we will assume n ≥ 3. Consider the sets

Aj := {1 ≤ k ≤ 6n | gcd(k, 12n) = 1, k ≡ j (mod 12)},
Bj := {6n+ 1 ≤ k ≤ 12n | gcd(k, 12n) = 1, k ≡ j (mod 12)}

for j = 1, 5, 7, 11. Then the map k 7→ 12n− k yields bijections

A1 ←→ B11, A11 ←→ B1, A5 ←→ B7, A7 ←→ B5,

and the map k 7→ k + 6n yields bijections

A1 ←→ B7, A7 ←→ B1, A5 ←→ B11, A11 ←→ B5.

It follows that

(3.7.1) |A1| = |A5| = |B7| = |B11|, |A7| = |A11| = |B1| = |B5|.

Since tj=1,5,7,11

(
Aj tBj

)
= {1 ≤ k < 12n | gcd(k, 12n) = 1}, we now see that

(3.7.2) |Aj |+ |Bj | = φ(12n)/4 = φ(3n)/2

for each j = 1, 5, 7, 11.

(ii) Make the choice of ζ := ζ12n = exp(πi/6n) and consider the cyclotomic polynomial

Φ12n(X) =
∏

1≤k<12n, gcd(k,12n)=1

(
X − ζk

)
.

If 1 ≤ k < 6n then (X − ζk)(X − ζk+6n) = (X − ζk)(X + ζk) = X2 − ζk6n. It follows that

Φ12n(X) =
∏

1≤k<6n, gcd(k,6n)=1

(
X2 − ζk6n

)
= Φ6n(X2).

In particular,

(3.7.3) Φ6n(3) = Φ12n(
√

3).

Setting

(3.7.4) Φ12n,a(X) :=
∏

1≤k<12n, gcd(k,12n)=1, k≡±a (mod 12)

(
X − ζk

)
,

for a = 1, 5, we have Φ12n(X) = Φ12n,1(X)Φ12n,5(X). Next, since

(
√

3− ζk)(
√

3− ζ12n−k) = 4− 2
√

3 cos
kπ

6n

for each 1 ≤ k < 12n, using the bijection k 7→ 12n− k in (3.7.1)

(3.7.5) P3,a(n) = Φ12n,a(
√

3),

for a = 1, 5. Using (3.7.3) also

(3.7.6) P3,1(n)P3,5(n) = Φ6n(3).

(iii) Here we show that P3,1(n) and P3,5(n) are integers. Clearly, they are algebraic integers in

Q(ζ). Hence it suffices to show that each of them is fixed by any Galois automorphism σ : ζ 7→ ζ l,
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gcd(l, 12n) = 1. First consider the case j ≡ ±1 (mod 12). Then σ fixes
√

3 = ζ12 + ζ−1
12 , and fixes

each of the sets C := tj=1,11(Aj ∪Bj) and D := tj=1,11(Aj ∪Bj) modulo 12n. Since

P3,1(n) =
∏
k∈C

(
√

3− ζk), P3,5(n) =
∏
k∈D

(
√

3− ζk),

it follows that σ fixes each of P3,1(n) and P3,5(n). Now assume that j ≡ ±5 (mod 12). Then σ

sends
√

3 to −
√

3 and ζk to ζkl, and thus

σ
(√

3− ζk
)

= −
√

3− ζkl = −
(√

3− ζ6n+kl
)
.

Note that modulo 12n, when k runs over C, 6n + kl runs over C, covering each element of C
exactly once. Also, |C| = φ(3n) by (3.7.2), and so |C| is even. It follows that σ sends P3,1(n) to

(−1)|C|P3,1(n) = P3,1(n), and similarly σ fixes P3,5(n).

(iv) We also set

f−(X) := X2n −
√

3Xn + 1, f+(X) := X2n +
√

3Xn + 1,

so that

t−(q) = f−(
√

(3)), t+(q) = f+(
√

(3)), f−(X)f+(X) = X4n −X2n + 1.

Certainly, any root of X4n − X2n + 1 is ζk for some integer 1 ≤ k < 12n coprime to 6. If
k ≡ ±1 (mod 12), then

f−(ζk) = exp(kπi/3) + 1−
√

3 exp(kπi/6) = 0.

Similarly, if k ≡ ±5 (mod 12), then

f+(ζk) = exp(kπi/3) + 1 +
√

3 exp(kπi/6) = 0.

It follows that

f−(X) =
∏

1≤k<12n, k≡±1 (mod 12)

(
X − ζk

)
, f+(X) =

∏
1≤k<12n, k≡±5 (mod 12)

(
X − ζk

)
.

Comparing to (3.7.4) and (3.7.5), we see that

f−(
√

3)/P3,1(n) =
∏

1≤k<8n, gcd(k,12n)>1, k≡±1 (mod 12)

(√
3− ζk

)
is an algebraic integer. But f−(

√
3) = t−(q) is an integer, and P3,1(n) is an integer by (iii). Hence

P3,1(n) divides t−(q). Similarly, P3,5(n) divides t+(q).

(v) By Proposition 3.6, P3,1(n) > n. Consider any prime divisor ` of P3,1(n), which then divides
t−(q) by the result of (iv), and divides Φ6n(3) by (3.7.6). Since `|(q2 − q + 1), ` 6= 2, 3. Suppose
that ` is not a primitive prime divisor of 36n − 1. Again by [Lun, Satz 1] `|3n, whence `|n as ` ≥ 5,
and moreover `2 - Φ6n(3). It follows that the `-part of P3,1(n) is `. Hence, if t−(q) is not divisible
by any primitive prime divisor of 36n − 1, then P3,1(n) divides n, a contradiction.

The proof for t+(q) is entirely similar. �

3D. Primitive prime divisors for Suzuki-Ree groups: another approach. For δ ∈ Z+,
α ∈ (Z/δ)×, and x ∈ R+ with x ≥ 1, let

f (α mod δ)
n (x) :=

∏
a∈(Z/δn)×:a≡±α (mod δ)

(x− ζaδn).
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Note that for such δ, α, and x, f
(α mod δ)
n (x) ∈ R+ by pairing a with −a. Note also that

f (1 mod 8)
n (

√
2) = P2,1(n) = Φ8n,1(

√
2),

f (3 mod 8)
n (

√
2) = P2,3(n) = Φ8n,3(

√
2),

f (1 mod 12)
n (

√
3) = P3,1(n) = Φ12n,1(

√
3),

f (5 mod 12)
n (

√
3) = P3,5(n) = Φ12n,5(

√
3)

in the notation above.

Lemma 3.8. Let n ∈ Z+. Let x ≥ 1. Then

f (α mod δ)
n (x) ≥ f (α mod δ)

n (1) ·
(
x+ 1

2

) 2·φ(δn)
φ(δ)

.

Proof. The claim is evident for x = 1, and we will show that

f
(α mod δ)
n (x)

(x+ 1)
2·φ(δn)
φ(δ)

is increasing in x. Indeed

f
(α mod δ)
n (x)

(x+ 1)
2·φ(δn)
φ(δ)

=
∏

a∈(Z/δn)×: a≡±α (mod δ)

|x− ζan|
x+ 1

,

and it suffices to show each factor is increasing in x. But for all z ∈ S1

|x− z|2

(x+ 1)2
=
x2 − 2x · <z + 1

x2 + 2x+ 1
= 1− 2x

(x+ 1)2
· (1 + <z),

which is increasing in x because x
(x+1)2

= 1
x+1 −

1
(x+1)2

decreases in x when x ≥ 1. �

For a, b ∈ Z+, write gcd(a, b∞) :=
∏
p|b p

vp(a), and rad(a) :=
∏
p|a p.

Lemma 3.9. Let n ∈ Z+. Let m := n
gcd(n,δ∞) . Then

f (α mod δ)
n (1) =

∏
S⊆{p|m}

∣∣∣∣1− ζα·∏p∈S p
−1 (mod δ)

δ

∣∣∣∣2·(−1)#|S|

.

Proof. We first claim that if rad
(

n
gcd(n,δ∞)

)
= rad

(
n′

gcd(n′,δ∞)

)
then f

(α mod δ)
n (1) = f

(α mod δ)
n′ (1).

This follows by repeatedly applying the following. If p|n is such that k := vp(δn) ≥ 2, then, writing

δn =: pk · s, because Xp − Y p =
∏
b∈Fp(X − ζ

b
p · Y ) as elements of Z[ζp][X,Y ],

f (α mod δ)
n (1) =

∏
a∈(Z/pk−1s)×:a≡±α (mod δ)

∏
b∈Fp

(1− ζa+pk−1·s·b
pk·s )

=
∏

a∈(Z/pk−1s)×:a≡±α (mod δ)

(1− ζapk−1·s).

Therefore without changing f
(α mod δ)
n (1) we may assume without loss of generality that n is square-

free and such that gcd(n, δ) = 1.
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Now if p|n, writing δn =: p · n0 and letting p′, n′0 ∈ Z be such that pp′ + n0n
′
0 = 1,

f (α mod δ)
n (1) =

∏
a∈(Z/n0)×:a≡±α (mod δ)

∏
b∈F×p

(1− ζapp
′+bn0n′0

pn0 )

=
∏

a∈(Z/n0)×:a≡±α (mod δ)

∏
b∈F×p

(1− ζap′n0
· ζbn

′
0

p )

=
∏

a∈(Z/n0)×:a≡±α (mod δ)

∏
b∈F×p

(1− ζap′n0
· ζbp)

via b 7→ p · b. Now we apply the identity Xp−Y p
X−Y =

∏
b∈F×p (X − ζbp · Y ) to find:

f (α mod δ)
n (1) =

∏
a∈(Z/n0)×:a≡±α (mod δ)

(1− ζan0
)

(1− ζap
′

n0 )

=
f

(α mod δ)
n
p

(1)

f
(αp′ mod δ)
n
p

(1)
.

Since the lemma is evident for n = 1, by induction on the number of prime factors of n we find
that

f (α mod δ)
n (1) =

∏
S⊆{`|n

p
}


∣∣∣1− ζα·∏`∈S `

−1 (mod δ)

δ

∣∣∣∣∣∣1− ζα·p−1·
∏
`∈S `

−1 (mod δ)

δ

∣∣∣


2·(−1)#|S|

=
∏

S⊆{`|n}

∣∣∣1− ζα·∏`∈S `
−1 (mod δ)

δ

∣∣∣2·(−1)#|S|

,

and we are done. �

Corollary 3.10. Let n ∈ Z+ with n ≥ 3 be odd. Then

f (1 mod 8)
n (1) =

{
1 ∃p|n : p ≡ ±1 (mod 8),

(1 +
√

2)−2ω(n) else

and

f (3 mod 8)
n (1) =

{
1 ∃p|n : p ≡ ±1 (mod 8),

(1 +
√

2)2ω(n) else,

whence

f (1 mod 8)
n (

√
2) ≥

(√
2 + 1

2

)2·φ(n)

·

{
1 ∃p|n : p ≡ ±1 (mod 8),

(1 +
√

2)−2ω(n) else

and

f (3 mod 8)
n (

√
2) ≥

(√
2 + 1

2

)2·φ(n)

·

{
1 ∃p|n : p ≡ ±1 (mod 8),

(1 +
√

2)2ω(n) else.
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Proof. If there is a p|n with p ≡ ±1 (mod 8), then pair S − {p} with S ∪ {p} in the conclusion

of Lemma 3.9 to see that f
(1 mod 8)
n (1) = f

(3 mod 8)
n (1) = 1. Otherwise every p|n is such that

p ≡ ±3 (mod 8), so that by Lemma 3.9

f (1 mod 8)
n (1) =

(
|1− ζ8|
|1− ζ3

8 |

)2ω(n)

= (1 +
√

2)−2ω(n) .

By the same reasoning

f (3 mod 8)
n (1) =

(
|1− ζ3

8 |
|1− ζ8|

)2ω(n)

= (1 +
√

2)2ω(n) .

We are done by Lemma 3.8. �

Corollary 3.11. Let n ∈ Z+ with n ≥ 3 be odd. Let m := n
gcd(n,6∞) . Then

f (1 mod 12)
n (1) =

{
1 ∃p|m : p ≡ ±1 (mod 12),

(2 +
√

3)−2ω(m)
else

and

f (5 mod 12)
n (1) =

{
1 ∃p|m : p ≡ ±1 (mod 12),

(2 +
√

3)2ω(m)
else,

whence

f (1 mod 12)
n (

√
3) ≥

(√
3 + 1

2

)φ(12n)
2

·

{
1 ∃p|m : p ≡ ±1 (mod 12),

(2 +
√

3)−2ω(m)
else

and

f (5 mod 12)
n (

√
3) ≥

(√
3 + 1

2

)φ(12n)
2

·

{
1 ∃p|m : p ≡ ±1 (mod 12),

(2 +
√

3)2ω(m)
else.

Proof. If there is a p|m := n
gcd(n,6∞) with p ≡ ±1 (mod 12), then pair S − {p} with S ∪ {p} in the

conclusion of Lemma 3.9 to see that f
(1 mod 12)
n (1) = f

(5 mod 12)
n (1) = 1. Otherwise every p|m is such

that p ≡ ±5 (mod 12), so that by Lemma 3.9

f (1 mod 12)
n (1) =

(
|1− ζ12|
|1− ζ5

12|

)2ω(m)

= (2 +
√

3)−2ω(m)
.

By the same reasoning

f (5 mod 12)
n (1) =

(
|1− ζ5

12|
|1− ζ12|

)2ω(m)

= (2 +
√

3)2ω(m)
.

We are done by Lemma 3.8. �

4. Action on 2-groups and primitivity of local systems

We begin this section with a group theoretic lemma which will be used in the proof of primitivity
given in Theorem 4.5.

Lemma 4.1. Suppose A is a cyclic group of prime order p that acts faithfully on a finite q-group
G, where p 6= q are primes. Let n be the order of q modulo p. Let χ ∈ Irr(G) be A-invariant and
faithful, and write χ(1) = qa. Then n ≤ 2a.
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Proof. We argue by induction on |G|. Let C = CG(A) < G. Let C ≤ N < G be maximal A-
invariant in G. Since G is nilpotent, N / G. Also, G/N is an irreducible A-module. Notice that
A cannot act trivially on G/N , because G = [G,A]C, by coprime action. Hence, G/N is a faithful
irreducible Fq[A]-module. By [MW, Example 2.7], say, |G/N | = qn. Let θ ∈ Irr(N) be A-invariant
under χ; such exists by [Is3, Theorem 13.27]. Now, since G/N is an abelian chief factor of the
semidirect product GA and χ is GA-invariant, by the Isaacs “going down” theorem [Is3, Theorem
6.18], either χN = θ, or χN = eθ with e2 = |G/N |, or θG = χ.

In the third case, χ(1) = qnθ(1) = qn+b = qa, for some b ≥ 0. Thus n ≤ n + b = a ≤ 2a. In the

second case, qn is a square, and that χ(1)/θ(1) = qn/2. Then χ(1) = q
n
2

+c = qa, for some c ≥ 0.
Then a = n

2 + c, and again n ≤ 2a.
In the first case, χN = θ ∈ Irr(N). If A does not act trivially on N , then A acts faithfully on N .

Since θ is A-invariant and faithful, then we are done by the inductive hypothesis. Otherwise, A acts
trivially on N , and therefore N = CG(A) (because N is maximal A-invariant). By [N2, Lemma
2.1], [G,A] ⊆ Ker(χ). Since χ is faithful, A acts trivially on G. But this cannot happen. �

We will now introduce a general class of Airy sheaves F(q, f) that includes the sheaves Fq. Recall
that q = 22n+1 = 2q2

0 and t(q) := q − 2q0 + 1. Let k0/F2 be a finite extension, and f(x) ∈ k0[x] a
polynomial of degree (1 + q0)t(q). Form the Artin-Schreier-Witt lisse sheaf

L(q, f) := Lψ2([xt(q),f(x)]

on A1/k0. Then F(q, f) is the constant field twisted Fourier transform

(4.1.1) F(q, f) := FTψ(L(q, f))⊗ (1− (−1)ni)− deg.

The trace function of F(q, f) at t ∈ k, k/k0 a finite extension, is

(4.1.2) t 7→ −1(
(1− (−1)n i

)deg(k/F2)

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), f(x) + tx])).

Assume in addition that

(4.1.3) f(x) = f1(xt(q))

for some polynomial f1(x) ∈ k0[x] of degree 1 + q0. If we make the substitution x 7→ x/t, then
(4.1.2) for t ∈ k× becomes

t 7→ −1(
1− (−1)n i

)deg(k/F2)

∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([x

t(q)/tt(q), f1(xt(q)/tt(q)) + x])
)
,

For

t(q) = rs,

we get a descent G(q, f, r) of F(q, f) to Gm/k0 whose trace function is now

t 7→ −1(
1− (−1)n i

)deg(k/F2)

∑
x∈k

ψ2

(
TraceW2(k)/W2(F2)([x

t(q)/ts, f1(xt(q)/ts) + x])
)
,

and whose Kummer pullback by rth power is (the restriction to Gm/k0 of) F(q, f):

[r]?G(q, f, r) ∼= F(q, f)|Gm.

We next give a key lemma of Šuch, which is proved in [Such, Proposition 11.1] but not stated
there explicitly.
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Lemma 4.2. (Šuch) Let F be an Airy sheaf of rank n ≥ 2 on A1/Fp, i.e. F is the Fourier transform

FT(L) of a lisse, rank one sheaf L on A1/Fp with Swan∞(L) = n + 1. If F is induced, then it is

induced from an Artin-Schreier covering of A1/Fp. In particular, if F is induced, then it is induced
from a normal subgroup of index p of its Ggeom.

Proof. Let us recall the argument, which is contained in the proof of [Such, Proposition 11.1]. If F
is induced, then it is g?H, in which case

End(F) = (g?H)⊗ (g?H∨) ⊇ g?(H⊗H∨) ⊇ g?1,

and hence End0(F) ⊇ g?1/1. But g?1/1 has rank < n, and all its slopes are ≤ (n+1)/n = 1+1/n.
But each slope of g?1/1 has denominator in lowest terms at most the rank of g?1/1, which is < n.
Therefore each slope, being at most 1 + 1/n, is in fact ≤ 1. Then by [Such, Corollary 3.3], g?1/1
is the direct sum of various Lψ(ax).

The rest of the argument is given in the first eight lines of the second paragraph of the proof of
[Such, Proposition 11.1]. �

We will need the following general result, a slight generalization of [KT1, Theorem 4.6].

Theorem 4.3. Let F be a semisimple lisse sheaf on Gm/Fp which is tame at 0. Denote by J
the image of I(∞) in G := Ggeom,F . Then G is the Zariski closure of the normal subgroup of G
generated by all G-conjugates of J .

Proof. Denote by G∞ this Zariski closure. Then G is reductive, and hence its quotient G/G∞
is reductive. It suffices to show that every irreducible representation of G/G∞ is trivial. But a
d-dimensional irreducible representation is a lisse sheaf of rank d on Gm/Fp which is tame at 0
(because P (0) dies in G) and lisse at ∞. By multiplicative inversion, this is an irreducible local

system on A1/Fp which is tame at ∞, so a representation of πtame
1 (A1/Fp), which is the trivial

group. �

We will also need a very special case (about subgroups of index 2) of (the second part of) the
following proposition. Since we cannot find a reference for it, we give a proof.

Proposition 4.4. (i) Let G be a Lie group and H an abstract subgroup of finite index in G. Then
H is closed.

(ii) Let G be a reductive linear algebraic group over an algebraically closed field k, and let H be an
abstract subgroup of finite index in G. Then H is Zariski closed.

Proof. (a) We give a proof of statement (i), which is due to Jason DeVito, posted on MathStack-

Exchange.

(a1) First we show that if G is connected, then G is generated by its divisible subgroups. Indeed,
there is an open set U ⊆ G containing the identity such that U ⊆ exp(L) for the Lie algebra L of
G. For any u in U , if u = exp(X), then u lies in the divisible subgroup {exp(tX) | t ∈ R} of G.
Since G is generated by U , the claim follows.

(a2) Next we show that if G is connected and H ≤ G is of finite index, then H = G. Indeed, by
considering the action via left translation of G on the finite set G/H of left H-cosets, we see that
H contains a normal subgroup K � G of finite index. By (i), G, and so G/K, is generated by its
divisible subgroups. But G/K is finite, so K = G.

(a3) In the general case, consider the map ι : G◦/(H ∩G◦)→ G/H defined by x(H ∩G◦) 7→ xH.
Then ι is injective, and so H ∩G◦ has finite index in G◦. By (a2), H ≥ G◦, and so H is a union of
a finite number of G◦, each of which is closed. Hence H is closed.
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(b) For statement (ii), the argument in (a3) shows that it suffices to prove that if G is connected
reductive and H has finite index in G, then H = G. The argument in (a2) allows us to further
assume that H �G. Recall [C, p. 16] that G = T [G,G], where T = Z(G)◦ is a central torus of G,
and the derived subgroup [G,G] is a central product G1 ◦ . . . ◦Gn of simple groups. In particular,
for each i, H ∩ Gi is a normal (abstract) subgroup of finite index of Gi. As Gi is generated by
(unipotent) root subgroups, [Tits, Main Theorem] implies that H ∩ Gi is either equal to Gi or
contained in Z(Gi). The finite index assumption now ensures that H ≥ Gi for all i, and thus
H ≥ [G,G]. Next, H ∩ T is a normal (abstract) subgroup of finite index say m in T . In particular,
H contains tm for all t ∈ T . But the torus T is (k×)r for some r, so k = k implies that any element
in T is an mth power, and hence H ≥ T , completing the proof. [The referee kindly pointed out
a much simpler argument as follows. If H � G has index N in G then G contains all powers gN ,
g ∈ G. But G, being connected reductive, is generated by its maximal tori, and the map g 7→ gN

is surjective on each maximal torus. Hence H = G.] �

As pointed out by the referee, in both of the cases of Proposition 4.4, once H is closed, it is also
open (indeed, GrH is a disjoint union of a finite number of cosets gH, each being closed, and so
it is closed).

Theorem 4.5. Let q = 22n+1 with n ∈ Z≥1 and n 6= 2. Under the assumption (4.1.3), the group
Ggeom,F(q,f) of the Airy sheaf F(q, f) has no subgroups of index 2. As a consequence, the Airy
sheaf F(q, f) is not geometrically induced, and hence none of the sheaves G(q, f, r) is geometrically
induced.

Proof. Assume to the contrary that the Airy sheaf F(q, f) is induced. Then, by Lemma 4.2, the
underlying representation V of the geometric monodromy group G := Ggeom of F(q, f) is induced
from a subgroup G1 of G of index 2.

(i) For each divisor r > 1 of t(q), consider the descent G(q, f, r). Because F(q, f) is lisse at 0, the
image of I(0) in the geometric monodromy group H of G(q, f, r) is the cyclic group µr(F2) of order

r. Because the ∞-slopes of F(q, f) are
(2n + 1)t(q)

(2n + 1)t(q)− 1
, if r > 1, then the ∞-slopes of G(q, f, r)

are (1/r)
(2n + 1)t(q)

(2n + 1)t(q)− 1
< 1. It then follows from [KT1, Proposition 4.2] that H is equal to the

Zariski closure HZar
0 in H of the normal closure H0 in H of the image of I(0).

We next show that for r > 1, H has no subgroup of index 2. We argue by contradiction. Suppose
that H has a subgroup H1 of index 2. Since every H-conjugate of the image of I(0) has odd order
r, all such conjugates are contained in H1, and thus H0 ≤ H1. But H1 is closed in H by Proposition
4.4(ii), so H = HZar

0 ≤ H1, and hence H = H1, a contradiction. We have shown that H has no
subgroup of index 2.

(ii) We also know that G is a normal subgroup of H of index dividing r, simply because by the rth

power map, Gm/F2 becomes a finite étale Galois covering of itself with cyclic group of order r, and
G and H are respectively the Zariski closure of the images of π1(Gm/F2) and of a normal subgroup
of cyclic index r of that group. Now if H = G, then the existence of G1 leads to a contradiction by
(i). If we now take r to be a prime dividing t(q), then H/G ∼= Cr.

Let J and Q denote the images of I(∞) and of P (∞) in H. By Theorem 4.3, H is equal to the
Zariski closure HZar

∞ in H of the normal closure H∞ in H of J . Suppose for the moment that r - |J |.
Then every H-conjugate of J has order coprime to r, and so they are all contained in G, and thus
H∞ ≤ G. But G is closed in H, so HZar

∞ ≤ G, and hence H = G, a contradiction.
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We have shown that r divides |J |. Recall that J = QoC, with C a cyclic 2′-group that permutes
cyclically and transitively the q − 1 simple Q-submodules Vi in V , each of dimension q0 = 2n. As
Q is a 2-group, C is of order divisible by r.

(iii) Since n 6= 2, by Theorem 3.4 the integer t(q) = q −
√

2q + 1 admits a prime divisor

(4.5.1) r = ppd(2, 4(2n+ 1)).

At this point, we take for r a ppd(2, 4(2n + 1)) which divides t(q). Fix c ∈ C of order r. Since
r|t(q), r - (q−1), and so c stabilizes each of the subspace Vi, and certainly normalizes Q. For each i,
let Φi denote the representation of 〈Q, c〉 on Vi. We claim that Φi(c) centralizes Φi(Q). Otherwise,
Φi(c) acts faithfully on Φi(Q), of prime order r, and Φi(Q) is faithful and irreducible of degree 2n.
Hence by Lemma 4.1, the order of 2 modulo r is at most 2n, which contradicts (4.5.1).

Therefore, for each i, Φi(c) = αi · IdVi for some αi ∈ C×. But the cyclic group C permutes the
Vi’s transitively and c ∈ C, so α1 = . . . = αq−1 =: α, i.e. c acts on V as α · IdV . As |c| = r, α 6= 1 is

a primitive rth root of unity. Thus we may assume that c ∈ J has trace dim(V ) · ζr. On the other
hand, by Theorem 2.2 and (4.1.2), the trace of every element in J belongs to Q(i). Thus ζr ∈ Q(i),
a contradiction since r is an odd prime.

(iii) Since the irreducible representation V of G = Ggeom of F(q, f) is not induced, for any r|t(q),
the representation of Ggeom of G(q, f, r) on V , which contains G, is not induced. �

5. Condition (S+) and autoduality for Airy sheaves

In this section, we continue to consider Airy sheaves F(q, f) of the same general shape (4.1.1),
but we consider them only geometrically, i.e. as lisse sheaves on A1/F2. The key insight on which
the results of this section are based is due to Šuch, cf. [Such, Proposition 11.1].

Lemma 5.1. (Šuch) Let F be an Airy sheaf of rank D ≥ 2 on A1/Fp. Let H be a direct factor of

End(F) of rank r < D. Then H is a direct sum of Lψ(ax) for various a ∈ Fp.

Proof. The ∞-slopes of F are all 1 + 1/D. All slopes of End(F) are therefore ≤ 1 + 1/D. Thus
all slopes of H are ≤ 1 + 1/D. But each slope of H, written in lowest terms, has denominator ≤ r.
Therefore H has all slopes ≤ 1. Now take an irreducible constituent K of H. Its Fourier transform,
i.e. t 7→ Hc(A

1/Fp,K⊗Lψ(tx)), is perverse irreducible on A1/Fp, so is either a single delta function
δa or is the extension by direct image of a lisse sheaf on a dense open set. But on a dense open set
of the t-line, K⊗Lψ(tx) has all∞-slopes 1, so H2

c (A1/Fp,K⊗Lψ(tx)) = 0 and by the Euler-Poincaré

formula χc(A
1/Fp,K ⊗ Lψ(tx)) = 0, so FT(K) is punctual, hence a single δa. This means in turn

that each irreducible constituent of H is an Lψ(ax). Because F is irreducible, End(F) is completely
reducible, hence H is completely reducible, and so it is the sum of its irreducible constituents. �

Theorem 5.2. Let F be an Airy sheaf of rank at least 2 on A1/Fp. Then the following conditions
are equivalent.

(i) F is geometrically induced.
(ii) End(F) contains a summand Lψ(ax) for some a 6= 0 in Fp.

(iii) There exists a geometric isomorphism F ∼= F ⊗ Lψ(−ax) for some a 6= 0 in Fp.

Proof. Let us denote by n the rank of F . If F is induced, then it is g?H, in which case

End(F) = (g?H)⊗ (g?H∨) ⊇ g?(H⊗H∨) ⊇ g?1,
and hence End0(F) ⊇ g?1/1. But g?1/1 has rank less than n. So by Lemma 5.1, g?1/1 is the
direct sum of various Lψ(ax). As End0(F) does not contain the trivial sheaf (by irreducibility of F),

we find that End0(F), and hence End(F), contains some Lψ(ax) for some nonzero a ∈ F2.
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Conversely, suppose End(F) contains a summand Lψ(ax) for some a 6= 0 in Fp. Thus there is
a nonzero geometric homomorphism from F to F ⊗ Lψ(−ax). But source and target are geometri-
cally isomorphic, so every nonzero homomorphism is an isomorphism. Thus we have a geometric
isomorphism

F ∼= F ⊗ Lψ(−ax).

That F is geometrically induced is the special case, where G is Ggeom for F ⊕Lψ(−ax), V is F , L is

Lψ(−ax), N is p, and E is Q`, of the following general statement in characteristic zero representation
theory. �

Theorem 5.3. Over an algebraically closed field E of characteristic zero, let V be a finite di-
mensional irreducible representation of dimension d ≥ 2 of a group G, and L a one-dimensional
representation of G which, viewed as a linear character χ of G, has finite order N > 1. Suppose
that V ∼= V ⊗ L as representations of G. Denote by G0 := Ker(χ) the kernel of χ, so that G0 �G
with G/G0 cyclic of order N . Then V is induced from a representation of a subgroup H with
G0 ≤ H < G.

Proof. We first reduce to the case when N is prime. If V ∼= V ⊗L, then by induction V ∼= V ⊗L⊗n
for every integer n. Let r be a prime dividing N . Replacing L by L⊗(N/r) and Ker(χ) by the

overgroup K := Ker(χ(N/r)), we are reduced to the case when N = r is prime.
Let U be a simple summand of V |K , which is semisimple since K � G. By Clifford theory,

cf. [CR1, (50.5)], V is induced so long as V |K is not isotypic. Hence, if V is not induced, then
V |K ∼= eU := U ⊕ U ⊕ . . .⊕ U︸ ︷︷ ︸

e times

for some e ∈ Z≥1. Note that IndGK(E) ∼= ⊕ri=1L
⊗i, so by Frobenius

reciprocity, cf. [CR2, (10.20)],

IndGK(V |K) ∼= IndGK
(
(V |K)⊗ E

) ∼= V ⊗ IndGK(E) ∼= ⊕ri=1(V ⊗ L⊗i) ∼= rV.

Again by Frobenius reciprocity [CR2, (10.8)],

e2 = dim HomK(V |K , V |K) = dim HomG

(
V, IndGK(V |K)

)
= dim HomG(V, rV ) = r,

a contradiction as r is a prime. �

The following general result is stated for ease of later reference.

Theorem 5.4. Let F be a lisse irreducible Q`-sheaf of rank d ≥ 2 on a smooth, geometrically
connected X/Fp. Suppose that End0(F) contains a rank one summand L. Then F is induced.

Proof. Because L occurs in End0(F), it cannot be trivial (as by irreducibility of F , End(F) contains
1 exactly once). Exactly as in the proof of the implication (ii) =⇒ (iii) in Theorem 5.2, we infer
that F ∼= F ⊗ L−1. Taking determinants of this isomorphism, we find that L⊗d is trivial. Thus L
has finite order N > 1 as a character of π1(X). Now apply Theorem 5.3. �

Theorem 5.5. Let k0/F2 be a finite extension, and f(x) ∈ k0[x] a polynomial of degree (1+q0)t(q).
Then the Airy sheaf F(q, f) introduced in (4.1.1) is geometrically primitive, i.e. is not geometrically
induced.

Proof. (i) In view of Theorem 5.2, it suffices to show that there is no geometric isomorphism from
F(q, f) to F(q, f) ⊗ Lψ(ax) for any a 6= 0 in Fp. We argue by contradiction. Because F(q, f) was
geometrically a Fourier transform, so is F(q, f) ⊗ Lψ(ax); the effect of tensoring with Lψ(ax) after
FT is the same as translating additively by −a before FT:

F(q, f)⊗ Lψ(ax) = FT([x 7→ x− a]?L(q, f)).
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Since FT is invertible, an isomorphism of F(q, f) with F(q, f) ⊗ Lψ(ax) gives an isomorphism of
L(q, f) with its additive translate by −a:

Lψ2([xt(q),f(x)])
∼= Lψ2([(x−a)t(q),f(x−a)]).

We will show no such isomorphism exists.

(ii) Suppose that n ≥ 2. In this case, we argue as follows. If two lisse rank one sheaves are
isomorphic, then so are their tensor squares.

Quite generally, addition of Witt vector of length 2 over an F2-algebra is given by

[a, b] + [A,B] = [a+A,B + b+ aA], [a, b] + [a, b] = [0, a2].

Thus
L⊗2
ψ2([g(x),f(x)]) = Lψ2([g(x),f(x)]+[g(x),f(x)]) = Lψ2([0,g(x)2]) = Lψ(g(x)2)

∼= Lψ(g(x)).

So we would have a geometric isomorphism

Lψ(xt(q)))
∼= Lψ((x−a)t(q))),

or equivalently a geometric isomorphism

Lψ((x−a)t(q)−xt(q))
∼= Q`.

Now we use the explicit shape of t(q) = q + 1− 2q0 = 2q2
0 − 2q0 + 1 = (q0 − 1)(2q0) + 1.

The key point is that t(q) = 1 + dQ with d ≥ 2 prime to p = 2 (here d = q0 − 1) and Q a strictly
positive power of p = 2 (here Q = 2q0). Then

(x− a)1+qD = (x− a)(xQ − aQ)d

= (x− a)
(
xdQ − daQx(d−1)Q + (terms of degree ≤ (d− 2)Q)

)
= x1+dQ − daQx1+(d−1)Q + (terms of degree ≤ 1 + (d− 2)Q)

+ (polynomial in xQ of degree d).

Thus up to Artin-Schreier equivalence,

(x− a)1+dQ − x1+dQ = −daQx1+(d−1)Q + (terms of degree ≤ 1 + (d− 2)Q) + (a term of degree d).

Thus Lψ((x−a)1+dQ−x1+dQ) has Swan = 1 + (d− 1)Q > 0, so is not geometrically trivial.

(iii) We now turn to the case n = 1, which requires a more delicate analysis. What makes the
n ≥ 2 case argument work is that q0 − 1 = 2n − 1 has n ≥ 2 binary digits. In the n = 1 case,
t(8) = 5, so the above argument would involve examining

(x− a)5 − x5 = (x− a)(x4 − a4)− x5 = ax4 − a4x+ a5,

but this is Artin-Schreier equivalent to (a1/4 − a4)x, which for a ∈ µ15 is Artin-Schreier trivial.
Thus we must look instead at

Lψ2([(x−a)5,f(x−a)]) ⊗ L−1
ψ2([x5,f(x)])

= Lψ2([(x−a)5,f(x−a)]−[x5,f(x)]).

Here −[a, b] = [a, b− a2], implying −[x5, f(x)] = [x5, f(x)− x10], so this is

Lψ2([(x−a)5+x5,f(x−a)+f(x)−x10+x5(x−a)5]).

But f(x) has degree 15, say f(x) = bx15 + cx14 + dx13 + lower terms with b 6= 0. So under Artin-
Schreier equivalence

f(x) ≡ bx15 + dx13 + lower terms.

Similarly, under Artin-Schreier equivalence

f(x− a) ≡ b(x− a)x15 + d(x− a)13 + lower terms.
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Thus under Artin-Schreier equivalence

f(x− a) + f(x)− x10 + x5(x− a)5 ≡ b(x− a)15 − bx15 + lower terms.

The difference

b(x− a)15 − bx15 = −abx14 + ba2x13 + lower terms

is thus Artin-Schreier equivalent to

ba2x13 + lower terms.

Now view Lψ2([(x−a)5+x5,f(x−a)+f(x)−x10+x5(x−a)5]) as the tensor product (using [a, b] = [a, 0] + [0, b])

Lψ2([(x−a)5+x5,0] ⊗ Lψ(f(x−a)+f(x)−x10+x5(x−a)5).

The first factor has Swan∞ ≤ 2× 4, while the second factor, which is Lψ(a polynomial of degree 13), has
Swan∞ = 13, and hence their tensor product has Swan∞ = 13, so is not geometrically trivial. �

Recall that a lisse sheaf H is Lie-irreducible if, in the underlying representation of its Ggeom, the
identity component G◦geom acts irreducibly. It is Lie-self-dual if the given representation of Ggeom,
when restricted to G◦geom, is self-dual.

Theorem 5.6. Suppose that a lisse sheaf F(q, f) as in (4.1.1) is Lie-irreducible and Lie-self-dual.
Then F(q, f) is self-dual.

Proof. The two sheaves F(q, f) and its dual F(q, f)∨ are irreducible representations of Ggeom whose
restrictions to the identity component G◦geom are isomorphic. So the two, as representations of Ggeom,
differ by a linear character of Ggeom/G

◦
geom. Thus

F(q, f)∨ ∼= F(q, f)⊗ L

for some lisse, rank one L on A1. Both F(q, f)∨ and F(q, f) have all∞-slopes 1+1/rank(F(q, f)) <
2. Therefore Swan∞(L) ≤ 1 (otherwise F(q, f)∨ would have all ∞-slopes ≥ 2).

If Swan∞(L) = 0, then L is lisse on A1 and tame at ∞, so geometrically trivial, and F(q, f) is
geometrically self-dual. If Swan∞(L) = 1, then L is Lψ(ax) for some nonzero a ∈ Fp. We will show
that this case cannot arise.

Recall that F(q, f) := FTψ(Lψ2([xt(q),f(x)])). In general, the interaction of FT with duality is a

geometric isomorphism

D(FTψ(H)) ∼= FTψ(DH)).

In characteristic 2, where ψ takes values ±1, we have ψ = ψ. Thus

F(q, f)∨ ∼= FTψ(Lψ2(−[xt(q),f(x)])) = FTψ(Lψ2([xt(q),f(x)+(xt(q))2]))

while

F(q, f)⊗ Lψ(ax)
∼= FTψ([x 7→ x− a]?Lψ2([xt(q),f(x)]) = FTψ(Lψ2([(x−a)t(q),f(x−a)])).

By Fourier inversion, this is equivalent to a geometric isomorphism

Lψ2([xt(q),f(x)+(xt(q))2])
∼= Lψ2([(x−a)t(q),f(x−a)]).

We first treat the case n ≥ 2. Already the tensor squares of these two lisse rank one sheaves are
not geometrically isomorphic, by the identical argument used to treat the case n ≥ 2 in the proof
of Theorem 5.5.

In the case n = 1, we must show that the lisse rank one sheaf

Lψ2([(x−a)s,f(x−a)]) ⊗ (Lψ2([x5,f(x)+(x5)2]))
−1
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is not geometrically trivial. The second tensor factor is

(Lψ2([x5),f(x)+(x5)2]))
−1 = Lψ2(−[x5,f(x)+(x5)2]) = Lψ2([x5,f(x)]).

So we must show that
Lψ2([(x−a)5,f(x−a)]) ⊗ Lψ2([x5),f(x)]) = Lψ2([(x−a)5,f(x−a)]+[x5,f(x)])

= Lψ2([(x−a)5+x5,f(x−a)+f(x)+x5(x−a)5])

= Lψ2([(x−a)5+x5,0]) ⊗ Lψ(f(x−a)+f(x)+x5(x−a)5)

is not geometrically trivial. Exactly as in the proof of the n = 1 case of Theorem 5.5, the first factor
has Swan∞ ≤ 2× 4 = 8, while the second factor has Swan∞ = 13. �

Theorem 5.7. No sheaf F(q, f) introduced in (4.1.1) is geometrically self-dual.

Proof. Recall that F(q, f) := FTψ

(
Lψ2([xt(q),f(x)])

)
. In general, the interaction of the Fourier trans-

form FT with the duality functor D(·) is a geometric isomorphism

D(FTψ(H)) ∼= FTψ(DH).

In characteristic 2, where ψ takes values ±1, we have ψ = ψ. Therefore F(q, f) is self-dual if and
only if Lψ2([xt(q),f(x)]) is self-dual. Its dual is Lψ2(−[xt(q),f(x)]). We have the Witt vector addition law

[x, y] = [x, 0] + [0, y], and, for Witt vectors over F2-algebras, −[x, y] = [x, y + x2]. So the dual of
Lψ2([xt(q),f(x)]) is Lψ2([xt(q),f(x)+(xt(q))2]), and the asserted isomorphism is

Lψ2([xt(q),0)]) ⊗ Lψ(f(x))
∼= Lψ2([xt(q),0)]) ⊗ Lψ(f(x)+(xt(q))2).

This holds if and only if there is an isomorphism

Lψ(f(x))
∼= Lψ(f(x)+(xt(q))2),

or equivalently if Lψ((xt(q))2) is geometrically trivial. By the Artin-Schreier reduction we have

Lψ((xt(q))2)
∼= Lψ(xt(q)). The latter sheaf is not geometrically trivial, because xt(q) is a polynomial of

odd degree t(q) and so the sheaf has Swan∞(Lψ(xt(q))) = t(q) 6= 0. �

Corollary 5.8. Suppose that the sheaf F(q, f) introduced in (4.1.1) is Lie-irreducible. Then it is
not Lie-self-dual.

Proof. Combine Theorem 5.6 and Theorem 5.7. �

Theorem 5.9. The sheaf F(q, f) introduced in (4.1.1) is tensor indecomposable.

Proof. We will show that F(q, f) is tensor indecomposable as a representation of π1 := π1(A1/Fp).
Because π1 has cohomological dimension ≤ 1 (this is true for the π1 of any smooth, connected
affine curve over an algebraically closed field), the argument of [KRLT1, Corollary 10.4] shows
that if F(q, f) is tensor decomposable, then it is linearly tensor decomposable, i.e. we have an
isomorphism of local systems on A1/Fp,

F(q, f) ∼= A⊗ B,
with both rank(A), rank(B) ≥ 2. To fix ideas, suppose rank(A) ≤ rank(B). Then

End(F(q, f)) = End(A)⊗ End(B) = (1 + End0(A))⊗ (1 + End0(B)) contains 1 + End0(A).

Thus End0(F(q, f)) contains End0(A) as a direct factor. Now End0(A) has rank less than

(rank(A))2 ≤ rank(A)rank(B) = rank(F(q, f)).

So by Lemma 5.1, End0(F(q, f)) contains some Lψ(ax) with a 6= 0 (a 6= 0 because End0(F(q, f))
only contains 1 once, by irreducibility of F). The proof of Theorem 5.5 shows this is impossible. �
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Lemma 5.10. For every integer n ≥ 2, the integer 2n − 1 is never a perfect power xm with x ∈ Z
and m ≥ 2.

Proof. We argue by contradiction. If 2n−1 = xm, then x is odd and xm = 2n−1 ≡ 3 (mod 4). Thus
m is odd, and hence 2n = xm+1 is divisible by x+1. The quotient xm+1

x+1 > 1 is the alternating sum

of m powers of the odd integer x, so is itself odd. Thus xm+1
x+1 is an odd divisor of 2n, the desired

contradiction. �

Corollary 5.11. For n ≥ 1, no lisse sheaf of rank 2n(22n+1−1) can be tensor induced. In particular,
F(q, f) is not tensor induced.

Theorem 5.12. The local systems F(q, f) on A1/F2 introduced in (4.1.1) all satisfy the condition
(S+) of [KT1, Definition 1.2].

Proof. First, by [Such, Proposition 7.4] the underlying representation V of Ggeom of F(q, f) is
irreducible. That F(q, f) is primitive, tensor indecomposable, and not tensor induced is the content
of Theorem 5.5, Theorem 5.9 and Corollary 5.11. That det(F(q, f)) has finite order results from the
fact that F(q, f) began life over a finite subfield of Fp (in fact any subfield containing the coefficients
of f). �

Theorem 5.13. For the local system F(q, f) on A1/F2 introduced in (4.1.1), every irreducible
constituent of End0(F(q, f)) has dimension ≥ rank(F(q, f)). In particular, if Ggeom,F(q,f) is not
finite, then G◦geom,F(q,f) is a simple algebraic group of dimension ≥ rank(F(q, f)).

Proof. By Lemma 5.1, any irreducible constituent of dimension < D := rank(F(q, f)) is a single
Lψ(ax), while Theorem 5.5 shows that End0(F(q, f)) contains no Lψ(ax). Because F(q, f) satis-
fies condition (S+) by Theorem 5.12, if Ggeom,F(q,f)) is not finite, then its identity component
G◦geom,F(q,f)) is a simple algebraic group. In that case, Lie(G◦geom,F(q,f))) is an irreducible constituent

of End0(F(q, f)), so has dimension ≥ D. �

Theorem 5.14. Consider the sheaf F(q, f) in (4.1.1) subject to the condition (4.1.3). Then, for
each r|t(q), the descent G(q, f, r) satisfies the condition (S+) of [KT1, Definition 1.2].

Proof. Because Ggeom,F(q,f) is a subgroup of Ggeom,G(q,f,r) of finite index, the fact that F(q, f)
satisfies condition (S+), see Theorem 5.12, implies that G(q, f, r) does as well. [Condition (S+)
holds for (G,V ) if it holds for (H,V ) with H a subgroup of G of finite index.] �

We also record the following

Theorem 5.15. Under the condition (4.1.3), if the sheaf F(q, f) in (4.1.1) is Lie-irreducible, then
it is not Lie-self-dual.

Proof. This is just a restatement of Corollary 5.8, under the more restrictive hypotheses of (4.1.3).
Given Theorem 5.7, it suffices to show that if F(q, f) is Lie-irreducible and Lie-self-dual, then it is
self-dual.

However, there is a simpler proof of this last fact, using the descent G(q, f) := G(q, f, t(q)) in
Theorem 5.14. Exactly as in the proof of Theorem 5.6, we find an isomorphism

G(q, f)∨ ∼= G(q, f)⊗ L
for some lisse L on Gm of rank one. Because G(q, f)∨and G(q, f) are both tame at 0 and with all
∞-slopes < 1, L is tame on Gm, hence a Kummer sheaf Lχ. Because G(q, f)∨and G(q, f) both have
I(0) representations which are sums of characters of order dividing t(q), χ is a ratio of characters
of order dividing t(q), so χ has order dividing t(q). Pulling back this isomorphism by t(q)th power,
we get an isomorphism F(q, f)∨ ∼= F(q, f). �
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6. A local system for the Suzuki group 2B2(8)

Now we can prove the first main result of the paper, which establishes [Ka5, Conjecture 2.2] in
the case q = 8:

Theorem 6.1. Let q = 8. Both the local systems Fq and Gq have geometric monodromy group
Ggeom

∼= 2B2(8) in one of its irreducible representation of degree 14. Over F2, the local systems Fq
and Gq have arithmetic monodromy group Garith

∼= Aut(2B2(8)).

Proof. (a) Let G, respectively H, denote the geometric monodromy group of Fq, respectively of Gq.
Similarly, let Garith, respectively Harith, denote the arithmetic monodromy group of Fq, respectively
of Gq, over F2. We will use the fact that f := Frob1,F2 has order 15 and trivial determinant. Indeed,
a Magma calculation shows that

Trace(Frob1,F215
|Gq) = Trace(Frob1,F215

|Fq) = 14.

By Theorem 2.2, Frob1,F215
|Gq is semisimple, hence (being of weight zero in a 14-dimensional rep-

resentation) is the identity. Therefore det(Frob1,F215
|Gq)) is a root of unity of order dividing both

4 (by Theorem 2.1) and 15, so this determinant is trivial. But Harith = 〈f,H〉, and H has triv-
ial determinant (by Theorem 2.1), and hence Harith also has trivial determinant. As G � H and
Garith ≤ Harith are subgroups, both G and Garith have trivial determinants.

Recall that G is normal in H of index dividing t(q) = 5. By Theorem 5.12, H satisfies (S+).
Since the rank of the sheaves is 14, not a prime power, by [KT1, Lemma 1.1] this implies that
either the identity component H◦ of H is a simple algebraic group that acts irreducibly on the
underlying representation V of H, or H is a finite almost quasisimple group with L := H(∞) also
acting irreducibly on V .

(b) Consider the former case. Note that if H◦ is classical of rank r, then either it is of type A
and r ≤ 13, or r ≤ 7 by [KlL, Proposition 5.4.11]. Using the tables of [Lu], we see that H◦ is of
type SL2, SL14, Sp4, Sp6, Sp14, SO14, or G2. Since [H : G] <∞, G◦ = H◦.

Suppose first that H◦ = SL14(C). In this case, V is just the natural module for H◦, hence M2,2(V )
takes the smallest possible value 2 for all H◦, H, G◦, and G. But this contradicts Corollary 1.2.

Next suppose that G◦ = H◦ is of type SL2, Sp4, Sp6, Sp14, SO14, or G2. In all these cases, the
G◦-module V is self-dual, and this contradicts Corollary 5.8.

(c) We have shown that H is finite, and we are in the almost quasisimple case. In this case, Harith

is also finite, and H
(∞)
arith = H(∞) = G

(∞)
arith = G(∞) = L. Let ϕ denote the character of Harith in the

underlying representation V . Then the formula for the trace function of Gq and the existence of an
element with trace 2ζ4 show that

(6.1.1) Q(ϕ) = Q(ζ4).

Since any element z of CHarith
(L) = Z(Harith) acts as a root of unity γ on V , this implies that

γ4 = 1. Since Harith has trivial determinant, γ14 = 1 and thus γ = ±1. It follows that

(6.1.2) |CHarith
(L)| = |Z(Harith)| ≤ 2.

Now, using (6.1.1) and the fact that L acts irreducibly on V = C14, the classification results of
[HM] show that L = PSL2(13), SL2(13), A7, A8, SU3(3), G2(3), 2 · J2, A15, or 2B2(8).

In all but the last case, ϕ|L is real-valued; furthermore, |Out(L)| ≤ 2. As shown in the proof
of Theorem 4.5, G has no subgroups of index 2, so G can induce only inner automorphisms of L.
But Garith = 〈G, f〉, implying Garith/G ↪→ C15; so the same conclusion holds for Garith, and hence
Garith = CGarith

(L)L = Z(Garith)L, with |Z(Garith| ≤ 2 by (6.1.2). On the other hand, as we saw in
the computation for the proof of Corollary 1.2, some g ∈ Garith has trace 2ζ4 on V . Write g = zh
with z ∈ Z(Garith) and h ∈ L. It follows that 2ζ4 = ϕ(g) = ±ϕ(h), a contradiction since ϕ(h) ∈ R.
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We have therefore shown that L = 2B2(8). As |Out(L)| = 3, (6.1.2) implies that |H/L| divides
6. On the other hand, H is the normal closure of the image of order 5 of I(0), so we conclude that
H = L. Since L�G�H, we also get G = L.

Recalling again that Garith/G ↪→ C15, we now see from (6.1.2) that Z(Garith) = 1 and thus
Garith ↪→ Aut(L) ∼= L o C3. A Magma computation shows the existence of a Frobenius element
with trace ζ4, and this implies that Garith > L, whence Garith = Aut(L). Since Harith is generated
over H by f = Frob1,F2 , an element of order 15, Z(Harith) = 1 by (6.1.2). Thus Harith ↪→ Aut(L),
and so Harith = Aut(L) as Harith ≥ Garith. �

7. Low-dimensional representations of classical groups

In this section, we will extend the classification results obtained in [KlL, Proposition 5.4.11] and
[Lu, Theorem 5.1]. Even though the intended applications in the paper only need the complex case
of these results, we establish them in the modular case, which is interesting in its own right.

Let F be an algebraically closed field of characteristic p ≥ 0 and let G be a simple, simply
connected, classical algebraic group of rank r over F. Fixing a maximal torus in G, we consider the
set of simple roots {α1, . . . , αr} and the corresponding set of fundamental weights {$1, . . . , $r} (in
the ordering of [OV]). Then the set

Λ+ =

{
r∑
i=1

ai$i | ai ∈ Z, ai ≥ 0

}
of dominant weights admits the partial ordering � where λ � µ precisely when λ− µ =

∑r
i=1 kiαi

for some non-negative integers ki. As usual, W denotes the Weyl group. If λ ∈ Λ+, let L(λ) denote
the irreducible FG-module with highest weight λ.

We will rely on the following two results.

Theorem 7.1. [Pr] Let G be a simple, simply connected algebraic group in characteristic p > 0. If
the root system of G has different root lengths, then we assume that p 6= 2, and if G is of type G2,
then we also assume that p 6= 3. Let λ be a restricted dominant weight. Then the set of weights Π(λ)
of the irreducible G-module L(λ) is the union of the W -orbits of dominant weights µ with λ � µ. 2

Lemma 7.2. [H, Lemma 10.3B] Let λ =
∑r

i=1 ai$i be a dominant weight. Then the stabilizer of
λ in the Weyl group is the Young subgroup generated by the reflections ρi along the simple roots αi
for which ai = 0. 2

Our first result treats groups of type A and includes a strengthening for SL22:

Theorem 7.3. Let G = SLn(F) with n = r+1 ≥ 8, and let L(λ) be an irreducible FG-representation,
which is restricted if p = Char(F) > 0. Suppose that dimL(λ) ≤M , where M :=

(
n
4

)
if n 6= 22 and

M := 8176 if n = 22. Then λ = 0, a$1 or a$r with 1 ≤ a ≤ 3, $1 +$r, $2 or $r−1, $3 or $r−2,
$4 or $r−3, $1 +$2 or $r−1 +$r, 2$1 +$r or $1 + 2$r, and $2 +$r or $1 +$r−1.

Proof. Write the highest weight λ as
∑r

i=1 ai$i with ai ∈ Z≥0.

(a) First suppose that there is some weight µ =
∑r

i=1 bi$i ∈ Λ+ with λ � µ and bj 6= 0 for some
s+ 1 ≤ j ≤ r − s, where

s := 3 if n 6= 22 and s := 4 if n = 22.

By Theorem 7.1, Π(λ) contains the W -orbit O(µ) of µ. By Lemma 7.2,

StabW (µ) ≤ 〈ρ1, . . . , ρj−1, ρj+1, . . . , ρr〉 = Sj × Sn−j
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(where ρi = (i, i+ 1) ∈W = Sn). Hence

dimL(λ) ≥ |O(µ)| ≥ [Sn : (Sj × Sn−j)] =

(
n

j

)
≥
(

n

s+ 1

)
≥M,

a contradiction if n = 22, or if 5 ≤ j ≤ r− 4. Suppose j ∈ {4, r− 3} and n 6= 22. Then dimL(λ) =
|O(µ)| =

(
n
4

)
, showing µ is the unique dominant weight of L(λ), whence µ = λ. This also forces

StabW (λ) = Sj×Sn−j , and so λ = aj$j . Now if a ≥ 2, then λ � λ−αj = $j−1 +(aj−2)$j+$j+1,
and the latter is another dominant weight of L(λ), a contradiction. So λ = $4 or $r−3 in such a
case.

We may therefore assume that

(7.3.1) aj = 0 for every s+ 1 ≤ j ≤ r − s.
Next suppose that

∑s
i=1 iai ≥ s + 1. By [GLT, Lemma 2.6] (applied with m = s), there is some

weight µ =
∑r

i=1 bi$i ∈ Λ+ with λ � µ and bs+1 > as+1. This situation is already considered by
the preceding analysis. Using the symmetry under the graph automorphism τ of G,

(7.3.2)
s∑
i=1

iai ≤ s,
s∑
i=1

iar+1−i ≤ s.

(b) Suppose a4 > 0 or ar−3 > 0. By symmetry, we may assume a4 > 0. By (7.3.2) n = 22,
a4 = 1, and a1 = a2 = a3 = 0. Now if λ 6= $4, then aj ≥ 1 for some r − 3 ≤ j ≤ r by (7.3.1). By
Lemma 7.2,

StabW (λ) ≤ 〈ρ1, ρ2, ρ3, ρ5, ρ6, . . . , ρj−1, ρj+1, . . . , ρr〉 ∼= S4 × Y1,

with Y1 a proper Young subgroup of Sn−4 and hence |Y1| ≤ (n− 5)!. It follows that

dimL(λ) ≥ [W : StabW (λ)] ≥ (n− 4)

(
n

4

)
> M,

a contradiction. Hence from now on we may assume that a4 = ar−3 = 0.

(c) Suppose that a3 > 0 or ar−2 > 0. By symmetry, we may assume a3 > 0, and so a3 = 1 by
(7.3.2). Suppose aj ≥ 1 for some r − 3 ≤ j ≤ r. By Lemma 7.2,

(7.3.3) StabW (λ) ≤ 〈ρ1, ρ2, ρ4, ρ5, . . . , ρj−1, ρj+1, . . . , ρr〉 ∼= S3 × Y2,

with Y2 a proper Young subgroup of Sn−3 and hence |Y2| ≤ (n− 4)!. It follows that

dimL(λ) ≥ [W : StabW (λ)] ≥ (n− 3)

(
n

3

)
> M

(as n ≥ 8), a contradiction. Now, if n 6= 22, then using (7.3.1) and (7.3.2) we see that λ = $3. If
n = 22 but λ 6= $3, then λ = $1 + $3. In this case, λ − (α1 + α2 + α3) = $4 is also a weight of
L(λ) by Theorem 7.1, and since

StabW ($1 +$3) = 〈ρ2, ρ4, ρ5, . . . , ρr〉 ∼= S2 × Sn−3, StabW ($4) = S4 × Sn−4

by Lemma 7.2,

(7.3.4) |O($1 +$3)|+ |O($4)| =
(

22

3

)
/2 +

(
22

4

)
= 11935 > M,

which contradicts dimL(λ) < M .

(d) We may now assume that ai = 0 for 3 ≤ i ≤ r − 2. Suppose that a2 > 0 or ar−1 > 0.
By symmetry, we may assume a2 > 0. If a2 ≥ 2, then by (7.3.2) n = 22, (a2, a1) = (2, 0). Note
that λ � λ − α2 = $1 + $3 + ar−1$r−1 + ar$r. It follows from Theorem 7.1 that Π(λ) contains
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$1 + $3 + ar−1$r−1 + ar$r and $4 + ar−1$r−1 + ar$r. The lengths of W -orbits of these two
weights are at least 11395 by (7.3.4), and so dimL(λ) > M .

If a2 = 1 but a1 ≥ 2, then by (7.3.2) n = 22, (a2, a1) = (1, 2). Note that

λ � λ− α1 = 2$2 + ar−1$r−1 + ar$r.

The preceding arguments show that Π(λ) contains the weights $1 + $3 + ar−1$r−1 + ar$r and
$4 + ar−1$r−1 + ar$r, and again dimL(λ) > M .

Hence a2 = 1 and a1 ≤ 1. If ar = ar−1 = 0, then λ = $2 or $1 + $2. So assume that
ar + ar−1 > 0.

Suppose that ar−1 > 0. Then by Lemma 7.2

(7.3.5) StabW (λ) ≤ 〈ρ1, ρ3, ρ4, . . . , ρr−2, ρr〉 = S2 × Sn−4 × S2.

It follows that

dimL(λ) ≥ [W : StabW (λ)] ≥ n!

(n− 4)! · (2!)2
> M,

a contradiction. Hence ar−1 = 0.
Suppose next that ar ≥ 2. Then

λ � ν1 := λ− αr = λ− (2$r −$r−1) = a1$1 +$2 + (ar−1 + 1)$r−1 + (ar − 2)$r.

Thus ν1 ∈ Π(λ) ∩ Λ+, and (7.3.5) applied to ν1 shows that

dimL(λ) ≥ |O(ν1)| ≥ [Sn : (S2 × Sn−4 × S2)] > M.

We may therefore assume that ar = 1. If a1 = 0 then λ = $2 +$r. Otherwise λ = $1 +$2 +$r,
in which case λ � ν2 := λ− (α1 +α2) = λ− ($1 +$2−$3) = $3 +$r. But in such a case, (7.3.3)
applied to ν2 shows that

dimL(λ) ≥ |O(ν2)| ≥ (n− 3)

(
n

3

)
> M.

(e) We may now assume that ai = 0 for 2 ≤ i ≤ r− 1, i.e. λ = a$1 + b$r with s ≥ a ≥ b ≥ 0 (by
symmetry). Suppose a ≥ 4, whence n = 22 and a = 4 by (7.3.2). Then λ � λ− 2α1 = 2$2 + b$r,
and so dimL(λ) > M by the first paragraph of (d).

Suppose a = 3 but b > 0. Then λ � ν3 := λ − (2α1 + α2) = λ − (3$1 −$3) = $3 + b$r, and
(7.3.3) applied to ν3 shows that dimL(λ) ≥ |O(ν3)| > M . Hence λ = $3.

Suppose a = b = 2, i.e. λ = 2$1 + 2$r. Then λ � ν4 := λ− (α1 + αr) = $2 + $r−1. In such a
case,

dimL(λ) ≥ |O(ν4)| ≥ n!

(n− 4)! · (2!)2
> M,

by using (7.3.5) for ν4. So a+ b ≤ 3, and thus λ = 2$1 +$r, 2$1, $1 +$r, $1, or 0. �

To handle the other classical groups, we first consider a special case. Again, we use the weight
labeling as in [OV].

Proposition 7.4. Let G be a simply connected simple algebraic group over F of type Br, Cr, or
Dr, with r ≥ 7. Then

dimL($1 +$2) ≥
{

4r(r2 − 1)/3, if p = 3,
4r(r − 1)(2r − 1)/3, if p 6= 3.

Proof. Note that |O($3)| = 8
(
r
3

)
and |O($1 +$2)| = 4r(r − 1). Since λ := $1 +$2 is the highest

weight of L(λ), it suffices to show that µ := $3 is a weight of L(λ), with multiplicity mL(λ)(µ) ≥ 1
if p = 3 and mL(λ)(µ) ≥ 2 if p 6= 3. If p = 3, then λ � λ − (α1 + α2) = µ, whence µ ∈ Π(λ) by
Theorem 7.1, and we are done.



34 ALPÖGE, KATZ, NAVARRO, O’BRIEN, AND TIEP

In what follows we may assume p 6= 3. We realize the roots and the weights of G using an
orthonormal basis (ei | 1 ≤ i ≤ r) of Rr (with scalar product (·, ·)); in particular, $1 = e1,
$2 = e1 + e2, $3 = e1 + e2 + e3. Consider the simple (Weyl) module V (λ) of the corresponding
algebraic group over C. Then ν ∈ Λ+ is a weight of V (λ) precisely when λ � ν. Writing $i in
terms of simple roots (see [OV, Table 2]), it is straightforward to check that this is equivalent to

(7.4.1) ν ∈
{
{λ, µ,$1}, if G = Cr or Dr,
{λ, µ,$2, 2$1, 0}, if G = Br.

Next we use Freudenthal’s formula [H, p. 122] to find the multiplicity mV (λ)(µ) of µ as a weight of
V (λ). Then we must find all multiples lα of positive roots α, with l ∈ Z≥1, such that µ + lα is a
weight of V (λ), i.e. W -conjugate to one of the weights listed in (7.4.1). Again using [OV, Table 2],
we can check that this happens precisely when l = 1 and α = e1 − e2, e1 − e3, e2 − e3. In all these
cases, µ+ lα is W -equivalent to λ, and we readily obtain mV (λ)(µ) = 2.

Suppose now that

(7.4.2) mL(λ)(µ) ≤ 1.

This can happen only when µ is a weight of some composition factor L(ν0) of a reduction modulo
p of V (λ), where ν0 is listed in (7.4.1). Note that if ν is such a weight and ν 6= µ, then ν 6 �µ.
It follows that ν0 = µ, i.e. L(µ) is a composition factor of a reduction modulo p of V (λ). By the
linkage principle, see [Jan], this implies that w ◦ λ = µ for some w ∈ Wp. Here, the affine Weyl
group Wp is generated by the map ρα,l ◦ λ = ρα ◦ λ + lpα, where α is a simple root, l ∈ Z and ρα
denotes the reflection corresponding to α; furthermore, ρα ◦λ = ρα(λ+ δ)− δ, where δ :=

∑r
i=1$i.

Write |v|2 instead of (v, v) for v ∈ Rr. Then, for any root α and any l ∈ Z

|ρα,l ◦ λ+ δ|2 = |λ+ δ|2 + l2p2|α|2 + 2lp(ρα(λ+ δ), α).

Observe that |α|2 ∈ Z and(
ρα(λ+ δ), α

)
=

(
(λ+ δ)− 2(λ+ δ, α)

(α, α)
, α

)
= −(λ+ ρ, α) ∈ Z.

It follows that |ρα,l ◦ λ+ δ|2 ≡ |λ+ δ|2 (mod gcd(2, p)). Thus we have shown

(7.4.3) If two weights λ, µ are linked, then |λ+ δ|2 ≡ |µ+ δ|2 (mod gcd(2, p)p).

(Note that a slightly weaker result than (7.4.3), namely only modulo p, was obtained in [T, Lemma
2.1].) In our case, |λ + δ|2 − |µ + δ|2 = 6. Applying (7.4.3), we conclude that (7.4.2) can happen
only when p = 3. �

Theorem 7.5. Let G be a simply connected simple algebraic group over F of type Br, Cr, or Dr,
with r ≥ 12. Let L(λ) be an irreducible FG-representation, which is restricted if p := Char(F) > 0.
Suppose that dimL(λ) ≤ M , where M := 2(r + 1)3 if r ≥ 14, and M := r3 if r = 12, 13. Then
λ = a$1 with 0 ≤ a ≤ 3, $2, $3, or $1 +$2. Moreover, if λ = $1 +$2 and r ≥ 16, then p = 3.

Proof. Write the highest weight λ as
∑r

i=1 ai$i with ai ∈ Z≥0 (note that L($1) is the natural
module for G).

(a) First suppose that ai > 0 for some r − 2 ≤ i ≤ r. In this case, by Lemma 7.2, the length of
the W -orbit O(λ) of λ is at least [W : StabW (λ)] ≥ 2r−1 > M .

Next suppose that ai > 0 for some 4 ≤ i ≤ r − 3. In this case, if G is of type Xr so that
W = W (Xr), then StabW (λ) is contained in W (Ai−1)×W (Xr−i) by Lemma 7.2, hence

dimL(λ) ≥ |O(λ)| ≥ 2i
(
r

i

)
≥ min

(
24

(
r

4

)
, 2r−3

(
r

3

))
> 2(r + 1)3,
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since r ≥ 9.
Applying this argument to µ =

∑r
i=1 bi$i ∈ Π(λ) ∩ Λ+, we deduce that

(7.5.1) bi = 0 for 4 ≤ i ≤ r.

(b) Suppose a3 > 0. If a1 > 0 or a2 > 0, then StabW (λ) ≤W (A1)×W (Xr−3), whence

(7.5.2) |O(λ)| ≥ 4r(r − 1)(r − 2) > 2(r + 1)3

(since r ≥ 9), contradicting the bound on dimL(λ). So λ = a3$3. Now, if a3 ≥ 2 (and so p 6= 2 as
λ is restricted), then by Theorem 7.1

λ � λ− α3 = $2 +$4 ∈ Π(λ) ∩ Λ+,

violating (7.5.1). Hence λ = $3 in this case.
We have shown that a3 = 0. Suppose a2 > 0. Now, if a2 ≥ 2 (so again p 6= 2), then

λ � λ− α2 = (a1 + 1)$1 + (a2 − 2)$2 +$3 ∈ Π(λ),

leading to a contradiction by applying (7.5.2) to λ− α2. If a2 = 1 but a1 ≥ 2, then p 6= 2 and

λ � λ− (α1 + α2) = (a1 − 1)$1 +$3 ∈ Π(λ),

again yielding a contradiction by applying (7.5.2) to λ− α1 − α2. Hence λ ∈ {$2, $1 +$2} in this
case.

We are left with the case λ = a$1. If a ≥ 4, then again p 6= 2 and

λ � λ− (2α1 + α2) = (a1 − 3)$1 +$3 ∈ Π(λ),

leading to a contradiction by applying (7.5.2) to λ− 2α1 − α2. So 0 ≤ a ≤ 3 as stated.

(c) We make some more comments about the cases λ ∈ {3$1, $3, $1 +$2}. Note that

3$1 − α1 = $1 +$2, ($1 +$2)− (α1 + α2) = $3.

So, assuming p 6= 2 when λ = $1 +$2, we may assume $3 ∈ Π(λ) in all these three cases. It now
follows from Lemma 7.2 that in these cases

dimL(λ) ≥ |O($3)| = 4r(r − 1)(r − 2)/3 > r3.

Proposition 7.4 shows that if p = 2, then dimL($1 + $2) > 8
(
r
3

)
> r3 (as r ≥ 12), and if r ≥ 16

and p 6= 3, then dimL($1 +$2) > 4r(r − 1)(2r − 1)/3 > 2(r + 1)3. Thus,

(7.5.3) If r ≥ 12 and dimL(λ) ≤ r3, then λ ∈ {0, $1, 2$1, $2}.

This statement (7.5.3) was recorded in [Lu, Theorem 5.1], but we note that the treatment of the
weights a1$1 + a2$2 therein is incorrect. Also note that dimL($1 + $2) may be smaller than
2(r + 1)3 when p = 3, see [Lu] for examples. �

8. A dichotomy for monodromy groups

We will need some preliminary facts:

Lemma 8.1. Let n ∈ Z≥1 and let D := 2n(22n+1 − 1). Then none of the following equations

(i) D = x2 − 1,
(ii) D = x(x− 1)/2,

(iii) D = x(x− 1)/2− 1 and n ≥ 2,

has a solution in the positive integers.
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Proof. (i) Suppose x2 − 1 = D for some x ∈ Z≥1. Checking the cases 1 ≤ n ≤ 7 directly, we may
assume n ≥ 8. Now x > 1 is odd, and gcd(x− 1, x+ 1) = 2, but 2n|(x2 − 1). It follows that there
is some ε = ±1 such that 2n−1|(x− ε). Write x− ε = 2n−1y for some y ∈ Z≥1. Then

23n+1 − 2n = D = x2 − 1 = (2n−1y + ε)2 − 1 = 22n−2y2 + 2nεy,

and so εy + 1 = 2n−2(2n+3 − y2). This implies y > 1, and y + ε is divisible by 2n−2. Hence
y + ε = 2n−2z for some z ∈ Z≥1. In this case, y ≥ 2n−2 − 1, x ≥ 22n−3 − 2n−1 − 1, and so
x2 − 1 > 24n−7 ≥ 23n+1 > D (as n ≥ 8), a contradiction.

(ii) Suppose x(x − 1)/2 = D for some x ∈ Z≥1. Then gcd(x − 1, x) = 1, but 2n+1|x(x − 1). It
follows that there is some ε ∈ {0, 1} such that 2n+1|(x− ε). Write x− ε = 2n+1y for some y ∈ Z≥1.
If ε = 0, then

23n+2 − 2n+1 = 2D = x(x− 1) = 22n+2y2 − 2n+1y,

and so y−1 = 2n+1(y2−2n). This implies y > 1, and y−1 is divisible by 2n+1. Hence y−1 ≥ 2n+1,
x > 22n+2, and so x(x− 1) > 24n+4 > 23n+1 > D, a contradiction. If ε = 1, then

23n+2 − 2n+1 = 2D = x(x− 1) = 22n+2y2 + 2n+1y,

and so y + 1 = 2n+1(2n − y2). This implies 1 ≤ y < 2n/2, and y + 1 is divisible by 2n+1, which is
impossible.

(iii) Suppose n ≥ 2 and D = x(x − 1)/2 − 1 = (x + 1)(x − 2)/2 for some x ∈ Z≥1. Then
gcd(x + 1, x − 2)|3, but 2n+1|(x + 1)(x − 2). It follows that there is some ε ∈ {−1, 2} such that
2n+1|(x− ε). Write x− ε = 2n+1y for some y ∈ Z≥1. If ε = −1, then

23n+2 − 2n+1 = 2D = (x+ 1)(x− 2) = 22n+2y2 − 3 · 2n+1y,

and so 3y − 1 = 2n+1(y2 − 2n). This implies that 3y − 1 ≥ 2 is divisible by 2n+1. Hence y ≥
(2n+1 + 1)/3 > 2n−1, x+ 1 > 22n, and so (x+ 1)(x− 2) > 22n(22n − 3) > 23n+1 > D (as n ≥ 2), a
contradiction. If ε = 2, then

23n+2 − 2n+1 = 2D = (x+ 1)(x− 2) = 22n+2y2 + 3 · 2n+1y,

and so 3y + 1 = 2n+1(2n − y2). This implies 1 ≤ y < 2n/2 ≤ 2n−1, and 3y + 1 is divisible by 2n+1,
which is impossible when n ≥ 2. �

Note that if (n,D) = (1, 14), then D =
(

6
2

)
− 1 =

(
6
3

)
− 6 = (33 + 1)/2.

Theorem 8.2. Suppose the sheaf F(q, f) in (4.1.1), of rank D = 2n(22n+1 − 1), has infinite
geometric monodromy group G = Ggeom. Then G◦ = SLD. Under the more restrictive condition
(4.1.3) G = SLD; moreover, the sheaf G(q, f, t(q)) has geometric monodromy group equal to G.

Proof. By Theorem 5.12, G satisfies (S+). Thus G◦ ≤ SLD, and Z(G) is finite, but G◦ is infinite.
It follows from [KT1, Lemma 1.4] that G◦ is irreducible on the underlying representation V , i.e.
F(q, f) is Lie-irreducible. By Theorem 5.13, G◦ is a simple algebraic group of dimension ≥ D.

(a) Suppose n ≥ 3, so that D ≥ 1016. Then G◦ must be a classical group of rank say r, where
r(2r + 1) ≥ dimG◦ ≥ D ≥ 1016, whence r ≥ 23. Also, if G◦ is of type Ar, then

(8.2.1) D ≤ dimG◦ = r(r + 2) <

(
r + 1

4

)
,

and if G◦ is of type Br, Cr, or Dr, then

(8.2.2) D ≤ r(2r + 1) < r3.

In the case of Ar, we can apply Theorem 7.3 and, using the dimension formula for L(λ) given in
[OV, Table 5] and the bound (8.2.1), we see that the highest weight λ of the G◦-module V is, up
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to duality, a$1 with a = 1, 2, $2, or $1 + $r. If λ = $1, then D = r + 1, G◦ = SLD, and hence
G = SLD as stated. In the other cases, D =

(
r+1

2

)
,
(
r
2

)
, or (r+ 1)2− 1; all are impossible by Lemma

8.1.
In the case of types Br, Cr, and Dr, we can apply Theorem 7.5 (more precisely, (7.5.3)), and,

using the dimension formula for L(λ) given in [OV, Table 5] and the bound (8.2.2), we see that the
highest weight λ of the G◦-module V is a$1 with a = 1, 2, or $2. If λ = $1, then G◦ = Sp(V ) or
SO(V ), whence F(q, f) is Lie-self-dual, contrary to Corollary 5.8. In the other cases, D =

(
m
2

)
or(

m
2

)
− 1 for some integer m ≥ 2, and this is impossible by Lemma 8.1.

(b) Suppose n = 2, so that D = 124. Then G◦ is of type Ar with r ≥ 11, Br, Cr, or Dr with
r ≥ 8, E7, or E8. Neither E7 nor E8 has irreducible representations of degree 124, see [Lu], so G◦ is
classical of rank r. If G◦ is of type Br, Cr, or Dr with 8 ≤ r ≤ 11, then using [Lu] we check that G◦

has no irreducible representation of degree 124. So r ≥ 12, and we apply Theorem 7.3, respectively
(7.5.3), as above to conclude that G = SLD.

Finally, assume that n = 1, so that D = 14. The arguments in part (b) of the proof of Theorem
6.1 repeated verbatim show that either G◦ = SLD, or V |G◦ is self-dual. In the former case G = SLD
as in (a), and the latter case is ruled out by Corollary 5.8.

(c) Now assume (4.1.3). Then we can consider the descent G(q, f, t(q)), for which the trace
function takes values in Q(ζ4) and all slopes are less than 1. Since p = 2, Theorem 2.1(iii) implies
that G(q, f, t(q)) has trivial determinant, and thus G(q, f, t(q)) has geometric monodromy group
H ≤ SLD. But H ≥ G, so we conclude H = G = SLD. �

Theorem 8.3. Suppose the sheaf F(q, f) in (4.1.3), of rank D = 2n(22n+1−1), has finite geometric
monodromy group G = Ggeom. Then G = 2B2(q) with q = 22n+1.

Proof. (a) Let V denote the underlying representation. By Theorem 5.12, G satisfies (S+) on V .
But the dimension D = dim(V ) = q0(q−1), with q0 := 2n, is not a prime power. Hence G is almost
quasisimple by [KT1, Lemma 1.1]: S�G/Z(G) ≤ Aut(S) for some finite, non-abelian simple group

S. Then the quasisimple subgroup L := G(∞) acts irreducibly on V by [KT1, Lemma 1.4].
The condition (4.1.3) allows us to consider the descent G(q, f, t(q)) on Gm, with geometric mon-

odromy group H. Then G�H of finite index, whence H is finite and satisfies (S+), and L = H(∞),
as H/G ↪→ Ct(q). The representation of H on V has ∞-slopes σ := (q0 + 1)/D < 1, and is not tame
at ∞. Hence Theorem 2.5 applies to G and H. We collect some further facts about (G,V ) and the
character ϕ of H on V that we will use in the proof:

(i) Q(ϕ|G) = Q(ϕ) = Q(i). Indeed, by Theorem 2.1(i), the arithmetic monodromy group Harith,k0

of G(q, f, t(q)) over k0 has finite determinant. But it normalizes the finite irreducible subgroup
H, so finite determinant implies that Harith,k0 is finite. Now, by Chebotarev density, the
finiteness of Harith,k0 implies that all elements of it are Frobenii, and all Frobenii have traces
in Q(i). But G ≤ H ≤ Harith,k0 , so Q(ϕ|G) ⊆ Q(ϕ) ⊆ Q(i). But V |G is not self-dual by
Theorem 5.7, hence Q(ϕ|G) = Q(i) = Q(ϕ). Since each element of Z(H) acts as a root of
unity on V , and the only roots of unity in Q(i) are in µ4, both |Z(G)| and |Z(H)| divide 4.

(ii) If n 6= 2, then G is perfect and hence G = L. Indeed, by [Abh, Proposition 6], π1(A1/Fp)
has no nontrivial finite p′-quotient. Since F(q, f) lives on A1/F2, G has no nontrivial quotient
of odd order. On the other hand, the proof of Theorem 4.5 shows that G has no quotient of
order 2 when n 6= 2.

(iii) The image J = QC of I(∞) has Q = O2(J) and C = 〈g∞〉, where the central order ō(g∞)
is divisible by q − 1. Indeed, since the ∞-slope of F(q, f) is 1 + 1/D, this implies, by [Ka1,
Proposition 1.14], that I(∞) acts irreducibly on V , of dimension D = q0(q − 1). Since the
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image J of I(∞) is cyclic of p′-order modulo the image Q of P (∞), it follows that g∞ permutes
the pairwise non-isomorphic q−1 simple Q-summands on V , each of dimension q0, transitively.

(b) Consider the case n ≥ 3, so that D ≥ 1016, and G = L by (ii).

(b1) First suppose that S = Am for some m ≥ 3. As G/Z(G) = Am ↪→ GLm−1(C), by Theorem
2.5, m − 1 ≥ 1/σ. Note that d1/σe = q − 2q0 + 1, so m ≥ q − 2q0 + 2 ≥ 114. It follows that
D = q0(q − 1) < (m2 − 5m + 2)/2. In this case, by [GT, Lemma 6.1] m = D + 1, G = AD+1, and
V = CD is the heart of the natural permutation module. But then V is self-dual, contrary to (i).

(b2) Next suppose that S is a sporadic simple group. By (iii), the maximum order meo(S) of
elements in S is at least q− 1 ≥ 127. On the other hand, meo(S) ≤ 119, as one can check using the
[Atlas] (see also [KT1, Table 2]), a contradiction.

(b3) Consider the case S is a simple group of Lie type in characteristic r 6= 2. By Theorem
2.5, the degree e of every nontrivial projective representation over Fr of S satisfies e2 − 1 ≥ 1/σ,
in particular, e ≥ 11. Similarly, the degree d of every faithful linear representation over Fr of S
satisfies d ≥ 1/σ, in particular, d ≥ 114. This rules out all classical groups of types Am or 2Am
with m ≤ 9, Bm with m ≤ 56, and Cm or Dm with m ≤ 7 (as PSp2m(ra) and PΩ±2m(ra) have

faithful representations of degree m(2m − 1) over Fr). This also rules out exceptional groups of
types G2, 2G2, and 3D4. For the remaining exceptional groups of type F4(s), E6(s), 2E6(s), E7(s),
and E8(s), with s = ra, by [KS, Table A7] we have the following upper bounds s(s + 1)(s2 + 1),
s(s6 − 1)/((s− 1) gcd(3, s− 1)), (s+ 1)(s2 + 1)(s3 − 1)/ gcd(3, s+ 1), (s+ 1)(s2 + 1)(s4 + 1)/2, and
(s + 1)(s2 + s + 1)(s5 − 1) for meo(S), respectively. On the other hand, q0(q − 1) = D is at least
the smallest degree d(S) of nontrivial projective complex representations of S, which in turn is at
least s6(s2 − 1), s9(s2 − 1), s9(s2 − 1), s15(s2 − 1), s27(s2 − 1), respectively, see e.g. [TZ, Table I],

and we arrive at a contradiction in all five cases, as q − 1 ≤ meo(S) by (iii) and D <
√
q3/2.

If S = PSLm(s) or PSUm(s) with m ≥ 11, then m2 − 1 ≥ 1/σ, and so m2 ≥ q − 2q0 + 2, by
Theorem 2.5. Since m ≥ 11, by [TZ, Theorem 1.1]

D ≥ sm − s
s+ 1

≥ 3m − 3

4
> m3 ≥ (q − 2q0 + 2)3/2 > q0(q − 1),

a contradiction. For S of type BCDm with m ≥ 7, we have min(m(2m− 1), 2m+ 1) ≥ 1/σ, and so
2m2 ≥ q − 2q0 + 1, by Theorem 2.5. Since m ≥ 7, by [TZ, Theorem 1.1]

D ≥ sm − 1

2
≥ 3m − 1

2
> 3m3 ≥ (3/23/2)(q − 2q0 + 1)3/2 > q0(q − 1),

again a contradiction.

(b4) We may now assume that S is a simple group of Lie type in characteristic 2, defined
over a field Fs with s = 2a. Since n ≥ 3, by Theorem 3.4, t(q) = q − 2q0 + 1 admits a divisor
` = ppd(2, 4(2n + 1)). Next, we use the fact that the image of I(0) in H has order q − 2q0 + 1,
which implies that H has an element of prime order ` that normalizes G = L. But CH(G) = Z(H)
has order dividing 4 by (i), so

(8.3.1) ` divides |Aut(L)|.

First suppose that S = Sp2m(s) with m ≥ 2 or PΩ±2m(s) with m ≥ 3. Then, (8.3.1) implies that
` ≥ 4(2n + 1) + 1 ≥ 29 divides a|S|. If moreover ` - a, then ` divides

∏m
i=1(s2i − 1), which implies

2ma ≥ 4(2n+ 1) by primitivity of `. In either case,

(8.3.2) sm = 2ma ≥ 22(2n+1) = q2 ≥ 214
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Now, applying [TZ, Theorem 1.1] for m ≥ 3 we obtain

q3/2 > D ≥ d(S) ≥ (sm − 1)(sm−1 − 1)

s2 − 1
> s2m−3/2 ≥ sm/2 ≥ q2/2,

a contradiction. If S = PSp4(s), then s ≥ q ≥ 27 by (8.3.2), and so

q3/2 > D ≥ d(S) = s(s− 1)2/2 ≥ q(q − 1)2/2 > q2,

again a contradiction.
Next suppose that S = PSLm(s) or PSUm(s) with m ≥ 2. The same arguments as above show

that (8.3.2) still holds; in fact, sm ≥ q4 for S = PSLm(s). Assume that S = PSLm(s) with m ≥ 2;

in particular, sm−1 ≥ sm/2 ≥ q2. Then using [TZ, Theorem 1.1] we obtain that

q3/2 > D ≥ d(S) ≥ sm − s
s− 1

> sm−1 ≥ q2,

a contradiction. Next, assume that S = PSUm(s) with m ≥ 5; in particular, q3/2 ≤ s3m/4 ≤ sm−5/4.
Then using [TZ, Theorem 1.1] we obtain that

q3/2

√
2
> D ≥ d(S) ≥ sm − s

s+ 1
≥ 2

3
(sm−1 − 1) >

25/4

3
(sm−5/4 − 1) >

25/4

3
(q3/2 − 1) >

q3/2

√
2
,

again a contradiction. When S = PSU4(s), `|a or ` divides (s+1)(s2−1)(s3 +1)(s4−1), so instead
of (8.3.2) now s3 ≥ q2. Again using [TZ, Theorem 1.1] we obtain

q3/2 > D ≥ d(S) ≥ s4 − 1

s+ 1
> s3/2 ≥ q2/2,

a contradiction. Finally, if S = PSU3(s), then s3 ≥ q2 ≥ 214 from (8.3.2). But every irreducible

character of SU3(s) of even degree has degree divisible by s ≥ q2/3, and hence cannot be equal to
D = q0(q − 1).

Let S be one of the exceptional groups of type G2(s) with s > 2, 3D4(s), 2F4(s)′ with s > 2, F4(s)
with s > 2, E6(s), 2E6(s), E7(s), and E8(s). That ` divides |Aut(S)| implies q4 ≤ sc, where

c = 6, 12, 12, 12, 12, 18, 18, 30,

respectively. It follows that D < q3/2 ≤ s3c/8, with

3c/8 = 9/4, 9/2, 9/2, 9/2, 9/2, 27/4, 27/4, 45/4,

respectively. But this contradicts the lower bounds D ≥ d(S) ≥ s(s2−1), s3(s2−1), s4(s−1)
√
s/2,

s6(s2 − 1), s9(s2 − 1), s9(s2 − 1), s15(s2 − 1), s27(s2 − 1), respectively, see e.g. [TZ, Table I], and
we arrive at a contradiction in all eight cases. The cases 2F4(2)′ and F4(2) are ruled out because
|Aut(S)| is not divisible by the prime ` ≥ 29.

The only remaining case is that S = 2B2(s). That ` divides |Aut(S)| implies q4 ≤ s4, i.e. q ≤ s.
But D = q0(q − 1) is the degree of some irreducible character of G, so q = s, i.e. S = 2B2(q). In
this case also G = L = 2B2(q), as stated.

(c) Now we consider the case n = 2, i.e. D = 124.

(c1) As the quasisimple subgroup L = G(∞) acts irreducibly on V = CD, by [HM] we have the
following possibilities for S:

PSL2(125), SL3(5), SL5(2), G2(5), A125, or 2B2(32).

Here, a generator g0 of the image of I(0) in H has order t(q) = 25 and normalizes G and L. Since
CH(L) = Z(H) ≤ C4 by (i), 25 divides |Aut(S)|. This rules out the first three cases.
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In the two cases S = G2(5) and A125, L = S and V |L is self-dual. Since CH(L) ≤ C4 and
|Out(S)| ≤ 2, it follows that H/L is a 2-group. On the other hand, H has no quotient of order 2,
as shown in part (i) of the proof of Theorem 4.5 (which also works for n = 2). Hence H = L = G,
and so F(q, f) is self-dual. But this contradicts Theorem 5.7.

The only remaining case is S = 2B2(32), in which case L = S.

(c2) The rest of this paragraph applies to all n ≥ 1, for which we know L = S = 2B2(q).

Since Out(S) ∼= C2n+1, but G = O2′(G), we see that G = Z(G)S, with Z(G) ≤ C4. Recall that
H/G ↪→ Ct(q) and Z(H) ≤ C4. In particular, Z(H)G/G ∼= Z(H)/Z(G) has order dividing both 4
and t(q), whence Z(H) = Z(G). Next, H/G acts trivially on G/S ∼= Z(G), i.e. G/S ≤ Z(H/S), and
the quotient (H/S)/(G/S) ∼= H/G is cyclic. It follows that H/S is an abelian group. As mentioned
above, H has no quotient of order 2, so 2 - |H/S|, whence Z(G) = 1; in particular G = S when
n = 2. We have also shown that CH(S) = Z(H) = 1, so

(8.3.3) S �H ≤ Aut(S) = S o C2n+1

(d) Finally, we consider the case n = 1, i.e. D = 14. As the quasisimple group G = L acts
irreducibly on V = CD and Q(ϕ) = Q(i), by [HM] the only possibility is that G = 2B2(8). �

Now we are ready to prove the second main result of the paper:

Theorem 8.4. For the geometric monodromy group G = Ggeom of the sheaf F(q, f) in (4.1.3), of
rank D = 2n(22n+1 − 1), either G = SLD or G = 2B2(q) with q = 22n+1. Furthermore, for any
r|t(q), the geometric monodromy group of the descent G(q, f, r) is also equal to G.

Proof. Suppose G is infinite. Then the statements follow from Theorem 8.2.
From now on, assume that G is finite. Then G = S = 2B2(q) by Theorem 8.3. Since for any

r|t(q), the geometric monodromy group of G(q, f, r) contains G and is contained in the geometric
monodromy group H of F(q, f, t(q)), it suffices to show that H = S.

First, note that the ∞-slope of G(q, f, t(q)) is σ = (q0 + 1)/D and D + 1 = (q0 + 1)t(q), so
gcd(D, q0 + 1) = 1. It follows from [Ka1, Proposition 1.14] that I(∞) acts irreducibly on V , of
dimension D = q0(q − 1). Since the image J of I(∞) is cyclic of p′-order modulo the image Q of
P (∞), Q = O2(J) and J = 〈Q, g∞〉, where the p′-element g∞ transitively permutes the pairwise
non-isomorphic q − 1 simple Q-summands on V , each of dimension q0.

Since q = 22n+1, using [Zs] we can find a primitive prime divisor ` = ppd(2, 2n + 1), and fix
a power h of g∞ that has order `. Clearly, the prime ` is at least 2n + 3, so it is coprime to
2n+ 1 = |Out(S)|. On the other hand, S ≤ H ≤ Aut(S) by (8.3.3). Hence h ∈ S and Q < S.

We can write h = x(q−1)/`, where on the natural module U = F4
q for S = 2B2(q) < Sp(U), the

spectrum of x ∈ S consists of 4 eigenvalues ξ2n , ξ−2n , ξ1−2n , ξ2n−1 where ξ ∈ F2
×

has order q − 1
see [Bur], [Suz]. We may write Aut(S) = 〈S, θ〉, where θ acts as the Galois automorphism λ 7→ λ2

of F2. Suppose that for some 1 ≤ a ≤ 2n and for some y ∈ S, the element yθa centralizes h. Note
that θa sends x to x2a and h = x(q−1)/` to x2a(q−1)/`. It follows that

x2a(q−1)/` = θahθ−a = y−1(yθa)h(yθa)−1y = y−1hy

is S-conjugate to h = x(q−1)/`. On the other hand, it is known [Bur] that if b, c ∈ Z then xb and xc

are S-conjugate if and only if c ≡ ±b (mod (q− 1)). It follows that ` divides 2a± 1; in particular, `
divides 22a − 1. The primitivity of ` then implies that 2n+ 1 divides 2a, a contradiction.

We have shown that CAut(S)(h) ≤ S. As g∞ centralizes h, it follows that g∞ ∈ S. Hence
J = Q〈g∞〉 < S. Now S �H and H is finite, so H = S by Theorem 4.3. �

Theorems 6.1 and 8.4 imply the following.
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Corollary 8.5. The sheaves Fq and Gq in §1, of rank D = 2n(22n+1− 1), have the same geometric
monodromy group G = Ggeom. Furthermore, either G = 2B2(q) with q = 22n+1, or n ≥ 2 and
G = SLD.

Remark 8.6. It is plausible that for each q = 22n+1 ≥ 32, we can find a polynomial f1 ∈ F2[x] of

degree 2n + 1 such that the sheaf F(q, f) with f(x) = f1(xt(q)) as in (4.1.3) has infinite geometric
monodromy group, which then is SLD by Theorem 8.4. Indeed, a Magma calculation shows for each
2 ≤ n ≤ 25 that Frob1,F

2k(n)
has non-integral trace on F(q, x(1+2n)t(q)) for some choice of k(n) ∈ Z≥1.

For instance, Frob1,F
2k(n)

has trace (2i−7)/2 for (n, (k(n)) = (2, 7), (5i+ 3)/2 for (n, k(n)) = (3, 5),

(7− 3i)/4 for (n, k(n)) = (4, 7), and 5/2 for (n, k(n)) = (5, 7). In fact, for infinitely many integers
n ≥ 2, we offer in Theorem 9.18 a construction of a sheaf F(q, f) with Ggeom = SLD.

9. Arithmetic vs. geometric monodromy groups

9A. Glauberman and Dade correspondences. Our next results depend on the Glauberman
correspondence. Recall that if A is a solvable finite group acting by automorphisms on another
finite group S with (|A|, |S|) = 1, then there exists a canonical bijection ∗ : IrrA(S)→ Irr(C), where
C = CS(A) is the fixed-points subgroup and IrrA(S) is the set of A-invariant irreducible characters
of S. (See [Is3, Chapter 13].) Since the map is canonical, it is not difficult to see that Q(θ) = Q(θ∗),
where Q(θ) is the field of values of θ. (See [Is3, Problem 3.1].)

Suppose now that S = 2B2(2n), where n is odd. Then it is well-known that S admits a field
automorphism a of order n. Assume further that (m, |S|) = 1 for some divisor m > 1 of n.

Consider A = 〈an/m〉 ∼= Cm. If m = n, then C = CS(A) = 2B2(2) ∼= C5 o C4 has 5 irreducible
characters; two of its four linear characters are rational, the others have field of values Q(i). It also
has a rational irreducible character of degree 4. In particular, it follows that Irr(S) has exactly 5
irreducible A-invariant characters, and exactly two of them have field of values Q(i). On the other

hand, if m < n, then C = CS(A) = 2B2(2n/m) has exactly 2 irreducible A-invariant characters with

field of values Q(i), namely the ones of degree (r − 1)
√
r/2 with r := 2n/m; see [Bur]. This proves

the following.

Lemma 9.1. Suppose that S = 2B2(2n), where n is odd. Assume further that (m, |S|) = 1 for
a divisor m > 1 of n, and let A be the subgroup of field automorphisms of S of order m. Let
C = CS(A). If θ ∈ IrrA(S) has field of values Q(i), then θ∗ has degree (r− 1)

√
r/2 with r := 2n/m.

Lemma 9.2. Suppose that A is a cyclic group of order m acting faithfully and coprimely on S.
Let θ ∈ Irr(S) be A-invariant, C = CS(A), and let η ∈ Irr(C) be the A-Glauberman correspondent
of θ. Let G = S o A be the semidirect product, and let ψ ∈ Irr(G) be an extension of θ. Consider
x ∈ Gr S such that 〈x, S〉 = G.

(i) If η is linear, then |ψ(x)| = 1.
(ii) In all cases, there exist a root of unity γ ∈ C× of order dividing 2m and c ∈ C such that

ψ(x) = γη(c).

Proof. Let ψ ∈ Irr(G) be the canonical extension of θ to G. (This is the unique extension ψ such
that the determinantal order is coprime with |A|, see [Is3, Corollary 6.28]). Since every extension
of θ to G is a multiple of ψ by a linear character λ of G/S, we may assume that ψ = λψ0, where
ψ0 is the canonical extension.

Observe that m divides the order of x. Since m is coprime to |S|, we can write x = cb = bc,
with b being a π-element and c being a π′-element, where π is the set of prime divisors of m. Also
|b| = m, and S 3 xm = bmcm = cm, implying c ∈ S since gcd(m, |S|) = 1. Moreover, G = S o 〈b〉,
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so without any loss we may replace A by 〈b〉, and now c ∈ C = CS(b) = CS(A). By [Is3, Theorem
13.6]

ψ0(x) = ψ0(cb) = εη(c) ,

where ε = ±1. Hence, ψ(x) = γη(c), where γ = ελ(x) and λ(x)m = 1. �

Since each of the two irreducible characters of S := 2B2(q) of degree (q − 1)
√
q/2 has field of

values Q(i) and is Aut(S)-invariant, Lemmas 9.1 and 9.2 imply the following.

Corollary 9.3. Let q = 2n with 2 - n and let θ be either of the two irreducible characters of

S := 2B2(q) of degree (q − 1)
√
q/2. Then θ extends to G = Aut(S) ∼= S o Cn. If furthermore

n is coprime to |S|, then |ψ(x)| = 1 for any extension ψ of θ to G and for any x ∈ G r S with
G = 〈x, S〉.

We remark that the character θ in Corollary 9.3 has a canonical extension to G. Indeed, by [N1,
Theorem A], there exists a unique ψ ∈ Irr(G) such that the field of values of ψ is Q(i). In particular,
notice that the restriction ψ to Cn is rational-valued.

In some non-coprime situations, we can use the following statement. This also follows from results
in [Da, §9], but in the situation under consideration, our approach is more straightforward.

Lemma 9.4. Suppose that G = SA, where A = 〈a〉, S / G and A ∩ S = 1. Let C = CS(A), and
assume that χ ∈ IrrA(S) has an extension ψ ∈ Irr(G) such that ψA is rational-valued. Suppose that
for every x ∈ G r S, there exists some g ∈ G such that xg = cb for some c ∈ C and b ∈ A. Then
there exist a character θ ∈ Irr(C) and a sign ε = ± such that ψ(cb) = εθ(c) for every c ∈ C and
every generator b of A.

Proof. By the proof of [Is3, Lemma 13.5], we can write

ψCA =
∑

β∈Irr(C),[χC ,β]6=0

β � ψβ ,

where ψβ is a rational-valued character of S. Now, define θ(c) = ψ(ca) for c ∈ C. Then

θ =
∑
β

ψβ(s)β .

Thus θ is a virtual character of C. We claim that [θ, θ] = 1. Let T be a set of representatives for
the right cosets of C in S. In order to use the proof of [Is3, Theorem 13.6], we claim that

Sa =
⋃
t∈T

(Ca)t

is a disjoint union. By hypothesis,

Sa =
⋃
s∈S

(Ca)s =
⋃
t∈T

(Ca)t .

Now,

|S| = |Sa| = |
⋃
t∈T

(Ca)t| ≤
∑
t∈T
|(Ca)t| = |T ||C| = |S| ,

and the claim follows. The rest of the proof follows as in [Is3, Theorem 13.6]. �

Finally, to address the general situation in the Suzuki case, we must go much deeper into [Da,
§9].
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Corollary 9.5. Let q = 2n with 2 - n and let θ be either of the two irreducible characters of

S := 2B2(q) of degree (q − 1)
√
q/2. Then θ extends to G = Aut(S) ∼= S o Cn and |ψ(x)| = 1 for

any extension ψ of θ to G and for any x ∈ Gr S with G = 〈x, S〉.

Proof. We adapt the notation of [Da, §9] to ours. We know that CS(A) = B o R, where B = 〈β〉
has order 5, and R is a cyclic group of order 4. Now, let G′ = NG(B) = S′oA, where S′ = NS(B).
Let G0 be the set of x ∈ G such that 〈xS〉 = G/S, and let G′0 be the set of x ∈ G′ such that
〈xS′〉 = G′/S′. By [Da, Lemma 9.3], S′ = C o R, where C is a cyclic group described there.
By [Da, Proposition 9.7], G′0 is a trivial intersection subset of G with normalizer G′. In Dade’s
language, it satisfies (6.4) of [Da]. In particular, by [Da, Lemma 6.5],

G0 =
⋃
τ∈T

(G′0)τ

is a disjoint union, where G =
⋃
τ∈T G

′τ is a disjoint union. (In that lemma right cosets are used.)
In particular, if x ∈ G′0 and η is a class function of G′, then

ηG(x) = η(x) .

By [Da, Theorem 9.8], θ naturally corresponds to some irreducible character η ∈ IrrA(S′), which
therefore has field of values Q(i). Now, S only has two A-invariant irreducible characters with field
of values Q(i), so using the inverse of Dade’s natural correspondence from that theorem, necessarily
η is one of the two linear characters of S′/C = R.

By hypothesis 〈x, S〉 = G, and so x ∈ G0. Since

G0 =
⋃
τ∈T

(G′0)τ ,

we may assume that x ∈ G′0. By [Is2, Lemma G], ψ(x) = εγ(x), where γ ∈ Irr(S′A) is an extension
of η, and ε is a root of unity. In particular, γ is linear. We conclude that |ψ(x)| = 1, as desired. �

Lemma 9.6. Let S � G < GL(V ) ∼= GLd(C), where G is finite, S = 2B2(q), D = q0(q − 1) with
q0 = 2n, q = 22n+1, and V = CD is irreducible over S. Suppose that G contains two elements g0, g1

such that Trace(g0) = ±i, Trace(g1) = ±1, and g1 ∈ g0S. Suppose in addition that the trace of
every element in Z(G) belongs to Q(i). Then g0 and g1 both induce non-inner automorphisms of S.

Proof. Assume the contrary. As g1 ∈ g0S, g0 induces an inner automorphism of S. Hence we can
write g0 = zs for some s ∈ S and some z ∈ CG(S) = Z(G). Since G is finite, z has finite order,
whence z = ζ · idV for some root of unity ζ. By assumption, ζ ∈ Q(i), whence ζ4 = 1.

First suppose that ζ = ±1. Then Trace(s) = ζ−1Trace(g0) = ±i, but this is impossible for any
element in S, see [Suz]. Hence, ζ = ±i. Recalling that g1 ∈ g0S, we can write g1 = g0t = zst for
some t ∈ S. In such a case, Trace(st) = ζ−1Trace(g1) = ±i, and we again arrive at a contradiction
since st ∈ S. �

9B. Traces of Frobenii and arithmetic monodromy groups. We now give a lemma on traces
for those local systems F(q, f) in which the polynomial f(x) of degree (q0 + 1)t(q) lies in F2[x] and
has f(0) = 0. Recall that q0 = 2n, n ≥ 1, q = 2q2

0, t(q) = q + 1 − 2q0; for k/F2 a finite extension
and i = ζ4, the trace function of F(q, f) is

t ∈ k 7→ −1(
1− (−1)n i

)deg(k/F2)

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), f(x) + tx])).

Lemma 9.7. For F(q, f) as above, i.e. with f(x) ∈ F2[x] of degree (q0 +1)t(q) and f(0) = 0, define

A := the number of nonzero monomials in f(x),
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so that A ≡ f(1) (mod 2). Then the traces at points of F2 are given as follows, with i = ζ4:

Trace
(
Frob0,F2 |F(q, f)

)
=

{
−1, if 2 - (A− n),

−(−1)ni, if 2|(A− n),

Trace
(
Frob1,F2 |F(q, f)

)
=

{
−(−1)ni, if 2 - (A− n),

−1, if 2|(A− n).

Furthermore, for any finite extension k/F2 and any t ∈ k, |Trace(Frobt,k|F(q, f))| ≤
√

#k.

Proof. The trace at time 0 ∈ F2 is −1
(1−(−1)n i) times the sum

ψ2[0, 0] + ψ2[1, A] = 1 + (−1)Ai,

while the trace at time 1 ∈ F2 is −1
(1−(−1)n i) times the sum

ψ2[0, 0] + ψ2[1, A+ 1] = 1 + (−1)A+1i.

If (−1)A = −(−1)n, these traces are respectively −1 and −(−1)n i. If (−1)A = (−1)n, these traces
are respectively −(−1)ni and −1. For the second statement, note that Trace(Frobt,k|F(q, f)) is a
sum of #k terms, each of absolute value 1, divided by a clearing factor of absolute value

√
#k,

hence it has absolute value ≤
√

#k. �

Theorem 9.8. Let n ∈ Z≥1 and q = 22n+1. Suppose the Airy sheaf F(q, f) defined in (4.1.3)
with q = 22n+1, f(x) ∈ F2[x], and f(0) = 0, has finite geometric monodromy group S. Then the
following statements hold for S and the arithmetic monodromy group G := Garith,F2 of F(q, f) over
F2.

(i) S = 2B2(q). Furthermore, G induces non-inner automorphisms of S, G = Z(G)×R for some
S < R ≤ Aut(S) = S o C2n+1, and Z(G) ≤ C4.

(ii) If 2n+ 1 is coprime to |S|, then G ∼= Z(G)×Aut(S).
(iii) Suppose that |Trace(Frob0,Fq2 )| = q0 := 2n. Then G ∼= Z(G)× Aut(S). Moreover, |Z(G)| ≤ 2

if Trace(Frob0,Fq2 ) = −q0 or Trace(Frob0,Fq) = ±q0i, and Z(G) = 1 if Frob1,F2 has odd order.

Proof. (i) By Theorem 8.4, the geometric monodromy group of F(q, f) is S = 2B2(q) in its irre-
ducible representation of degree D = q0(q − 1). By Lemma 9.7, for the images g0 of Frob0,F2 and
g1 of Frob1,F2 in G, one has trace ±i and the other has trace ±1. Note that g1 ∈ g0S, and since G
is finite, the traces of all elements in G belong to Q(i) by Chebotarev density. By Lemma 9.6, g0

induces a non-inner automorphism of S.
Recall that Out(S) ∼= C2n+1. Then G projects onto a subgroup S o Cm of Aut(S) with kernel

CG(S) = Z(G), for some divisor m > 1 of 2n + 1. Again, each element in Z(G) acts as a scalar
α on CD and has trace a root of unity belonging to Q(i), whence α4 = 1, and thus Z(G) ≤ C4.
Now (G/S)/(Z(G)S/S) ∼= G/Z(G)S ∼= Cm is cyclic, and Z(G)/S ≤ Z(G/S). It follows that G/S
is abelian of order m|Z(G)|, with cyclic quotient of odd order m and a cyclic 2-subgroup Z(G)S/S
of order |Z(G)|. Hence G/S = R/S×Z(G)/S, with R ∼= SoCm. The composition factors of R are
S and cyclic groups of odd order (dividing m), so R ∩ Z(G) = 1 and G = Z(G)×R.

(ii) Now assume that 2n + 1 is coprime to |S|, but m < 2n + 1. Let ψ be the character of
R = SoCm acting on the sheaf, which extends the character θ of S. Let η denote the Glauberman
correspondent of θ as in Lemma 9.2, in particular, it has degree (r−1)

√
r/2 for r := 2(2n+1)/m ≥ 8.

We can write g0 = zh0 and g1 = zh1 for some h0, h1 ∈ R and z ∈ Z(G) (recall g0S = g1S). Now z
acts as a root of unity β with β4 = 1, and ψ(hj) = γjη(cj) with cj ∈ C = 2B2(r) and γ2m

j = 1 for

j = 0, 1 by Lemma 9.2. Since η(cj), β, ψ(gj) ∈ Q(i), we see that γj ∈ Q(i). But γ2m
j = 1 and 2 - m,

so γj = ±1.
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Note that, since r ≥ 8, the character η does not take value ±i, see [Suz]. Without loss we may
assume ψ(g0) = ±1 and ψ(g1) = ±i. Now, if β = ±i, then η(g0) = ψ(g0)/(βγ0) = ±i, which
is impossible. On the other hand, if β = ±1, then η(g1) = ψ(g1)/(βγ1) = ±i, which is again
impossible. Hence m = 2n+ 1, as stated.

(iii) By assumption, |ϕ(g4n+2
0 )| = q0, where ϕ is the character of G acting on F(q, f). Using

G = Z(G)×R, we again write g0 = zh0 with z ∈ Z(G) acting on F(q, f) as a root of unity β, and
h0 ∈ R. Then Z(G) = 〈z〉 since G = 〈g0, S〉, and β4 = 1. Now s := h2n+1

0 ∈ S as R/S ↪→ C2n+1,
and |ϕ(s2)| = q0. Checking the character table of S [Bur], we see that |s2| = 2 or 4 and thus s is a
2-element. But every 2-element of S has order dividing 4, so |s| = 4. Hence we can write |h0| = 4e
for some e|(2n+ 1).

Suppose that e < 2n+ 1, whence e ≤ (2n+ 1)/3. Then ge0 is the image of Frob0,2e , and so

q0 = 2n > 2(2n+1)/6 ≥ 2e/2 ≥ |ϕ(ge0)| = |ϕ(he0)|
by Lemma 9.7. On the other hand, since R/S ↪→ C2n+1 and he0 has order 4, he0 ∈ S and hence
|ϕ(he0)| = q0, a contradiction. Thus |h0| = 4(2n + 1). Note that |CS(s2)| = q2, hence |CG(s2)| has
order dividing q2|Z(G)| · |R/S|. But h0 belongs to CG(s2) and has order 4(2n + 1); thus (2n + 1)
divides |R/S| and so R = Aut(S).

Since G = 〈g1, S〉, the assumption that the image g1 of Frob1,F2 has odd order implies that

2 - |G/S|, and so Z(G) = 1. Next suppose that |Z(G)| > 2 but ϕ(g4n+2
0 ) = −q0 or ϕ(g2n+1

0 ) = ±q0i.
Then β = ±i. In the former case,

ϕ(g4n+2
0 ) = ϕ(β4n+2h4n+2

0 ) = −ϕ(h4n+2
0 ) = −ϕ(s2),

and thus the involution s2 ∈ S has trace q0, which is impossible, cf. [Bur]. In the latter case,

ϕ(g2n+1
0 ) = ϕ(β2n+1h4n+2

0 ) = ±iϕ(h2n+1
0 ) = ±iϕ(s),

and thus s ∈ S has trace ±q0, which is again impossible, cf. [Bur]. �

Proposition 9.9. We consider the sheaf Fq, q = 22n+1, as defined in the Introduction. Thus

Fq := F(q, f) with f(x) := f1(xt(q)), f1(x) :=
∑n

i=1 x
1+2i as in (4.1.3). For a finite extension

k/F2, define

Ker(k) :=
{
x ∈ k |

2n∑
i=0

x2i = 0
}
.

Then we have the following results.

(i) For any subfield k of Fq2, |Trace(Frob0,k|Fq)|2 is either 0 or #Ker(k).

(ii) |Trace(Frob0,Fq2 |Fq)|
2 = #Ker(Fq2) = #Ker(Fq) = q/2.

Proof. We first observe that gcd(t(q), q2 − 1) = 1. To see this, note that t(q) = q + 1− 2q0 divides
q2 + 1 (indeed (q + 1 − 2q0)(q + 1 + 2q0) = q2 + 1), while gcd(q2 − 1, q2 + 1) = gcd(q2 − 1, 2) = 1.

Thus for any subfield k of of Fq2 , the map x 7→ xt(q) is bijective on k.
The sheaf Fq was built out of the Witt vector[

xt(q),
n∑
i=1

xt(q)(1+2i)
]
.

Let us denote by Hq the sheaf built by the same recipe, with same clearing factor, out of the Witt
vector [

x,
n∑
i=1

x1+2i
]
.
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Then for any subfield k of of Fq2
(9.9.1) Trace(Frob0,k|Fq) = Trace(Frob0,k|Hq),

precisely because the map x 7→ xt(q) is bijective on k.
Let us rewrite the input Witt vector for Hq as

(9.9.2)
[
x,

n∑
i=1

x1+2i
]

= [x, xR(x)] with R(x) :=
n∑
i=1

x2i .

With this rewriting, we apply the idea of van der Geer-van der Vlugt, cf. [vG-vV, §5], as follows.
Let us define

(9.9.3) V (x) := [x, xR(x)].

In Witt vector addition in F2-algebras, using the fact that R(x) is an additive polynomial, we get

V (x+ y)− V (x)− V (y) = [x+ y, (x+ y)(R(x) +R(y))] + [x, xR(x) + x2] + [y, yR(y) + y2]

= [y, (x+ y)x+ (x+ y)(R(x) +R(y)) + xR(x) + x2] + [y, yR(y) + y2]

= [0, y2 + (x+ y)x+ (x+ y)(R(x) +R(y)) + xR(x) + x2 + yR(y) + y2]

= [0, xy + xR(y) + yR(x)]

= [0, 〈x, y〉]
for

(9.9.4) 〈x, y〉 := xy + xR(y) + yR(x).

The key point is that 〈x, y〉 on k × k is a symmetric F2-bilinear map to k, and Tracek/F2
(〈x, y〉) is

a symmetric F2-bilinear form on k × k as F2 vector space.
Then

|Trace(Frob0,k|Hq)|2 = (1/#k)
∑
x,y∈k

ψ2

(
Tracek/F2

(V (x)− V (y))
)

(by the shearing transformation (x, y) 7→ (x+ y, y))

= (1/#k)
∑
x,y∈k

ψ2

(
Tracek/F2

(V (x+ y)− V (y))
)

= (1/#k)
∑
x,y∈k

ψ2

(
Tracek/F2

(V (x) + [0, 〈x, y〉])
)

=
∑
x∈k

ψ2

(
Tracek/F2

(V (x))
)(

(1/#k)
∑
y∈k

ψ
(
Tracek/F2

(〈x, y〉)
))
.

The second summand vanishes unless the given x ∈ k has Tracek/F2
(〈x, y〉) = 0 for all y ∈ k, in

which case it is 1. But x ∈ k has Tracek/F2
(〈x, y〉) = 0 for all y ∈ k if and only if x ∈ Ker(k). To

see this, note that for x, y ∈ k,

〈x, y〉 = xy + xR(y) + yR(x) = xy +

n∑
i=1

xy2i +

n∑
i=1

yx2i

has the same Tracek/F2
as
(
x +

∑n
i=1 x

1/2i +
∑n

i=1 x
2i
)
y. So by nondegeneracy of the trace, x ∈ k

has Tracek/F2
(〈x, y〉) = 0 for all y ∈ k if and only if

x+

n∑
i=1

x1/2i +

n∑
i=1

x2i = 0, i.e. if and only if

2n∑
i=0

x2i = 0.
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Thus for k a subfield of Fq2 ,∣∣Trace(Frob0,kHq)
∣∣2 =

∑
x∈Ker(k)

ψ2

(
Tracek/F2

(V (x))
)
.

To show (i), notice that on Ker(k), x 7→ Tracek/F2
(V (x)) is additive, i.e. it is a linear form on

Ker(k). If it is nontrivial, the sum giving |Trace(Frob0,kHq)|2 vanishes. If it is trivial, this sum is
#Ker(k).

To show (ii), notice that for any k ⊆ F2, Ker(k) is precisely the set of elements x ∈ k ∩ Fq with
TraceFq/F2

(x) = 0. (Indeed, if x ∈ Ker(k), then

0 =
2n∑
i=0

F i(x) = F
( 2n∑
i=0

F i(x)
)

=
2n+1∑
i=1

F i(x),

and so x = F 2n+1(x), i.e. x ∈ Fq.) In particular, Ker(Fq2) = Ker(Fq) and #Ker(Fq) = q/2. Now
for x ∈ Ker(Fq2) we have

TraceFq2/F2
(V (x)) = TraceFq/F2

(
TraceFq2/Fq(V (x)))

= TraceFq/F2
(V (x) + V (x))

= TraceFq/F2
([0, x2])

= [0,TraceFq/F2
(x2)]

= [0, 0],

precisely because every x ∈ Ker(Fq2) is an element of Fq of trace zero. So we see directly that each

of the summands in the sum giving |Trace(Frob0,Fq2 |Hq)|
2 is simply 1. �

Proposition 9.10. For q = 22n+1 and the Airy sheaf Fq,

Trace(Frob0,Fq |Fq) = −ε2ni,

where ε := (−1)n(n+1)/2 is the Jacobi symbol

ε2n+1 =

(
2

2n+ 1

)
=

{
1, if 2n+ 1 ≡ ±1 (mod 8),
−1, if 2n+ 1 ≡ ±3 (mod 8).

Proof. (i) Proposition 9.9 implies that Trace(Frob0,Fq |Fq) lies in Z[i] (because the only possible
non-integrality is at the unique place of Q(i) over 2, where this trace and its complex conjugate
have the same 2-adic ord). Furthermore, we can work with traces over Hq instead of Fq.

Let us denote by F the absolute Frobenius x 7→ x2, and define

Rn(x) :=
n∑
i=1

F i(x), Vn(x) := [x, xRn(x)] = [x, x
( n∑
i=1

F i(x)
)
].

Consider the non-normalized sum

RawTrace(Frob0,Fq |Fq) := −
∑
x∈Fq

ψ2

(
TraceFq/F2

(Vn(x))
)
,

so that

RawTrace(Frob0,Fq |Fq) = (1− (−1)ni)2n+1Trace(Frob0,Fq |Fq).

(ii) To explain the idea of the proof, consider first the case when 2n+ 1 is an odd prime p. Then
F2p/F2 has degree p, and F2prF2 is the disjoint union of F -orbits of length p. On each such F -orbit,
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the value of TraceFq/F2
(Vn(x)) is constant, and this constant value is then repeated p times as we

sum over this orbit. So we have a congruence modulo pZ[i]:

RawTrace(Frob0,Fq |Fq) ≡ −
∑
x∈F2

ψ2

(
TraceFq/F2

(Vn(x))
)

≡ −ψ2

(
TraceFq/F2

(Vn(0))
)
− ψ2

(
TraceFq/F2

(Vn(1))
)

≡ −ψ2

(
TraceFq/F2

[0, 0]
)
− ψ2

(
TraceFq/F2

[1, n]
)

(remembering that Fq/F2 has odd degree p, and both Vn(0), Vn(1) are already F2-rational)

≡ −ψ2(p[0, 0])−ψ2(p[1, (p−1)/2]) = −1−ψ2([1, (p−1)/2])p = −1−(i1+(p−1))p = −1−ip2 = −1−i.

So when 2n+ 1 = p, we have a congruence modulo pZ[i]:

(1− (−1)(p−1)/2i)pTrace(Frob0,Fq |Fq) ≡ −1− i.

Multiplying both sides by (1 + (−1)(p−1)/2i)p, we get a congruence modulo pZ[i]:

2pTrace(Frob0,Fq |Fq) ≡ −(1 + i)(1 + (−1)(p−1)/2i)p.

If p ≡ 1 (mod 4), the right side is

−(1 + i)p+1 = −(2i)(2i)(p−1)/2 = −(2i)2(p−1)/2i(p−1)/2.

If p ≡ 3 (mod 4), the right side is

−(1 + i)(1− i)p = −2(1− i)p−1 = −2(−2i)(p−1)/2 = 2(p+1)/2i(p−1)/2.

Recalling that 2p ≡ 2 (mod p), and that (p− 1)/2 = n, we get a congruence modulo pZ[i]:

Trace(Frob0,Fq |Fq) ≡
{
−i2ni(p−1)/2, if p ≡ 1 (mod 4),

2ni(p−1)/2, if p ≡ 3 (mod 4).

Thus

(9.10.1) Trace(Frob0,Fq |Fq) ≡ −εp2ni,

where εp is given by i(p−1)/2 = (−1)(p−1)/4 = (−1)(p2−1)/8 when p ≡ 1 (mod 4), and by i(p+1)/2 =

(−1)(p+1)/4 = (−1)(p2−1)/8 when p ≡ 3 (mod 4). Thus in both cases εp is the Legendre symbol(
2
p

)
= (−1)(p2−1)/8.

In view of Proposition 9.9, Trace(Frob0,Fq |Fq) is either 0 or an element of Z[i] of absolute value
2n. It cannot be 0 because of (9.10.1). So it must be one of ±2n or ±2ni. Of these four possibilities,
only −εp2ni is congruent modulo pZ[i] to −εp2ni (this is just the statement that for an odd prime
p, the four powers of i are distinct modulo pZ[i]).

(iii) We now turn to the general case, where we proceed by induction on the total number
(counting multiplicity) of primes dividing 2n+ 1. Thus we write

2n+ 1 = ps, s = 2a+ 1, p = 2b+ 1, with a, b ≥ 1 and p prime.

We will need to deal with both F2ps and F2s . To simplify notation, let us write

Q := 2ps, q′ := 2s.

Here

ps = s(2b+ 1) = 2bs+ s = 2(sb+ a) + 1.
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The idea is that FQ r Fq′ is the disjoint union of F s-orbits, each of length p, and on each of
these orbits, the value of TraceFQ/F2

(Vsb+a(x)) is constant, and this constant value is then repeated

p times as we sum over this orbit. Thus we get a congruence modulo pZ[i]:

RawTrace(Frob0,FQ |FQ) ≡ −
∑
x∈Fq′

ψ2

(
TraceFQ/F2

(Vsb+a(x))
)
.

But for x ∈ Fq′ , the trace from FQ down to Fq′ is just multiplication by p, so

TraceFQ/F2
(Vsb+a(x)) = TraceFq′/F2

(pVsb+a(x)).

Suppose first that b is even, i.e. that p ≡ 1 (mod 4). Recall 4[x, y] = 0. So for x ∈ Fq′ ,

pVsb+a(x) = Vsb+a(x) = [x, xRa(x) + x
( sb+a∑
i=a+1

F i(x)
)
]

= [x, xRa(x) + x
(
bTraceFq′/F2

(x)
)
] = [x, xRa(x)] = Va(x),

where the last equality holds because b is even. So in this even b case,

RawTrace(Frob0,FQ |FQ) ≡ RawTrace(Frob0,Fa |Fq′) (mod pZ[i]).

Suppose now that b is odd, i.e. that p ≡ −1 (mod 4). Then for x ∈ Fq′ ,

pVsb+a(x) = −Vsb+a(x) = −[x, xRa(x) + x
( sb+a∑
i=a+1

F i(x)
)
]

= −[x, xRa(x) + xTraceFq′/F2
(x)] = [x, xRa(x) + x2 + xTraceFq′/F2

(x)]

= [x, xRa(x)] + [0, x2 + xTraceFq′/F2
(x)] = Va(x) + [0, x2 + xTraceFq′/F2

(x)].

But the term [0, x2 + xTraceFq′/F2
(x)] has

TraceFq′/F2

(
[0, x2 + xTraceFq′/F2

(x)]
)

= [0,TraceFq′/F2

(
x2 + xTraceFq′/F2

(x)
)
] = [0, 0],

where the last equality holds because TraceFq′/F2
(x2) = TraceFq′/F2

(x) = (TraceFq′/F2
(x))2. So in

this odd b case as well, also

RawTrace(Frob0,FQ |FQ) ≡ RawTrace(Frob0,Fa |Fq′) (mod pZ[i]).

We have shown that

(9.10.2) (1− (−1)sb+ai)psTrace(Frob0,FQ |FQ) ≡ (1− (−1)ai)sTrace(Frob0,Fq′ |Fq) (mod pZ[i]).

By the induction hypothesis,

(9.10.3) Trace(Frob0,Fq′ |Fq′) = −εs2ai.

The clearing factors are invertible modulo pZ[i]. We next show that the clearing factors are equal
modulo pZ[i]. Their ratio is

(1− (−1)sb+ai)ps

(1− (−1)ai)s
=

(1− (−1)sb+ai)ps(1 + (−1)ai)s

2s
.

If b is odd, then (p+ 1)/2 is even, and this ratio is

(1 + (−1)ai)ps+s

2s
=

(2(−1)ai)s(p+1)/2

2s
= 2s(p−1)/2((−1)ai)s(p+1)/2 = 2s(p−1)/2is(p+1)/2.
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If b = (p− 1)/2 is even, this ratio is

(1− (−1)ai)(p−1)s = (−2(−1)ai)s(p−1)/2 = 2s(p−1)/2is(p−1)/2.

Let χp,quad be the quadratic character of F×p , so 2(p−1)/2 ≡ χp,quad(2) (mod pZ[i]). As s is odd, the ra-

tio of clearing factors modulo pZ[i] is χp,quad(2)is(p−1)/2 when p ≡ 1 (mod 4), and χp,quad(2)is(p+1)/2

when p ≡ 3 (mod 4). Next, when p ≡ 1 (mod 4),

i(p−1)/2 = χp,quad(2).

When p ≡ 3 (mod 4),

i(p+1)/2 = χp,quad(2).

As s is odd, we find that in all cases the ratio of clearing factors is 1 (mod pZ[i]), as stated. Hence
(9.10.2) and (9.10.3) imply the congruence

Trace(Frob0,FQ |FQ) ≡ Trace(Frob0,Fq′ |Fq′) = −εs2ai (mod pZ[i]).

Note that
2sb = (2(p−1)/2)s ≡ χp,quad(2)s = χp,quad(2) = εp (mod p).

Hence
εps2

sb+a ≡ εpsεp2a = εs2
a (mod p)

by multiplicativity of the Jacobi symbol. It follows that

Trace(Frob0,FQ |FQ) ≡ −εps2sb+ai (mod pZ[i]).

This congruence shows that Trace(Frob0,FQ |FQ) is nonzero, so by Proposition 9.9 it is one of ±2sb+a

or ±2sb+ai. Again, of these four possibilities, only −εps2ni is congruent modulo pZ[i] to −εps2ni,
and the induction step is complete. �

Proposition 9.11. For q = 22n+1, consider the Airy sheaf Fq. Then for any subfield k of Fq
|Trace(Frob1,k|Fq)|2 = 1.

Proof. Let k be a subfield of Fq2 . Note that N := (q + 2q0 + 1)q2/2 divides (q2 + 1)q2 and so is

coprime to q2−1. Hence the map x→ xN is a bijection on k, and it sends xt(q) to x(q2+1)q2/2 = x for
any x ∈ k. As in the proof of Proposition 9.10, let us denote by F the absolute Frobenius x 7→ x2.
For each integer j ≥ 0, we define

Rj(x) :=

j∑
i=1

F i(x).

Consider the non-normalized sum

RawTrace(Frob1,k|Fq) := −
∑
x∈k

ψ2

(
Tracek/F2

(V (x))
)
,

where V (x) = [x, xRn(x) + xN ]. Then we have

RawTrace(Frob1,k|Fq) = (1− (−1)ni)deg(k/F2)Trace(Frob1,k|Fq).

We now take k to be a subfield of Fq. We examine the function x 7→ xN on k. This function
depends only on N (mod (q − 1)). Then

N ≡ (1 + 1 + 2q0)q/2 = (2 + 2q0)q/2 = q + qq0 ≡ 1 + q0 = 1 + 2n (mod (q − 1)).

Thus if x ∈ k, then xN = xFn(x), and hence

V (x) = [x, xRn(x) + xN ] = [x, xRn(x) + xFn(x)] = [x, xRn−1(x)].
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At this point, we repeat the van der Geer-van der Vlugt argument of Theorem 9.9. We find that
if k is a subfield of Fq, then

|Trace(Frob1,k|Fq)|2 =
∑

x∈Ker′(k)

ψ2

(
Tracek/F2

(V (x))
)
,

with

Ker′(k) :=
{
x ∈ k|

2n−2∑
i=0

F i(x) = 0
}
.

The key observation is that for k a subfield of Fq, Ker′(k) = {0}. Indeed, since

0 ∈ Ker′(k) ⊆ Ker′(Fq),

it suffices to show that Ker′(Fq) = {0}. But for x ∈ Ker′(Fq),

TraceFq/F2
(x) =

( 2n−2∑
i=0

F i(x)
)
+F 2n−1(x) + F 2n(x) = F 2n−1(x) + F 2n(x).

Thus for x ∈ Ker′(Fq), TraceFq/F2
(x) = F 2n−1(x+ F (x)). As TraceFq/F2

(x) ∈ F2, this gives

TraceFq/F2
(x) = x+ x2.

If TraceFq/F2
(x) = 0, then x + x2 = 0, i.e. x ∈ F2, so x is 0 or 1. Of these, only x = 0 has

TraceFq/F2
(x) = 0. If TraceFq/F2

(x) = 1, then x+x2 = 1 and so F2(x) = F4. But F4 is not a subfield
of Fq, which has odd degree 2n+ 1 over F2. So in this second case, there are no possible x.

Thus∣∣Trace(Frob1,k|Fq)
∣∣2 =

∑
x∈Ker′(k)

ψ2

(
Tracek/F2

(V (x))
)

= ψ2(Tracek/F2
(V (0))) = ψ2([0, 0]) = 1.

�

Proposition 9.12. For q = 22n+1 and the Airy sheaf Fq,

Trace(Frob1,Fq |Fq) = −1.

Proof. (i) The quantity Trace(Frob1,k|Fq) lies in Q(i) and is integral outside the unique place over
2, so by Proposition 9.11, Trace(Frob1,Fq |Fq) is one of {1,−1, i,−i}. For any odd prime p, these
four elements are distinct modulo pZ[i]. We proceed by induction on the total number (counting
multiplicity) of primes in the factorization of 2n+ 1.

For the induction base, suppose that k = Fq = F2p . Then FqrF2 is the disjoint union of F -orbits
of length divisible by p. On each such F -orbit, the value of TraceFq/F2

(V (x)) is constant, and this
constant value is then repeated a multiple of p times as we sum over this orbit. So we have a
congruence modulo pZ[i]:

RawTrace(Frob1,Fq |Fq) ≡ −
∑
x∈F2

ψ2

(
TraceFq/F2

(V (x))
)

≡ −ψ2

(
TraceFq/F2

(V (0))
)
− ψ2

(
TraceFq/F2

(V (1))
)

≡ −ψ2

(
TraceFq/F2

[0, 0]
)
− ψ2

(
TraceFq/F2

[1, n+ 1]
)

≡ −ψ2(s[0, 0])− ψ2(p[1, (p+ 1)/2]) = −1− ψ2([1, (p+ 1)/2])p

= −1− (i1+(p+1))p = −1− ip2+2p = −1 + i.
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So for Frob1,Fq , we have a congruence modulo pZ[i]:

(1− (−1)(p−1)/2i)pTrace(Frob1,Fq |Fq) = RawTrace(Frob1,Fq |Fq) ≡ −1 + i.

Multiplying both sides by (1 + (−1)(p−1)/2i)p, we get a congruence modulo pZ[i]:

2pTrace(Frob0,Fq |Fq) ≡ −(1− i)(1 + (−1)(p−1)/2i)p.

If p ≡ 3 (mod 4), the right side is

−(1− i)p+1 = −(2i)(p+1)/2 = −2(p+1)/2(−1)(p+1)/4 ≡ −2(−1)(p2−1)/8+(p+1)/4 = −2 (mod p).

If p ≡ 1 (mod 4), the right side is −(1− i)(1 + i)p, which is

−2(1 + i)s−1 = −2(2i)(p−1)/2 = −2(p+1)/2(−1)(p−1)/4 ≡ −2(−1)(p2−1)/8+(p−1)/4 = −2 (mod p).

Thus in both cases qTrace(Frob1,Fq |Fq) ≡ −2 (mod pZ[i]). Using Proposition 9.11, we conclude
that Trace(Frob1,Fq |Fq) = −1 in this case.

(ii) Suppose now that 2n + 1 = ps with an odd prime p and an odd integer s. Then just as in
(iii) of the proof of Proposition 9.10 we write

s = 2a+ 1, p = 2b+ 1, ps = 2(sb+ a) + 1.

We will need to deal with both F2ps and F2s . To simplify notation, let us write

Q := 2ps, q′ := 2s.

Then, just as in the proof of Proposition 9.11,

RawTrace(Frob1,FQ |FQ) = −
∑
x∈FQ

ψ2(TraceFQ/F2
([x,Rsb+a−1(x)])).

The elements of FQ r Fq′ fall into F -orbits of length p, and the elements from each of these orbits
have the same TraceFQ/F2

([x,Rsb+a−1(x)]). So we get a congruence modulo pZ[i]

RawTrace(Frob1,FQ |FQ) ≡ −
∑
x∈Fq′

ψ2(TraceFQ/F2
([x,Rsb+a−1(x)]))

= −
∑
x∈Fq′

ψ2(TraceFq′/F2
(p[x,Rsb+a−1(x)])).

Notice that for x ∈ Fq′ ,
Rsb+a−1(x) = Ra−1(x) + bTraceFq′/F2

(x).

Suppose first that p ≡ 1 (mod 4). Then b is even,

p[x,Rsb+a−1(x)] = [x,Rsb+a−1(x)] = [x, xRa−1(x)],

and hence

RawTrace(Frob1,FQ |FQ) ≡ RawTrace(Frob1,Fq′ |Fq′) (mod pZ[i])

when p ≡ 1 (mod 4).
Suppose next that p ≡ −1 (mod 4). Since b is odd,

p[x,Rsb+a−1(x)] = −[x,Rsb+a−1(x)] = [x, x2 +Rsb+a−1(x)]

= [x, x2 + xTraceFq′/F2
(x) + xRa−1(x)]

= [x, xRa−1(x)] + [0, x2 + xTraceFq′/F2
(x)].
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But for x ∈ Fq′ , TraceFq′/F2
annihilates x2 + xTraceFq′/F2

(x), so again

RawTrace(Frob1,FQ |FQ) ≡ RawTrace(Frob1,Fq′ |Fq′) (mod pZ[i])

when p ≡ −1 (mod 4).
It remains only to show that the ratio of clearing factors is 1 (mod pZ[i]) in both cases. When

p ≡ 1 (mod 4), (p− 1)/2 is even, and this ratio is

(1− (−1)ai)ps/(1− (−1)ai)s = (1− (−1)ai)(p−1)s = (−2(−1)ai)s((p−1)/2)

=
(
2(p−1)/2(−1)(p−1)/4

)s ≡ 1 (mod p),

since 2(p−1)/2 ≡ (−1)(p2−1)/8 (mod p). When p ≡ −1 (mod 4), (p+ 1)/2 is even, and the ratio is

(1 + (−1)ai)ps/(1− (−1)ai)s = (1 + (−1)ai)ps(1 + (−1)ai)s/2s = (1 + (−1)ai)(p+1)s/2s

= (2(−1)ai)s(p+1)/2/2s =
(
2(p−1)/2(−1)(p+1)/4

)s ≡ 1 (mod p),

again because 2(p−1)/2 ≡ (−1)(p2−1)/8 (mod p). �

Lemma 9.13. For q = 22n+1 and S := 2B2(q), suppose that s ∈ Aut(S) has odd order and that
〈s, S〉 = Aut(S). Then |s| divides 5(2n+ 1).

Proof. Let G := Sp4(F2). It is well known that there is a Steinberg endomorphism σ : G → G
such that σ2 is the standard Frobenius map (aij) 7→ (a2

ij) on G, and then we can identify S with

Gσ2n+1
:= {X ∈ G | σ2n+1(X) = X}, which is then σ-invariant. Letting σ also denote its action on

S, we can write Aut(S) = 〈σ, S〉. Without loss, we may assume Ss = Sσ−1, and write s = xσ−1.
By the Lang-Steinberg theorem, there is some a ∈ G such that

(9.13.1) x = aσ(a)−1.

We also note that in Aut(S)

(9.13.2)
(
xσ−1

)2n+1
= x · σ(x) · σ2(x) · . . . · σ2n(x).

As in the proof of [GMPS, Theorem 2.16], define t := a−1s(2n+1)a =
(
xσ−1

)2n+1
a. Then using

(9.13.1) and (9.13.2) we obtain

σ(t) = σ(a)−1 ·
(
σ(x) · σ2(x) · . . . · σ2n(x) · σ2n+1(x)

)
σ(a)

=
(
σ(a)−1x−1

)
·
(
x · σ(x) · . . . · σ2n(x)

)
·
(
xσ(a))

= a−1
(
xσ−1

)2n+1
a = t.

Thus t ∈ Gσ ∼= 2B2(2), and note that |2B2(2)| = 20. Since s has odd order and t, s2n+1 are conjugate
in G, |t| is odd, whence |s2n+1| = |t| divides 5. Thus |s| divides 5(2n+ 1), as stated. �

Theorem 9.14. Suppose the Airy sheaf Fq for q = 22n+1 has finite geometric monodromy group
Ggeom. Then the following statements hold.

(i) The arithmetic monodromy group over F2 of Fq is Garith,F2 = C ×Aut(2B2(q)), with |C| ≤ 2.
(ii) Moreover, C = 1 if 2n+ 1 ≡ ±3 (mod 8), and C ∼= C2 if 2n+ 1 ≡ ±1 (mod 8).

(iii) Suppose 2n+1 ≡ ±3 (mod 8). For the arithmetic monodromy group Garith,k of Fq over a finite
extension k/F2, we have Garith,F2 = Aut(2B2(q)), Garith,k = Ggeom = 2B2(q) when k ⊇ Fq, and
[Garith,k : Ggeom] = deg(Fq/k) when k ⊆ Fq.

(iv) Suppose 2n+ 1 ≡ ±1 (mod 8).
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(α) For the arithmetic monodromy group Garith,k of Fq over a finite extension k/F2, we have
Garith,k = Ggeom = 2B2(q) when k ⊇ Fq2, and [Garith,k : Ggeom] = deg(Fq2/k) when
k ⊆ Fq2.

(β) For the arithmetic monodromy group Garith,F̃q ,k of the sheaf F̃q := Fq ⊗ (−1)deg /F2 over

k/F2, we have Garith,F̃q ,F2
= Aut(2B2(q)), Garith,F̃q ,k = Ggeom,F̃q = 2B2(q) when k ⊇ Fq,

and [Garith,F̃q ,k : Ggeom,F̃q ] = deg(Fq/k) when k ⊆ Fq.

Proof. Part (i) follows from Propositions 9.9, 9.10, and Theorem 9.8(iii).

(ii) Let g denote the image of Frob1,F2 in Garith,F2 . As 〈g,Ggeom〉 = C ×Aut(S) for S := 2B2(q),
we can write g = zs with C = 〈z〉 ≤ C2 and s ∈ Aut(S) ∼= S o C2n+1. The central element z acts
on Fq as the scalar ξ, where ξ = 1 if |C| = 1 and ξ = −1 if |C| = 2. The finiteness of Ggeom implies
that Garith,F2 is finite, and so Trace(gm) is a Gaussian integer for any m ∈ Z. Now Proposition 9.12
implies that

(9.14.1) Trace(s2n+1) = ξTrace(g2n+1) = −ξ,

and note that t := s2n+1 ∈ S.
Also note that since Aut(S) = 〈s, S〉, s has order 2n + 1 modulo S, whence |s| = e(2n + 1) for

some e ∈ Z≥1, whence |t| = e. Inspecting the character table of S [Bur] and using (9.14.1), we see
that e = |t| is odd and greater than 1; in fact e divides q− 2q0 + 1 if ξ = 1 and e divides q+ 2q0 + 1
if ξ = −1, where q0 := 2n. It follows that |s| = e(2n+ 1) is odd. By Lemma 9.13, e > 1 divides 5,
so e = 5; in particular, |s| = 5(2n + 1). An easy computation shows that 5|(q − 2q0 + 1) precisely
when n ≡ 1, 2 (mod 4) (equivalently, 2n + 1 ≡ ±3 (mod 8)), and 5|(q + 2q0 + 1) precisely when
n ≡ 0, 3 (mod 4) (equivalently, 2n + 1 ≡ ±1 (mod 8)). Hence the statement follows, and we have
also proved that the image g of Frob1,F2 has order

(9.14.2)

{
10(2n+ 1), if 2n+ 1 ≡ ±1 (mod 8),
5(2n+ 1), if 2n+ 1 ≡ ±3 (mod 8).

Parts (iii) and (iv)(α) follow from (i), (ii), and the facts that Ggeom = 2B2(q) and Garith,F2/Ggeom

is cyclic of order |C|(2n+ 1).

To prove (iv)(β), note that when k ⊇ F4, the images of π1(A1/k) on Fq and F̃q are the same.
Hence Garith,F̃q ,k = Garith,k = 2B2(q) whenever k ⊇ Fq2 , whence Ggeom,F̃q = 2B2(q) = S. Now

Garith,F̃q ,F2
= 〈g̃, S〉, where g̃ is the image of Frob1,F2 on F̃q. By its definition, g̃ = −g, where g

is the image of Frob1,F2 on Fq, and the proof of (ii) shows (recalling 2n + 1 ≡ ±1 (mod 8)) that
g = −s with Aut(S) = 〈s, S〉. Hence Garith,F̃q ,F2

= 〈s, S〉 = Aut(S) = S o C2n+1, and the assertion

follows. �

Remark 9.15. Computations in Magma suggest that, for the Airy sheaf Fq with q = 22n+1, the
Frobenii Froba,F

2j
with a ∈ F2j and gcd(j, 2n + 1) = 1, all have traces of absolute value 1. If one

knew that Fq has geometric monodromy group Ggeom,Fq = 2B2(q), then this “absolute value one”
property agrees with Corollary 9.5. Also, for n = 1, 2, computations show that Frob1,F2 has order
5(2n+ 1), and this again agrees with (9.14.2).

On the other hand, the infinite case of the dichotomy, namely Ggeom = SLD would imply by
Deligne’s equidistribution theorem [KaS, Theorem 9.7.13] that when j is large enough (compared
to q), some (in fact most) Frobenii Froba,F

2j
would have traces of absolute value 6= 1. This again gives

some evidence in support of the geometric part of [Ka5, Conjecture 2.2] asserting that Ggeom,Fq =
2B2(q). However, Theorem 9.14(iii) shows that the arithmetic part of [Ka5, Conjecture 2.2] stating
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that Garith,Fq ,F2 = Aut(2B2(q)) is false when q = 2m with m ≡ ±1 (mod 8); it should be corrected

in that case by replacing Fq by F̃q as in (iv)(β) of Theorem 9.14.

9C. Local systems with infinite monodromy groups. Theorem 9.8 allows us to prove the
following criterion for infinite monodromy.

Proposition 9.16. Let n ∈ Z≥1, q = 22n+1, and consider the Airy sheaf F(q, f) defined in (4.1.3)
with q = 22n+1, f(x) ∈ F2[x], and f(0) = 0. Suppose that

(i) 2n+ 1 is coprime to |2B2(q)|, and
(ii) there is some odd integer m coprime to 2n+ 1 such that |Trace

(
Frob0,F2m

|F(q, f)
)
| 6= 1.

Then F(q, f) has infinite geometric monodromy group.

Proof. Assume the contrary: F(q, f) has finite geometric monodromy group S. By Theorem 9.8,
S = 2B2(q) and the arithmetic monodromy group of F(q, f) over F2 is G = Z(G)× Aut(S), where
Z(G) ≤ C4. In particular, |G/S| divides 4(2n + 1), and so S equals the arithmetic monodromy
group of F(q, f) over Fq4 . Moreover, G = 〈g, S〉 for the image g of Frob0,F2 in G, and we can write
g = zs with z ∈ Z(G), s ∈ Aut(S), and Aut(S) = 〈s, S〉. Applying Corollary 9.5, we see that
|Trace(g)| = |Trace(s)| = 1, a contradiction. �

Proposition 9.17. Let n ∈ Z≥2, q := 22n+1, r := [(n− 1)/2], and define

f1(x) :=

r∑
i=0

x1+2n−2i
.

Consider the sheaf F(q, f) with f(x) := f1(xt(q)) as in (4.1.3). Then for m := 2[n/2] + 1 we have
|Trace

(
Frob0,F2m

|F(q, f)
)
| 6= 1.

Proof. As in the proof of Proposition 9.9, the starting point is that gcd(t(q), 2m − 1) = 1. To see

this, note that t(q) = q + 1− 2q0 divides q4 − 1, and gcd(q4 − 1, 2m − 1) = 2gcd(4(2n+1),m) − 1 = 1.

Thus for the field k := F2m , the map x 7→ xt(q) is bijective on k.
The sheaf F(q, f) was built out of the Witt vector

[
xt(q), f1(xt(q)

]
. Let us denote by H(q, f1) the

sheaf built by the same recipe, with same clearing factor, out of the Witt vector [x, f1(x)]. Then
we have

Trace(Frob0,k|F(q, f)) = Trace(Frob0,k|H(q, f1)),

precisely because the map x 7→ xt(q) is bijective on k.
Next, as in (9.9.2), we write the input vector [x, f1(x)] as [x, xR(x)], with

R(x) :=
r∑
i=0

x2n−2i
= Fn(x) + Fn−2(x) + . . .+ Fn−2r(x),

and F denotes the absolute Frobenius. Now we can repeat the arguments in the proof of Proposition
9.9, and compute the form Tracek/F2

(〈x, y〉) on k×k with 〈x, y〉 := xy+xR(y)+yR(x) as in (9.9.4).
For any x, y ∈ k we have Fm(x) = x, Fm(y) = y. If 2|n, then n = 2r + 2, m = 2r + 3, and

〈x, y〉 = xy + y
(r+1∑
i=1

F 2i(x)
)

+
r+1∑
i=1

xF 2i(y)
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has the same trace over F2 as of

xy + y
(r+1∑
i=1

F 2i(x)
)

+
r+1∑
i=1

F 2r+3−2i
(
xF 2i(y)

)
= xy + y

(r+1∑
i=1

F 2i(x)
)

+
r+1∑
i=1

yF 2r+3−2i(x)

= y
(2r+2∑
j=0

F j(x)
)

= yTracek/F2
(x).

If 2 - n, then n = m = 2r + 1, then

〈x, y〉 = xy + y
( r∑
i=0

F 2i+1(x)
)

+

r∑
i=0

xF 2i+1(y) = 3xy + y
(r−1∑
i=0

F 2i+1(x)
)

+

r−1∑
i=0

xF 2i+1(y)

has the same trace over F2 as of

xy + y
(r−1∑
i=0

F 2i+1(x)
)

+

r−1∑
i=0

F 2r−2i
(
xF 2i+1(y)

)
= xy + y

(r−1∑
i=0

F 2i+1(x)
)

+

r−1∑
i=0

yF 2r−2i(x)

= y
( 2r∑
j=0

F j(x)
)

= yTracek/F2
(x).

So in both cases, the symmetric bilinear form Tracek/F2
(〈x, y〉) on k × k has kernel consisting of

the elements x ∈ k with Tracek/F2
(x) = 0, that is, of exactly 2m−1 elements. Then the proof of

Proposition 9.9 shows that |Trace
(
Frob0,F2m

|F(q, f)
)
| is either 0 or 2(m−1)/2 > 1, and hence can

never be equal to 1 (since by hypothesis n ≥ 2, and hence m ≥ 3). �

Theorem 9.18. Let n ∈ Z≥2, q := 22n+1, and consider the sheaf F(q, f) of rank D := 2n(22n+1−1),

with f(x) = f1(xt(q)) and f1(x) as defined in Proposition 9.17. Assume in addition that 2n + 1 is
coprime to |2B2(q)|; for instance, take 2n+ 1 = `a for any odd prime ` 6= 5 and any a ∈ Z≥1. Then
the geometric monodromy group of F(q, f) is SLD.

Proof. We first apply Proposition 9.9, and note that m is coprime to 2(2n + 1). It then follows
from Proposition 9.16 that F(q, f) has infinite geometric monodromy group Ggeom. By Theorem
8.4, Ggeom = SLD.

Suppose that 2n+ 1 = `a for a prime `, but ` divides |2B2(q)|. Then ` divides q4 − 1 = 24`a − 1.

Since `|(2`−1 − 1), ` divides gcd(24`a − 1, 2`−1 − 1) = 2gcd(4`a,`−1) − 1, and so ` divides 24 − 1 = 15.
But one knows that 3 - |2B2(q)|, so r = 5. �

More generally, to ensure that 2n+1 is coprime to |2B2(q)| for q = 22n+1, we can take any n such
that 2n+ 1 = pa11 p

a2
2 . . . patt , where p1 < p2 < . . . < pt are primes, pi 6= 5, ai ∈ Z≥1, and pi - (pj − 1)

whenever i < j. Indeed, suppose pj divides |2B2(q)| for some j. Then pj divides both 2pj−1− 1 and

q4− 1 = 24(2n+1)− 1. Since gcd(pj − 1, 4(2n+ 1)) = gcd(pj − 1, 4
∏t
i=1 p

ai
i ) divides 4, it follows that

pj divides 24 − 1 = 15. But pj 6= 5 by assumption, and pj 6= 3 since 3 - |2B2(q)|, a contradiction.
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[Lu] Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J.
Comput. Math. 4 (2001), 135− 169.
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