LOCAL SYSTEMS AND SUZUKI GROUPS
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ABSTRACT. We study geometric monodromy groups Ggeom, Fq of the local sheaves Fy on the affine
line over Fy of rank D = \/g(q — 1), ¢ = 2°""", constructed in [Ka5]. The main result of the paper
shows that Ggeom,7, is either the Suzuki simple group By(q), or the special linear group SLp.
We also show that Fg has geometric monodromy group 2Bz(8), and arithmetic monodromy group
Aut(*B2(8)) over F2, thus establishing [Ka5, Conjecture 2.2] in full in the case ¢ = 8.
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INTRODUCTION

In an earlier paper [Ka5], one of us, inspired by a paper [Gr| of Gross, defined, for each n > 1, a
local system on A!/Fy of rank 27(22"*! — 1), whose geometric monodromy group we conjectured to
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be the Suzuki group Sz(q) := ?Ba(q), ¢ = 22", in one of its two lowest dimensional nontrivial irre-
ducible representations. These representations, complex conjugates of each other, are of dimension
272271 — 1) and have traces in Z[i], the Gaussian integers.

The definition involved p-Witt vectors of length 2 for p = 2, with values in Fs-algebras. We
identify Wo(F2) with Z/47Z, by the map [a,b] — a® + 2b, with the usual convention that we first
lift a,b to Z and then reduce a? + 2b modulo 4. We take the additive character of Z /47 given by
n+— ", and view it as the additive character 1y : Wa(F2) — pa(Z][i]) given by

ba(fa, b)) == i 2.

Attached to a Witt vector of length 2 with coefficients in Foz], say [a(x),b(z)], is the Artin-
Schreier-Witt sheaf Ly, ((a(2)b(x)]) O1 A'/Fy. Tt is lisse of rank one, and its trace function is given
as follows. For k/Fs a finite extension, and x € k,

Trace(Frob, j |E¢2([a(x),b(z)})) = o(Tracey, (k)/Wa(F2) (la(z),b(x)]).

If instead we take a(x),b(x) € kolz| for some finite extension ko/Fa, then the Artin-Schreier-Witt

sheaf Ly, (ja(z),b(z))) 18 lisse of rank one on A'/kg, and for k/kq a finite extension and = € k, the trace

of Frob, j is given by the same formula (which only makes sense when k is an extension of k).
The unique nontrivial additive character 1 of o is related to i by the formula

1h(b) = 12([0, b]);
this is simply the identity (—1)° = 4%.
Under Witt vector addition, [a,b] = [a,0] + [0,b]. Thus we have the factorization

Lipa(a@)b@)]) = La(la@).0) ® Ly b))

When both a(z) and b(z) are polynomials of degree prime to p = 2, Ly, ((a(x),0)) has Swan con-
ductor Swany, = pdeg(a(z)), while Ly (,)) has Swany, = deg(b(x)). So in this case, Ly, ((a(z)b(x)])
has Swane, = max(pdeg(a(x)),deg(b(z))).

Quite generally, for an Artin-Schreier-Witt sheaf £ := Ly, ((a(2),b(z)]) O0 A'/ko with Swan conduc-

tor Swane, = n > 2, its Fourier transform FT,(£) on Al/kg is an Airy sheaf in the sense of Such

[Such]. It is lisse of rank n — 1, and all its co-slopes are 5. It is pure of weight one. Its trace

function is given as follows: for k/ky a finite extension, and ¢ € k,

Trace(Froby x[FTy (L)) = = > _ b (Traceys, i) /wy ) ([a(z), b(x) + ta])).
€k

Some key facts about Airy sheaves and their monodromy groups are due to Such [Such], and are
fundamental for the investigations reported on here.
We now turn to the Suzuki “candidates” of [Kab]. Here

n>1,q:=2" q:=2¢, t(q) :==q+1—2q.
We take the Witt vector
n
[:Et(Q), Z $(1+2i)t(Q)]’
i=1

form the Artin-Schreier-Witt sheaf

L= /“zpz([zt(q),Z?:l 2(14+2)t(@)])>
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form its FTy (L), and twist by the constant field twist (ﬁ)deg, to arrive at the local system
Fy on A'/F,, whose trace function is given as follows. For k/Fy a finite extension, and t € k,

—1 . i
Trace(Froby ;| Fq) = - .)deg(k/IF'Q) sz (TraceWQ(k)/WQ(]FQ)([3,;15(11)7 Z p(1+20t0) | tx])).
—(=1)" zek i=1

A key fact about F is that the input Witt vector [24(9), 3" | 2(1+2949)] is a function of 24(?). So
in the trace formula for Fg, if we restrict to ¢t # 0 and make the substitution = — x/t, the formula
becomes

-1 2@ I p(1+29t(a)
— des(h/F2) > e (Tracew, w)wa ) (i 2 Tarag T D)
(1 (1) 57 o

which is a function of (9. Thus F,|G,, has a descent to a lisse sheaf G, on G,,/Fa whose trace
function is given by

Trace(Froby x| Fy) =

—1 L) I p(1429)(g)
(1 _ (_1)71 i)deg(k/FQ) % 'QZJQ (TraceW2(k)/W2(IF2)([ P -~ t(1+2i) + CE])),
and such that under the ¢(¢) Kummer pullback,

[t(q)]*Gy = FylGm.

For the case n = 1, i.e. for 2Bo(8), we prove in Theorem 6.1 that Fg has the predicted geometric
monodromy group Ggeom,Fy = 2B, (8) and arithmetic monodromy group Glarith, Fg,Fs = Aut(?B2(8))
over Fo, and thus establish [Ka5, Conjecture 2.2] in full in this case. For each n > 1, we show
that Ggeom, 7, is either 2By(q) or SLp for D = rank(F,) = qo(q — 1). A (huge) calculation of fourth
moment for Fg shows that Ggeom, 7y cannot be SLis. It remains an open problem to prove (or
disprove) that each F; has Ggeom 7, = 2By(q) when ¢ > 32.

In fact, we show in Theorem 8.4 that we have such a dichotomy of possible geometric monodromy
groups Ggeom, either 2By(q) or SLp, D = go(q — 1), for a general class of local systems of “the
same shape” as F, (see Remark 8.6 and Theorem 9.18 for examples of such local systems with
Ggeom = SLp). Key to our investigation is the fact that these sheaves all satisfy the condition (S+)
of [KT1, Definition 1.2]. Somewhat to our surprise, the most difficult part of establishing condition
(S+) was to show the sheaves in question are geometrically primitive, i.e. that the representation of
their Ggeom is not induced. Our proof utilizes the existence of primitive prime divisors of the integer
t(q), cf. Theorem 3.4. We give a second proof which will be useful in future studies of geometric
monodromy groups of quite general Airy sheaves. Condition (S+) implies that for each of these
sheaves, either Ggeom is a finite, almost quasisimple group, or has Gg,, acting irreducibly. This
initial dichotomy, plus a substantial group-theoretic analysis, in which Theorem 4.5 plays a key
role, is what leads to the 2Bs(q)/SLp dichotomy. Pursuing the study of primitive prime divisors,
we prove in Theorems 3.4, 3.7, and Corollary 3.5 the existence of primitive prime divisors in the
orders of maximal tori of the Suzuki-Ree groups 2B (q), %G2(q), and 2Fy(q). We also extend in §7 the
classification of low-dimensional representations of classical groups in characteristic p > 0, beyond
the bounds in [KIL] and [Lu]. These results will be useful in other situations as well. Finally, the
structure of arithmetic monodromy groups, assuming finiteness, is determined in Theorem 9.14.

Trace(Froby ;| Fy) =

1. DESCENTS OF SUZUKI CANDIDATES AND MOMENT CALCULATIONS

For each odd power ¢ = 2?"*! of 2, starting with ¢ = 8, the finite simple group 2Bs(q) has
two (complex conjugate) lowest dimensional nontrivial irreducible representations, of dimension
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d(q) = qo(q — 1), with go := 2". In each case we have a factorization
1+d(q) = (qo+ Dt(q) with t(q) :=q+ 1 — 2qo.

In [Ka5], for each such g there is proposed an Airy sheaf in the sense of Such [Such], call it F,

on A!/Fy which is lisse of rank d(g) and with Swan.(F,) = 1 + d(q). Its I(oco)-representation is

irreducible of dimension d(gq), with all co-slopes lji_glq()q). Moreover, F, is given [Kab, Section 4] with

an explicit descent to a lisse sheaf G, on G,,/Fa whose Kummer pullback by t(q)*™® power is (the
restriction to G,,/Fa of) Fy:

()] Gq = Fq|Gpm.-
Thus G, is lisse on Gy, /F2, tame at 0 with (0)-representation a direct sum of Kummer characters

of order dividing ¢(gq), and whose I(oo)-representation is irreducible of dimension d(gq), with all

_ qQo+1 _ _qo+l
oo-slopes dlg) — qo(qg—1)°

Next we give a slight improvement of [KRLT2, Theorem 6.5].

Theorem 1.1. Let Hg be a lisse sheaf on Gy, /F, which is tame at 0 and pure of weight zero. Let
a,b be nonnegative integers, and consider the moment M, . Denote by

HE = HE @ (Hy)=P.
Denote by A, B,C, D the following constants.
C := dimension of the space of I(0)-invariants in ”Hg’b,
D := dimension of the space of I(oo)-invariants in Hg’b,
B := Swanu (HE?) + Moy,
A:=B+ M, —C—D.
Then we have the following estimate.
1
qg—1

Z Trace(Frobu’]FqH-lg’b) S ——Myp+——+
u€lFy 1 !

Proof. For any lisse sheaf F on G,,, the Lefschetz trace formula gives
Z Trace(Frobyr, | F) = Trace(Froqu|H3(Gm/E, F)) — Trace(Froqu\Hg(Gm/E, F)).
u€Fy
If F is pure of weight zero, then H? is pure of weight 2, and H]} is mixed of weight < 1, indeed
H! = H}(wt=1)® Hl(wt <0).
Thus for F pure of weight zero,
| Z Trace(Frob,r, | F)| < qh? + /qhi(wt = 1) + hl(wt <0).
uelFy
When F is tame at 0, the Euler-Poincaré formula gives
Swan.. (F) = hl — h2.

To compute the dimension of H, L(wt = 1), we use the fact that for the inclusion j : G, C P!, the
group H'(P!/ [y, j«F) is pure of weight one. We exploit this by looking at the short exact sequence
of sheaves on P! /F, given by

0 = iF = juF — (FIO)g @ (FIN) 0,
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where the last two summands are skyscraper sheaves at 0 and co. The group
Hz(Pl/anﬂ*}—) ( m/qu-F)

is the Tate-twisted group of #f*™ co-invariants in F, but as JF is pure, the action of 73
semisimple, so this is also the (Tate-twisted) group of 7™ invariants. The group

HO(PI/EJ*-F) = 0( m/Eaf)
is the space of 7" invariants in F, so has dimension hY = h2. Consider the long exact sequence
0 — HY(P'/F,, juF) — FIO @ FI®) o HNG,,/Fy, F) — H(P'/Fy, juFo) — O.
Apply it with F taken to be 7-[0 Then h° = h? is Mgy, and the Euler-Poincaré formula gives
ht = Swanao (HE®) + M,

eom -
g is

Thus we have the equalities
hl(wt =1) = bl + b — dim FI© — dim FI() = 4,
and
hl(wt <0)= B — A.
Then the estimate
] Z Trace(Froby g, |F)| < qh? + /gh(wt = 1) + hl(wt < 0)

uGF;
becomes
| > Trace(Frobyr,|HG")| < ¢May + AVg + (B — A).
uEF;

g

We will now apply this estimate to the descent Gg to G,,/Fa of the lisse sheaf Fg on Al/F,.
Recall from [Ka5, §2] that Fg is the Fourier transform of the Artin-Schreier-Witt sheaf Ly, (5 215)),

with a constant field twist by %-H Thus for k/F9 a finite extension, and ¢ € k,

1

Trace(Froby x| Fs) = (1 4

) IeB/E2) N " 4y (Traceyys k) wa () ([2°, &' + t2])).
€k
The descent Gg is the lisse sheaf on G,,/F2 whose trace function is given as follows. For k/Fs a
finite extension, and ¢ € k%,
1

Trace(Froby ;|Gg) = (1 44

) B (/E2) N ™ gy (Traceyys, (k) waes) ([2° /1, 217 /87 + ).
z€k

Thus one visibly has, for ¢ € k™, the identity
Trace(Froby x| Fg) = Trace(Frobys j|Gs),

simply by the substitution  — x/t in the formula for Fg.

In any extension field k/Fs such that ged(5,#k>) = 1, the map t +— t° is bijective on k*. Such
k/Fqy are precisely those whose degree over Fy is not divisible by 4. For such a k/F9, the traces
Trace(Froby ;|Gg) as t runs over k™ are precisely the traces Trace(Froby ;| Fg) as t runs over k*. An
extensive calculation shows that over ]F;lg, the seven traces which occur, with their multiplicities,
are

e —2¢, multiplicity 16256,
e —2 multiplicity 4095,
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—1, multiplicity 52429,
0, multiplicity 112347,
1, multiplicity 60495,

2¢, multiplicity 16512,
14, multiplicity 9.

[We have not been able to find any conceptual explanation for the multiplicities of these traces, let
alone for the fact that all traces are algebraic integers. Had we known that the traces of all Frobenii
over all finite extensions of Fo are algebraic integers, we would have been able to conclude that Gg
has finite geometric monodromy group Ggeom, and the proof of the main result Theorem 6.1 would
have been much simpler.]

This computation was carried out using MAGMA 2.26-6 [BCP] at the University of Auckland. It
exploited a new feature of MAGMA which supports running tasks in parallel on multiple processors:
each task performed the necessary computation for a given ¢ € k*. Using 55 3.0GHz processors,
the computation completed in 5.75 days, taking about 7500 hours of CPU time.

The empirical M2 for Gg over IFQXlg is thus approximately 3.99963378766551080898593515753.
Applying Theorem 1.1, we find

Corollary 1.2. For the lisse sheaf Gg on G, /Fa, Mo > 2.

Proof. The sheaf Fg is a geometrically irreducible Airy sheaf, lisse on Al /F5 of rank 14, whose I(00)
representation is irreducible, with all slopes 15/14. Its descent Gg is thus lisse and geometrically
irreducible on Gy, its I(0) representation is the direct sum with multiplicities of the characters of
order dividing 5, and its (o) representation is irreducible, with all slopes 3/14.

Let us denote by

K = (G6)°2 ® (G))°2.
In the proof of Theorem 1.1, the estimate

‘ Z Trace(Froby g, |K)| < gh? + \/ghi(wt = 1) + h}(wt < 0)
teFy

can first be weakened to

‘ Z Trace(Frobu,FqUC)‘ < qh? 4 Jqhl(wt =1) + hl.

z€Fy

The equality
hl(wt = 1) = Swane (K) + 2My 5 — dim KO — dim A7)
can be weakened to
hl(wt =1) < Swany(K) + My — dim K1),

simply because in the exact sequence, the space HY of global invariants of K injects into the space
JICH(20) of I(00)-invariants.

Thus K is lisse on G,,,, its I(0) representation is the direct sum with multiplicities of the characters
of order dividing 5, and all its I(oo) slopes are < 3/14. So we have the crude estimate

Swan (K) < rank(K)(biggest slope) < 14*(3/14) = 8232.

The I(0) representation of K is End(End(the I(0)-representation of Gg)).
We now turn to the I(0) representation of Gg. The action of I(0) is through us. So in terms of
a fixed character y of order 5, it is a direct sum

al + by + ex?® + dx® + ex?,
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with non-negative integers a, b, ¢, d, e which sum to 14. We also know from Deligne’s “independence
of £” result [De2, Theorem 9.8] or from Serre-Tate [Se-Ta, Theorem 2(ii)], that the character of this
representation of 7(0) has values in the field Q(¢) (because Gg is part of a compatible system over
Q(7)). On the other hand, this character has values in Q((s). But the intersection Q(i) N Q((s) is
just Q, so the trace has values in Q. In other words, the quantity
a+ 0G5 + cGi + d¢ + e¢s
lies in Q. This in turn forces b = ¢ = d = e, and so a+ b5 +b§52 —|—b(§+b(§ =a—>b. But a+4b = 14,
so there are only four possibilities for the character, namely
21 + 3x + 3x% + 3x + 3xh, 61+ 2x + 22 + 2x3 +2x*, 101 + 1 + 12 + 1x3 + 1x?, 141.
More intrinsically, let us denote by Reg the regular representation of us:
Reg = 1+ x + x>+ x° +x".
Then the I(0) representation of Gg is one of
—1 + 3Reg, 41 + 2Reg, 91 + Reg, 141.

Because the character takes real (in fact integer) values, dim K!(©) is the coefficient of 1 in the fourth
power of the character. For each of our four candidates, this is easily computed by hand, because
Reg? = 5Reg, Reg® = 52Reg, Reg* = 5%Reg. The least of the possible values of dim K/ is 7684,
the value attained by the candidate —1 + 3Reg. So the weakened estimate becomes

| Y Trace(Froby,, |K)| < 2'8Mp + (8232 + May — 7684)2° + (8232 + My ).
teFX
218

Dividing by 2'® — 1, we get

218 (548 + Mo 2)29 8232 + Mo o
3999 S ﬁMZQ + 218 — 1 + 218 — 1 .
Here 2 — 1 = 262143, and 27/(2!18 — 1) < (22 +1)/(2® - 1) =1/(2° — 1) = 1/511.
Thus if M2 were 2, we would get
3.999 < (1 + (1/262143))2 + 550/511 + 8332/262143,

which is nonsense. O

2. BACKGROUND RESULTS ON DETERMINANTS, RATIONALITY, AND SLOPES

Theorem 2.1. Let p be a prime, k/F, a finite extension, v > 1 an integer, and F a lisse Qe
sheaf on a smooth, geometrically connected scheme U/k which is pure of weight zero and part of
a compatible system of lisse sheaves on U whose trace functions take values in Q((p). Denote by
Ggeom < Garith the geometric and arithmetic monodromy groups of F. Then we have the following
results.

(i) det(Garitn) has finite order dividing 2p” if p is odd, dividing 2" if p = 2.

(ii) det(Ggeom) has finite order dividing 2p” if p is odd, dividing 2" if p = 2.

(iii) Suppose that U is a dense open set of P1, and that at each point x € P1(k)\U(k), all I(z)-slopes

of F are < 1. Then det(Ggeom) has order dividing 2, and is trivial if p = 2.

Proof. (i) For any finite extension L/k and any point t € U(L), det(Froby 1| F) lies in Q(¢p~). It has
absolute value 1 at every archimedean place of Q((,~) (purity of weight zero), and is a A-adic unit
at every finite place A of residue characteristic # p (being part of a compatible system). Because
Q(¢p) has a unique place above p, the product formula tells us that this determinant is a unit at
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all finite places. Thus it is a root of unity in Q((,»), so of order dividing 2p” for p odd, and of order
dividing 2 if p = 2.

As Ggeom is a subgroup of Gayith, we trivially obtain (ii).

To prove (iii), the slope hypotheses imply that det as a character of Ggeom has slope < 1, hence
0, at each missing point, and thus is everywhere tame, and hence (being on a dense open set of P!)
has order prime to p. O

Theorem 2.2. Let p be a prime, k/F, a finite extension, v > 1 an integer, and F a lisse Qp
sheaf on a smooth, geometrically connected scheme U/k which is pure of weight zero and part of
a compatible system of lisse sheaves on U whose trace functions take values in a number field E.
Suppose further that there exists a proper smooth curve with geometrically connected fibres

m:C—>U,
a finite group T' of automorphisms of C/U, and a linear character
x:I'— EX
such F is isomorphic to the x-component of R'm,(Qy). Then we have the following results.

(i) For any finite extension L/k and any point t € U(L), the action of Froby 1| F is semisimple.
(i) If U is a curve, with complete nonsingular model X, then for each point x € X (k) \ U(k), the
character of the action of the inertia group I(x) acting on F has values in K.

Proof. The semisimplicity of Frobenii on H' of curves goes back to Weil. By Serre-Tate [Se-Ta,
Theorem 2(ii)], the character of I(x) on R'm,(Qy) has values in Z. When we project the I(x) action
onto the y component, the character of the resulting I(z) action has values in Q(y), a subfield of
K. O

Remark 2.3. Theorem 2.2 applies to the Airy sheaves of Such [Such] and any of their descents,
where the family of curves in question is a family of Artin-Schreier-Witt coverings of Al (compact-
ified by adding its one point at co).

Next we record a general result on Ggeom of lisse sheaves on open sets of Al

Theorem 2.4. Let U be a dense open set ofAl/E, and F a lisse Qp-sheaf on U, with £ # p. Suppose
all the co-slopes of F are at most o, for some 0 < o < 1. Suppose the geometric monodromy group
G = Ggeom of F admits a representation ® : G — GL4(F) over some algebraically closed field F of
characteristic # p, of dimension d < 1/o. Then ® is tame at co.

Proof. The hypothesis that all oo-slopes of F are < ¢ is that for all y > o, the upper numbering
subgroup I(co)¥ acts trivially on F, i.e. dies in Ggeom, and hence dies under ®. Thus all co-slopes
of F are < o, and hence Swan,(®) < do < 1. As Swan conductors are non-negative integers,
Swane (®) = 0. This means P(c0) acts trivially in @, i.e. ® is tame at co. O

Now we prove a generalization of [KT1, Theorem 4.16]:

Theorem 2.5. Let U be a dense open set of AI/IF‘TJ, F a lisse Qq-sheaf on U, with £ # p, and let
G be the geometric monodromy group of H. Suppose that the following hold:

(a) All co-slopes of H are at most o for some 0 < o < 1, and H is not tame at co;
(b) G is a finite almost quasisimple group: S<IG/Z(G) < Aut(S) for some finite non-abelian simple
group S;
(¢) For some normal subgroup R of G/Z(G) containing S, R admits either a faithful d-dimensional
linear representation
®: R — GLy(F),
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or an e-dimensional projective representation
U : R — PGL.(F)

which is nontrivial over S, over some algebraically closed field F of characteristic # p.

Then
1/o <d-|G/Z(G) : R] < d-|Out(S)],
respectively
1/o < (2 —=1)-[G/Z(G) : R] < (¢ — 1) - |Out(S)|.

Proof. Note that the given W is faithful. Indeed, Ker(¥) <« R does not contain S, so it intersects
S trivially by simplicity of S. Because both S and Ker(¥) are normal in R, the commutator
(S, Ker(¥)] € SN Ker(¥) = 1. Thus Ker(¥) < Cg(S) < Cpy(s)(S) = 1. Hence R is embedded
in PGL(U), where U = F°. Composing this embedding with the faithful action of PGL(U) on
End’(U) = End(U)/scalars, we obtain a faithful action of R on a module of dimension < e? — 1.

Thus it suffices to prove the bound 1/0 < d-[G/Z(G) : R] when ® : R — GL(V) is given.
So assume the contrary: ® : R — GL(V) is faithful for some V' with dim(V) = d, but

(2.5.1) 1/o > d-[G/Z(G) : R].

Let V denote the G-module Ind%(V) for G := G/ Z(G). Note that G acts faithfully on V. Indeed,
let K <1 G denote the kernel of the action of G on V. By the construction of V as the induced

representation, the R-module V contains V as a submodule. But S acts faithfully on V', hence
SNK =1. As S <G, it follows that [S, K] = 1, and so
K < Cg(S) < Cauys)(S) = 1.
We also note that
dim(V) =[G : R]-dim(V) =d-[G: R < 1/o
by (2.5.1).

Now view V as a representation of G, of dimension < 1 /o. By Theorem 2.4, this representation
is tame at oo. Thus the image Q in G of P(co) acts trivially on V. But G/Z(G) acts faithfully
on V. Therefore Q lands in Z(G). Recall that I(cc) has finite image J in G, and .J/Q is cyclic.
As Q < Z(J), it follows that J is abelian. Thus all simple J-summands in ‘H are one-dimensional,
and at least one of them is wild, as H is not tame at co. Each one-dimensional wild component
has Swan a strictly positive integer, which is also its slope, contradicting the hypothesis that all
oo-slopes of H are < 1. O

3. PRIMITIVE PRIME DIVISORS FOR SUZUKI-REE GROUPS

The order of a finite group of Lie type G(F,) over a field F, is usually a product of a power
of ¢ = pf (p the defining characteristic) and the values at g of cyclotomic polynomial ®,,(q) for
various m. In a number of problems on G(F,), the existence of primitive prime divisors ppd(g,m)
or ppd(p, mf) for certain m was helpful. Recall [Zs] that for a,m € Z>q, a primitive prime divisor
¢ = ppd(a, m) is a prime divisor of a” — 1 that does not divide H?l_ll(ai —1); such a prime divisor
always exists unless (a,m) = (2,6) or m = 2 and a + 1 is a 2-power. For the Suzuki-Ree groups
’By(q) with ¢ = 2", 24 n > 3, Ga(q) with ¢ = 3", 24 n > 3, and ?Fy(q) with ¢ = 2", 24 n > 3, some
factor ®,,(g) of |G(F,)| decomposes further into values at /g of polynomials over Z[v/2] or Z[/3].

More precisely,
®i(q) =" +1=(¢—2q+1)(g+2g+1)
for 2By (q),
Os(q) =¢* —q+1=(q—Bg+1)(g+ 3¢ +1)
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for %G (q), and

Dio(q) =¢* —*+1= (" —qv/2¢+q— /2q+ 1)(¢* + /20 + ¢+ /2¢ + 1)

for 2F4(q). In applications, it is desirable to prove that these factors also possess primitive prime
divisors ppd(p, 4n), respectively ppd(p, 6n), ppd(p, 12n), whose existence does not follow from [Zs].
The main results of this section establish the existence of such prime divisors for Suzuki-Ree groups.

3A. Almost equidistribution of coprime integers in congruence classes. For n € Z>1, let
¢(n) denote the Euler function of n, let u(n) denote the Mébius function of n, and let w(n) denote
the number of distinct prime divisors of n (not counting multiplicities). First we prove the following

Proposition 3.1. Let m,n € Z>1 be coprime integers. For any integer 0 < a < m — 1, the number
N, of integers 1 < k < n such that gcd(k,n) =1 and k = a (mod m) satisfies

@

[N, — == < 2¢(m).

Proof. For k € Z>1, define F'(k) := 0 if g d(k: n) > 1 and F(k) := 1 if ged(k,n) = 1. By [MNZ,
Theorem 4.7], F(k) = 3_ 4 gca(kny M(d)- N
F(k

(3.11) N, = > ) = > > u(d)=> udN(a,d

1<k<n, k=a (mod m) 1<k<n, k=a (mod m) d| gcd(k,n) din

N(a,d) = Z 1.

1<k<n, k=a (mod m), d|k
If d|n, then ged(d,m) = 1, so we can find 1 < e < m — 1 such that de = 1 (mod m). Now write
every 1 < k < n with d|k as k = dl with 1 <[ < n/d. Then the condition that £k = a (mod m)
is equivalent to | = ea (mod m), in which case we can write [ = s +mi with 0 < r < m — 1,
ea = r (mod m), and ¢ € Z. To count the number N(a,d) of i occurring, write n/d = gm + r with
0<r<m—1and q € Zxg. Certainly, every 0 <7 < ¢ — 1 works, but neither ¢ = =1 nor ¢ =¢g+1
can occur. It follows that

(3.1.2) n/md—1<q<N(a,d) <q+1<n/md+1.
We also note by [MNZ, (4.1)] that ¢(n) = >_,, u(d)n/d and that >, |x(d)| is the number of
square-free divisors of n and hence equals to 2¢("). Combining with (3.1.1) and (3.1.2), this yields

| Na — ‘—\ZN N(a,d) —n/md)| <> |u(d)| =

din din

with

We will also need the following analogue of Proposition 3.1:

Proposition 3.2. Let n € Z>1 be an odd integer divisible by 3. For any integer 0 < a < 11 coprime
to 3, the number N, of integers 1 < k < n such that gcd(k,n) =1 and k = a (mod 12) satisfies

|Na — ¢(8n)} < w1

Proof. As in the proof of Proposition 3.2, we have

N, = S P = ) S uld) = uld)N(a,d

1<k<n, k=a (mod 12) 1<k<n, k=a (mod 12) d| gcd(k,n) dln
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with

N(a,d) := Z 1.

1<k<n, k=a (mod 12), d|k
Now, if d|n but 3|d, then N (a,d) = 0 since 3 { a. Hence,

(3.2.1) No= Y p(d)N(a,d).
dln, 3td
Next, p(d) = 0 if 9|d, and p(d) = —u(d/3) if 3|d. It follows from [MNZ, (4.1)] that
o(n w(d w(d w(d
(322) Wy itd s s )
dln dln, 3fd 3d'=d|n,3td’ dln, 3fd

If dln and 3 1 d, then ged(d,12) = 1, so we can find 1 < e < 11 such that de = 1 (mod 12). The
proof of (3.1.2) repeated verbatim shows that

n/12d —1 < q¢< N(a,d) <qg+1<n/12d +1.
Combining with (3.2.1) and (3.2.2), this yields
N, —7\ = > wd(N(a,d) —n/12d)| < Y |u(d)] =22
dln, 3td d|n, 3{d
O

3B. Primitive prime divisor for Suzuki groups. We make the choice v/2 > 0. For odd n € yAS
and a = 1, 3, set

Pyq(n) = 11 (3—2v2cos %).

1<k<8n, ged(k,n)=1, k=a (mod 8)
Proposition 3.3. If2{n > 2603 and a = 1,3, then Ps4(n) > 2n.
Proof. (i) First we note that
(3.3.1) ¢(n) > max (222 n8/7)

when 2 {n and n # 1,3,9,15,21, 33,45, 75,105, 165, 195. Indeed, suppose s := w(n) > 1 and write
n =[], p{* for some prime divisors 2 < p; < ps < ... < ps of n. If p; > 5, then

pz 5/4) < 55/7 < n1/77

and so ¢(n) > n8/7. If p; > 7, then
Hp (1—1/p;) > 6° > 2%
If py =5 and s > 2, then
Hp (1—1/p;) >4-65"1 > 2225,

If py =5 and s = 1, but n # 5 then ¢(n) > 20 > 245,
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In the rest of the proof of (3.3.1), we may assume that p; = 3. First suppose that s > 4. As
(115/107)*3 < (2-4-6)7/(3-5-7)5,

H pi . _§.§.Z.(E)S_3< (3'5-7~115_3)1/7<n1/7.

Also, ¢(n) >2-4-6- 105—3 S 92.23s
Next suppose that s = 3. If pg > 11, then
n TP 3 5 11

_ 1/7 1/7
_ <2 3.5-11 .
o) Mp—17271°10 <( )<

If p3 < 11 then (p1,p2,p3) = (3,5, 7); thus if n # 105 then n > 3 - 105 and so

n/é(n) = (3-5-7)/(2-4-6) <n'/7.

Also, if n # 105,165,195, then ¢(n) > 2-6- 10 > 2225,

Suppose now that s = 2. If pg > 13, then n/¢(n) < (3/2) - (13/12) < (3-13)V/7 < n/7. If

= 11 and n # 33, then n/¢(n) = (3/2) - (11/10) < (3-3-11)Y7 < 7. If p3 = 7 and
n # 21, then n/¢(n) = (3/2) - (7/6) < (3-3-71)V/7 < n'/7. 1f p3 = 5 and n # 15,45,75, then
n/p(n) = (3/2) - (5/4) < (6-3-5)Y/7 < nl/T. Also, if n # 15,21,33,45, then ¢(n) > 24 > 2225,

Finally, assume that s = 1, and n = 3% with @ > 3. Then n/¢(n) = 3/2 < 3%7 = n!/7, and
$(n) > 18 > 2%%, completing the proof of (3.3.1).

(ii) Now assume that n > 2602. By (3.3.1) m := ¢(n) > n%7 > 846, so m > 847, and
gw(n) < mb5/11

Fixa € {1,3} and let Sj := {(j—1)n < k < jn | ged(k,8n) = 1,k = a (mod 8)} for 0 < j < 7. For
each j, observe that k € S; if and only if 0 < k' := k—jn < nis coprime to n and &’ = a—jn (mod 8).
By Proposition 3.1,

1S;| =1{0 <k < n|ged(k,n) =1,k =a— jn (mod 8)}

satisfies ¢(n)/8 — 24" < |S;| < ¢(n)/8 4 2¢("). By the above,
(3.3.2) m/8 —m?t < |S;] < m/8 4+ m>/M.

Now, if k € SoUS7, then 3—2v/2cos(kr/4n) > 3—2v/2. If k € S;USg, then 3—2v/2 cos(kn/4n) > 1
If k € So U S5, then 3 — 2v/2cos(kn/4n) > 3. Finally, if k € S3 U Sy, then 3 — 2v/2cos(kn/4n) > 5
It follows from (3.3.2) that

Pya(n) > (3 — 2v/2)m/a+2m¥H . qpm/a=2m

with A := 15(3 — 2v/2) and B := 15(3 4 2v/2).
Setting f(t) := A/AB=20""14=T7/6,

g(t) = log f(t) = (t/4) log(A) — 2¢%/' log(B) — (7/6) log(t

)-
N g'(t) = log(A)/4 — log(B)/(1.1t5/11) — (7/6t) is increasing, so ¢'(t) > ¢'(847) > 0.13 when
2 847. It follows that g(m) > ¢(847) > 0.75, and so f(m) = exp(g(m)) > 2.11. Thus, for
— $(n) > 847

5/11 5/11

_ Am/4B—2m

Pya(n) > f(m)ym™® > 2m7/6 > on,
as desired. O

As we will see in part (iii) of the proof of the following theorem, Proposition 3.3 actually holds
for all odd n > 7.
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Theorem 3.4. Let ¢ = 2™ with 2t n. If n > 7 then t(q) =t~ (q) := q¢ — /2q + 1 is divisible by
a primitive prime divisor ppd(2,4n) of ¢*> + 1. In all cases, t7(q) := q + /2q + 1 is divisible by a
primitive prime divisor ppd(2,4n) of ¢ + 1.

Proof. (i) The second statement is obvious for n < 5; also note that ¢(2) = 1, #(8) = 5. Henceforth
we may assume n > 7. Consider the sets

Aj={1<k<4n|gecd(k,2n) =1, k=j (mod 8)},
Bj:={4n+1<k <8n|ged(k,2n) =1,k =j (mod 8)}
for j =1,3,5,7. Then the map k — 8n — k yields bijections
Ay «— By, A7 +— By, A3 +— Bs, A5 <— Bag,
and the map k — k + 4n yields bijections
Ay <— By, A5 +— B1, A3 <+— By, A7 <— Bas.
It follows that

(3.4.1) |A1| = [As] = [Bs| = |Br|, [As] = [A7| = [Bi] = [Bs].
Since Lj—1357(A4; UB;) = {1 <k < 8n | ged(k,8n) = 1}, we now see that
(3.4.2) [Ajl + |Bj] = ¢(8n) /4 = ¢(n)

for each j =1,3,5,7.
(ii) Make the choice of ¢ := (g, = exp(mi/4n) and consider the cyclotomic polynomial
By (X) = 11 (x —¢h).
1<k<8n, gcd(k,2n)=1
If 1 <k < 4n then (X — ¢F)(X — ¢FH47) = (X — ¢F)(X + ¢F) = X% — ¢k .. Tt follows that
(I)Sn(X) = H (X2 - Czlfn) = (I)4n(X2)'
1<k<4n, ged(k,2n)=1

In particular,

(3.4.3) 040 (2) = Pgn(V2).
Setting
(3.4.4) Pgpa(X) == H (X —¢),

1<k<8n, gcd(k,2n)=1, k==+a (mod 8)
for a = 1,3, we have ®g,(X) = Pgy, 1(X)Ps, 3(X). Next, since

(V2 () (V2 "4y = 3 — 2/ cos BT

for each 1 < k < 8n, using the bijection k — 8n — k in (3.4.1)

(345) PQ,a(n) = (I)Sn,a(\/i)a
for a =1, 3. Using (3.4.3) also
(3.4.6) Py1(n)Py3(n) = Pan(2).

(iii) To show that P 1(n) and P»3(n) are integers, we use ged(8,n) = 1 to write 1 = ns + 8t
for some s,t € Z with ged(s,8) = ged(t,n) = 1, and set ¢ = (g, = o with o := ("%, a 8" root
of unity, and 8 := ¢, an n'® root of unity. When k runs over A; U By, ¢¥ = ofp* = ap¥, and
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k (mod n) runs over units in Z/nZ, each at most once. Using (3.4.2), we see that each unit is met
exactly once. Repeating the same argument for k € A7 U By, we get

oeo1(X)i= [ F-af)(X-a'8)= ] X*—(at+a DX+

[ unit mod n [ unit mod n

Note that a + a1 = ey/2 for some ¢ = +1. Tt follows from (3.4.5) that
Poi(n) = @501 (vV2) = J[  (@2—2¢¢,+C

[ unit mod n

is the norm Normg,)/q of the algebraic integer 2 — 2¢¢, + (2, hence it is an integer. The same
arguments show that P 3(n) is the norm Normgc,)/q of the algebraic integer 2 + 2¢(,, + ¢2, hence
it is an integer.

Using this norm interpretation for P 1(n) and P 3(n), a calculation with MAGMA shows that
P, 4(n) > 2n for odd integers 7 < n < 2601. Together with Proposition 3.3, this shows that

(3.4.7) P o(n) > 2n

fora=1,3 and odd n > 7.
(iv) We also set

FTX) =X —V2X" 41, fH(X) =X +V2X" +1,
so that
t(q) = f~(V(2), t7(@) = FF(V©2), fTX)FFX) = X"+ 1.

Certainly, any root of X4 + 1 is ¢* for some odd integer 1 < k < 8n. If k = £1 (mod 8), then

F(¢F) = exp(kmi/2) + 1 — V2 exp(kri/4) = 0.
Similarly, if & = £3 (mod 8), then

FH(CF) = exp(kmi/2) + 1 + V2 exp(kmi/4) = 0.
It follows that

fx) = 11 (X =", FHx) = I1 (X =¢h).
1<k<8n, k=+1 (mod 8) 1<k<8n, k=43 (mod 8)
Comparing to (3.4.4) and (3.4.5), we see that
f~(V2)/Paa(n) = I1 (V2-¢f)

1<k<8n, ged(k,2n)>1, k==+1 (mod 8)

is an algebraic integer. But f~(v/2) = t~(q) is an integer, and P, 1(n) is an integer by (iii). Hence
Py 1(n) divides t~(g). Similarly, P 3(n) divides t*(q).

(v) By (3.4.7), P>1(n) > n. Consider any prime divisor £ of P»1(n), which then divides ¢t~ (¢) by
the result of (iv), and divides ®4,(2) by (3.4.6). Suppose that ¢ is not a primitive prime divisor of
24" — 1. By [Lun, Satz 1] (cf. [Ro, Proposition 2]) ¢|n, and moreover £2 { ®,,(2). It follows that the
(-part of Py1(n) is ¢. Hence, if t~(g) is not divisible by any primitive prime divisor of 24" — 1, then
P, 1(n) divides n, a contradiction.

The proof for t*(q) is entirely similar. O

Corollary 3.5. Let ¢ = 2" with 24 n. If n > 3 then ®4, := ¢* — q\/2q+ q — /2q + 1 is divisible by

a primitive prime divisor ppd(2,12n) of ¢* — ¢*> + 1. In all cases, L, = P+ avV2q+q+2q+1
is divisible by a primitive prime divisor ppd(2,12n) of ¢* — ¢* + 1.
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Proof. Note that if n =1 then ®5, = 1 and ®}, = 13. Assume that n > 3. By Theorem 3.4,

(") = ¢’ —av20+1=(¢+ 20+ 1)(¢* — a2+ g — V20 + 1) = t7(0) D5,
is divisible by a primitive prime divisor ¢; = ppd(2,12n). Since t*(q)|(¢*> + 1) and 41 |(¢* — ¢*> + 1),
we see that ¢1 1t7(q), and so ¢1|®4,. The argument for &%, is similar, using
t5(¢*) = > +av20+1 = (¢— V20 + (¢ +0v/20 +a+ V20 +1) =7 () Py
O
3C. Primitive prime divisor for Ree groups. The results in this subsection are not needed for

the rest of the paper, however they will be used elsewhere [KT2]. We make the choice /3 > 0. For
odd n € Z>1 and a = 1,5, set

P3o(n) = H (4 —2V/3cos

1<k<12n, ged(k,n)=1, k=a (mod 12)

km
o)

Proposition 3.6. If2{n >3 and a = 1,5, then P3,(n) > 2n.

Proof. A computation with Mathematica shows that P3,(n) > 2n when 3 < n < 353. Now assume
that n > 354. By (3.3.1) m := ¢(n) > n5/7 > 153, so m > 154, and 2¢(") < m>/11,
Fix a € {1,5} and let R; := {(j — I)n < k < jn | ged(k,12n) = 1,k = a (mod 12)} for
0 < j < 11. For each j, observe that k € R; if and only if 0 < k' := k — jn < n is coprime to n and
k' =a — jn (mod 12). If 3 { n, then according to Proposition 3.1,
|Rj| = {0 <k <n|ged(k,n)=1,k =a— jn(mod 12)}|
satisfies ¢(n)/12 — 2¢(" < |R;| < ¢(n)/12 + 22, On the other hand, if 3|n then 3 { (a — jn), so
by Proposition 3.2,
|Rj| = {0 <k <n|ged(k,n)=1k =a— jn (mod 12)}|
satisfies ¢(n)/8 — 24"~ < |R;| < ¢(n)/8 + 22" ~L,
Setting b := 12 when 3 { n and b := 8 when 3|n, by the above consideration now
(3.6.1) m/b—m®1 < |R;| < m/b+m°/.
Now, if k € SoUS11, then 4—2v/3 cos(km/6n) > 4—2v/3. If k € S1US10, then 4—2+/3 cos(km/6n) > 1.
If k € Sy U Sy, then 4 — 2/3cos(km/6n) >4 —+/3. If k € S3U Sg, then 4 — 2v/3 cos(kw/6n) > 4. If
k € S4US7, then 4—2\/§cos(k:7r/6n) > 4+4+/3. Finally, if k € S5USg, then 4—2\/§cos(k7r/6n) > 7.
It follows from (3.6.1) that
m m>/ m /b—2m5/
Pya(n) > (4—2v3)2™/" 20 (4 VB) 4. (a4 V/3) Ty P

5/11 > Am/6B_2m5/11

_ A2m/bB—2m
with A := 364(4 — 2v/3) and B := 364/(4 — 2/3).
Setting f(t) := At/GB_2t5/11t_7/6,
g(t) :=log f(t) = (t/6)log(A) — 2/ log(B) — (7/6) log(t).

Now ¢/(t) = log(A)/6—log(B)/(1.1t5/11) —7 /6t is increasing, so ¢'(t) > ¢’(154) > 0.48 when ¢ > 154.
It follows that g(m) > ¢g(154) > 0.74, and so f(m) = exp(g(m)) > 2.09. Thus, for m = ¢(n) > 154

Ps o (n) > F(m)m™6 > 2m™/6 > on,
as desired. O
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Theorem 3.7. Let g = 3" with 2+ n. If n > 3 then t(q) =t~ (q) := q — /3¢ + 1 is divisible by a
primitive prime divisor ppd(3,6n) of ¢> —q+ 1. In all cases, t1(q) := q+ /3¢ + 1 is divisible by a
primitive prime divisor ppd(3,6n) of ¢> — q + 1.

Proof. (i) Note that ¢(3) = 1. Henceforth we will assume n > 3. Consider the sets
Aj={1<k<6n|ged(k,12n) =1, k= j (mod 12)},
Bj:={6n+1<k<12n|gecd(k,12n) = 1,k = j (mod 12)}
for j =1,5,7,11. Then the map k — 12n — k yields bijections
Ay «+— Bq1, A1 <— B, A5 «— By, A7 <— Bs,
and the map k — k 4+ 6n yields bijections
Ay «—— By, A7 <— By, A5 +— B11, A1 <— Bs.

It follows that

(3.7.1) |A1] = |As| = |Br| = [Bul, |A7| = [Au| = |Bi] = |Bs|.
Since Uj—1 57,11 (4, UB;j) = {1 <k < 12n | ged(k, 12n) = 1}, we now see that
(3.72) Ay + B = 6(120) /4 = 6(3n) /2

for each j =1,5,7,11.
(ii) Make the choice of ¢ := (12, = exp(7i/6n) and consider the cyclotomic polynomial
D9, (X) = H (X - Ck).
1<k<12n, ged(k,12n)=1
If 1 <k < 6n then (X — ¢F)(X — ¢FF0) = (X — ¢F)(X + ¢F) = X2 — ¢k, Tt follows that
D12, (X) = I1 (X? = () = Pon(X?).
1<k<6n, gcd(k,6n)=1

In particular,

(3.7.3) D (3) = Prn(V3).
Setting
(3.7.4) Diona(X) = 11 (X - ¢M),

1<k<12n, ged(k,12n)=1, k=+a (mod 12)
for a = 1,5, we have q)lgn(X) = @127171()()(1)12”75()(). Next, since

(V3 = ¢H)(VB - ¢1207) = 4 — 2B eos o

for each 1 < k < 12n, using the bijection k +— 12n — k in (3.7.1)

(375) PS,a(n) = (I)12n,a(\/§)a
for a = 1,5. Using (3.7.3) also
(3.7.6) Ps1(n)Ps5(n) = ®en(3).

(iii) Here we show that P31(n) and P35(n) are integers. Clearly, they are algebraic integers in
Q(¢). Hence it suffices to show that each of them is fixed by any Galois automorphism o : ¢ +— ¢!,



LOCAL SYSTEMS AND SUZUKI GROUPS 17

ged(1,12n) = 1. First consider the case j = 41 (mod 12). Then o fixes v/3 = (12 + Cﬁl, and fixes
each of the sets C':= Uj—1 11(A; U B;) and D := U;j— 11(A; U B;) modulo 12n. Since

Pyi(n) = [J(VB=¢"), Pas(n) = [ (VB—¢P),
keC keD

it follows that o fixes each of P31(n) and P35(n). Now assume that j = 45 (mod 12). Then o
sends v/3 to —v/3 and ¢* to ¢*, and thus

O'(\/g— Ck) — _\/g_ Ckl — _(\/g_ <6n+kl)-
Note that modulo 12n, when k runs over C, 6n + kl runs over C, covering each element of C
exactly once. Also, |C| = ¢(3n) by (3.7.2), and so |C| is even. It follows that o sends P31(n) to
(=1)ICIPy 1 (n) = P31(n), and similarly o fixes Ps5(n).
(iv) We also set
(X)) =X —VBX" 41, fHX) =X+ V3X" 41,
so that
t ()= (V®), t7(@) = FF(V/B), fTXO)fF(X) = X" - X 4 L

Certainly, any root of X4" — X2 41 is ¢* for some integer 1 < k < 12n coprime to 6. If
k = £1 (mod 12), then

F(¢F) = exp(kmi/3) + 1 — V3 exp(kri/6) = 0.
Similarly, if k¥ = £5 (mod 12), then
FH(CF) = exp(kmi/3) + 1 + V3exp(kri/6) = 0.
It follows that
f(X) = 11 (X =), fr0) = II (X —¢").
1<k<12n, k=+1 (mod 12) 1<k<12n, k=+5 (mod 12)
Comparing to (3.7.4) and (3.7.5), we see that

f7(V3)/Psa(n) = I1 (V3-¢")

1<k<8n, gcd(k,12n)>1, k==+1 (mod 12)

is an algebraic integer. But f~(v/3) =t~ (g) is an integer, and Ps1(n) is an integer by (iii). Hence
P 1(n) divides t~(g). Similarly, Ps5(n) divides t*(q).

(v) By Proposition 3.6, P31(n) > n. Consider any prime divisor ¢ of P31(n), which then divides
t~(q) by the result of (iv), and divides ®¢,(3) by (3.7.6). Since £|(¢*> — ¢+ 1), £ # 2,3. Suppose
that ¢ is not a primitive prime divisor of 35" — 1. Again by [Lun, Satz 1] £|3n, whence £|n as £ > 5,
and moreover £2 { ®g,(3). It follows that the ¢-part of Py;(n) is £. Hence, if t~(g) is not divisible
by any primitive prime divisor of 35" — 1, then P51(n) divides n, a contradiction.

The proof for t*(q) is entirely similar. O

3D. Primitive prime divisors for Suzuki-Ree groups: another approach. For § € Z™,
a€(Z/6)*, and x € RT with z > 1, let

flomedd)(g) = 11 (z — &)

a€(Z/on)*:a==xa (mod 9)
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Note that for such 4, a, and z, féa mod 6) (z) € RT by pairing a with —a. Note also that

FLmod )5y = P, | (n) = Bgp1(V2),

(Bmod8) (\/5) — P, 4(n) = Dy 3(V2),
f(l mod12)(\/3) = P31 (n) = ®19,.1(V3),
fomod12)(\/3) — Py 5(n) = By, 5(V/3)

in the notation above.

Lemma 3.8. Letn € ZT. Let x > 1. Then
2:¢(5n)

éamod(S)( )Z fT(Lamodé)(l) . <$;L1> #(3)

Proof. The claim is evident for x = 1, and we will show that

féa mod ) (l’)
2-¢(én)
(x+1) ¢®
is increasing in z. Indeed
dd
i) 1 = — ¢l
2:¢(6n) z4+1"’
(1' + 1) ¢(%) a€(Z/én)*: a=xa (mod §)

and it suffices to show each factor is increasing in . But for all z € S*

2 2
- —2zr-Rz+1 2
[z -2 = z-Re+1 _7x‘(1+%z)’
(x4 1)2 2 +2x+1 (x4 1)2
which is increasing in x because ey +1) = ﬁ — ﬁ decreases in x when = > 1. O

For a,b € Z*, write ged(a, b>®) := Hp|bp”1’(a), and rad(a) := Hp‘ap

Lemma 3.9. Let n € Z*. Let m := sedins=)- Then
2.(—1)#I5]
fy(ba mod 6)(1) _ H ‘1 _ Ca [T,csp™! (mod 6)
SCS{plm}
Proof. We first claim that if rad(W) = rad(W) then f,(La mod 5)(1) = fr(:’l mod 5)(1)'

This follows by repeatedly applying the following. If p|n is such that k := v,(dn) > 2, then, writing
on =: p¥ - s, because XP — YP = [Ter, (X — ¢b-Y) as elements of Z[()[X, Y],

at+pF—1.s.
flemead) (1) — 1T [T —cuv sy
a€(Z/pk—1s)*:a=+a (mod &) bEF,
= 11 (1= Gprry)-
a€(Z/pk—1s)*:a=%a (mod §)
Therefore without changing féa mod §) (1)
free and such that ged(n,d) = 1.

we may assume without loss of generality that n is square-



LOCAL SYSTEMS AND SUZUKI GROUPS 19

Now if p|n, writing 0n =: p - ng and letting p’, n, € Z be such that pp’ + non{, = 1,

fr(La mod 6)(1) _ H H (1 . It)zgg +bnon0)

a€(Z/no)* :a==+a (mod 0) beFy

- I1 [To-a-¢™

a€(Z/no)* :a==+a (mod 0) beF )

- 11 [Ta-cr-o

a€(Z/no)* :a=+a (mod 6) beFy

= HbeFPX (X — ¢+ Y) to find:

via b — p-b. Now we apply the identity Xo—

o)1) 0-c)
fn (1) B H (1 . ap’)
a€(Z/ng)* :a=xa (mod §) no
féoz mod §) (1)

- fgbap’ mod §) (1) ’

P

Since the lemma is evident for n = 1, by induction on the number of prime factors of n we find
that

(—1)#IS|
‘1 _ oTlecs 7 mod 6)‘ 2(=1)
(v mod §) _
fn (1) - H 1— O"Z”_I‘stf_l (mod )
sc{az} Cs
= H ’1 - Ca'nzesrl (mod 4) ‘2'(_1)#S|
— ; ’
SC{ln}
and we are done. 0
Corollary 3.10. Let n € Z™ with n > 3 be odd. Then
flmod8)( Jp|n : p = £1 (mod 8),
1+ \f -2 lse
and
FBmod®) (g Jp|n : p = +1 (mod 8),
(1+ \f 2 else,
whence
(1 mod 8) (/5 \/§+1 Jp|n : p = £1 (mod 8),
" (14++v2)" 20 olse
and

else.

FBmod 8)((/5) > V2+1 dp|n : p = +1 (mod 8),
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Proof. If there is a p|n with p = £1 (mod 8), then pair S — {p} with S U {p} in the conclusion

of Lemma 3.9 to see that f,gl mod 8)(1) = fy(lg mod 8)(1) = 1. Otherwise every p|n is such that
p = £3 (mod 8), so that by Lemma 3.9

(1 mod 8) 11— g\ _gu(n)

By the same reasoning

3 qw(n)
fT(L3 mod 8)(1) _ <|1 - C8|> _ (1 + \/5)2“’(”)'

11— (sl
We are done by Lemma 3.8. O
Corollary 3.11. Let n € Z* with n > 3 be odd. Let m := 7gcd(g e Then
f(l mod 12)(1) _ 1 E|p|m p==1 (IIlOd 12),
" (2+ \/g)_gw(m) else
and
f(5 mod 12)(1) _ 1 E!p|7n p==+£1 (Il’lOd 12),
" (2+ \/g)Qw(m) else,
whence
¢(122n)
Flmod 12)( /3y > V341 )1 dp|m : p = £1 (mod 12),
" N 2 (2+ \/?:)_QWW) else
and
¢(122n)
fEmod12)((/3) > V3+1 )1 Iplm : p = £1 (mod 12),
n - 2 (2+ \/§)2w(m) else.
Proof. 1If there is a p|m := Zed(no=) With p = +1 (mod 12), then pair S — {p} with S U {p} in the

conclusion of Lemma 3.9 to see that f,gl mod 12) (1) = (5 mod 12) (1)

that p = +5 (mod 12), so that by Lemma 3.9

w(m)

(1 mod 12)/qy _ [ 11— G2 e J3)-2m

In (1) = 15| =(2+Vv3) :
12

= 1. Otherwise every p|m is such

By the same reasoning
ow(m)

Fl5mod12) (1) _ (’1 - sz’) _ 24+ Va2,
" 1 — Gz

We are done by Lemma 3.8. g

4. ACTION ON 2-GROUPS AND PRIMITIVITY OF LOCAL SYSTEMS

We begin this section with a group theoretic lemma which will be used in the proof of primitivity
given in Theorem 4.5.

Lemma 4.1. Suppose A is a cyclic group of prime order p that acts faithfully on a finite q-group
G, where p # q are primes. Let n be the order of ¢ modulo p. Let x € Irr(G) be A-invariant and
faithful, and write x(1) = ¢*. Then n < 2a.
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Proof. We argue by induction on |G|. Let C = Cg(A) < G. Let C < N < G be maximal A-
invariant in G. Since G is nilpotent, N < G. Also, G/N is an irreducible A-module. Notice that
A cannot act trivially on G/N, because G = [G, A]C, by coprime action. Hence, G/N is a faithful
irreducible F,[A]-module. By [MW, Example 2.7], say, |G/N| = ¢". Let 6 € Irr(/N) be A-invariant
under y; such exists by [Is3, Theorem 13.27]. Now, since G/N is an abelian chief factor of the
semidirect product GA and x is G A-invariant, by the Isaacs “going down” theorem [Is3, Theorem
6.18], either y = 6, or Yy = ef with €2 = |G/N]|, or §% = y.

In the third case, x(1) = ¢"0(1) = ¢"* = ¢%, for some b > 0. Thus n < n +b = a < 2a. In the
second case, ¢" is a square, and that x(1)/0(1) = ¢"/2. Then x(1) = ¢2+¢ = ¢%, for some ¢ > 0.
Then a = 5 + ¢, and again n < 2a.

In the first case, xy = 0 € Irr(N). If A does not act trivially on N, then A acts faithfully on N.
Since 6 is A-invariant and faithful, then we are done by the inductive hypothesis. Otherwise, A acts
trivially on N, and therefore N = C5(A) (because N is maximal A-invariant). By [N2, Lemma
2.1}, [G, A] C Ker(x). Since y is faithful, A acts trivially on G. But this cannot happen. O

We will now introduce a general class of Airy sheaves F(q, f) that includes the sheaves ;. Recall
that ¢ = 22"*1 = 2¢2 and t(q) := ¢ — 2qo + 1. Let ko/F be a finite extension, and f(z) € ko[z] a
polynomial of degree (1 + ¢g)t(g). Form the Artin-Schreier-Witt lisse sheaf

,C(q, f) = ﬁwz([xt(q)j(a&)}

on Al/kg. Then F(q, f) is the constant field twisted Fourier transform

(4.1.1) Fla, ) =FTy(L(q, ) @ (1= (=1)") "=,
The trace function of F(q, f) at t € k, k/ko a finite extension, is
—1
(4.1.2) £ seaty D Va(Tracews, o wy () (217, f () + ta])).

(1= (=1)4) vek
Assume in addition that
(4.1.3) f(x) = fi(2"D)

for some polynomial fi(z) € ko[z] of degree 1 + go. If we make the substitution = +— x/t, then
(4.1.2) for t € k™ becomes

" ey Ot (Tracens oy e (129 /0, 1219 /) ),
(1 — (=" Z) zek
For
t(q) =rs,
we get a descent G(q, f,r) of F(q, f) to Gy, /ko whose trace function is now
BT <1>;1i)deg““/ ) Z;c% (Tracey, )y /wa(en (2@ /%, 12D /1) + 1)),

and whose Kummer pullback by r*! power is (the restriction to G,,/ko of) F(q, f):
[r]*G(a, f,r) = F(g, )G

We next give a key lemma of Such, which is proved in [Such, Proposition 11.1] but not stated
there explicitly.



22 ALPOGE, KATZ, NAVARRO, O’'BRIEN, AND TIEP

Lemma 4.2. (Such) Let F be an Airy sheaf of rankn > 2 on AYJF,, i.e. F is the Fourier transform
FT(L) of a lisse, rank one sheaf £ on A/F, with Swans (L) = n+ 1. If F is induced, then it is
induced from an Artin-Schreier covering of A'/F,. In particular, if F is induced, then it is induced
from a normal subgroup of index p of its Ggeom-

Proof. Let us recall the argument, which is contained in the proof of [Such, Proposition 11.1]. If F
is induced, then it is g, in which case

End(F) = (¢:H) @ (M) 2 gu(HOHY) D g,1,

and hence End®(F) D ¢,1/1. But g,1/1 has rank < n, and all its slopes are < (n+1)/n = 1+1/n.
But each slope of g,1/1 has denominator in lowest terms at most the rank of g,1/1, which is < n.
Therefore each slope, being at most 1+ 1/n, is in fact < 1. Then by [Such, Corollary 3.3], g.1/1
is the direct sum of various Ly (4z)-

The rest of the argument is given in the first eight lines of the second paragraph of the proof of
[Such, Proposition 11.1]. O

We will need the following general result, a slight generalization of [KT1, Theorem 4.6].

Theorem 4.3. Let F be a semisimple lisse sheaf on Gm/]FT, which is tame at 0. Denote by J
the image of I(00) in G := Ggeom, 7. Then G is the Zariski closure of the normal subgroup of G
generated by all G-conjugates of J.

Proof. Denote by G this Zariski closure. Then G is reductive, and hence its quotient G/G
is reductive. It suffices to show that every irreducible representation of G/G is trivial. But a
d-dimensional irreducible representation is a lisse sheaf of rank d on G,,/F, which is tame at 0
(because P(0) dies in ) and lisse at co. By multiplicative inversion, this is an irreducible local

system on Al/F, which is tame at oo, so a representation of m{m°(Al!/F,), which is the trivial
group. ]

We will also need a very special case (about subgroups of index 2) of (the second part of) the
following proposition. Since we cannot find a reference for it, we give a proof.

Proposition 4.4. (i) Let G be a Lie group and H an abstract subgroup of finite index in G. Then
H is closed.
(ii) Let G be a reductive linear algebraic group over an algebraically closed field k, and let H be an
abstract subgroup of finite index in G. Then H is Zariski closed.

Proof. (a) We give a proof of statement (i), which is due to Jason DeVito, posted on MathStack-
Exchange.

(al) First we show that if G is connected, then G is generated by its divisible subgroups. Indeed,
there is an open set U C G containing the identity such that U C exp(L) for the Lie algebra £ of
G. For any u in U, if u = exp(X), then u lies in the divisible subgroup {exp(tX) | t € R} of G.
Since G is generated by U, the claim follows.

(a2) Next we show that if G is connected and H < G is of finite index, then H = G. Indeed, by
considering the action via left translation of G on the finite set G/H of left H-cosets, we see that
H contains a normal subgroup K < G of finite index. By (i), G, and so G/K, is generated by its
divisible subgroups. But G/K is finite, so K = G.

(a3) In the general case, consider the map ¢ : G°/(HNG°) — G/H defined by z(HNG°) — zH.
Then ¢ is injective, and so H N G° has finite index in G°. By (a2), H > G°, and so H is a union of
a finite number of G°, each of which is closed. Hence H is closed.
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(b) For statement (ii), the argument in (a3) shows that it suffices to prove that if G is connected
reductive and H has finite index in G, then H = G. The argument in (a2) allows us to further
assume that H < G. Recall [C, p. 16] that G = T'|G, G|, where T' = Z(G)° is a central torus of G,
and the derived subgroup [G,G] is a central product G; o ... o G, of simple groups. In particular,
for each i, H N G; is a normal (abstract) subgroup of finite index of G;. As Gj is generated by
(unipotent) root subgroups, [Tits, Main Theorem| implies that H N G; is either equal to G; or
contained in Z(G;). The finite index assumption now ensures that H > G; for all ¢, and thus
H > [G,G]. Next, HNT is a normal (abstract) subgroup of finite index say m in T'. In particular,
H contains t™ for all t € T. But the torus T is (k)" for some 7, so k = k implies that any element
in T is an m'™ power, and hence H > T, completing the proof. [The referee kindly pointed out
a much simpler argument as follows. If H <t G has index N in G then G contains all powers g,
g € G. But G, being connected reductive, is generated by its maximal tori, and the map g — ¢'¥
is surjective on each maximal torus. Hence H = G.] U

As pointed out by the referee, in both of the cases of Proposition 4.4, once H is closed, it is also
open (indeed, G \ H is a disjoint union of a finite number of cosets gH, each being closed, and so
it is closed).

Theorem 4.5. Let ¢ = 2*"T! with n € Z>1 and n # 2. Under the assumption (4.1.3), the group
Ggeom,F(q,f) Of the Airy sheaf F(q, f) has no subgroups of index 2. As a consequence, the Airy
sheaf F(q, f) is not geometrically induced, and hence none of the sheaves G(q, f,r) is geometrically
induced.

Proof. Assume to the contrary that the Airy sheaf F(q, f) is induced. Then, by Lemma 4.2, the
underlying representation V' of the geometric monodromy group G := Ggeom of F(q, f) is induced
from a subgroup G7 of G of index 2.

(i) For each divisor r > 1 of t(q), consider the descent G(q, f,r). Because F(q, f) is lisse at 0, the
image of I(0) in the geometric monodromy group H of G(q, f,r) is the cyclic group u,(Fz) of order
(2" + 1)t(q)
(2" +1)t(q) — 1’

< 1. It then follows from [KT1, Proposition 4.2] that H is equal to the

r. Because the oo-slopes of F(q, f) are

(2" + Di(a)
(2" +1)i(q) — 1
Zariski closure HZ®" in H of the normal closure Hy in H of the image of I(0).

if » > 1, then the oo-slopes of G(q, f,7)

are (1/r)

We next show that for » > 1, H has no subgroup of index 2. We argue by contradiction. Suppose
that H has a subgroup H; of index 2. Since every H-conjugate of the image of I(0) has odd order
r, all such conjugates are contained in H;, and thus Hy < H;. But H; is closed in H by Proposition
4.4(ii), so H = HZ» < Hy, and hence H = Hj, a contradiction. We have shown that H has no
subgroup of index 2.

(ii) We also know that G is a normal subgroup of H of index dividing r, simply because by the !
power map, G, /Fo becomes a finite étale Galois covering of itself with cyclic group of order 7, and
G and H are respectively the Zariski closure of the images of 71 (G,,/F2) and of a normal subgroup
of cyclic index r of that group. Now if H = G, then the existence of G leads to a contradiction by
(). If we now take r to be a prime dividing t(g), then H/G = C,..

Let J and @ denote the images of I(oc0) and of P(oo) in H. By Theorem 4.3, H is equal to the
Zariski closure H2* in H of the normal closure H, in H of J. Suppose for the moment that r { |.J|.
Then every H-conjugate of J has order coprime to r, and so they are all contained in G, and thus
H, < G. But G is closed in H, so Hozoar < G, and hence H = G, a contradiction.
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We have shown that r divides |J|. Recall that J = Q x C, with C a cyclic 2’-group that permutes
cyclically and transitively the ¢ — 1 simple Q-submodules V; in V| each of dimension gy = 2". As
Q is a 2-group, C' is of order divisible by r.

(iii) Since n # 2, by Theorem 3.4 the integer ¢(q) = ¢ — v/2¢ + 1 admits a prime divisor
(4.5.1) r =ppd(2,4(2n + 1)).

At this point, we take for r a ppd(2,4(2n + 1)) which divides ¢(¢). Fix ¢ € C of order r. Since
r|t(q), 1 (¢—1), and so ¢ stabilizes each of the subspace V;, and certainly normalizes Q). For each ¢,
let ®; denote the representation of (@, c) on V;. We claim that ®;(c) centralizes ®;(Q). Otherwise,
®;(c) acts faithfully on ®;(Q), of prime order r, and ®;(Q) is faithful and irreducible of degree 2".
Hence by Lemma 4.1, the order of 2 modulo r is at most 2n, which contradicts (4.5.1).

Therefore, for each i, ®;(c) = «; - Idy; for some o; € C*. But the cyclic group C permutes the
Vi’s transitively and c€ C,so a1 = ... = g1 =, l.e.cactson V asa-Idy. As || =7, a # 1is
a primitive r*® root of unity. Thus we may assume that ¢ € J has trace dim(V) - .. On the other
hand, by Theorem 2.2 and (4.1.2), the trace of every element in J belongs to Q(z). Thus ¢, € Q(i),
a contradiction since r is an odd prime.

(iii) Since the irreducible representation V' of G = Ggeom 0of F(q, f) is not induced, for any r|t(q),
the representation of Gigeom 0f G(g, f,7) on V, which contains G, is not induced. O

5. CONDITION (S+) AND AUTODUALITY FOR AIRY SHEAVES

In this section, we continue to consider Airy sheaves F(q, f) of the same general shape (4.1.1),
but we consider them only geometrically, i.e. as lisse sheaves on A!/Fy. The key insight on which
the results of this section are based is due to Such, cf. [Such, Proposition 11.1].

Lemma 5.1. (Such) Let F be an Airy sheaf of rank D > 2 on A'/F,. Let H be a direct factor of
End(F) of rank r < D. Then H is a direct sum of Lyay) for various a € F,.

Proof. The oo-slopes of F are all 1 +1/D. All slopes of End(F) are therefore < 1+ 1/D. Thus
all slopes of H are <1+ 1/D. But each slope of H, written in lowest terms, has denominator < r.
Therefore H has all slopes < 1. Now take an irreducible constituent IC of H. Its Fourier transform,
Le. t = H(A'/F,, K ® L)), is perverse irreducible on A'/F, so is either a single delta function
dq or is the extension by direct image of a lisse sheaf on a dense open set. But on a dense open set
of the t-line, K ® Lyt has all co-slopes 1, so HZ(A! /F,, K ® Ly(tz)) = 0 and by the Euler-Poincaré
formula x.(A'/Fp, K ® Lytz)) = 0, so FT(K) is punctual, hence a single d,. This means in turn
that each irreducible constituent of H is an Ly 4,). Because F is irreducible, End(F) is completely
reducible, hence H is completely reducible, and so it is the sum of its irreducible constituents. [

Theorem 5.2. Let F be an Airy sheaf of rank at least 2 on Al/FTD. Then the following conditions
are equivalent.

(i) F is geometrically induced. o
(ii) End(F) contains a summand Lyqz) for some a # 0 in [Fp.
(iii) There exists a geometric isomorphism F = F & Ly(_qy) for some a # 0 in F,.

Proof. Let us denote by n the rank of F. If F is induced, then it is g,H, in which case
End(F) = (¢:H) ® (9:H") 2 g.(H@ M) 2 9.1,

and hence End’(F) D ¢,1/1. But g,1/1 has rank less than n. So by Lemma 5.1, g,1/1 is the
direct sum of various Ly gz As End®(F) does not contain the trivial sheaf (by irreducibility of F),

we find that End’(F), and hence End(F), contains some Ly (az) for some nonzero a € Fs.
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Conversely, suppose End(F) contains a summand Ly,,) for some a # 0 in F,. Thus there is
a nonzero geometric homomorphism from F to F @ Ly(_uz). But source and target are geometri-
cally isomorphic, so every nonzero homomorphism is an isomorphism. Thus we have a geometric
isomorphism
FEFR Lw(—az)~
That F is geometrically induced is the special case, where G is Ggeom for F @& Ly(_qz), V is F, L is

Ly(—az), N is p, and E is Qy, of the following general statement in characteristic zero representation
theory. O

Theorem 5.3. Over an algebraically closed field E of characteristic zero, let V be a finite di-
mensional irreducible representation of dimension d > 2 of a group G, and L a one-dimensional
representation of G which, viewed as a linear character x of G, has finite order N > 1. Suppose
that V=V ® L as representations of G. Denote by Gy := Ker(x) the kernel of x, so that Gy < G
with G/Gy cyclic of order N. Then V is induced from a representation of a subgroup H with
Go < H<AQG.

Proof. We first reduce to the case when N is prime. If V = V ® L, then by induction V &V @ L®"
for every integer n. Let r be a prime dividing N. Replacing L by L®®/") and Ker(x) by the
overgroup K := Ker(X(N/’")), we are reduced to the case when N = r is prime.

Let U be a simple summand of V|, which is semisimple since K <1 G. By Clifford theory,
cf. [CR1, (50.5)], V is induced so long as V|k is not isotypic. Hence, if V' is not induced, then
Vik 2elU:=UaU...aU for some e € Z>;. Note that Ind%(E) = @}_, L%, so by Frobenius

e times

reciprocity, cf. [CR2, (10.20)],
Ind% (V]x) 2 Ind% (V]x) ® E) 2 V @ Ind% (E) =2 @/, (V ® L) 2 rV.
Again by Frobenius reciprocity [CR2, (10.8)],
e = dimHomg (V|g, V) = dimHomg(V, Ind%(V|K)) = dim Homg(V,rV) = r,

a contradiction as r is a prime. Il
The following general result is stated for ease of later reference.

Theorem 5.4. Let F be a lisse irreducible Qq-sheaf of rank d > 2 on a smooth, geometrically
connected X/F,. Suppose that End®(F) contains a rank one summand L. Then F is induced.

Proof. Because £ occurs in End(F), it cannot be trivial (as by irreducibility of 7, End(F) contains
1 exactly once). Exactly as in the proof of the implication (ii) == (iii) in Theorem 5.2, we infer
that F = F @ £~1. Taking determinants of this isomorphism, we find that £%¢ is trivial. Thus £
has finite order N > 1 as a character of 71 (X). Now apply Theorem 5.3. O

Theorem 5.5. Let ko /Fa be a finite extension, and f(x) € ko[z] a polynomial of degree (1+qo)t(q).
Then the Airy sheaf F(q, f) introduced in (4.1.1) is geometrically primitive, i.e. is not geometrically
induced.

Proof. (i) In view of Theorem 5.2, it suffices to show that there is no geometric isomorphism from
F(q, f) to F(q, f) @ Lyy(aq) for any a # 0 in F,. We argue by contradiction. Because F(q, f) was
geometrically a Fourier transform, so is F(q, f) ® Ly(4a); the effect of tensoring with L4, after
FT is the same as translating additively by —a before FT:

f(Qa f) ® ‘Cw(aw) = FT([:L’ =T - a]*ﬁ(q, f))
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Since FT is invertible, an isomorphism of F(q, f) with F(q, f) ® Ly () gives an isomorphism of
L(q, f) with its additive translate by —a:

Ly (@@, fa))) = Lo (((a—a)' @, fz-a)))"
We will show no such isomorphism exists.

(ii) Suppose that n > 2. In this case, we argue as follows. If two lisse rank one sheaves are
isomorphic, then so are their tensor squares.
Quite generally, addition of Witt vector of length 2 over an Fs-algebra is given by

[a,b] + [A,B] = [a+ A, B + b+ ad], [a,b] + [a,b] = [0,
Thus
L o). f@) = Loallo@),r@) o) @) = Loa(0g@2) = Luole)?) = Lo
So we would have a geometric isomorphism
Ly@i)) = Ly(@—ay@)),
or equivalently a geometric isomorphism
L y((@-ay@ —at@) = Q-
Now we use the explicit shape of t(¢) = ¢+ 1 — 290 = 2¢3 — 2q0 + 1 = (g0 — 1)(2¢0) + 1.
The key point is that t(q) = 1+ dQ with d > 2 prime to p = 2 (here d = go — 1) and @ a strictly
positive power of p = 2 (here @ = 2qp). Then
(& — )P = (2 — a)(2? — Q)¢
=(x— a)(a:dQ — da®2 "9 4 (terms of degree < (d — 2)Q))
= 9 _ 4@ (4= 4 (terms of degree <14 (d—2)Q)
+ (polynomial in 29 of degree d).
Thus up to Artin-Schreier equivalence,
(z —a)' 9@ — p1Hd@ — _ 4@z @1 | (terms of degree < 1+ (d—2)Q)+ (a term of degree d).
Thus Ly((g—ay1+de_z1+e@) has Swan =1+ (d — 1)@ > 0, so is not geometrically trivial.

(iii) We now turn to the case n = 1, which requires a more delicate analysis. What makes the
n > 2 case argument work is that gg — 1 = 2™ — 1 has n > 2 binary digits. In the n = 1 case,
t(8) = 5, so the above argument would involve examining

4

(z —a)® —2° = (z — a)(z* — a?) — 2° = az?

—d'r + a5,
but this is Artin-Schreier equivalent to (a'/* — a*)x, which for a € p5 is Artin-Schreier trivial.

Thus we must look instead at

—1
Ly (((a—a)s.f@=a))) @ Loy (25,1 (2) = Lva(l@—0a)® fla—a)]~[2%,f (@)

Here —[a,b] = [a,b — a?], implying —[2°, f(z)] = [2°, f(z) — 2'Y], so this is

Loy ([(w—a)s+a, f(z—a)+f (z)—210+a5 (2—a)?])

But f(z) has degree 15, say f(z) = bz'® + cx!? 4 da'® + lower terms with b # 0. So under Artin-
Schreier equivalence
f(z) = bz'® + da'3 + lower terms.

Similarly, under Artin-Schreier equivalence

f(z —a) = bz — a)x™ 4+ d(z — a)™® + lower terms.
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Thus under Artin-Schreier equivalence
flz—a)+ f(z) — 2% + 25(z — a)® = b(z — a)'® — bx'® 4 lower terms.

The difference
b(z — a)'® — ba'® = —abx' + baz'3 + lower terms

is thus Artin-Schreier equivalent to

ba’z'? + lower terms.

Now view Ly, ([(z—a)5+a5,f(z—a)+f(z)—210+a5 (z—a)?]) 5 the tensor product (using [a,b] = [a, 0] + [0, b])

Lia(((z-a)>+27,0) @ Lip(f(@—a)+(@)—a10+25(2-a)?)
The first factor has Swan, < 2 x 4, while the second factor, which is Ly polynomial of degree 13), nas
Swans, = 13, and hence their tensor product has Swan,, = 13, so is not geometrically trivial. [

Recall that a lisse sheaf H is Lie-irreducible if, in the underlying representation of its Ggeom, the
identity component G¢ acts irreducibly. It is Lie-self-dual if the given representation of Ggeom,

geom
when restricted to Ggeop,, is self-dual.

Theorem 5.6. Suppose that a lisse sheaf F(q, f) as in (4.1.1) is Lie-irreducible and Lie-self-dual.
Then F(q, f) is self-dual.

Proof. The two sheaves F(q, f) and its dual F(q, f)¥ are irreducible representations of Ggeom whose
restrictions to the identity component Gg,,, are isomorphic. So the two, as representations of Ggeom

differ by a linear character of Ggeom /Gy Thus

geom*

Flg, )Y =Flg, [)oL

for some lisse, rank one £ on A'. Both F(q, f)¥ and F(q, f) have all co-slopes 1+ 1/rank(F(q, f)) <
2. Therefore Swano.(£) < 1 (otherwise F(q, f)" would have all co-slopes > 2).

If Swany,(£) = 0, then L is lisse on Al and tame at oo, so geometrically trivial, and F(q, f) is
geometrically self-dual. If Swan(£) = 1, then £ is Ly, for some nonzero a € F,. We will show
that this case cannot arise.

Recall that F(q, f) := FTw('CwQ([zt@),f(m)}))' In general, the interaction of FT with duality is a
geometric isomorphism

D(FTy(H)) = FTE(DH)).
In characteristic 2, where 1) takes values £1, we have 1) = 1. Thus

F(a, )" = FTp(Lyy o, p(a))) = FTo (Lo (010 0+ ot0)2)))

while

(@) ® Ly(aa) = FTy([z = @ = a]" Ly, @ gy = FTo (Lo (((2-a)@), fz—a))))-

By Fourier inversion, this is equivalent to a geometric isomorphism

ﬁwa([ﬂf“q),f(fr)Jr(x‘(q))Q]) = sz([(:v*a)“q),f(x*a)])'

We first treat the case n > 2. Already the tensor squares of these two lisse rank one sheaves are
not geometrically isomorphic, by the identical argument used to treat the case n > 2 in the proof
of Theorem 5.5.

In the case n = 1, we must show that the lisse rank one sheaf

Lo (((z—a)s, fa—a)]) @ (Lopa (a5, f(2)+(2%)2)))
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is not geometrically trivial. The second tensor factor is
—1 _ _
(Lopn(o9) s @+@)?)) " = Laa(-125,£@)+@)2) = Lya (5, f(@))-
So we must show that
Lya((@=a fa=a)) @ Ly (a9 (@) = Loall@-a) fla-a)+a? S @)
= Lys(((v—0)+25 fa—a)+ (@) +o5(z—a)?))
= Lys((e-a)+25,0) @ Li(f(a—a)tf(@)+2° (@—a)%)
is not geometrically trivial. Exactly as in the proof of the n = 1 case of Theorem 5.5, the first factor
has Swans, < 2 x 4 = 8, while the second factor has Swan,, = 13. O
Theorem 5.7. No sheaf F(q, f) introduced in (4.1.1) is geometrically self-dual.
Proof. Recall that F(q, f) := FTy (E,[la([xt(q),f(x)])). In general, the interaction of the Fourier trans-
form FT with the duality functor D(-) is a geometric isomorphism
D(FTy(H)) = FT;(DH).
In characteristic 2, where v takes values 41, we have 1) = 1. Therefore F(q, f) is self-dual if and
only if EW([xt(q)’f@)]) is self-dual. Its dual is E,‘Z}Z(_[xt(q)’f(x)]). We have the Witt vector addition law
[z,y] = [z,0] + [0,y], and, for Witt vectors over Fa-algebras, —[z,y] = [,y + z%]. So the dual of
Loy (2@, f(2)]) 18 Loy (24, )+ (at()2)), and the asserted isomorphism is
Ly (@t@.0) ® Lo(f(@) = Lo (@ ,0)) © Lus(s(@)4(@t@)2)-
This holds if and only if there is an isomorphism
Lot = Ly(r)+@t@)2),
or equivalently if cw((xt(q))Q) is geometrically trivial. By the Artin-Schreier reduction we have

Ew((xt(q))Z) ~ ﬁwgﬁt(q)). The latter sheaf is not geometrically trivial, because 1@ is a polynomial of
odd degree ¢(q) and so the sheaf has Swanco (L)) = t(g) # 0. O

Corollary 5.8. Suppose that the sheaf F(q, f) introduced in (4.1.1) is Lie-irreducible. Then it is
not Lie-self-dual.

Proof. Combine Theorem 5.6 and Theorem 5.7. O
Theorem 5.9. The sheaf F(q, f) introduced in (4.1.1) is tensor indecomposable.

Proof. We will show that F(g, f) is tensor indecomposable as a representation of 1 := m (Al/F,).
Because m has cohomological dimension < 1 (this is true for the m; of any smooth, connected
affine curve over an algebraically closed field), the argument of [KRLT1, Corollary 10.4] shows
that if F(q, f) is tensor decomposable, then it is linearly tensor decomposable, i.e. we have an
isomorphism of local systems on A!/F,,,

Flg,f) = A®B,
with both rank(.A), rank(B) > 2. To fix ideas, suppose rank(.A) < rank(B). Then
End(F(q, f)) = End(A) ® End(B) = (1 + End’(A)) ® (1 + End®(B)) contains 1 + End®(A).
Thus End®(F(q, f)) contains End®(A) as a direct factor. Now End’(A) has rank less than
(rank(A))? < rank(A)rank(B) = rank(F(q, f)).

So by Lemma 5.1, End®(F(q, f)) contains some L y(azy With a # 0 (a # 0 because End®(F(q, f))
only contains 1 once, by irreducibility of F). The proof of Theorem 5.5 shows this is impossible. [
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Lemma 5.10. For every integer n > 2, the integer 2™ — 1 is never a perfect power ™ with x € Z
and m > 2.

Proof. We argue by contradiction. If 2" —1 = 2™, then z is odd and 2™ = 2" —1 = 3 (mod 4). Thus
m is odd, and hence 2" = ™ +1 is divisible by x + 1. The quotient m:_i_'ﬁl > 1 is the alternating sum
of m powers of the odd integer x, so is itself odd. Thus x:ﬁl is an odd divisor of 2™, the desired

contradiction. O

Corollary 5.11. Forn > 1, no lisse sheaf of rank 2”(22"”'1—1) can be tensor induced. In particular,
F(q, f) is not tensor induced.

Theorem 5.12. The local systems F(q, f) on A'/Fy introduced in (4.1.1) all satisfy the condition
(S+) of [KT1, Definition 1.2].

Proof. First, by [Such, Proposition 7.4] the underlying representation V' of Ggeom of F(q, f) is
irreducible. That F(q, f) is primitive, tensor indecomposable, and not tensor induced is the content
of Theorem 5.5, Theorem 5.9 and Corollary 5.11. That det(F(q, f)) has finite order results from the
fact that F(q, f) began life over a finite subfield of F,, (in fact any subfield containing the coefficients
of f). O

Theorem 5.13. For the local system F(q,f) on A'/Fy introduced in (4.1.1), every irreducible
constituent of End®(F(q, f)) has dimension > rank(F(q, f)). In particular, if Ggeom, F(q,f) 18 MOt
finite, then G;eom Fla.f) is a simple algebraic group of dimension > rank(F(q, f))-

Proof. By Lemma 5.1, any irreducible constituent of dimension < D := rank(F(q, f)) is a single
L (az), While Theorem 5.5 shows that End’(F(q, f)) contains no Ly(az)- Because F(q, f) satis-
fies condition (S+) by Theorem 5.12, if Gyeom,7(q,f)) 15 Dot finite, then its identity component
Gg com, F(q,f)) is a simple algebraic group. In that case, Lie(G(‘f’g com, F(q, f))) is an irreducible constituent

of End®(F(q, f)), so has dimension > D. O

Theorem 5.14. Consider the sheaf F(q, f) in (4.1.1) subject to the condition (4.1.3). Then, for
each r|t(q), the descent G(q, f,r) satisfies the condition (S+) of [KT1, Definition 1.2].

Proof. Because Ggeom 7(q,f) 8 @ subgroup of Ggeom,g(q,f,r) Of finite index, the fact that F(q, f)
satisfies condition (S+), see Theorem 5.12, implies that G(q, f,r) does as well. [Condition (S+)
holds for (G, V) if it holds for (H, V) with H a subgroup of G of finite index.] O

We also record the following

Theorem 5.15. Under the condition (4.1.3), if the sheaf F(q, f) in (4.1.1) is Lie-irreducible, then
it 1is not Lie-self-dual.

Proof. This is just a restatement of Corollary 5.8, under the more restrictive hypotheses of (4.1.3).
Given Theorem 5.7, it suffices to show that if F(q, f) is Lie-irreducible and Lie-self-dual, then it is
self-dual.

However, there is a simpler proof of this last fact, using the descent G(q, f) := G(q, f,t(q)) in
Theorem 5.14. Exactly as in the proof of Theorem 5.6, we find an isomorphism

G(q./)" =6(¢. /)® L

for some lisse £ on G, of rank one. Because G(q, f)Vand G(q, f) are both tame at 0 and with all
oo-slopes < 1, £ is tame on Gy, hence a Kummer sheaf £,. Because G(g, f)"and G(g, f) both have
I(0) representations which are sums of characters of order dividing ¢(g), x is a ratio of characters
of order dividing ¢(q), so x has order dividing ¢(q). Pulling back this isomorphism by #(q)*® power,
we get an isomorphism F(q, f)¥ = F(q, f). O
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6. A LOCAL SYSTEM FOR THE SUZUKI GROUP 2B5(8)

Now we can prove the first main result of the paper, which establishes [Ka5, Conjecture 2.2] in
the case ¢ = 8:

Theorem 6.1. Let ¢ = 8. Both the local systems F, and G, have geometric monodromy group
Ggeom = 2By(8) in one of its irreducible representation of degree 14. Over Fa, the local systems Fy
and G, have arithmetic monodromy group Gayign = Aut(*B2(8)).

Proof. (a) Let G, respectively H, denote the geometric monodromy group of F, respectively of G,.
Similarly, let Gayith, respectively Harith, denote the arithmetic monodromy group of F, respectively
of G4, over Fo. We will use the fact that f := Froby r, has order 15 and trivial determinant. Indeed,
a MAGMA calculation shows that

Trace(FrobUF215 1Gq) = Trace(FrobL]F215 |Fq) = 14.

By Theorem 2.2, Frob; r,,, |G, is semisimple, hence (being of weight zero in a 14-dimensional rep-
resentation) is the identity. Therefore det(Frobyp ,;|Gg)) is a root of unity of order dividing both
4 (by Theorem 2.1) and 15, so this determinant is trivial. But Huyn = (f, H), and H has triv-
ial determinant (by Theorem 2.1), and hence H,, also has trivial determinant. As G < H and
Garith < Harign are subgroups, both G and G4t have trivial determinants.

Recall that G is normal in H of index dividing ¢(q) = 5. By Theorem 5.12, H satisfies (S+).
Since the rank of the sheaves is 14, not a prime power, by [KT1, Lemma 1.1] this implies that
either the identity component H° of H is a simple algebraic group that acts irreducibly on the
underlying representation V of H, or H is a finite almost quasisimple group with L := H(>) also
acting irreducibly on V.

(b) Consider the former case. Note that if H® is classical of rank r, then either it is of type A
and r < 13, or r < 7 by [KIL, Proposition 5.4.11]. Using the tables of [Lu|, we see that H® is of
type SLa, SL14, Spa, Spg, Sp14, SO14, or Ga. Since [H : G] < oo, G° = H°.

Suppose first that H° = SL14(C). In this case, V is just the natural module for H°, hence M (V')
takes the smallest possible value 2 for all H°, H, G°, and G. But this contradicts Corollary 1.2.

Next suppose that G° = H° is of type SL2, Spy, Spg, Sp14, SO14, or Ga. In all these cases, the
G°-module V is self-dual, and this contradicts Corollary 5.8.

(c) We have shown that H is finite, and we are in the almost quasisimple case. In this case, Hyith
is also finite, and H &(lf:il = H(®) = Gg:;?h = G(®) = L. Let © denote the character of H,n in the
underlying representation V. Then the formula for the trace function of G, and the existence of an
element with trace 2¢4 show that

(6.1.1) Q(p) = Q(Ca)-
Since any element z of Cp, .., (L) = Z(Haitn) acts as a root of unity v on V, this implies that

v* = 1. Since H,yn has trivial determinant, ' = 1 and thus v = 1. It follows that
(6.1.2) |CHion (L) = |Z(Haritn)| < 2.

Now, using (6.1.1) and the fact that L acts irreducibly on V = C!, the classification results of
[HM] show that L = PSLy(13), SLa(13), A7, Ag, SU3(3), G2(3), 2 - J2, A1s, or 2Ba(8).

In all but the last case, ¢|r, is real-valued; furthermore, |Out(L)| < 2. As shown in the proof
of Theorem 4.5, G has no subgroups of index 2, so G can induce only inner automorphisms of L.
But Gaith = (G, f), implying Gapitn/G < Cis; so the same conclusion holds for Gaitn, and hence
Garith = Ca,i0, (L)L = Z(Garith ) L, with |Z(Garitn| < 2 by (6.1.2). On the other hand, as we saw in
the computation for the proof of Corollary 1.2, some g € Gty has trace 2¢4 on V. Write g = zh
with z € Z(Garitn) and h € L. It follows that 2¢4 = ¢(g) = £¢(h), a contradiction since p(h) € R.



LOCAL SYSTEMS AND SUZUKI GROUPS 31

We have therefore shown that L = 2By(8). As |Out(L)| = 3, (6.1.2) implies that |H/L| divides
6. On the other hand, H is the normal closure of the image of order 5 of I(0), so we conclude that
H = L. Since L <G <1 H, we also get G = L.

Recalling again that Gaitn/G — Cis, we now see from (6.1.2) that Z(Gain) = 1 and thus
Garith = Aut(L) = L x C3. A MAGMA computation shows the existence of a Frobenius element
with trace (4, and this implies that Gatn > L, whence Gaien = Aut(L). Since Hpitn is generated
over H by f = Frob; p,, an element of order 15, Z(Hayitn) = 1 by (6.1.2). Thus Hyitn < Aut(L),
and 50 Hyith = Aut(L) as Harith > Garith- O

7. LOW-DIMENSIONAL REPRESENTATIONS OF CLASSICAL GROUPS

In this section, we will extend the classification results obtained in [KIL, Proposition 5.4.11] and
[Lu, Theorem 5.1]. Even though the intended applications in the paper only need the complex case
of these results, we establish them in the modular case, which is interesting in its own right.

Let F be an algebraically closed field of characteristic p > 0 and let G be a simple, simply
connected, classical algebraic group of rank r over F. Fixing a maximal torus in G, we consider the
set of simple roots {ay,...,a,} and the corresponding set of fundamental weights {w1,...,w,} (in
the ordering of [OV]). Then the set

r
AT = {Zazwz ‘ a; € Z,a; ZO}

i=1

of dominant weights admits the partial ordering > where X > p precisely when A — p = >0 ko
for some non-negative integers k;. As usual, W denotes the Weyl group. If A € AT, let L()\) denote
the irreducible FG-module with highest weight A.

We will rely on the following two results.

Theorem 7.1. [Pr| Let G be a simple, simply connected algebraic group in characteristic p > 0. If
the root system of G has different root lengths, then we assume that p # 2, and if G is of type Ga,
then we also assume that p # 3. Let X\ be a restricted dominant weight. Then the set of weights II(\)
of the irreducible G-module L(\) is the union of the W -orbits of dominant weights p with X\ = p. O

Lemma 7.2. [H, Lemma 10.3B] Let A = ) _;_, a;w; be a dominant weight. Then the stabilizer of
A in the Weyl group is the Young subgroup generated by the reflections p; along the simple roots oy
for which a; = 0. |

Our first result treats groups of type A and includes a strengthening for SLoo:

Theorem 7.3. Let G = SL,,(F) withn = r+1 > 8, and let L(\) be an irreducible FG-representation,
which is restricted if p = Char(F) > 0. Suppose that dim L(\) < M, where M := (Z) if n # 22 and
M :=8176 if n = 22. Then A =0, awy or aw, with1 < a < 3, wy + @, W 07 Wy_1, W3 OT Wy_2,
Wy OT Wy_3, W] + Wy OT Wr_1 + @, 201 + @, or wy + 2w,, and ws + @, Or W1 + Wr_1.
Proof. Write the highest weight A as Y., ; a;o; with a; € Z>.

(a) First suppose that there is some weight u = >"!_; b;m; € AT with A > p and b; # 0 for some
s+1<j<r—s, where

s:=3ifn#22and s:=4if n = 22.

By Theorem 7.1, II(\) contains the W-orbit O(u) of . By Lemma 7.2,

Sta’bW(H) < <p17 sy Pi—15 P41, - - '7p7“> = S] X Sn—]
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(where p; = (i,i +1) € W =S,,). Hence
. n n
dm L) 210601 = 1,55 x 5o = (1) = ([ 1) =
a contradiction if n = 22, or if 5 < j < r — 4. Suppose j € {4, — 3} and n # 22. Then dim L(\) =
|O(1)| = (}}), showing y is the unique dominant weight of L()), whence y = A. This also forces
Staby (A\) =S; xS,—j, and so A = ajwj. Nowifa > 2, then A = A—o; = wj_1+(a; —2)w; + w41,
and the latter is another dominant weight of L(\), a contradiction. So A = wy or w,_3 in such a
case.
We may therefore assume that
(7.3.1) aj; =0 forevery s +1<j<r—s.

Next suppose that » 7 ;ia; > s+ 1. By [GLT, Lemma 2.6] (applied with m = s), there is some
weight p = >0 byoo; € AT with A = p and bsy1 > asq1. This situation is already considered by
the preceding analysis. Using the symmetry under the graph automorphism 7 of G,

S S
(7.3.2) Zz’ai < s, Ziarﬂ,i <s.
i=1 i=1

(b) Suppose ag > 0 or a,—3 > 0. By symmetry, we may assume ag > 0. By (7.3.2) n = 22,
as =1, and a1 = az = a3 = 0. Now if X # wy, then a; > 1 for some r —3 < j < r by (7.3.1). By
Lemma 7.2,

StabW()‘) < <p17p27p37105ap6a s Pi—15Pi+1y - - - apr> = S4 X Y17
with Y7 a proper Young subgroup of S,_4 and hence |Y;| < (n — 5)!. It follows that

dim L(\) > [W : Staby(\)] > (n — 4) (Z) > M,

a contradiction. Hence from now on we may assume that a4 = a,_3 = 0.

(¢) Suppose that ag > 0 or a,_9 > 0. By symmetry, we may assume as > 0, and so a3 = 1 by
(7.3.2). Suppose aj > 1 for some r —3 < j < r. By Lemma 7.2,

(733) Sta‘bW()\) < <P17 P2, P45 P55 -+ -3 Pj—15Pj+1s- -+, Pr> = 53 X Y27
with Y5 a proper Young subgroup of S,,_3 and hence |Ya| < (n — 4)!. It follows that

dim L(\) > [W : Staby(\)] > (n — 3) (’;) > M

(as n > 8), a contradiction. Now, if n # 22, then using (7.3.1) and (7.3.2) we see that A\ = ws. If
n = 22 but A # w3, then A = w; + w3. In this case, A — (a1 + az + a3) = wy is also a weight of
L(X) by Theorem 7.1, and since

Staby (@1 + w@3) = (p2, P4, P5,-- -, pr) = S2 X Sp—3, Staby (wy) =S4 x Sy
by Lemma 7.2,

22 22

(7.3.4) |O(w1 + w3)| + [O(ws)| = <3 >/2 + <4> = 11935 > M,
which contradicts dim L(\) < M.

(d) We may now assume that a; = 0 for 3 < ¢ < r — 2. Suppose that az > 0 or a,—1 > 0.
By symmetry, we may assume az > 0. If ag > 2, then by (7.3.2) n = 22, (az,a1) = (2,0). Note
that A = A — ag = w1 + w3 + ar—1@wr—1 + ayw,. It follows from Theorem 7.1 that II(\) contains
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w1 + w3 + ap_1w,—1 + a,w, and wy + a,_1w,_1 + a,w,. The lengths of W-orbits of these two
weights are at least 11395 by (7.3.4), and so dim L(\) > M.
If ag =1 but a; > 2, then by (7.3.2) n =22, (az,a1) = (1,2). Note that

A= A—a; =2wr + ar_ 1,1 + arwy.

The preceding arguments show that II(A) contains the weights w; + w3 + a,—1w,—1 + a,w, and
wy + ar—1wr—1 + a,w,, and again dim L(\) > M.

Hence as = 1 and a1 < 1. If a, = a,_1 = 0, then A = wy or w; + wsy. So assume that
ar +ar_1 > 0.

Suppose that a,_1 > 0. Then by Lemma 7.2

(7.3.5) Stabw (A) < (p1, 03, pa, -+, Pr—2, pr) = S2 X Sp—g X Sa.
It follows that
n!

dim L(\) > [W : Staby (\)] > n—a)- (22

> M,

a contradiction. Hence a,_1 = 0.
Suppose next that a, > 2. Then

A=vi=A—a, == 2w, —w,_1) = ayw1 + w2 + (a1 + Dwy—1 + (a, — 2)w,.
Thus v1 € II(A\) N AT, and (7.3.5) applied to vy shows that
dimL(A) > |O(V1)| > [Sn : (52 X Sp_gq X 52)] > M.
We may therefore assume that a, = 1. If a; = 0 then \ = ws + w,. Otherwise A\ = wy + w9 + w,,
in which case A\ = vy := A — (a1 + a2) = A — (w1 + w2 — w3) = w3 + w,. But in such a case, (7.3.3)
applied to v» shows that

dim L(\) > |O(v2)| > (n — 3) (g) > M.

(e) We may now assume that a; =0 for 2 < i <r—1,ie. A\ = aw; + bw, with s >a >b >0 (by
symmetry). Suppose a > 4, whence n = 22 and a = 4 by (7.3.2). Then A = X\ — 2aq = 2ws + bw,,
and so dim L(\) > M by the first paragraph of (d).

Suppose a = 3 but b > 0. Then A > v3 := A — (201 + a2) = X\ — (3wy — w3) = w3 + bw,, and
(7.3.3) applied to v3 shows that dim L(A) > |O(v3)| > M. Hence A = ws.

Suppose a = b =2, i.e. A = 2w + 2w,. Then A > vy :== X — (a1 + @) = wa + w,—1. In such a
case,

n!
dim L(\) > |O >————=>M
L) 2 004)] 2 (i gm > M.
by using (7.3.5) for v4. So a + b < 3, and thus A\ = 2wy + w,, 2w, wi + w,, w1, or 0. O

To handle the other classical groups, we first consider a special case. Again, we use the weight
labeling as in [OV].

Proposition 7.4. Let G be a simply connected simple algebraic group over ¥ of type B,., C,., or
D,., withr > 7. Then

dr(r? —1)/3, if p=3,

dr(r—1)(2r —1)/3, ifp # 3.

Proof. Note that |O(ws)| = 8(3) and |O(w + ws)| = 4r(r — 1). Since A := @} + w3 is the highest
weight of L()), it suffices to show that p := w3 is a weight of L(A), with multiplicity m (1) > 1
if p=3and mp)(p) > 2ifp # 3. If p=3, then A = X\ — (a1 + a2) = p, whence p € TI()\) by
Theorem 7.1, and we are done.

dim L(w; + w2) > {
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In what follows we may assume p # 3. We realize the roots and the weights of G using an
orthonormal basis (e¢; | 1 < i < r) of R" (with scalar product (-,-)); in particular, w; = ey,
wo = €] + €2, wy = €1 + e2 + e3. Consider the simple (Weyl) module V' (\) of the corresponding
algebraic group over C. Then v € AT is a weight of V(\) precisely when \ = v. Writing w; in
terms of simple roots (see [OV, Table 2]), it is straightforward to check that this is equivalent to

c {\ p, w1}, if G =C, or D,,
v {\ 1, @2, 21,0}, if G = B,.

Next we use Freudenthal’s formula [H, p. 122] to find the multiplicity my-(y) (1) of p as a weight of
V(A). Then we must find all multiples [ of positive roots a, with | € Z>1, such that u + lo is a
weight of V(\), i.e. W-conjugate to one of the weights listed in (7.4.1). Again using [OV, Table 2],
we can check that this happens precisely when | =1 and o = e; — eg, e1 — e3, ea — e3. In all these
cases, (1 + la is W-equivalent to A, and we readily obtain my(y) (u) =2.

Suppose now that

(7.4.2) mpoy () < 1.

This can happen only when pu is a weight of some composition factor L(vp) of a reduction modulo

p of V(X), where vy is listed in (7.4.1). Note that if v is such a weight and v # p, then v /-pu.

It follows that vy = p, i.e. L(p) is a composition factor of a reduction modulo p of V(A). By the

linkage principle, see [Jan|, this implies that w o A = p for some w € W,,. Here, the affine Weyl

group W), is generated by the map p,; 0 A = po © A+ Ipa, where « is a simple root, | € Z and p,

denotes the reflection corresponding to «; furthermore, po 0o A = po (A +9) — 9, where § := 3" w;.
Write |v|? instead of (v,v) for v € R". Then, for any root  and any [ € Z
[Pai 0 X+ 01* = X+ 6] + p*|af® + 2Up(pa(A + 0), ).

Observe that |a|? € Z and
2(A+ 9, )

(pa()\ +9), a) = (()\ +9) — (@)

It follows that |pa o A+ 6]? = |A +6]? (mod ged(2,p)). Thus we have shown
(7.4.3) If two weights A, p are linked, then |\ + 6% = |u + 6| (mod ged(2, p)p).

(7.4.1)

,Oé> :_(A+p7a) € Z.

(Note that a slightly weaker result than (7.4.3), namely only modulo p, was obtained in [T, Lemma
2.1].) In our case, |\ + 6|? — |u + 6|2 = 6. Applying (7.4.3), we conclude that (7.4.2) can happen
only when p = 3. U

Theorem 7.5. Let G be a simply connected simple algebraic group over F of type B, C,, or D,,
with > 12. Let L(\) be an irreducible FG-representation, which is restricted if p :== Char(F) > 0.
Suppose that dim L(\) < M, where M := 2(r +1)3 if r > 14, and M = r3 if r = 12,13. Then
A =awy with 0 <a <3, we, ws, or wy + we. Moreover, if A = wi + wo and r > 16, then p = 3.

Proof. Write the highest weight X as Y., a;oo; with a; € Z> (note that L(co;) is the natural
module for G).

(a) First suppose that a; > 0 for some r — 2 < i < r. In this case, by Lemma 7.2, the length of
the W-orbit O(A) of A is at least [W : Staby, (A\)] > 2771 > M.

Next suppose that a; > 0 for some 4 < ¢ < r — 3. In this case, if G is of type X, so that
W = W(X,), then Staby () is contained in W (A4;_1) x W(X,_;) by Lemma 7.2, hence

dim L()\) > |O(\)] > 2¢ (:) > min (2* <Z> , 273 <g>) > 2(r +1)3,
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since r > 9.
Applying this argument to p =Y ;_; bjw; € II(A) N AT, we deduce that
(7.5.1) bi=0for4<i<nr.

(b) Suppose a3z > 0. If a; > 0 or ag > 0, then Staby (\) < W(A;) x W(X,_3), whence
(7.5.2) ION)| > 4r(r —1)(r —2) > 2(r +1)3

(since r > 9), contradicting the bound on dim L()A). So A = azws. Now, if a3 > 2 (and so p # 2 as
A is restricted), then by Theorem 7.1

)\>)\—a3:WQ+W4€H()\)ﬂA+,

violating (7.5.1). Hence A = w3 in this case.
We have shown that ag = 0. Suppose az > 0. Now, if as > 2 (so again p # 2), then

A= A—ag = (a1 + 1)wy + (a2 — 2)wa + w3 € II(N),
leading to a contradiction by applying (7.5.2) to A — ag. If ag = 1 but a; > 2, then p # 2 and
A= A— (a1 +a2) = (a1 — D)wy + w3 € TI(N),

again yielding a contradiction by applying (7.5.2) to A — a1 — a3. Hence \ € {w9, @) + ws} in this
case.
We are left with the case A = aw;. If a > 4, then again p # 2 and

A= A— (2041 +042) = (a1 — 3)W1 + w3 € H()\),
leading to a contradiction by applying (7.5.2) to A — 2a; — ae. So 0 < a < 3 as stated.
(c) We make some more comments about the cases A € {3w1, w3, w; + w2}. Note that
3w — a1 = w) + w2, (@1 + w2) — (v + ) = ws.

So, assuming p # 2 when A\ = w; + wy, we may assume ws € II(\) in all these three cases. It now
follows from Lemma 7.2 that in these cases

dim L(\) > |O(w3)| = 4r(r — 1)(r — 2)/3 > r3.
Proposition 7.4 shows that if p = 2, then dim L(cwwy + ws) > 8(5) > 73 (as r > 12), and if r > 16
and p # 3, then dim L(ww; + w2) > 4r(r — 1)(2r — 1)/3 > 2(r + 1)3. Thus,
(7.5.3) If 7 > 12 and dim L(\) < r®, then \ € {0, @y, 21, wa}.

This statement (7.5.3) was recorded in [Lu, Theorem 5.1], but we note that the treatment of the
weights a1ty + agwy therein is incorrect. Also note that dim L(cw; + w2) may be smaller than
2(r +1)2 when p = 3, see [Lu] for examples. O

8. A DICHOTOMY FOR MONODROMY GROUPS
We will need some preliminary facts:

Lemma 8.1. Let n € Z>; and let D := 2"(22"*1 —1). Then none of the following equations
(i) D=2%-1,
(ii) D=a(x—1)/2,

(ii) D=z(x—1)/2—-1 and n > 2,

has a solution in the positive integers.
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Proof. (i) Suppose 2 — 1 = D for some & € Z>1. Checking the cases 1 < n < 7 directly, we may
assume n > 8. Now z > 1 is odd, and ged(z — 1,z + 1) = 2, but 2"|(2? — 1). It follows that there
is some € = &1 such that 2" !|(z — €). Write x — € = 2"~ !y for some y € Z>;. Then

23TL+1 _ 2n — D — x? _ 1 — (znfly + 6)2 _ 1 — 22n72y2 + 2n€y7
and so ey + 1 = 2"72(2"*3 — ¢2). This implies y > 1, and y + € is divisible by 2”72, Hence
y+ e = 272z for some z € Z>1. In this case, y > m=2 1, ¢ > 2?3 2771 _ 1 and so
22 —1> 247 > 23+l 5 D (as n > 8), a contradiction.

(ii) Suppose z(z — 1)/2 = D for some = € Z>1. Then ged(x — 1,7) = 1, but 2" z(z — 1). Tt
follows that there is some € € {0, 1} such that 2" (z —€). Write z — e = 2"y for some y € Z>;.
If e =0, then

23n+2 o 2n+1 —9D — 1,'(.’17 o 1) — 22n+2y2 . 2n+1y
and so y — 1 = 2"+ (y? —2"). This implies y > 1, and y— 1 is divisible by 2"*!. Hence y—1 > 2"*!,
x> 222 and so x(x — 1) > 24+ > 237+ 5 D a contradiction. If € = 1, then

237’L+2 _ 2TL+1 —9D = ZE(QT _ 1) — 22n+2y2 + 27’L+1y
and so y 4+ 1 = 212" — ¢2). This implies 1 < y < 2%2, and y + 1 is divisible by 2”1, which is
impossible.

(iii) Suppose n > 2 and D = z(x — 1)/2 -1 = (z + 1)(x — 2)/2 for some x € Z>;. Then
ged(z + 1,2 — 2)|3, but 2 (z + 1)(x — 2). Tt follows that there is some € € {—1,2} such that
2"t (1 — €). Write x — € = 2"y for some y € Z>1. If e = —1, then

23n+2 _ontl _9p — (x + 1)(1‘ _ 2) _ 22n+2y2 —3. 2n-i-1y7
and so 3y — 1 = 2"+1(y2 — 27). This implies that 3y — 1 > 2 is divisible by 2"*!. Hence y >
(2"t 41)/3 > 2771 241> 22" and so (z + 1)(xz —2) > 227(22" —3) > 23"t > D (asn > 2), a
contradiction. If e = 2, then

23n+2 _ontl _9p — (x + 1)(1‘ _ 2) — 22n+2y2 +3. 2n-i-1y7
and so 3y 4+ 1 = 27T1(2" — ¢2). This implies 1 < y < 2/2 < 2"~ and 3y + 1 is divisible by 2"+,
which is impossible when n > 2. O

. 6 6
Note that if (n,D) = (1,14), then D = (5) —1 = (3) —6 = (3° +1)/2.

Theorem 8.2. Suppose the sheaf F(q,f) in (4.1.1), of rank D = 27(2?"*1 — 1), has infinite
geometric monodromy group G' = Ggeom-. Then G° = SLp. Under the more restrictive condition
(4.1.3) G = SLp; moreover, the sheaf G(q, f,t(q)) has geometric monodromy group equal to G.

Proof. By Theorem 5.12, G satisfies (S+). Thus G° < SLp, and Z(G) is finite, but G° is infinite.
It follows from [KT1, Lemma 1.4] that G° is irreducible on the underlying representation V, i.e.
F(q, f) is Lie-irreducible. By Theorem 5.13, G° is a simple algebraic group of dimension > D.

(a) Suppose n > 3, so that D > 1016. Then G° must be a classical group of rank say r, where
r(2r +1) > dim G° > D > 1016, whence r > 23. Also, if G° is of type A,, then

1
(8.2.1) D <dimG° =r(r+2) < <TZ >
and if G° is of type B,, C, or D,, then
(8.2.2) D <r(2r+1) <

In the case of A,, we can apply Theorem 7.3 and, using the dimension formula for L(\) given in
[OV, Table 5] and the bound (8.2.1), we see that the highest weight A of the G°-module V is, up
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to duality, aw; with a = 1,2, we, or wy + w,. If A = wy, then D =r + 1, G° = SLp, and hence
G = SLp as stated. In the other cases, D = (T'QH), (g), or (r+1)2 —1; all are impossible by Lemma
8.1.

In the case of types B,, C,, and D,, we can apply Theorem 7.5 (more precisely, (7.5.3)), and,
using the dimension formula for L(\) given in [OV, Table 5] and the bound (8.2.2), we see that the
highest weight A\ of the G°-module V is awoy with a = 1,2, or wy. If A = wy, then G° = Sp(V) or
SO(V'), whence F(q, f) is Lie-self-dual, contrary to Corollary 5.8. In the other cases, D = (') or

(7;) — 1 for some integer m > 2, and this is impossible by Lemma 8.1.

(b) Suppose n = 2, so that D = 124. Then G° is of type A, with » > 11, B,, C,, or D, with
r > 8, Er, or Eg. Neither E; nor Eg has irreducible representations of degree 124, see [Lu], so G° is
classical of rank r. If G° is of type By, C,., or D, with 8 <r < 11, then using [Lu] we check that G°
has no irreducible representation of degree 124. So r > 12, and we apply Theorem 7.3, respectively
(7.5.3), as above to conclude that G = SLp.

Finally, assume that n = 1, so that D = 14. The arguments in part (b) of the proof of Theorem
6.1 repeated verbatim show that either G° = SLp, or V|ge is self-dual. In the former case G = SLp
as in (a), and the latter case is ruled out by Corollary 5.8.

(c) Now assume (4.1.3). Then we can consider the descent G(q, f,t(q)), for which the trace
function takes values in Q((4) and all slopes are less than 1. Since p = 2, Theorem 2.1(iii) implies
that G(q, f,t(q)) has trivial determinant, and thus G(q, f,t(q)) has geometric monodromy group
H <SLp. But H > G, so we conclude H = G = SLp. O

Theorem 8.3. Suppose the sheaf F(q, f) in (4.1.3), of rank D = 2"(2?"T1 —1), has finite geometric
monodromy group G = Ggeom. Then G = ?Ba(q) with ¢ = 2>+,

Proof. (a) Let V' denote the underlying representation. By Theorem 5.12, G satisfies (S+) on V.
But the dimension D = dim (V') = go(q— 1), with go := 2™, is not a prime power. Hence G is almost
quasisimple by [KT1, Lemma 1.1]: S<G/Z(G) < Aut(S) for some finite, non-abelian simple group
S. Then the quasisimple subgroup L := G(®) acts irreducibly on V by [KT1, Lemma 1.4].

The condition (4.1.3) allows us to consider the descent G(q, f,t(q)) on G,,, with geometric mon-
odromy group H. Then G <1 H of finite index, whence H is finite and satisfies (S+), and L = H(*),
as H/G — Cyg). The representation of H on V' has oo-slopes o := (g0 +1)/D < 1, and is not tame
at 0co. Hence Theorem 2.5 applies to G and H. We collect some further facts about (G, V) and the
character ¢ of H on V that we will use in the proof:

(i) Q¢la) = Q(v) = Q(i). Indeed, by Theorem 2.1(i), the arithmetic monodromy group Hayith k,
of G(q, f,t(q)) over kg has finite determinant. But it normalizes the finite irreducible subgroup
H, so finite determinant implies that H k, is finite. Now, by Chebotarev density, the
finiteness of Hyyith,k, implies that all elements of it are Frobenii, and all Frobenii have traces
in Q(4). But G < H < Haith iy, 50 Q(¢la) € Q(p) € Q(i). But Vg is not self-dual by
Theorem 5.7, hence Q(p|g) = Q(i) = Q(¢). Since each element of Z(H) acts as a root of
unity on V, and the only roots of unity in Q(4) are in u4, both |Z(G)| and |Z(H)| divide 4.
(ii) If n # 2, then G is perfect and hence G = L. Indeed, by [Abh, Proposition 6], m (A!/F),)
has no nontrivial finite p’-quotient. Since F(g, f) lives on A! /F5, G has no nontrivial quotient
of odd order. On the other hand, the proof of Theorem 4.5 shows that G has no quotient of
order 2 when n # 2.
(iii) The image J = QC of I(c0) has Q = O3(J) and C = (goo), where the central order 6(goo)
is divisible by ¢ — 1. Indeed, since the oo-slope of F(q, f) is 1 + 1/D, this implies, by [Kal,
Proposition 1.14], that I(oco) acts irreducibly on V, of dimension D = go(q — 1). Since the
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image J of I(00) is cyclic of p’-order modulo the image @ of P(00), it follows that g, permutes
the pairwise non-isomorphic ¢ —1 simple -summands on V', each of dimension ¢, transitively.

(b) Consider the case n > 3, so that D > 1016, and G = L by (ii).

(b1) First suppose that S = A,, for some m > 3. As G/Z(G) = A,, — GL,,—1(C), by Theorem
2.5, m—1 > 1/o. Note that [1/o] = ¢ —2q9 + 1, so m > q — 2qp + 2 > 114. It follows that
D = qo(q — 1) < (m? — 5m + 2)/2. In this case, by [GT, Lemma 6.1] m = D + 1, G = Ap,1, and
V = CP is the heart of the natural permutation module. But then V is self-dual, contrary to (i).

(b2) Next suppose that S is a sporadic simple group. By (iii), the maximum order meo(S) of
elements in S is at least ¢ — 1 > 127. On the other hand, meo(S) < 119, as one can check using the
[Atlas] (see also [KT1, Table 2]), a contradiction.

(b3) Consider the case S is a simple group of Lie type in characteristic r # 2. By Theorem
2.5, the degree e of every nontrivial projective representation over F, of S satisfies e —1 > 1/0,
in particular, e > 11. Similarly, the degree d of every faithful linear representation over F, of S
satisfies d > 1/c, in particular, d > 114. This rules out all classical groups of types A,, or %4,,
with m < 9, B, with m < 56, and C,, or D,, with m < 7 (as PSp,,,(r*) and PQ¥ (r*) have
faithful representations of degree m(2m — 1) over F,.). This also rules out exceptional groups of
types Ga, G, and 3Dy. For the remaining exceptional groups of type Fy(s), Es(s), 2Es(s), F1(s),
and Fg(s), with s = r% by [KS, Table A7] we have the following upper bounds s(s + 1)(s? + 1),
5(s8—1)/((s —1)ged(3,5 — 1)), (s +1)(s2+1)(s® —1)/ged(3,s + 1), (s +1)(s2+1)(s* +1)/2, and
(s 4+ 1)(s% + s+ 1)(s® — 1) for meo(S), respectively. On the other hand, go(¢ — 1) = D is at least
the smallest degree 0(S) of nontrivial projective complex representations of S, which in turn is at
least s5(s? — 1), s9(s? — 1), s%(s% — 1), s'(s? — 1), s27(s? — 1), respectively, see e.g. [TZ, Table I],
and we arrive at a contradiction in all five cases, as ¢ — 1 < meo(S) by (iii) and D < /¢3/2.

If S = PSL,,(s) or PSU,,(s) with m > 11, then m? — 1 > 1/, and so m? > ¢ — 2qo + 2, by
Theorem 2.5. Since m > 11, by [TZ, Theorem 1.1]

sm—s 3" =3

D > > 3> (g—2 2)3/2 —1
2T 271 >m® > (¢ —2q0+2)°" > qo(qg — 1),

a contradiction. For S of type BC'D,, with m > 7, we have min(m(2m —1),2m+1) > 1/, and so
2m? > q — 2qo + 1, by Theorem 2.5. Since m > 7, by [TZ, Theorem 1.1]
sm—-1_ 3™

1
D> > > 3m3 > (3/2%/%)(q — 2g0 + 1)*? > qo(q — 1),

again a contradiction.

(b4) We may now assume that S is a simple group of Lie type in characteristic 2, defined
over a field Fy with s = 2% Since n > 3, by Theorem 3.4, t(q) = ¢ — 2qp + 1 admits a divisor
¢ = ppd(2,4(2n + 1)). Next, we use the fact that the image of I(0) in H has order ¢ — 2qy + 1,
which implies that H has an element of prime order ¢ that normalizes G = L. But Cy(G) = Z(H)
has order dividing 4 by (i), so

(8.3.1) ¢ divides |Aut(L)].

First suppose that S = Sp,,(s) with m > 2 or PQZ (s) with m > 3. Then, (8.3.1) implies that
0> 4(2n+1) +1 > 29 divides a|S|. If moreover £ a, then ¢ divides [}, (s* — 1), which implies
2ma > 4(2n + 1) by primitivity of £. In either case,

(832) Sm — 2ma Z 22(2n+1) — q2 Z 214
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Now, applying [TZ, Theorem 1.1] for m > 3 we obtain
(5™ —1)(s™ 1 —1)
s2—1

a contradiction. If S = PSp,(s), then s > ¢ > 27 by (8.3.2), and so
¢?>D20(8) =s(s —1)°/2 2 q(a = 1)*/2> ¢,

¢#?>D>0(8) > > s2M73 /2> M /2 > % /2,

again a contradiction.

Next suppose that S = PSL,,(s) or PSU,,(s) with m > 2. The same arguments as above show
that (8.3.2) still holds; in fact, s™ > ¢* for S = PSL,,(s). Assume that S = PSL,,(s) with m > 2;
in particular, s"~1 > §™/2 > ¢2. Then using [TZ, Theorem 1.1] we obtain that

m

q3/2 >D> D(S) > s 15 > Smfl > q27
5 —
a contradiction. Next, assume that S = PSU,,(s) with m > 5; in particular, ¢3? < §3m/t < gm=h/4,
Then using [TZ, Theorem 1.1] we obtain that
3/2 m_ 5/4
q s s 2, 2 3/2 q
T~ D>a(8) > >Zsml 1) > 2 P>
N R C T R />3 3 @D >"R
again a contradiction. When S = PSUy(s), £|a or £ divides (s +1)(s®> —1)(s®>+1)(s* — 1), so instead
of (8.3.2) now s > ¢?. Again using [TZ, Theorem 1.1] we obtain

25/4 3/2

(st —1) >

4

1
325 D >0o(S >S
q _()—S 1

> 83/2 > q2/2,

a contradiction. Finally, if S = PSUj3(s), then s > ¢? > 2! from (8.3.2). But every irreducible
character of SUj3(s) of even degree has degree divisible by s > ¢?/3, and hence cannot be equal to

D =qo(q—1).

Let S be one of the exceptional groups of type Ga(s) with s > 2, 3Dy(s), 2Fy(s)’ with s > 2, Fy(s)
with s > 2, Fg(s), 2Fg(s), E7(s), and Eg(s). That ¢ divides |Aut(S)| implies ¢* < s¢, where

c=6, 12, 12, 12, 12, 18, 18, 30,
respectively. It follows that D < ¢3/? < $3¢/8 with
3¢/8 =9/4, 9/2, 9/2, 9/2, 9/2, 27/4, 27/4, 45/4,

respectively. But this contradicts the lower bounds D > 0(S) > s(s2 —1), s3(s2—1), s*(s —1)1/5/2,
s8(s2 — 1), s%(s® — 1), s2(s%2 — 1), s'9(s%2 — 1), s%7(s?> — 1), respectively, see e.g. [TZ, Table I], and
we arrive at a contradiction in all eight cases. The cases 2[;(2) and F4(2) are ruled out because
|Aut(.S)]| is not divisible by the prime ¢ > 29.

The only remaining case is that S = 2By(s). That ¢ divides |Aut(S)| implies ¢* < s%, i.e. ¢ < s.
But D = go(q — 1) is the degree of some irreducible character of G, so ¢ = s, i.e. S = 2By(q). In
this case also G = L = ?Bs(q), as stated.

(c) Now we consider the case n =2, i.e. D = 124.
(c1) As the quasisimple subgroup L = G(*) acts irreducibly on V = CP, by [HM] we have the
following possibilities for S:

PSL2(125), SL3(5), SL5(2), G2(5), A125, or 232(32)

Here, a generator go of the image of I(0) in H has order ¢(q) = 25 and normalizes G and L. Since
Cu(L) =7Z(H) < Cy by (i), 25 divides |Aut(S)|. This rules out the first three cases.
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In the two cases S = G2(5) and Ajg5, L = S and V| is self-dual. Since Cy(L) < C4 and
|Out(S)| < 2, it follows that H/L is a 2-group. On the other hand, A has no quotient of order 2,
as shown in part (i) of the proof of Theorem 4.5 (which also works for n = 2). Hence H = L = G,
and so F(q, f) is self-dual. But this contradicts Theorem 5.7.

The only remaining case is S = 2By(32), in which case L = S.

(c2) The rest of this paragraph applies to all n > 1, for which we know L = S = 2By(q).
Since Out(S) =2 Coy,y1, but G = 0% (G), we see that G = Z(G)S, with Z(G) < C4. Recall that
H/G < Cygq) and Z(H) < Cy. In particular, Z(H)G /G = Z(H)/Z(G) has order dividing both 4
and t(q), whence Z(H) = Z(G). Next, H/G acts trivially on G/S = Z(G), i.e. G/S < Z(H/S), and
the quotient (H/S)/(G/S) = H/G is cyclic. It follows that H/S is an abelian group. As mentioned
above, H has no quotient of order 2, so 2 1 |H/S|, whence Z(G) = 1; in particular G = S when
n = 2. We have also shown that Cg(S) =Z(H) =1, so

(8.3.3) S<H< Aut(S’) =S5x C2n+1

(d) Finally, we consider the case n = 1, i.e. D = 14. As the quasisimple group G = L acts
irreducibly on V = C” and Q(p) = Q(i), by [HM] the only possibility is that G' = 2By(8). O

Now we are ready to prove the second main result of the paper:

Theorem 8.4. For the geometric monodromy group G = Ggeom of the sheaf F(q, f) in (4.1.3), of
rank D = 2"(2?"*1 — 1), either G = SLp or G = 2By(q) with ¢ = 22"*L. Furthermore, for any
r|t(q), the geometric monodromy group of the descent G(q, f,r) is also equal to G.

Proof. Suppose G is infinite. Then the statements follow from Theorem 8.2.

From now on, assume that G is finite. Then G = S = 2By(q) by Theorem 8.3. Since for any
r|t(q), the geometric monodromy group of G(q, f,r) contains G and is contained in the geometric
monodromy group H of F(q, f,t(q)), it suffices to show that H = S.

First, note that the co-slope of G(q, f,t(q)) is 0 = (¢o + 1)/D and D + 1 = (qo + 1)t(g), so
ged(D,qo + 1) = 1. It follows from [Kal, Proposition 1.14] that I(oo) acts irreducibly on V', of
dimension D = ¢go(q¢ — 1). Since the image J of I(c0) is cyclic of p’-order modulo the image @ of
P(x), Q = 09(J) and J = (Q, goo), where the p’-element g, transitively permutes the pairwise
non-isomorphic ¢ — 1 simple @-summands on V', each of dimension ¢.

Since ¢ = 22"+ using [Zs] we can find a primitive prime divisor £ = ppd(2,2n + 1), and fix
a power h of g, that has order ¢. Clearly, the prime ¢ is at least 2n + 3, so it is coprime to
2n + 1 = |Out(S)|. On the other hand, S < H < Aut(S) by (8.3.3). Hence h € S and Q < S.

We can write h = 2(¢~D/¢ where on the natural module U = Fg for S = 2By(q) < Sp(U), the

spectrum of & € S consists of 4 eigenvalues £2", £€72", ¢172" ¢2"~1 where ¢ € F>™ has order q—1
see [Bur], [Suz]. We may write Aut(S) = (S, ), where § acts as the Galois automorphism \ — \?
of Fy. Suppose that for some 1 < a < 2n and for some y € S, the element yf® centralizes h. Note
that 0% sends z to 22 and h = (@~ D/C to z2°(@=1/¢ Tt follows that

xga(qfl)/@ — 0OhYC — yfl(yea)h(yga)*ly — y*lhy

is S-conjugate to h = z(¢=1/¢. On the other hand, it is known [Bur] that if b, ¢ € Z then z* and z°
are S-conjugate if and only if ¢ = £b (mod (¢ —1)). It follows that ¢ divides 2% &+ 1; in particular, ¢
divides 22¢ — 1. The primitivity of ¢ then implies that 2n + 1 divides 2a, a contradiction.

We have shown that Cpu(s)(h) < S. As goo centralizes h, it follows that g € S. Hence
J =Q{goo) < S. Now S < H and H is finite, so H = S by Theorem 4.3. O

Theorems 6.1 and 8.4 imply the following.
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Corollary 8.5. The sheaves F; and Gq in §1, of rank D = 27(227+1 1), have the same geometric
monodromy group G = Ggeom. Furthermore, either G = ’By(q) with ¢ = 22"+ orn > 2 and
G = SLp.

Remark 8.6. It is plausible that for each ¢ = 22"t > 32, we can find a polynomial f; € Fa[z] of
degree 2" + 1 such that the sheaf F(q, f) with f(z) = fi1(2"9) as in (4.1.3) has infinite geometric
monodromy group, which then is SLp by Theorem 8.4. Indeed, a Magma calculation shows for each
2 <n < 25 that Froby g, has non-integral trace on F (g, 2(142"49) for some choice of k(n) € Z>.
For instance, Froby g, has trace (20 —T7)/2 for (n, (k(n)) = (2,7), (5i4+3)/2 for (n,k(n)) = (3,5),
(7 —3i)/4 for (n,k(n)) = (4,7), and 5/2 for (n,k(n)) = (5,7). In fact, for infinitely many integers
n > 2, we offer in Theorem 9.18 a construction of a sheaf F(q, f) with Ggeom = SLp.

9. ARITHMETIC VS. GEOMETRIC MONODROMY GROUPS

9A. Glauberman and Dade correspondences. Our next results depend on the Glauberman
correspondence. Recall that if A is a solvable finite group acting by automorphisms on another
finite group S with (|4, |S]) = 1, then there exists a canonical bijection * : Trr4(S) — Irr(C), where
C = Cg(A) is the fixed-points subgroup and Irr 4(S) is the set of A-invariant irreducible characters
of S. (See [Is3, Chapter 13].) Since the map is canonical, it is not difficult to see that Q(0) = Q(6*),
where Q(0) is the field of values of . (See [Is3, Problem 3.1].)

Suppose now that S = 2B5(2"), where n is odd. Then it is well-known that S admits a field
automorphism a of order n. Assume further that (m,|S|) = 1 for some divisor m > 1 of n.
Consider A = (a™/™) = C,,. If m = n, then C = Cg(A) = ?By(2) = C5 x C4 has 5 irreducible
characters; two of its four linear characters are rational, the others have field of values Q(7). It also
has a rational irreducible character of degree 4. In particular, it follows that Irr(S) has exactly 5
irreducible A-invariant characters, and exactly two of them have field of values Q(z). On the other
hand, if m < n, then C = Cg(A) = ?By(2™™) has exactly 2 irreducible A-invariant characters with
field of values Q(i), namely the ones of degree (r — 1)/r/2 with 7 := 2"/™; see [Bur]. This proves
the following.

Lemma 9.1. Suppose that S = 2Bo(2"), where n is odd. Assume further that (m,|S|) = 1 for
a divisor m > 1 of n, and let A be the subgroup of field automorphisms of S of order m. Let
C =Cs(A). If 0 € Irro(S) has field of values Q(i), then 0* has degree (1 —1)+/7/2 with r = 2"/™.

Lemma 9.2. Suppose that A is a cyclic group of order m acting faithfully and coprimely on S.
Let 0 € Trr(S) be A-invariant, C = Cg(A), and let n € Irr(C) be the A-Glauberman correspondent
of 0. Let G =S x A be the semidirect product, and let 1 € Irr(G) be an extension of 6. Consider
r € G\ S such that (z,S) =G.

(i) If n is linear, then |(x)| = 1.

(ii) In all cases, there ezist a root of unity v € C* of order dividing 2m and ¢ € C such that

Y(x) =yn(c).

Proof. Let ¢ € Irr(G) be the canonical extension of # to G. (This is the unique extension v such
that the determinantal order is coprime with |A|, see [Is3, Corollary 6.28]). Since every extension
of # to G is a multiple of ¥ by a linear character A of G/S, we may assume that ¢ = Ay, where
g is the canonical extension.

Observe that m divides the order of x. Since m is coprime to |S|, we can write x = ¢b = be,
with b being a m-element and ¢ being a 7’-element, where 7 is the set of prime divisors of m. Also
|b| =m, and S 5 2™ = b"™ = ™, implying ¢ € S since ged(m, |S|) = 1. Moreover, G = S x (b),
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so without any loss we may replace A by (b), and now ¢ € C = Cg(b) = Cg(A). By [Is3, Theorem
13.6]

Yo(z) = ho(ch) = en(e),
where e = £1. Hence, ¥(x) = yn(c), where v = e\(x) and A(z)™ = 1. O

Since each of the two irreducible characters of S := 2By(q) of degree (¢ — 1)/q/2 has field of
values Q(7) and is Aut(S)-invariant, Lemmas 9.1 and 9.2 imply the following.

Corollary 9.3. Let ¢ = 2" with 2 { n and let 0 be either of the two irreducible characters of
S := 2By(q) of degree (¢ — 1)\/q/2. Then 0 extends to G = Aut(S) = S x C,. If furthermore

n is coprime to |S|, then |ip(z)| = 1 for any extension v of 0 to G and for any x € G . S with
G=(z,9).

We remark that the character 6 in Corollary 9.3 has a canonical extension to G. Indeed, by [N1,
Theorem A, there exists a unique ¢ € Irr(G) such that the field of values of ¢ is Q(7). In particular,
notice that the restriction ¢ to C), is rational-valued.

In some non-coprime situations, we can use the following statement. This also follows from results
in [Da, §9], but in the situation under consideration, our approach is more straightforward.

Lemma 9.4. Suppose that G = SA, where A = (a), S< G and ANS =1. Let C = Cg(A), and
assume that x € Irr o(S) has an extension ¢ € Irr(G) such that ¢ 4 is rational-valued. Suppose that
for every x € G S, there exists some g € G such that x9 = cb for some c € C and b € A. Then
there exist a character 0 € Irr(C) and a sign € = £ such that (cb) = €0(c) for every c € C and
every generator b of A.

Proof. By the proof of [Is3, Lemma 13.5], we can write
Yoa = > BN Yg,
Belrr(C),[xc,Bl#0

where 13 is a rational-valued character of S. Now, define 6(c) = 9(ca) for ¢ € C. Then

0="> 1s(s)B.
B

Thus 6 is a virtual character of C. We claim that [#,0] = 1. Let T' be a set of representatives for
the right cosets of C'in S. In order to use the proof of [Is3, Theorem 13.6], we claim that

Sa = U (Ca)
teT

is a disjoint union. By hypothesis,

Sa=|J(Ca)y = J(Ca)'.

ses terT
Now,
15 = ISal = [ J(Ca)'| < D_I(Ca)'| = TIIC| = IS,
teT teT
and the claim follows. The rest of the proof follows as in [Is3, Theorem 13.6]. O

Finally, to address the general situation in the Suzuki case, we must go much deeper into [Da,

§9].
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Corollary 9.5. Let ¢ = 2™ with 2 { n and let 0 be either of the two irreducible characters of
S = 2By(q) of degree (¢ — 1)v/q/2. Then 0 extends to G = Aut(S) =2 S x C,, and | (z)| = 1 for
any extension 1 of 0 to G and for any x € G\ S with G = (z, 5).

Proof. We adapt the notation of [Da, §9] to ours. We know that Cg(A) = B x R, where B = ()
has order 5, and R is a cyclic group of order 4. Now, let G’ = Ng(B) = S’ x A, where S’ = Ng(B).
Let G be the set of x € G such that (xS) = G/S, and let G, be the set of x € G’ such that
(xS"y = G'/S’. By |Da, Lemma 9.3], S = C x R, where C is a cyclic group described there.
By [Da, Proposition 9.7], Gj, is a trivial intersection subset of G with normalizer G’. In Dade’s
language, it satisfies (6.4) of [Da]. In particular, by [Da, Lemma 6.5],

Go = (J(Go)
TeT
is a disjoint union, where G = |J, - G'7 is a disjoint union. (In that lemma right cosets are used.)
In particular, if z € G{, and 7 is a class function of G’, then

n“(x) = n(x).

By [Da, Theorem 9.8], § naturally corresponds to some irreducible character 1 € Irr4(S’), which
therefore has field of values Q(¢). Now, S only has two A-invariant irreducible characters with field
of values Q(7), so using the inverse of Dade’s natural correspondence from that theorem, necessarily
n is one of the two linear characters of S’/C = R.

By hypothesis (z,5) = G, and so x € Gy. Since

o= UG,
TeT

we may assume that € G. By [Is2, Lemma G, ¢)(z) = ey(z), where v € Irr(S"A) is an extension

of n, and € is a root of unity. In particular, y is linear. We conclude that |¢)(z)| = 1, as desired. O

Lemma 9.6. Let S <1 G < GL(V) = GL4(C), where G is finite, S = ?Ba(q), D = qo(q — 1) with
qo=2" q=2"" and V = CP is irreducible over S. Suppose that G contains two elements go, g1
such that Trace(gg) = +i, Trace(g1) = £1, and g1 € goS. Suppose in addition that the trace of
every element in Z(G) belongs to Q(i). Then gy and g1 both induce non-inner automorphisms of S.

Proof. Assume the contrary. As g1 € goS, go induces an inner automorphism of S. Hence we can
write go = zs for some s € S and some z € Cg(S) = Z(G). Since G is finite, z has finite order,
whence z = ( -idy for some root of unity ¢. By assumption, ¢ € Q(i), whence ¢* = 1.

First suppose that ¢ = +1. Then Trace(s) = ¢~ 'Trace(go) = =i, but this is impossible for any
element in S, see [Suz]. Hence, ( = +i. Recalling that g; € goS, we can write g1 = got = zst for
some t € S. In such a case, Trace(st) = (" Trace(g1) = +i, and we again arrive at a contradiction
since st € S. O

9B. Traces of Frobenii and arithmetic monodromy groups. We now give a lemma on traces
for those local systems F (g, f) in which the polynomial f(z) of degree (qo + 1)t(q) lies in Fa[x] and
has f(0) = 0. Recall that go = 2", n > 1,q = 2¢2, t(q) = ¢ + 1 — 2qo; for k/Fs a finite extension
and i = (4, the trace function of F(q, f) is
—1 t(a)
teke (1= (—1)n ) s®/™) §¢2<Tracew2(k>/w2<wz>([x Y, f(x) + tz])).
Lemma 9.7. For F(q, f) as above, i.e. with f(x) € Falx| of degree (qo+1)t(q) and f(0) =0, define
A

:= the number of nonzero monomials in f(x),
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so that A = f(1) (mod 2). Then the traces at points of Fy are given as follows, with i = (4:

Trace (Frobog,| F(q, f)) = { _(_1)_711': g ;&ﬁlA—_n?)l,)’

Trace(FrobLIpQU:(q, f)) = { _(_1)_7?: i §|)£1E1A—_n7;.)7

Furthermore, for any finite extension k/Fo and any t € k, |Trace(Frob, x| F(q, f))| < V#k.

Proof. The trace at time 0 € Fy is ﬁ times the sum

2[0,0] + o1, A] = 1 + (—1)44,

while the trace at time 1 € s is ﬁll)”z) times the sum

¥2[0,0] + a1, A + 1] = 1+ (~1)A*14.

If (—1)4 = —(—1)", these traces are respectively —1 and —(—1)"4. If (—1)4 = (—=1)", these traces
are respectively —(—1)"i and —1. For the second statement, note that Trace(Frob ;| F(q, f)) is a

sum of #k terms, each of absolute value 1, divided by a clearing factor of absolute value /#k,
hence it has absolute value < /#k. O

Theorem 9.8. Let n € Z>1 and ¢ = 2°"T1. Suppose the Airy sheaf F(q, f) defined in (4.1.3)
with ¢ = 2271 f(x) € Fa[z], and f(0) = 0, has finite geometric monodromy group S. Then the
following statements hold for S and the arithmetic monodromy group G := Gayithr, of F(q, f) over
Fs.
(i) S =2By(q). Furthermore, G induces non-inner automorphisms of S, G = Z(G) x R for some
S<R< Aut(S) =5 x CQTH_l, and Z(G) < Cy.
(i) If 2n+ 1 is coprime to |S|, then G = Z(G) x Aut(S).
(iii) Suppose that |Trace(Frobor ,)| = qo := 2". Then G = Z(G) x Aut(S). Moreover, |Z(G)| < 2
if Trace(Froboyqu) = —qo or Trace(Frobgr,) = £qoi, and Z(G) = 1 if Froby r, has odd order.

Proof. (i) By Theorem 8.4, the geometric monodromy group of F(q, f) is S = 2Ba(q) in its irre-
ducible representation of degree D = go(¢ — 1). By Lemma 9.7, for the images go of Frobgr, and
g1 of Frob; r, in G, one has trace £i and the other has trace 1. Note that g1 € goS, and since G
is finite, the traces of all elements in G belong to Q(i) by Chebotarev density. By Lemma 9.6, go
induces a non-inner automorphism of S.

Recall that Out(S) = Ca,,41. Then G projects onto a subgroup S x C,, of Aut(S) with kernel
Ca(S) = Z(G), for some divisor m > 1 of 2n + 1. Again, each element in Z(G) acts as a scalar
a on CP and has trace a root of unity belonging to Q(7), whence a* = 1, and thus Z(G) < Cy.
Now (G/S)/(Z(G)S/S) =2 G/Z(G)S = Cy, is cyclic, and Z(G)/S < Z(G/S). Tt follows that G/S
is abelian of order m|Z(G)|, with cyclic quotient of odd order m and a cyclic 2-subgroup Z(G)S/S
of order |Z(G)|. Hence G/S = R/S x Z(G)/S, with R = S x Cy,. The composition factors of R are
S and cyclic groups of odd order (dividing m), so RNZ(G) =1 and G = Z(G) x R.

(ii) Now assume that 2n + 1 is coprime to |S|, but m < 2n + 1. Let ¢ be the character of
R = S x (), acting on the sheaf, which extends the character 6 of S. Let n denote the Glauberman
correspondent of # as in Lemma 9.2, in particular, it has degree (r — 1)\/7’/72 for r := 2@nt+1)/m > g
We can write go = zho and g1 = zh; for some ho,h; € R and z € Z(G) (recall goS = ¢1.5). Now z
acts as a root of unity 8 with 8% = 1, and ¥(h;) = v;n(c;) with ¢; € C = ?By(r) and fyjzm =1 for
j =0,1 by Lemma 9.2. Since n(c;),3,%(g;) € Q(3), we see that v; € Q(). But 'yjzm =1and 2tm,
so v; = £1.
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Note that, since > 8, the character  does not take value i, see [Suz]. Without loss we may
assume ¥ (go) = +1 and ¥(g1) = +i. Now, if § = +i, then n(go) = ¥(g0)/(Bv) = *i, which
is impossible. On the other hand, if § = =£1, then n(g1) = ¥(g1)/(Bv1) = =i, which is again
impossible. Hence m = 2n + 1, as stated.
(iii) By assumption, |¢(g, 4"”)\ = qo, where ¢ is the character of G acting on F(g, f). Using
G = Z(G) x R, we again write go = zho with z € Z(G) acting on F(g, f) as a root of unity /3, and
ho € R. Then Z(G) = (2) since G = (go, S), and g* = 1. Now s := hZ"™' € S as R/S — Copy1,
and |p(s?)| = go. Checking the character table of S [Bur], we see that |s%| = 2 or 4 and thus s is a
2-element. But every 2-element of S has order dividing 4, so |s| = 4. Hence we can write |ho| = 4e
for some e|(2n + 1).

Suppose that e < 2n + 1, whence e < (2n 4+ 1)/3. Then gf is the image of Frobg e, and so

go = 2" > 20mH/6 > 992 > o (g6)| = |o(hf))|

by Lemma 9.7. On the other hand, since R/S < Co,41 and h§ has order 4, h§ € S and hence
lp(h§)| = qo, a contradiction. Thus |hg| = 4(2n + 1). Note that |Cs(s?)| = ¢, hence |C¢(s?)| has
order dividing ¢%|Z(G)| - |[R/S|. But hg belongs to Cg(s?) and has order 4(2n + 1); thus (2n + 1)
divides |R/S| and so R = Aut(S).

Since G = (g1,95), the assumption that the image g1 of Frob;r, has odd order implies that
21|G/S|, and so Z(G) = 1. Next suppose that |Z(G)| > 2 but ¢(g, 4"+2) qo or p(ga" ™) = +qoi.
Then 8 = +i. In the former case,

(p(gén—i-Q) (/84n+2hgn+2) _ _(P(hén+2> _ —@(82),

and thus the involution s? € S has trace qg, which is impossible, cf. [Bur]. In the latter case,
(P(Q(Q)n+1) (62n+1h4n+2) ii(p(h%n+l) _ :I:z'tp(s),

and thus s € S has trace tqg, which is again impossible, cf. [Bur]. O

Proposition 9.9. We consider the sheaf F4, ¢ = 22"“‘1,. as defined in the Introduction. Thus
Fy o= Flg, f) with f(z) == f1(2"D), fi(x) = S0, 2172 as in (4.1.3). For a finite extension
k/Fq, define

2n
Ker(k):={z ek | Y 2* =0
=0

Then we have the following results.

(i) For any subfield k of F 2, | Trace(Frobq | Fq)|? is either 0 or #Ker(k).

(ii) |Trace(Frob0,]Fq2 |Fg)|? = #Ker(F 2) = #Ker(F,) = q/2.
Proof. We first observe that ged(t(q),q> — 1) = 1. To see this, note that t(q) = ¢ + 1 — 2qo divides
q®> + 1 (indeed (¢ +1 —2q0)(q + 1 +2q0) = ¢®> + 1), while ged(¢® — 1,¢> + 1) = ged(¢® — 1,2) = 1.

Thus for any subfield k of of F2, the map z — 2@ is bijective on k.
The sheaf F;, was built out of the Witt vector

Z"" 1+2)

Let us denote by H, the sheaf built by the same recipe, with same clearing factor, out of the Witt

vector
n .
[3:, Z x1+22] .
i=1
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Then for any subfield & of of F.
(9.9.1) Trace(Frobyg ;| F,;) = Trace(Frobg |H,),

precisely because the map z — zt(9) is bijective on k.
Let us rewrite the input Witt vector for H, as

(9.9.2) Zaz1+2 [z,zR(z)] with R(z ZJ:QZ.

With this rewriting, we apply the idea of van der Geer-van der Vlugt, cf. [vG-vV, §5], as follows.
Let us define

(9.9.3) V(z) := [z,zR(x)].
In Witt vector addition in Fg-algebras, using the fact that R(z) is an additive polynomial, we get
V(z+y) = V(z) = V(y) = [z +y, (@ +y)(R() + R(y)] + [z, 2R(z) + 2% + [y, yR(y) + ]

= [y, (@ + y)a + (z + y)(R(x) + R(y)) + zR(z) + 2%] + [y, yR(y) + v°]
=[0,9% + (z + y)z + (z + y)(R(z) + R(y)) + aR(z) +2° + yR(y) + ]
= [0,zy + zR(y) + yR(x)]
=0, (z,)]

for

(9.9.4) (,y) =2y + xR(y) + yR(x).

The key point is that (z,y) on k x k is a symmetric Fa-bilinear map to k, and Tracey /g, ((z,y)) is
a symmetric Fo-bilinear form on k x k as [Fy vector space.
Then

| Trace(Frobo k[Hq)|* = (1/#k) Y _ o (Tracey s, (V(z) — V(y)))
z,yck
(by the shearing transformation (x,y) — (x 4+ y,¥))

= (1/#k) > va(Traceys,(V(z +y) — V(1))

z,yck

= (1/#k) > va(Traceys,(V(z) + [0, (z,y)]))

T,yek

= 3w (Tracey e, (V) ( (0/8) X 0 (Tracer s, (2.0)) )

z€ek yek
The second summand vanishes unless the given = € k has Tracey g, ({z,y)) = 0 for all y € k, in
which case it is 1. But z € k has Tracey g, ((z,y)) = 0 for all y € k if and only if x € Ker(k). To
see this, note that for z,y € k,

(x,y) =2y +zR(y) + yR(x —xy—i-Za:y —i—Zyw

has the same Tracey p, as (:z + >0 22 4 Sorx )y So by nondegeneracy of the trace, x € k
has Tracey, /, ((z,y)) = 0 for all y € k if and only if

n n 2n
T+ le/QZ + szl =0, i.e. if and only if Z:BQZ =0
i=1 i=1 i=0
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Thus for £ a subfield of IF 2,

|Trace Frobo Hg) Z ) Tracek:/IFQ( (v )))
zeKer(k)

To show (i), notice that on Ker(k), z + Traceyp,(V (z)) is additive, i.e. it is a linear form on
Ker(k). If it is nontrivial, the sum giving |Trace(Frobg xH,)|* vanishes. If it is trivial, this sum is
#Ker(k).

To show (ii), notice that for any k C Fo, Ker(k) is precisely the set of elements z € k N F, with
Tracer, /r, () = 0. (Indeed, if x € Ker(k), then

2n+1

2n 2n
0= ZFi(x) = F(Z Fi(z)) = Z Fi(z)
and so ¢ = F?"*!(z), i.e. z € F,.) In particular, Ker(F2) = Ker(F,) and #Ker(F,) = ¢/2. Now
for x € Ker(F,2) we have
Tmcelgq2 k. (V(2)) = Tracey, /r, (TraceF 2 /F,(V(2)))
(V(z) +V(z))

= Traceg, /g, ([0, %))

= [0, Traces, /r, (¢%)]
= [07 0]7

= Tracey, /r,

precisely because every z € Ker(F2) is an element of F, of trace zero. So we see directly that each
of the summands in the sum giving \'I‘Jrace(l:‘robo,pq2 |H,)|? is simply 1. O

Proposition 9.10. For q = 2*"* and the Airy sheaf F,
Trace(Frobgr, |Fy) = —€2"i,

where € := (—1)""*tD/2 js the Jacobi symbol

B 2 B 1, if 2n+1 =41 (mod 8),
€2n4+1 = on+1) | —1, if 2n+1 = 43 (mod B8).

Proof. (i) Proposition 9.9 implies that Trace(Frobg,|F,) lies in Z[i] (because the only possible
non-integrality is at the unique place of Q(i) over 2, where this trace and its complex conjugate
have the same 2-adic ord). Furthermore, we can work with traces over H, instead of F,.

Let us denote by F' the absolute Frobenius = — 22, and define

x) :ZFi(ac), Vo(z) == [z, 2Ry ( [z, x ZFZ
i=1

Consider the non-normalized sum
RawTrace(Frobgr,|Fy) Z Yo (Tracer, /r, (Va(2))),
z€elF,
so that
RawTrace(Frobor,|Fy) = (1 — (—1)"i)2”+1Trace(Frob07Fq]]:q).

(ii) To explain the idea of the proof, consider first the case when 2n 4+ 1 is an odd prime p. Then
Fo» /Fy has degree p, and Fap \F is the disjoint union of F-orbits of length p. On each such F-orbit,
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the value of Tracep, /,(Vy (7)) is constant, and this constant value is then repeated p times as we
sum over this orbit. So we have a congruence modulo pZ[i]:

RawTrace(Frobgr,|Fy) = — Z o (Tracqu/F2(Vn(x)))

€y

= —o(Tracer, /r, (Va(0))) — tho(Tracer, /m, (Va(1)))

= —1 (Trace]Fq i (A O]) — 1o (Tracqu /2 (1 n])
(remembering that F,;/Fy has odd degree p, and both V,,(0), V(1) are already Fa-rational)
= —2(p[0, 0]) —a(p[L, (= 1)/2]) = ~1=ta([L, (p—1)/2) = ~L = (D = 1" = 1.
So when 2n + 1 = p, we have a congruence modulo pZl[i]:

(1- (—1)(p_l)/Qi)pTrace(Fron,Fq\.Fq) =—-1—i.
Multiplying both sides by (1 + (—1)®~1/2})P we get a congruence modulo pZ[i]:
2P Trace(Frobor, |[Fy) = —(1 +)(1 + (—=1)®~D/2)P,
If p=1 (mod 4), the right side is
—(1 40Pt = _(2@')(27;)(19—1)/2 - _(Qi)Q(P—l)/Qi(P—l)/2_
If p = 3 (mod 4), the right side is
—(1+4)(1—i)P = —2(1 — )P = —2(=24)P=D/2 = o+1)/2;(>=1)/2,

Recalling that 2P = 2 (mod p), and that (p — 1)/2 = n, we get a congruence modulo pZ]i|:

—i27®=1/2if p =1 (mod 4),

Trace(Frobo,|Fq) = { on;(p—1)/2 if p =3 (mod 4).

Thus
(9.10.1) Trace(Frobgr, | Fy) = —€,2"1,

where ¢, is given by i(P~1)/2 = (—1)(P=1/4 = (=1)®*=D/8 when p = 1 (mod 4), and by iP+1)/2 =
(=1)P+D/4 = (—1)®*~D/8 when p = 3 (mod 4). Thus in both cases €p is the Legendre symbol
(%) = (-1)®P*~1/8,

In view of Proposition 9.9, Trace(Frobgr,|F,) is either 0 or an element of Z[i] of absolute value

2". It cannot be 0 because of (9.10.1). So it must be one of £2" or £2"i. Of these four possibilities,
only —ep2"i is congruent modulo pZ[i] to —ep2™i (this is just the statement that for an odd prime
p, the four powers of i are distinct modulo pZ[i]).

(iii) We now turn to the general case, where we proceed by induction on the total number
(counting multiplicity) of primes dividing 2n + 1. Thus we write

2n+1=mps, s=2a+1, p=2b+ 1, with a,b > 1 and p prime.
We will need to deal with both Foprs and Fas. To simplify notation, let us write
Q=2 ¢ :=2°
Here
ps=s5(2b+1) =2bs+s=2(sb+a)+ 1.



LOCAL SYSTEMS AND SUZUKI GROUPS 49

The idea is that Fg \ [Fy is the disjoint union of F*-orbits, each of length p, and on each of
these orbits, the value of Tracer,, /r, (Vsp+a()) is constant, and this constant value is then repeated
p times as we sum over this orbit. Thus we get a congruence modulo pZli]:

RawTrace(Frobg r, [ Fg) = — Z o (TraceFQ/Fz(‘/sb+a(x))).
mG]Fq/
But for x € Fy, the trace from Fg down to Fy is just multiplication by p, so

Tracen /i, (Vabra(@)) = Traces,, i, (Vi sa(2)).
Suppose first that b is even, i.e. that p = 1 (mod 4). Recall 4[z,y] = 0. So for x € Fy,

sb+a

stb+a(x) = Vsb—l—a(x) = [xaxRa(x) —l—l‘( Z FZ(J:))]
i=a+1

= [, Ra(w) + 2 (FTraces, i, (2)] = [, 2Ra(2)] = Va(2)
where the last equality holds because b is even. So in this even b case,
RawTrace(Frobg r, | Fg) = RawTrace(Frobg r, | F¢/) (mod pZ[i]).
Suppose now that b is odd, i.e. that p = —1 (mod 4). Then for x € Fy,

sb+a

PVarta(®) = —Vipa(®) = —[1,2Ra(x) + 2( D F'(2))]
i=a—+1

= —[z,2Ra(x) + xTracer , v, ()] = [z, 2Ra(x) + x? + aTracep , /r, ()]

= [z, zRq(z)] + [0, 2+ :BTracqu,/]FQ ()] = Vo(z) + [0, 2+ ;U’I‘racelgq,/lg2 (x)].
But the term [0, 22 + aTracep , /r, (x)] has

Trace]Fq, JFa ([O, %+ :UTracqu, /Fa (a:)]) = |0, Tracqu, /Fa (332 + :ETracqu, /Fa (x))] = [0, 0],
where the last equality holds because Tracer , /, (2?) = Tracey,, F, (T) = (Tracelgq, /m, ()2 So in
this odd b case as well, also
RawTrace(Frobg r, | Fg) = RawTrace(Frobg r, | F¢/) (mod pZ[i]).
We have shown that

(9.10.2) (1-— (—1)Sb+ai)psTrace(Frob0,FQ|.7-"Q) = (1 — (—1)")°Trace(Frobo , [F¢) (mod pZ[i]).
By the induction hypothesis,
(9.10.3) Trace(Frobor,, | Fy) = —€s2%.

The clearing factors are invertible modulo pZ[i]. We next show that the clearing factors are equal
modulo pZ[i]. Their ratio is
(1= (=D (1= (=P )P (1 + (~1)%)°
-0 - % |
If b is odd, then (p + 1)/2 is even, and this ratio is
(L+ (C1pes  (2(=1)) e

28 28

= 25(=1)/2((_1)24)s(P+1)/2 = 2s(p=1)/24s(p+1)/2,
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If b= (p—1)/2 is even, this ratio is
(1= (=1)%) P~ = (—2(=1)%)3P~1/2 = gs(p=1)/2js(p=1)/2,

Let Xp,quaa be the quadratic character of F;, so 2(0=1)/2 = Xp,quad (2) (mod pZ[i]). As sisodd, the ra-

tio of clearing factors modulo pZ[i] is Xp.quad(2)i*®~1/2 when p = 1 (mod 4), and X, quaqa (2)i*@+1)/2
when p = 3 (mod 4). Next, when p = 1 (mod 4),

i=1/2 _ Xp.quad (2)-

When p = 3 (mod 4),

i(p+1)/2 = Xp,quad(2)'

As s is odd, we find that in all cases the ratio of clearing factors is 1 (mod pZ[i]), as stated. Hence
(9.10.2) and (9.10.3) imply the congruence

Trace(Frobor, |Fq) = Trace(Frobog,, [Fy) = —€:2%i (mod pZli).
Note that
2 = (2070/2)* = ) ad (2)° = Xp.quad (2) = € (mod p).
Hence
6p528b+a = €)s€6p2" = €,2% (mod p)
by multiplicativity of the Jacobi symbol. It follows that
Trace(Frobg r, | Fg@) = —€s2°1% (mod pZ]i]).
This congruence shows that Trace(Frobg r,|Fq) is nonzero, so by Proposition 9.9 it is one of $2s0+a

or £259+j Again, of these four possibilities, only —e,s2"i is congruent modulo pZ[i] to —eps2",
and the induction step is complete. O

Proposition 9.11. For g = 22", consider the Airy sheaf Fy. Then for any subfield k of F,
| Trace(Froby x| F,)> = 1.

Proof. Let k be a subfield of F2. Note that N := (q + 2qo + 1)¢?/2 divides (¢ + 1)¢? and so is

coprime to ¢ —1. Hence the map « — 2% is a bijection on k, and it sends 219 to (@ +D4*/2 = g for
any x € k. As in the proof of Proposition 9.10, let us denote by F the absolute Frobenius z + 22
For each integer j > 0, we define

Rj(z) == ZFZ(:I:)

Consider the non-normalized sum

RawTrace(Frob; ;|F,) == — Z Yo (Tracey,r, (V(2))),
zck

where V() = [z, 2R, (z) + 2V]. Then we have
RawTrace(Froby ;| F,) = (1 — (—=1)"3)%e*/E2) Trace(Frob 1| F,).

We now take k£ to be a subfield of F,. We examine the function = — 2N on k. This function
depends only on N (mod (¢ — 1)). Then

N=(1+1+2q)q/2=(2+29)q/2=q+qq =1+g=1+2" (mod (g —1)).
Thus if « € k, then V¥ = zF"(z), and hence
V(x) = [z,2Rn(z) + 2] = [z, 2Rn(2) + 2F™(2)] = [z, 2Rp_1(2)].
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At this point, we repeat the van der Geer-van der Vlugt argument of Theorem 9.9. We find that
if £ is a subfield of I, then

|Trace(Froby x| F,)|* = Z Yo (Tracey,r, (V(2))),

zeKer' (k)

with
2n—2

Ker'(k) := {z € k| Y _ F'(z) =0}.
=0

The key observation is that for k a subfield of Fy, Ker/(k) = {0}. Indeed, since
0 € Ker'(k) C Ker'(F,),
it suffices to show that Ker'(F,) = {0}. But for z € Ker'(F,),

2n 2
Tracer, FZ ))+HF ) + F2(x) = F2(2) + F2 ().
o/Fa

Thus for = € Ker'(F,), Tracqu/F2 (:p) = F?"" Yz + F(x)). As Traceg, /r,(z) € Fo, this gives
Tracep, /,(z) = = + z2,

If Tracep, r,(z) = 0, then z + 22 = 0, i.e. © € Fy, so x is 0 or 1. Of these, only z = 0 has

Tracer, /r, () = 0. If Tracep_sr,(x) = 1, then r+12% =1 and so Fy(x) = F4. But F4 is not a subfield
of F,, which has odd degree 2n + 1 over [F2. So in this second case, there are no possible x.
Thus

[ Trace(Froby x| F)|* = " ta(Traceym, (V(x))) = ta(Tracey,, (V(0))) = 1([0,0]) = 1
z€Ker' (k)

Proposition 9.12. For g = 22"! and the Airy sheaf Fqs
Trace(Froby r |Fy) = —

Proof. (i) The quantity Trace(Froby ;| F,) lies in Q(¢) and is integral outside the unique place over
2, so by Proposition 9.11, Trace(Frobyr,|F,) is one of {1, —1,4,—i}. For any odd prime p, these
four elements are distinct modulo pZ[i]. We proceed by induction on the total number (counting
multiplicity) of primes in the factorization of 2n + 1.

For the induction base, suppose that k = F; = For. Then F, \ 5 is the disjoint union of F-orbits
of length divisible by p. On each such F-orbit, the value of Tracer,_/r,(V(z)) is constant, and this
constant value is then repeated a multiple of p times as we sum over this orbit. So we have a
congruence modulo pZ[il:

RawTrace(Froby r | Fy) = — Z Yo (Tracep o (V(x x)))

z€Fo

= —1o (Tracqu/F2( (0))) o (Tlrace]pq/ﬂz2 (V(l)))
= —1)y (TraceF /F,[0,0]) — (Traceﬂrqﬂgz[l,n +1])
= —2(s[0,0]) — 2 (p[l, (p+1)/2]) = =1 —o([1, (p + 1)/2])"

= —1— (et — P = g g,
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So for Frob; r,, we have a congruence modulo pZ[i]:
(1-— (—1)(pfl)/Qi)pTrace(Frobl,Fq|.7-"q) = RawTrace(Froby , | Fy) = —1 +1i.
Multiplying both sides by (1 + (—1)®~1/2§)P we get a congruence modulo pZ[i]:
2P Trace(Frobo g, [F) = —(1 — i) (1 + (1) P~1/2j)2.
If p =3 (mod 4), the right side is
—(1 = )P = —(20)PFD/2 = _o(p+)/2(_1)(p+D)/4 = _2(_1)(p271)/8+(p+1)/4 = —2 (mod p).
If p=1 (mod 4), the right side is —(1 —)(1 + i)?, which is
—2(1+4)* 1 = —2(20) P~ D/2 = _o+)/2(_1)(p-1)/4 = _2(_1)(p2—1)/8+(p—1)/4 = —2 (mod p).

Thus in both cases gTrace(Frobyr,|F;) = —2 (mod pZli]). Using Proposition 9.11, we conclude
that Trace(Froby r,|[F,) = —1 in this case.

(ii) Suppose now that 2n + 1 = ps with an odd prime p and an odd integer s. Then just as in
(iii) of the proof of Proposition 9.10 we write

s=2a+1, p=2b+1, ps=2(sb+a)+ 1.
We will need to deal with both Fops and Fas. To simplify notation, let us write
Q:=2P, ¢ :=2°,
Then, just as in the proof of Proposition 9.11,

RawTrace(Froby ,|Fq) = — Y tha(Tracer, /r, (7, Rep+a—1(2)])).
IEFQ

The elements of Fg \ Fy fall into F-orbits of length p, and the elements from each of these orbits
have the same Traceg,, /r, ([, Rsb+a—1(2)]). So we get a congruence modulo pZ[i]

RawTrace(Froby ,|Fq) = — > ta(Tracep, m, ([, Repra—1(2)]))

mGFw
= — ) da(Tracer,, /r, (p[#, Rspra—1(2)])).
mGFd
Notice that for x € Fy,
Rsb—f—a—l(x) = Rafl(x) + bTrace]Fq,/F2 ($)
Suppose first that p = 1 (mod 4). Then b is even,
p[$7 Rsb+a71($)] = [xaRsbJra*l(x)] = [xvaa—l(x)L

and hence
RawTrace(Froby i, [Fg) = RawTrace(Froby r , | Fy) (mod pZ[i])

when p =1 (mod 4).
Suppose next that p = —1 (mod 4). Since b is odd,

p[-% Rsb-‘ra—l(x)] = _[$7 Rsb—&-a—l(x)] = [337 7 + Rsb+a—1($)]
=[x, 2% + aTracer , /r, (%) + 2 Rq—1(x)]
= [z, 2Ra_1(x)] + [0, 2% + aTracer, , m, (7).
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But for z € Fy, Tracqu, /, annihilates z? + xTracqu, /F, (), 0 again
RawTrace(Froby ,[Fq) = RawTrace(Froby r , | Fy) (mod pZ[i])

when p = —1 (mod 4).
It remains only to show that the ratio of clearing factors is 1 (mod pZ[i]) in both cases. When
=1 (mod 4), (p — 1)/2 is even, and this ratio is

(1= (1" /(1 = (=1)%)" = (1= (~1)%) 7" = (~2(~1)%) @D/
:(2(]3—1)/2(_1)(]3—1)/4)3 =1 (mod p),

since 2(P~1/2 = (=1)®*=1/8 (mod p). When p = —1 (mod 4), (p + 1)/2 is even, and the ratio is
(1 (1P (L~ (~1)%)" = (L4 (D4 (~1%9)"/2° = (L (~1))oDs2°

= (1)) /220 =(2DI2(1)PIAY = 1 (mod ),
again because 20~1/2 = (—1)@*~1)/8 (;mod p). O
Lemma 9.13. For q = 22"t and S := 2By(q), suppose that s € Aut(S) has odd order and that

(s,8) = Aut(S). Then |s| divides 5(2n + 1).

Proof. Let G := Spy(F2). It is well known that there is a Steinberg endomorphism o : G — G
such that o? is the standard Frobenius map (a;;) — (a U) on G, and then we can identify S with
g7 = {X € G | 0®""(X) = X}, which is then o-invariant. Letting o also denote its action on
S, we can write Aut(S) = (o, S). Without loss, we may assume Ss = So~!, and write s = zo~L.
By the Lang-Steinberg theorem, there is some a € G such that

(9.13.1) ¢ =ao(a)”t
We also note that in Aut(S)
(9.13.2) (3:071)%Jrl =xz-0o(x) o%(z)-... 0" (x).

As in the proof of [GMPS, Theorem 2.16], define t := a~'s(>*+1q = (wa*1)2n+1a. Then using
(9.13.1) and (9.13.2) we obtain

o(t) = a(a)_1 . (J(:U) . Jz(x) e 02"(3:) . 02”+1(:r))0(a)
= (o(a) 27 - (v 0(@) ... 0*"(2)) - (vo(a))

=q ! (aca_l)QnHa =1t.

Thus t € G° = 2By(2), and note that |?By(2)| = 20. Since s has odd order and ¢, s?" ! are conjugate
in G, |t| is odd, whence |s?"T1| = |¢| divides 5. Thus |s| divides 5(2n + 1), as stated. O

Theorem 9.14. Suppose the Airy sheaf F, for ¢ = 220+l has finite geometric monodromy group
Ggeom- Then the following statements hold.

(i) The arithmetic monodromy group over Fa of Fy is Garith, = C x Aut(*Ba(q)), with |C| < 2.

(ii) Moreover, C =1 if2n+1 = +£3 (mod 8), and C = Cy if 2n + 1 = £1 (mod 8).

(iii) Suppose 2n+1 = £3 (mod 8). For the arithmetic monodromy group Gaith i of Fq over a finite
extension k/Fa, we have Gurithr, = Aut(?Bs2(q)), Garith k = Ggeom = 2By(q) when k D F,, and
[Garith i © Ggeom) = deg(Fy/k) when k C F,.

(iv) Suppose 2n+ 1 = %1 (mod 8).
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() For the arithmetic monodromy group Gaith i of Fq over a finite extension k/Fa, we have
Garithk = Ggeom = ’By(q) when k D Fp2, and [Gaithk @ Ggeom| = deg(Fp2/k) when
kCFgp.

(B) For the arithmetic monodromy group Garith,ﬁq,k of the sheaf ]}q = F, @ (—1)d8 F2 oyer
k/Fy, we have G ovith, 7, 7y = Aut(®Ba(q)), Goith 7y = G = 2By(q) when k 2 F,,

| = deg(F,/k) when k CTF,,.

geom, Fy

and [Garith,ﬁq,k : Ggeom,]:'q

Proof. Part (i) follows from Propositions 9.9, 9.10, and Theorem 9.8(iii).

(ii) Let g denote the image of Froby g, in Garith F,- AS (g, Ggeom) = C x Aut(S) for S := By (q),
we can write g = zs with C' = (z) < Cy and s € Aut(S) = S x Cap41. The central element z acts
on Fy as the scalar &, where { = 1if |C] =1 and £ = —1 if |C| = 2. The finiteness of Ggeom implies
that Garith,r, is finite, and so Trace(g™) is a Gaussian integer for any m € Z. Now Proposition 9.12
implies that

(9.14.1) Trace(s*" 1) = ¢Trace(¢*" ™) = —¢,

and note that t := s?"*1 € S.

Also note that since Aut(S) = (s,5), s has order 2n 4+ 1 modulo S, whence |s| = e(2n + 1) for
some e € Z>1, whence |t| = e. Inspecting the character table of S [Bur| and using (9.14.1), we see
that e = |t] is odd and greater than 1; in fact e divides ¢ —2¢qp + 1 if £ = 1 and e divides ¢+ 2qo + 1
if £ = —1, where g := 2. It follows that |s| = e(2n + 1) is odd. By Lemma 9.13, e > 1 divides 5,
so e = b; in particular, |s| = 5(2n + 1). An easy computation shows that 5|(¢ — 2go + 1) precisely
when n = 1,2 (mod 4) (equivalently, 2n + 1 = +3 (mod 8)), and 5|(q¢ + 2¢go + 1) precisely when
n = 0,3 (mod 4) (equivalently, 2n + 1 = £1 (mod 8)). Hence the statement follows, and we have
also proved that the image g of Frob; g, has order

(9.14.2) 10(2n +1), if 2n+ 1= +1 (mod 8),
o 52n+1), if2n+1=+3(mod 8).

Parts (iii) and (iv)(«) follow from (i), (ii), and the facts that Ggeom = 2B2(q) and Garith F»/Ggeom
is cyclic of order |C|(2n + 1).

To prove (iv)(8), note that when k D Fy, the images of 71 (A'/k) on F, and F, are the same.
Hence Garith,]:'mk = Gaiithx = °B2(q) whenever k D F,2, whence G = 2By(q) = S. Now
G oith, R = (,S), where § is the image of Frob; y, on F,. By its definition, § = —g, where g
is the image of Frobyr, on F,, and the proof of (ii) shows (recalling 2n + 1 = %1 (mod 8)) that
g = —s with Aut(S) = (s, S). Hence G ovith, 7, s = (s,8) = Aut(S) = S x Capt1, and the assertion
follows. O

geom,]?q

Remark 9.15. Computations in MAGMA suggest that, for the Airy sheaf F, with ¢ = 22n+1 the
Frobenii Frob,r,; with a € Fy; and ged(j,2n + 1) = 1, all have traces of absolute value 1. If one

knew that F, has geometric monodromy group Ggeom, 7, = 2By(q), then this “absolute value one”
property agrees with Corollary 9.5. Also, for n = 1,2, computations show that Frob; r, has order
5(2n + 1), and this again agrees with (9.14.2).

On the other hand, the infinite case of the dichotomy, namely Ggeom = SLp would imply by
Deligne’s equidistribution theorem [KaS, Theorem 9.7.13] that when j is large enough (compared
to g), some (in fact most) Frobenii Frob, r ; would have traces of absolute value # 1. This again gives
some evidence in support of the geometric part of [Ka5, Conjecture 2.2] asserting that Ggeom, Fo =
2By(q). However, Theorem 9.14(iii) shows that the arithmetic part of [Ka5, Conjecture 2.2] stating
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that Garith, 7,7, = Aut(*Ba(q)) is false when ¢ = 2™ with m = +1 (mod 8); it should be corrected
in that case by replacing F, by ]:'q as in (iv)(B) of Theorem 9.14.

9C. Local systems with infinite monodromy groups. Theorem 9.8 allows us to prove the
following criterion for infinite monodromy.

Proposition 9.16. Let n € Z>1, ¢ = 2", and consider the Airy sheaf F(q, f) defined in (4.1.3)
with ¢ = 22"+ f(z) € Falx], and f(0) = 0. Suppose that

(i) 2n + 1 is coprime to |*Ba(q)|, and
(ii) there is some odd integer m coprime to 2n+ 1 such that |Trace(Frobg g, | F(q, f))| # 1.

Then F(q, f) has infinite geometric monodromy group.

Proof. Assume the contrary: F(q, f) has finite geometric monodromy group S. By Theorem 9.8,
S = 2By(q) and the arithmetic monodromy group of F(q, f) over Fy is G = Z(G) x Aut(S), where
Z(G) < C4. In particular, |G/S| divides 4(2n + 1), and so S equals the arithmetic monodromy
group of F(q, f) over F 1. Moreover, G = (g, S) for the image g of Frobgr, in G, and we can write
g = zs with z € Z(G), s € Aut(S), and Aut(S) = (s,S). Applying Corollary 9.5, we see that
|Trace(g)| = |Trace(s)| = 1, a contradiction. O

Proposition 9.17. Let n € Z>g, q :=2?""! r:=[(n —1)/2], and define

.
filz) =Y 2t
i=0

Consider the sheaf F(q, f) with f(x) := fi("?) as in (4.1.3). Then for m := 2[n/2] + 1 we have
| Trace (Frobg r,. | F (g, f))| # 1.

Proof. As in the proof of Proposition 9.9, the starting point is that ged(t(q),2"™ — 1) = 1. To see
this, note that t(q) = ¢ + 1 — 2¢o divides ¢* — 1, and ged(g* — 1,2 — 1) = 28cd(@ntD)m) _ 1 — 1,
Thus for the field k := Fom, the map z — 2@ is bijective on k.

The sheaf F(q, f) was built out of the Witt vector [wt(q), f1 (xt(q)]. Let us denote by H(q, f1) the
sheaf built by the same recipe, with same clearing factor, out of the Witt vector [z, fi(x)]. Then
we have

Trace(Frobg x| F (g, f)) = Trace(Frobg x|H(q, f1)),

precisely because the map z — 24 is bijective on k.
Next, as in (9.9.2), we write the input vector [z, fi(x)] as [z, zR(x)], with

R(z) := Z 22 = P (a) 4+ P2 (x) + . 4 FY (),
=0

and F' denotes the absolute Frobenius. Now we can repeat the arguments in the proof of Proposition
9.9, and compute the form Tracey,/r, ((x,y)) on k x k with (z,y) := zy+zR(y) +yR(r) as in (9.9.4).
For any x,y € k we have F"(z) =z, F™(y) = y. If 2|n, then n = 2r + 2, m = 2r 4+ 3, and

r—+1 r—+1

(w,y) =2y +y(D>_ F(x) + ) _aF*(y)
=1

=1
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has the same trace over Fy as of

s ! rt1 r41
Ty + y(z F2i(x)) + Z F2r+3-2i ($F2"(y)) =2y + y(z F2i(x)) + Z yF2r+3-2i ()
= =1 i=1 i=1
2r4-2

=y( Z FI (z)) = yTracey, r, (7).
=0

If 2t n, then n =m = 2r + 1, then

r r r—1 r—1
(@,y) =y +y(Q_ F2 (@) + ) aF* ™ (y) = 3oy +y(Y_ F¥ (@) + ) aF* ™ (y)
=0 =0 i=0 i=0
has the same trace over Fy as of
r—1 r—1 r—1 re1
Ty + y(z F2it+1 (.’L‘)) + Z 2r—2i (xFQHl(y)) =2y + y(z F2i+1($)) + ZyFZTfQi(x)
=0 =0 i=0 i=0

2r
= y(z FJ(:B)) = yTracey /g, ().
§=0

So in both cases, the symmetric bilinear form Tracey g, ({z,y)) on k x k has kernel consisting of
the elements x € k with Tracey g, (z) = 0, that is, of exactly 2m=1 elements. Then the proof of

Proposition 9.9 shows that |Trace(Frobg g, |F (g, f))| is either 0 or 2(m=1)/2 > 1, and hence can
never be equal to 1 (since by hypothesis n > 2, and hence m > 3). O

Theorem 9.18. Letn € Zsa, q := 22" and consider the sheaf F(q, f) of rank D := 27(22"+1 1),
with f(z) = fi(z"9) and fi(z) as defined in Proposition 9.17. Assume in addition that 2n + 1 is
coprime to |*Ba(q)|; for instance, take 2n+1 = (® for any odd prime £ # 5 and any a € Z>1. Then
the geometric monodromy group of F(q, f) is SLp.

Proof. We first apply Proposition 9.9, and note that m is coprime to 2(2n + 1). It then follows
from Proposition 9.16 that F(q, f) has infinite geometric monodromy group Ggeom. By Theorem
8'47 Ggeom = SLD

Suppose that 2n + 1 = £¢ for a prime ¢, but ¢ divides |?Ba(q)|. Then £ divides ¢* — 1 = 24 — 1.
Since £|(2¢-1 — 1), £ divides ged (24" — 1,261 — 1) = 280d(46=1) _ 1 and so ¢ divides 2* — 1 = 15.
But one knows that 3 1|?Ba(q)|, so r = 5. O

More generally, to ensure that 2n + 1 is coprime to [?Ba(q)| for ¢ = 22"+1, we can take any n such
that 2n + 1 = pi'p5? ... py", where p; < pa < ... < p; are primes, p; # 5, a; € Z>1, and p; { (p; — 1)
whenever i < j. Indeed, suppose p; divides |*B2(q)| for some j. Then p; divides both 2Pi~! —1 and
¢* —1 =21 1. Since ged(pj — 1,4(2n + 1)) = ged(pj — 1,4[_, p") divides 4, it follows that
pj divides 2* — 1 = 15. But p; # 5 by assumption, and p; # 3 since 3 { |?B2(q)|, a contradiction.

REFERENCES

[Abh] Abhyankar, S., Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825-856.

[Atlas] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups. Maximal
subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray.
Oxford University Press, Eynsham, 1985.

[BCP] Bosma, W, Cannon, J., and Playoust, C., The MAGMA algebra system I: The user language. J. Symbolic
Comput. 24 (1997), 235-265.



LOCAL SYSTEMS AND SUZUKI GROUPS 57

Borel, A., Linear Algebraic Groups, Second enlarged edition, Graduate Texts in Mathematics, Springer-
Verlag, 1991.

Burkhardt, R., Die Zerlegungsmatrizen der Gruppen PSL(2,p”), J. Algebra 40 (1976), 75-96.

Carter, R.W., Finite Groups of Lie type: Conjugacy Classes and Complex Characters, Wiley, Chichester,
1985.

Curtis, C. W. and Reiner, 1., Representation theory of finite groups and associative algebras, Interscience
Publishers, New York 1962, xiv+689 pp.

Curtis, C. W. and Reiner, 1., Methods of representation theory — with applications to finite groups and
orders, vol. I, Wiley & Sons, New York et al, 1981.

Dade, E., A new approach to Glauberman’s correspondence, J. Algebra 270 (2003), 583-628.
Deligne, P., La conjecture de Weil II, Publ. Math. I.H.E.S. 52 (1981), 313-428.

Deligne, P., Les constantes des equations fonctionelles des fonctions L, (Modular functions of one variable,
IT (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 501-597, Lecture Notes in Math.,
Vol. 349, Springer, Berlin, 1973).

Gross, B. H., Rigid local systems on G,, with finite monodromy, Adv. Math. 224 (2010), 2531-2543.

Guest, S., Morris J., Praeger, C. E., and Spiga, P., On the maximum orders of elements of finite almost
simple groups and primitive permutation groups, Trans. Amer. Math. Soc. 367 (2015), 7665—-7694.

Guralnick, G.M., Larsen, M., and Tiep, P.H., Representation growth in positive characteristic and conju-
gacy classes of maximal subgroups, Duke Math. J. 161 (2012), 107-137.

Guralnick, R. M. and Tiep, P. H., The non-coprime k(GV)-problem, J. Algebra 293 (2005), 185-242.

Hiss, G. and Malle, G., Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math. 4
(2001), 22-63.

Humphreys, J.E., Introduction to Lie Algebras and Representation Theory, Springer, New York et al, 1972.

Isaacs I. M., Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594— 635.
Isaacs I. M., Glauberman correspondence Dade-method, preprint, July 2002.
Isaacs, I.M., Character Theory of Finite Groups, AMS-Chelsea, Providence, 2006.

Jantzen, J.C., Representations of Chevalley groups in their own characteristic, Proc. Symp. Pure Math.
vol. 47 (1987), pt. 1, 127-146.

Kantor, W.M., and Seress, A., Large element orders and the characteristic of Lie-type simple groups, J.
Algebra 322 (2009), 802-832.

Katz, N., Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, 116.
Princeton Univ. Press, Princeton, NJ, 1988. ix+246 pp.

Katz, N., Exponential sums and differential equations. Annals of Mathematics Studies, 124, Princeton
Univ. Press, Princeton, NJ, 1990. xii+430 pp.

Katz, N., From Clausen to Carlitz: low-dimensional spin groups and identities among character sums,
Mosc. Math. J. 9 (2009), 57-89.

Katz, N., Exponential sums, Ree groups and Suzuki groups: conjectures, Ezp. Math. 28 (2019), 49-56.
Katz, N., and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy. American Mathemat-
ical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI, 1999. xii+419
pp-

Katz, N., Rojas-Leén, A., and Tiep, P.H., A rigid local system with monodromy group the big Conway

group 2.Co; and two others with monodromy group the Suzuki group 6.Suz, Trans. Amer. Math. Soc. 373
(2020), 2007-2044.

Katz, N., Rojas-Leén, A., and Tiep, P.H., Rigid local systems and sporadic simple groups, Mem. Amer.
Math. Soc. (to appear).



58
[KT1]

[KT2]
[KIL]

(L]

[Lun]

[TZ]
[vG-vV]

[Tits]
[Zs]

ALPOGE, KATZ, NAVARRO, O’'BRIEN, AND TIEP

Katz, N., and Tiep, P.H., Monodromy groups of Kloosterman and hypergeometric sheaves, Geom. Funct.
Analysis 31 (2021), 562-662.

Katz, N., and Tiep, P.H., Airy sheaves and generalized Airy sheaves, (in preparation).

Kleidman, P. B., and Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London
Math. Soc. Lecture Note Ser. no. 129, Cambridge University Press, 1990.

Liibeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J.
Comput. Math. 4 (2001), 135 — 169.

Liineburg, H., Ein einfacher Beweis fiir den Satz von Zsigmondy iiber primitive Primteiler von A" — 1,
in: Geometries and Groups, (edited by M. Aigner and D. Jungnickel), Lect. Notes in Math. 983, 219-222,
Springer Verlag, New York, 1981.

Manz, O, and Wolf, T. R., Representations of Solvable Groups, LMS Lecture Note Ser. no. 185, Cambridge
University Press, 1993.

Montgomery, H.L., Niven, I., and Zuckerman, H.S., An Introduction to Number Theory, fifth ed., Wiley &
Sons, 1991.

Navarro, G., Fields, values and character extensions in finite groups, J. Group Theory 10 (2007), 279-285.
Navarro, G., Restriction of characters to Sylow normalizers, Glasgow Math J. 43 (2011), 311-315.
Onishchik, A.L., and Vinberg, E.B., Lie Groups and Algebraic Groups, Springer-Verlag, 1990.

Premet, A.A., Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime
characteristic, Math. USSR Sb. 61 (1988), 167-183.

Roitman, M., On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), 1913-1919.
Serre, J.-P., and Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517.

Such, O., Monodromy of Airy and Kloosterman sheaves, Duke Math. J. 103 (2000), 397-444.
Suzuki, M., On a class of doubly transitive groups, Annals of Math. 75 (1962), 105-145.

Tiep, P.H., Globally irreducible representations of the finite symplectic group Spa(q), Comm. Algebra 22
(1994), 6439-6457.

Tiep, P. H. and Zalesskii, A. E., Minimal characters of the finite classical groups, Comm. Algebra 24 (1996),
2093-2167.

van der Geer, G., van der Vlugt, M., Reed-Muller codes and supersingular curves. I, Compos. Math. 84
(1992), 333-367.

Tits, J., Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329
Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

L. ALPOGE, DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, U.S.A.
Email address: alpoge@math.harvard.edu

N.M. KATZ, DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544, U.S.A.
Email address: nmk@math.princeton.edu

G. NAVARRO, DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT DE VALENCIA, 46100 BURJASSOT, VALENCIA,

SPAIN

Email address: gabriel@uv.es

E.A. O’BRIEN, UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND
Email address: e.obrien@auckland.ac.nz

P.H. TiEP, DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PiscaTawAay, NJ 08854, U.S.A.
Email address: tiep@math.rutgers.edu



	Introduction
	1. Descents of Suzuki candidates and moment calculations
	2. Background results on determinants, rationality, and slopes
	3. Primitive prime divisors for Suzuki-Ree groups
	3A. Almost equidistribution of coprime integers in congruence classes
	3B. Primitive prime divisor for Suzuki groups
	3C. Primitive prime divisor for Ree groups
	3D. Primitive prime divisors for Suzuki-Ree groups: another approach

	4. Action on 2-groups and primitivity of local systems
	5. Condition (S+) and autoduality for Airy sheaves
	6. A local system for the Suzuki group 2B2(8)
	7. Low-dimensional representations of classical groups
	8. A dichotomy for monodromy groups
	9. Arithmetic vs. geometric monodromy groups
	9A. Glauberman and Dade correspondences
	9B. Traces of Frobenii and arithmetic monodromy groups
	9C. Local systems with infinite monodromy groups

	References

