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Abstract

Restless multi-armed bandits (RMAB) play a cen-

tral role in modeling sequential decision making

problems under an instantaneous activation con-

straint that at most B arms can be activated at

any decision epoch. Each restless arm is endowed

with a state that evolves independently according

to a Markov decision process regardless of being

activated or not. In this paper, we consider the task

of learning in episodic RMAB with unknown tran-

sition functions and adversarial rewards, which

can change arbitrarily across episodes. Further,

we consider a challenging but natural bandit feed-

back setting that only adversarial rewards of ac-

tivated arms are revealed to the decision maker

(DM). The goal of the DM is to maximize its total

adversarial rewards during the learning process

while the instantaneous activation constraint must

be satisfied in each decision epoch. We develop a

novel reinforcement learning algorithm with two

key contributors: a novel biased adversarial re-

ward estimator to deal with bandit feedback and

unknown transitions, and a low-complexity index

policy to satisfy the instantaneous activation con-

straint. We show Õ(H
√
T ) regret bound for our

algorithm, where T is the number of episodes

and H is the episode length. To our best knowl-

edge, this is the first algorithm to ensure Õ(
√
T )

regret for adversarial RMAB in our considered

challenging settings.

1. Introduction

Restless multi-armed bandits (RMAB) (Whittle, 1988) has

been widely used to study sequential decision making prob-

lems with an “instantaneous activation constraint” that
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at most B out of N arms can be activated at any decision

epoch, ranging from wireless scheduling (Sheng et al., 2014;

Cohen et al., 2014; Xiong et al., 2022b), resource allocation

(Glazebrook et al., 2011; Larrañaga et al., 2014; Xiong et al.,

2023; 2022d), to healthcare (Killian et al., 2021). Each arm

is described by a Markov decision process (MDP) (Puter-

man, 1994), and evolves stochastically according to two

different transition kernels, depending on whether the arm is

activated or not. Rewards are generated with each transition.

The goal of the decision maker (DM) is to maximize the total

expected reward over a finite-horizon (Xiong et al., 2022a)

or an infinite-horizon (Wang et al., 2020; Avrachenkov &

Borkar, 2022; Xiong et al., 2022c; Xiong & Li, 2023; Wang

et al., 2024) under the instantaneous activation constraint.

The majority of the literature on RMAB consider a stochas-

tic environment, where both the rewards and dynamics of

the environments are assumed to be stationary over time.

However, in real-world applications such as online advertis-

ing and revenue management, rewards1 are not necessarily

stationary but can change arbitrarily between episodes (Lee

& Lee, 2023). To this end, we study the problem of learning

a finite-horizon adversarial RMAB (ARMAB) with unknown

transitions over T episodes. In each episode, all arms start

from a fixed initial state, and the DM repeats the follow-

ings for a fixed number of H decision epochs: determine

whether or not to activate each arm while the instantaneous

activation constraint must be satisfied, receive adversarial

rewards from each arm, which transits to the next state ac-

cording to some unknown transition functions. Specifically,

we consider a challenging but natural bandit feedback set-

ting, where the adversarial rewards in each decision epoch

are only revealed to the DM when the state-action pairs are

visited. The goal of the DM is to minimize its regret, which

is the difference between its total adversarial rewards and

the total rewards received by an optimal fixed policy.

To achieve this goal, we develop an episodic reinforcement

learning (RL) algorithm named UCMD-ARMAB. First, to

handle unknown transitions of each arm, we construct confi-

1Although most existing literature on adversarial learning use
the term “loss” instead of “reward”, we choose to use the latter, or
more specifically “adversarial reward” in this paper to be consistent
with RMAB literature. One can translate between rewards and
losses by taking negation.
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Table 1: Comparison with existing works, where T is the number of episodes and H is the length of each episode.

Paper Model Setting Feedback Constraint Algorithm Regret

(Rosenberg & Mansour, 2019b) MDP Adversarial Full : OMD Õ(H
√
T )

(Rosenberg & Mansour, 2019a) MDP Adversarial Bandit : OMD Õ(H2/3T 3/4)

(Jin et al., 2020) MDP Adversarial Bandit : OMD Õ(H
√
T )

(Luo et al., 2021) MDP Adversarial Bandit : Policy Optimization Õ(H2
√
T )

(Qiu et al., 2020) CMDP Adversarial Full Average Primal-dual Õ(H
√
T )

(Germano et al., 2023) CMDP Adversarial Full Average Primal-dual Õ(HT 3/4)

(Wang et al., 2020) RMAB Stochastic Full Hard Generative model Õ(H2/3T 2/3)

(Xiong et al., 2022a;c) RMAB Stochastic Full Hard Index-based Õ(
√
HT )

This Work RMAB Adversarial Bandit Hard Index-based OMD Õ(H
√
T )

dence sets to guarantee the true ones lie in these sets with

high probability (Section 4.1). Second, to handle adversarial

rewards, we apply Online Mirror Descent (OMD) to solve

a relaxed problem, rather than directly on ARMAB, in terms

of occupancy measures (Section 4.2). This is due to the

fact that ARMAB is known to be computationally intractable

even in the offline setting (Papadimitriou & Tsitsiklis, 1994).

We note that OMD has also been used in adversarial MDP

(Rosenberg & Mansour, 2019b; Jin et al., 2020) and CMDP

(Qiu et al., 2020). However, they considered a stationary

occupancy measure due to the existing of stationary poli-

cies, which is not the case for our finite-horizon RMAB

with instantaneous activation constraint. This requires us to

leverage a time-dependent occupancy measure.

Third, a key difference compared to stochastic RMAB

(Wang et al., 2020; Xiong et al., 2022a;c) is that with bandit

feedback and to apply the above OMD, we must construct

adversarial reward estimators since the rewards of arms

are not completely revealed to the DM. We address this

challenge by developing a novel biased overestimated re-

ward estimator (Section 4.3) based on the observations of

counts for each state-action pairs. Finally, to handle the

instantaneous activation constraint in ARMAB, we develop

a low-complexity index policy (Section 4.4) based on the

solutions from the OMD in Section 4.2. This is another key

difference compared to adversarial MDP or CMDP, which

requires us to explicitly characterize the regret due to the

implementation of such an index policy.

We prove that UCMD-ARMAB achieves Õ(H
√
T ) regret,

where T is the number of episodes and H is the episode

length. Although our regret bound exhibits a gap (i.e.,
√
H

times larger) to that of stochastic RMAB (Xiong et al.,

2022a;c), to our best knowledge, our result is the first to

achieve Õ(
√
T ) regret for adversarial RMAB with bandit

feedback and unknown transition functions, a harder prob-

lem compared to stochastic RMABs.

Notations. We use calligraphy letter A to denote a finite set

with cardinality |A|, and [N ] to denote the set of integers

{1, · · · , N}.

2. Related Work

We discuss our related work from three categories: MDP,

CMDP and RMAB. In particular, we mainly focus on the

adversarial settings for the former two.

Adversarial MDP. Even-Dar et al. (2009) proposed the

adversarial MDP model with arbitrarily changed loss func-

tions and a fixed stochastic transition function. The first to

consider unknown transition function with full information

feedback is Neu et al. (2012), which proposed a Follow-the-

Perturbed-Optimistic algorithm with an Õ(H|S||A|
√
T )

regret. Rosenberg & Mansour (2019b) improved the bound

to Õ(H|S|
√

|A|T ) through a UCRL2-based online opti-

mization algorithm. A more challenging bandit feedback

setting was considered in Rosenberg & Mansour (2019a),

which achieves an Õ(H3/2|S||A|1/4T 3/4) regret. Jin et al.

(2020) further achieves an improved Õ(H|S|
√

|A|T ) re-

gret via a novel reward estimator and a modified radius of

upper confidence ball. Under a similar setting, a policy

optimization method is developed in Luo et al. (2021) with

Õ(H2|S|
√

|A|T ) regret. Another line of recent works fur-

ther consider the settings of linear function approximation

(Neu & Olkhovskaya, 2021), the best-of-both-world (Jin

et al., 2021), delay bandit feedback (Jin et al., 2022) and

adversarial transition functions (Jin et al., 2023).

Adversarial Constrained MDP (CMDP). CMDP (Altman,

1999) plays an important role in control and planning, which

aims to maximize a reward over all available policies sub-

ject to constraints that enforce the fairness or safety of the

policies. Qiu et al. (2020) is one of the first to study CMDP

with adversarial losses and unknown transition function. A

primal-dual algorithm was proposed with Õ(H|S|
√

|A|T )
regret and constraint violation. Germano et al. (2023) fur-

ther considered both adversarial losses and constraints, and

proposed a best-of-both-world algorithm, which achieves

Õ(HT 3/4) regret and constraint violation.

RMAB. RMAB was first introduced in Whittle (1988), and

has been widely studied, see Niño-Mora (2023) and ref-

erences therein. In particular, RL algorithms have been

proposed for RMAB with unknown transitions. Colored-
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UCRL2 is the state-of-the-art method for online RMAB

with Õ(
√
HT ) regret. To address the exponential com-

putational complexity of colored-UCRL2, low-complexity

RL algorithms have been developed. For example, Wang

et al. (2020) proposed a generative model-based algorithm

with Õ(H2/3T 2/3) regret, and Xiong et al. (2022a;c) de-

signed index-aware RL algorithms for both finite-horizon

and infinite-horizon average reward settings with Õ(
√
HT )

regret2. However, most of the existing literature on RMAB

focus on the stochastic setting, where the reward functions

are stochastically sampled from a fixed distribution, either

known or unknown. To our best knowledge, this work is the

first to study RMAB in adversarial settings with unknown

transition functions and bandit feedback.

3. Model and Problem Formulation

We formally define the adversarial RMAB, and introduce

the online settings considered in this paper.

3.1. ARMAB: Adversarial RMAB

Consider an episodic adversarial RMAB with N arms. Each

arm n ∈ [N ] is associated with a unichain MDP denoted

by a tuple (S,A, Pn, {rtn, ∀t ∈ [T ]}, H). S is a finite state

space, and A := {0, 1} is the set of binary actions. Using

the standard terminology from RMAB literature, an arm

is passive when action a = 0 is applied to it, and active

otherwise. Pn : S × A × S 7→ [0, 1] is the transition

kernel with Pn(s
′|s, a) being the probability of transition

to state s′ from state s by taking action a. T is the number

of episodes, each of which consists of H decision epochs.

rtn : S × A 7→ [0, 1] is the adversarial reward function in

episode t. For simplicity, let rn(s, 0) = 0, ∀s ∈ S, n ∈ [N ].
We do not make any statistical assumption on the adversarial

reward functions, which can be chosen arbitrarily3.

At decision epoch h ∈ [H] in episode t ∈ [T ], an arm can

be either active or passive. A policy determines what action

to apply to each arm at h under the instantaneous activation

constraint that at most B arms can be activated. Denote such

a feasible policy in episode t as Ãt, and let {(St,h
n , At,h

n ) ∈
S × A, ∀t ∈ [T ], h ∈ [H], n ∈ [N ]} be the random tuple

generated according to transition functions {Pn, ∀n ∈ [N ]}
and Ãt. The corresponding expected reward in episode t is

Rt(Ã
t) := E

[
H∑

h=1

N∑

n=1

rtn(S
t,h
n , At,h

n )
∣
∣
∣{Pn,∀n}, Ãt

]

. (1)

2For a fair comparison, the total time horizon for stochastic
RMAB (Wang et al., 2020; Xiong et al., 2022a;c) is set to be HT .

3However, in stochastic RMAB, rewards follow a stochastic
distribution, which is fixed between episodes. This leads to a
different objective in adversarial RMAB as the DM must adapt to
dynamic and potentially hostile reward structures while striving to
find an optimal policy across all episodes.

The DM’s goal is to find a policy Ã for all T episodes which

maximizes the total expected adversarial reward under the

instantaneous active constraint, i.e.,

ARMAB : max
Ã

R(T, Ã) :=

T∑

t=1

Rt(Ã)

s.t.

N∑

n=1

At,h
n f B, ∀h ∈ [H], t ∈ [T ]. (2)

It is known that even when the transition kernel of each arm

and the adversarial reward functions in each episode are

revealed to the DM at the very beginning, finding an opti-

mal policy over T episodes, denoted as Ãopt for ARMAB (2)

is PSPACE-hard (Papadimitriou & Tsitsiklis, 1994). The

fundamental challenge lies in the explosion of state space

and the curse of dimensionality prevents computing optimal

policies. Exacerbating this challenge is the fact that transi-

tion kernels are often unknown in practice, and adversarial

reward functions are only revealed to the DM at the end of

each episode in adversarial settings (see Section 3.2).

Remark 3.1. Most existing works on adversarial MDP

(Rosenberg & Mansour, 2019b;a; Jin et al., 2020) and

CMDP (Qiu et al., 2020; Germano et al., 2023) assume that

the state space is loop-free. In other words, the state space S
can be divided into L distinct layers, i.e., S := S1∪ . . .∪SL

with a singleton initial layer S1 = {s1}, a terminal layer

SL = {sL}, and Sℓ ∩ Sj = ∅, j ̸= ℓ. Transitions only

occur between consecutive layers, i.e., P (s′|s, a) > 0 if

s′ ∈ Sℓ+1, s ∈ Sℓ, ∀ℓ ∈ [L]. On one hand, many practical

problems do not have a loop-free MDP. On the other hand,

this assumption requires any non-loop-free MDP to extend

its state space L times to be transformed into a loop-free

MDP with a fixed length L. This often enlarges the regret

bound at least L times. In this paper, we consider a general

MDP without such a restrictive loop-free assumption.

3.2. Online Setting and Learning Regret

We focus on the online adversarial settings where the under-

lying MDPs are unknown to the DM, and the adversarial

reward is of bandit-feedback4. The interaction between

the DM and the ARMAB environment is presented in Algo-

rithm 1. Only the state and action spaces are known to the

DM in advance, and the interaction proceeds in T episodes.

At the beginning of episode t, the adversary determines

the adversarial reward functions, each arm n starts from a

fixed state S0
n, ∀n ∈ [N ], and the DM determines a policy

Ãt and then executes this policy for each decision epoch

h ∈ [H] in this episode. Specifically, at decision epoch

h, the DM chooses actions {At,h
n , ∀n ∈ N} for each arm

4We use the term “bandit-feedback” as in Rosenberg & Man-
sour (2019a); Jin et al. (2020) to denote that only the adversarial
rewards of visited state-action pairs are revealed to the DM.
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Algorithm 1 Online Interactions between the DM and the

Adversarial RMAB Environment

Require: State space S , action space A, and unknown tran-

sition functions {Pn, ∀n};

1: for t = 1 to T do

2: All arms start in state S0
n, ∀n;

3: Adversary decides the reward function {rtn, ∀n}, and

the DM decides a policy Ãt;

4: for h = 1 to H do

5: DM chooses actions {At,h
n , ∀n} under the instan-

taneous activation constraint; observes adversarial

reward {rtn(St,h
n , At,h

n ), ∀n};

6: Arm n, ∀n moves to the next state St,h+1
n ∼

Pn(·|St,h
n , At,h

n ) ;

7: DM observes states {St,h+1
n , ∀n}.

8: end for

9: end for

according to Ãt(·|St,h
n ) under the instantaneous activation

constraint, i.e.,
∑N

n=1 A
t,h
n = B, and each arm then moves

to the next state St,h+1
n sampled from Pn(·|St,h

n , At,h
n ). The

DM records the trajectory of the current episode t and the

adversarial rewards in each decision epoch are only revealed

to the DM when the state-action pairs are visited due to

bandit-feedback.

The DM’s goal is to minimize its regret, as defined by

∆(T ) := R(T, Ãopt)−
T∑

t=1

Rt(Ã
t), (3)

where R(T, Ãopt) is the total expected adversarial rewards

under the offline optimal policy Ãopt by solving (2), and

Rt(Ã
t) is defined in (1). We simply refer to ARMAB as in

the online setting in the rest of this paper.

Although the above definition is similar to that in stochastic

settings, the fundamental difference is that the offline policy

Ãopt is only optimal when it is defined over all T episodes,

and it is not guaranteed to be optimal in each episode, which

is the case for stochastic setting. This is because the ad-

versarial rewards can change arbitrarily between episodes

rather than following some fixed (unknown) distribution as

in the stochastic setting. This fundamental difference will

necessitate new techniques in terms of regret characteriza-

tion, which we will discuss in details in Section 5.

4. RL Algorithm for ARMAB

We show that it is possible to design a RL algorithm to

solve the regret minimization problem (3) for the com-

putationally intractable ARMAB. Specifically, we leverage

the popular UCRL-based algorithm to the online adversar-

ial RMAB setting, and develop an episodic RL algorithm

Algorithm 2 UCMD-ARMAB

Require: Initialize C1
n(s, a) = 0, P̂ 1

n(s
′|s, a) = 1/|S|

1: for t = 1, 2, · · · , T do

2: Construct Pt
n(s, a) according to (5) at Ät;

3: Construct the adversarial reward estimator

r̂tn(s, a), ∀s, a, n according to (14);

4: Obtain a relaxed ARMAB (7) in terms of occupancy

measure, and solve (12) with OMD;

5: Construct an index policy Ãt according to (15).

6: end for

named UCMD-ARMAB. There are four key components of

our algorithm: (1) maintaining a confidence set of the tran-

sition functions; (2) using online mirror descent (OMD) to

solve a relaxed version of ARMAB in terms of occupancy

measure to deal with adversarial rewards; (3) constructing

an adversarial reward estimator to deal with bandit feedback;

and (4) designing a low-complexity index policy to ensure

that the instantaneous activation constraint is satisfied in

each decision epoch. We summarize our UCMD-ARMAB in

Algorithm 2, which operates in an episodic manner with a

total of T episodes and each episode including H decision

epochs. For simplicity, let Ät := H(t−1)+1 be the starting

time of the t-th episode.

4.1. Confidence Sets

As discussed in Section 3, ARMAB has two components:

a stochastic transition function, and an adversarial re-

ward function for each arm. Since transition functions

are unknown to the DM, we maintain confidence sets

via past sample trajectories, which contain true transi-

tion functions Pn, ∀n with high probability. Specifically,

UCMD-ARMAB maintains two counts for each arm n. Let

Ct−1
n (s, a), ∀n ∈ [N ] be the number of visits to state-

action pairs (s, a) until Ät, and Ct−1
n (s, a, s′), ∀n ∈ [N ]

be the number of transitions from s to s′ under action a.

At episode t, UCMD-ARMAB updates these two counts as:

∀(s, a, s′) ∈ S ×A× S

Ct
n(s, a) = Ct−1

n (s, a) +

H∑

h=1

1(St,h
n = s,At,h

n = a),

Ct
n(s, a, s

′) = Ct−1
n (s, a, s′)

+

H∑

h=1

1(St,h+1
n = s′|St,h

n = s,At,h
n = a).

UCMD-ARMAB estimates the true transition function by the

corresponding empirical average as:

P̂ t
n(s

′|s, a) = Ct−1
n (s, a, s′)

max{Ct−1
n (s, a), 1} , (4)

4
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and then defines confidence sets at episode t as

Pt
n(s, a) := {P̃ t

n(s
′|s, a), ∀s′ :

|P̃ t
n(s

′|s,a)−P̂ t
n(s

′|s,a)|f¶tn(s,a)}, (5)

where the confidence width ¶tn(s, a) is built according to

the Hoeffding inequality (Maurer & Pontil, 2009) as: for

ϵ ∈ (0, 1)

¶tn(s, a)=

√

1

2Ct−1
n (s, a)

log
(4|S||A|N(t−1)H

ϵ

)

. (6)

Lemma 4.1. With probability at least 1−2ϵ, the true transi-

tion functions are within the confidence sets, i.e., Pn ∈ Pt
n,

∀n ∈ [N ], t ∈ [T ].

4.2. Solving Relaxed ARMAB with OMD

Recall that solving ARMAB is computationally expensive

even in the offline setting (Papadimitriou & Tsitsiklis, 1994).

To tackle this challenge, we first relax the instantaneous

activation constraint, i.e., the activation constraint is satisfied

on average, and obtain the following relaxed problem of

max
Ã

R(T, Ã) :=

T∑

t=1

Rt(Ã)

s.t. EÃ

[
N∑

n=1

At,h
n

]

f B, h ∈ [H], t ∈ [T ]. (7)

It turns out that this relaxed ARMAB can be equivalently

transformed into a linear programming (LP) using occu-

pancy measure (Altman, 1999). More specifically, the oc-

cupancy measure µ of a policy Ã for a finite-horizon MDP

is defined as the expected number of visits to a state-action

pair (s, a) at each decision epoch h. Formally,

µÃ =
{

µn(s, a;h) = P(Sh
n = s,Ah

n = a)

: ∀n ∈ [N ], s ∈ S, a ∈ A, h ∈ [H]
}

. (8)

It can be easily checked that occupancy measures satisfy the

following two properties. First,

∑

s∈S

∑

a∈A
µn(s, a;h) = 1, ∀n ∈ [N ], h ∈ [H], (9)

with 0 f µn(s, a;h) f 1. Hence the occupancy measure

µn, ∀n is a probability measure. Second, the fluid balance

exists in occupancy measure transitions as

∑

a∈A
µn(s, a;h)=

∑

s′

∑

a′

µn(s
′,a′;h−1)Pn(s

′,a′,s). (10)

For ease of presentation, we relegate the details of the equiv-

alent LP of (7) to the supplementary materials.

Remark 4.2. Occupancy measure has been widely used in

adversarial MDP (Rosenberg & Mansour, 2019b; Jin et al.,

2020) and CMDP (Qiu et al., 2020). Since there exists a

stationary policy in these settings, the regret minimization

problem in Rosenberg & Mansour (2019b); Jin et al. (2020);

Qiu et al. (2020) can be equivalently reduced to an online

linear optimization in terms of the stationary occupancy

measure. Unlike these works, there is no such stationary

policy for our considered finite-horizon RMAB with the

instantaneous activation constraint, and hence we cannot re-

duce our regret (3) into a linear optimization using stationary

occupancy measure. To address this additional challenge,

we leverage the time-dependent occupancy measure (8), and

the regret minimization calls for different proof techniques

(see Section 5 for details).

Unfortunately, we cannot solve this LP since we have no

knowledge about the true transition functions and adversar-

ial rewards. Similar to the stochastic setting (Xiong et al.,

2022a;c) and with the confidence sets defined in Section 4.1,

we can further rewrite this LP as an extended LP by leverag-

ing the state-action-state occupancy measure ztn(s, a, s
′;h)

defined as ztn(s, a, s
′;h) = Pn(s

′|s, a)µt
n(s, a;h) to ex-

press the confidence intervals of the transition probabilities.

Unlike Xiong et al. (2022a;c), the adversarial rewards can

change arbitrarily between episodes, and hence we also

need to guarantee that the updated occupancy measure in

episode t does not deviate too much away from the previ-

ously chosen occupancy measure in episode t−1. Thus, we

further incorporate D(zt||zt−1) into the objective function,

which is the unnormalized Kullback-Leible (KL) divergence

between two occupancy measures, which is defined as

D(zt||zt−1) :=

H∑

h=1

∑

s,a,s′

zt(s, a, s′;h) ln
zt(s, a, s′;h)

zt−1(s, a, s′;h)

− zt(s, a, s′;h) + zt−1(s, a, s′;h). (11)

The DM needs to solve a non-linear problem over zt :=
{ztn(s, a, s′;h), ∀n ∈ [N ]} for a given parameter ¸ > 0:

max
zt

H∑

h=1

N∑

n=1

∑

(s,a,s′)

¸ztn(s, a, s
′;h)r̂t−1

n (s, a)−D(zt||zt−1)

s.t.

N∑

n=1

∑

(s,a,s′)

aztn(s, a, s
′;h) f B, ∀h ∈ [H],

∑

a,s′

ztn(s, a, s
′;h)=

∑

s′,a′

ztn(s
′, a′, s;h− 1), ∀h∈ [H],

ztn(s, a, s
′;h)

∑

y z
t
n(s, a, y;h)

− (P̂ t
n(s

′|s, a) + ¶tn(s, a)) f 0,

− ztn(s, a, s
′;h)

∑

y z
t
n(s, a, y;h)

+(P̂ t
n(s

′|s, a)−¶tn(s, a))f0,

ztn(s, a, s
′;h)g0, ∀s, s′∈ S, a∈A, ∀n∈ [N ], (12)

5
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where r̂t−1
n (s, a) is the estimated adversarial reward due to

bandit feedback, and we formally define it in Section 4.3.

This problem has O(|S|2|A|HN) constraints and decision

variables. Inspired by Rosenberg & Mansour (2019b), we

solve (12) via OMD to choose the occupancy measure for

each episode t. We first solve a unconstrained problem by

setting z̃t(s, a, s′;h) = zt−1(s, a, s′;h)e¸r̂
t−1(s,a). Then

we project the unconstrained maximizer z̃t into the feasible

set Zt, which is defined by the constraints in (12). This can

be reduced to a convex optimization problem, and can be

efficiently solved using iterative methods (Boyd & Vanden-

berghe, 2004). For ease of readability, we relegate the details

of solving (12) to the supplementary materials. Denote the

optimal solution to (12) as zt,⋆.

4.3. Adversarial Reward Estimators

Since we consider a challenging bandit feedback setting,

where the adversarial rewards in each decision epoch are re-

vealed to the DM only when the state-action pairs are visited,

we need to construct adversarial reward estimators based

on observations. Specifically, we build upon the inverse

importance-weighted estimators based on the observation

of counts for each state-action pairs. Given the trajectory

for episode t, a straightforward estimator is

rn(s, a)

max{ctn(s, a), 1}/H
1(∃h, St,h

n = s,At,h
n = a), (13)

where ctn(s, a) :=
∑H

h=1 1(S
t,h
n = s,At,h

n = a) is the num-

ber of visits to state-action pair (s, a) in episode t. For sim-

plicity, we denote r̄tn(s, a) := rn(s,a)
max{ct

n
(s,a),1}/H . Clearly,

r̄tn(s, a)1(∃h, St,h
n = s,At,h

n = a) is an unbiased estimator

of rtn(s, a) from the above definition. A key difference be-

tween the unbiased estimator in (13) and those in previous

works on adversarial MDPs (Jin et al., 2020; Rosenberg &

Mansour, 2019b) lies in the construction of the denominator

in (13). Specifically, Jin et al. (2020); Rosenberg & Man-

sour (2019b) considered MDPs with a underlying stationary

policy, and hence the evolution of the dynamics in the con-

sidered MDPs will converge to this stationary policy. This

enables the construction of the denominator in the estimator

using the occupancy measure for each for each state-action

pair under such a policy. In contrast, it is known that the

dynamics in RMAB cannot converge to the stationary pol-

icy due to the fact that RMABs implement an index policy

(see Section 4.4) to deal with the instantaneous activation

constraint, and it is only provably in the asymptotic regime

(Weber & Weiss, 1990; Verloop, 2016). This render the ap-

proaches in Jin et al. (2020); Rosenberg & Mansour (2019b)

not applicable to ours, and necessitates different methods to

construct the estimator as in (13).

Since we consider the bandit feedback, we further lever-

age the idea of implicit exploration as inspired by Neu

(2015); Jin et al. (2020) to further encourage exploration.

Specifically, we further increase r̄tn(s, a) with a bonus

term ¶tn(s, a) to obtain a biased estimator (r̄tn(s, a) +
¶tn(s, a))1(∃h, St,h

n = s,At,h
n = a). Since rtn(s, a) ∈

[0, 1] and to guarantee that this biased estimator is an overes-

timate, we further add the term 1− 1(∃h, St,h
n = s,At,h

n =
a). Thus, our final adversarial reward estimator is r̂tn(s, a)

=min
(

(r̄tn(s, a) + ¶tn(s, a))1(∃h, St,h
n = s,At,h

n = a), 1
)

+ 1− 1(∃h, St,h
n = s,At,h

n = a). (14)

Given the above constructions, it is clear that r̂tn(s, a) is a

biased estimator upper-bounded by 1 and is overestimating

rtn(s, a), ∀s, a, n, t with high probability. Using overesti-

mates for adversarial learning with bandit feedback can be

viewed as an optimism principle to encourage exploration.

This is beneficial for the regret characterization as the deter-

ministic overestimation as in Jin et al. (2020) to guarantee a

tighter regret bound.

Remark 4.3. The reward estimator in stochastic RMAB

(Xiong et al., 2022a;c) is simply defined as the sample mean

using all trajectories up to episode t, which cannot be ap-

plied to our adversarial RMAB. This is due to the fact that

the rewards are assumed to be drawn from an unknown but

fixed distribution across all episodes for stochastic RMAB,

while rewards can change arbitrarily between episodes for

adversarial RMAB. The bandit-feedback setting further dif-

ferentiates our adversarial RMAB from classical stochastic

ones. Finally, we note that Jin et al. (2020) considered the

bandit feedback for adversarial MDP, and also constructed

an adversarial loss/reward estimator. Since the regret min-

imization problem in Jin et al. (2020) can be reduced to

an online linear optimization using stationary occupancy

measure (see Remark 4.2), the estimator can be constructed

directly using the stationary occupancy measure. Since there

is no such stationary policy for our finite-horizon adversar-

ial RMAB, this makes the estimator in Jin et al. (2020)

not directly applicable to ours, and necessitates different

construction techniques as discussed above.

4.4. Index Policy for ARMAB

Unfortunately, the optimal solution zt,⋆ to (12) is not always

feasible for our ARMAB due to the fact that the instantaneous

activation constraint in ARMAB must be satisfied in each

decision epoch rather than on the average sense as in (12).

Inspired by Xiong et al. (2022a;c), we further construct

an index policy on top of zt,⋆ that is feasible for ARMAB.

Specifically, since A := {0, 1}, i.e., an arm can be either

active or passive at each decision epoch h, we define the

index assigned to arm n in state St,h
n = s at decision epoch

6
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Original 

Adversarial 

RMAB problem 

(ARMAB) in (2) 

Online learning and 

regret minimization 

in (3) 

Theorem 2: 

Regret upper 

bounded by

 

RMI index policy 

in (15) 

<Hard= activation 

constraint relaxation 

in (7) 

Update occupancy 

measure via OMD 

in (12) 

Reward estimator 

in (14) 

Lemma 6: 

 

Lemma 5：

 

Lemma 4: 

 

Figure 1: The workflow of UCMD-ARMAB and its regret analysis. The dashed arrows present the aimed procedures for

solving the original problem in (2), and the solid arrows show the true procedures of UCMD-ARMAB. By relaxing the “hard”

activation constraint as shown in (7), UCMD-ARMAB updates occupancy measure via OMD as in (12) (see Section 4.2),

combined with the adversarial reward estimator in (14) (see Section 4.3). Then, it establishes the RMI index policy in (15)

(see Section 4.4). These correspond to the three sources of learning regret, i.e., regret due to (i) OMD online optimization

(Lemma 5.4), (ii) bandit-feedback adversarial reward (Lemma 5.5), and (iii) the RMI index policy (Lemma 5.6).

h of episode t to be as

It
n(s;h) :=

∑

s′ z
t,⋆
n (s, 1, s′;h)

∑

b,s′ z
t,⋆
n (s, b, s′;h)

, ∀n ∈ [N ]. (15)

We call this the reward-maximizing index (RMI) since

It
n(s;h) indicates the probability of activating arm n in

state s at decision epoch h of episode t towards maximizing

the total expected adversarial rewards. To this end, we rank

all arms according to their indices in a non-increasing or-

der, and activate the set of B highest indexed arms at each

decision epoch h. All remaining arms are kept passive at

decision epoch h. We denote the resultant RMI policy as

Ãt := {Ãt
n, ∀n}, and execute it in episode t.

Theorem 4.4. The RMI policy is asymptotically optimal

when both the number of arms and instantaneous activation

constraint are enlarged by Ä times with Ä → ∞.

5. Analysis

In this section, we bound the regret of our UCMD-ARMAB.

5.1. Main Results

Theorem 5.1. With probability at least 1− 3ϵ, the regret of

UCMD-ARMAB with ¸ =
√

ln(|S|2|A|)
T satisfies

∆(T ) = Õ
(

NH
√

T ln(|S|2|A|)

+H

√

2NT ln
4|S||A|NT

ϵ
+B

√

|S||A|NTH

)

. (16)

The regret in (16) contains three terms. The first term is

the regret due to the OMD online optimization for occu-

pancy measure updates (Section 4.2). The second term

represents the regret due to bandit-feedback of adversarial

rewards (Section 4.3). The third term comes from the im-

plementation of our RMI policy for ARMAB (to satisfy the

instantaneous activation constraint, Section 4.4). Clearly,

the regret of UCMD-ARMAB is in the order of Õ(H
√
T ).

This is the same as that for adversarial MDP (Rosenberg

& Mansour, 2019b; Jin et al., 2020) and CMDP (Qiu et al.,

2020). However, none of them consider an instantaneous

activation constraint as in our ARMAB, which requires us to

design a low-complexity index policy, and explicitly charac-

terize its impact on the regret. Although our regret bound

exhibits a gap (i.e.,
√
H times larger) to that of stochastic

RMAB (Xiong et al., 2022a;c), to the best of our knowledge,

our result is the first to achieve Õ(
√
T ) regret. Recall that

comparing to the stochastic RMAB, we are considering a

harder problem with a challenging setting, i.e., the rewards

can change arbitrarily between episodes rather than follow-

ing a fixed distribution, and with bandit feedback where

only the adversarial reward of visited state-action pairs are

revealed to the DM. This challenging setting thus requires

us to design a novel adversarial reward estimator coupled

with the OMD online optimization procedure.

5.2. Proof Sketch

As discussed earlier, ARMAB (2) is computationally in-

tractable, and hence we cannot directly solve it and trans-

form the regret minimization in (3) into an online linear

optimization problem. This makes existing regret analy-

sis for adversarial MDP (Rosenberg & Mansour, 2019b;

7
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Jin et al., 2020) and CMDP (Qiu et al., 2020) not directly

applicable to ours, and necessitates different proof tech-

niques. To address this challenge and inspired by stochastic

RMAB (Xiong et al., 2022a;c), we instead work on the re-

laxed problem (7), which achieves a provably upper bound

on the adversarial rewards of ARMAB (2). In other words,

the occupancy measure-based solutions to (7) provide an

upper bound of the optimal adversarial reward R(T, Ãopt)
achieved by the offline optimal policy Ãopt of ARMAB (2).

We state this result formally in the following lemma.

Lemma 5.2. There exists a set of occupancy measures

µ∗
Ã := {µ∗

n(s, a;h), ∀n ∈ [N ], s ∈ S, a ∈ A, h ∈ [h]}
under policy Ã∗ that optimally solve the equivalent LP of

the relaxed problem (7). In addition,
∑T

t=1ïµ∗
Ã, r

tð is no

less than R(T, Ãopt), where rt := {rtn(s, a), ∀n, s, a}.

The proof of Theorem 5.1 then starts with a regret decompo-

sition. Unlike stochastic RMAB (Xiong et al., 2022a;c), we

cannot simply decompose the regret over episodes. This is

because in our ARMAB, the adversarial rewards can change

arbitrarily between episodes, and the offline optimal policy

Ãopt is only optimal when it is defined over all T episodes

and it is not guaranteed to be optimal in each episode (see

Section 3). As a result, the regret analysis for stochastic

RMAB (Xiong et al., 2022a;c) is not applicable to ours. To

address this challenge, we instead decompose the regret in

terms of its coming sources. Specifically, we first need to

characterize the regret due to solving the relaxed problem

with OMD in terms of occupancy measure (Section 4.2).

We then bound the regret due to the biased overestimated

reward estimator (Section 4.3). Finally, we bound the regret

of implementing our RMI policy (Section 4.4). We visual-

ize these three steps in Figure 1 and provide a proof sketch

herein. Combining them together gives rise to our main

theoretical results in Theorem 5.1.

Regret decomposition. We formally state our regret de-

composition in the following lemma.

Lemma 5.3. Denote Ã∗ as the optimal policy to equiva-

lent LP of the relaxed problem (7) and {Ã̃t, ∀t} are po-

lices executed on the MDPs at each episode with tran-

sition kernels selected from the confidence set defined

in (5). Let R(T, Ã∗, {r̂tn, ∀n, t}) be the total adversar-

ial rewards achieved by policy Ã∗ with overestimated re-

wards {r̂tn, ∀n, t}. Denote R(T, {Ã̃t, ∀t}, {r̂tn, ∀n, t}) and

R(T, {Ã̃t, ∀t}, {rtn, ∀n, t}) as the total adversarial rewards

achieved by policy {Ã̃t, ∀t} with overestimated rewards

{r̂tn, ∀n, t} and true reward {rtn, ∀n, t}, respectively. The

regret in (3) can be upper bounded as

∆(T )f R(T, Ãopt)−R(T, Ã∗, {r̂tn, ∀n, t}), ∀n, t})
︸ ︷︷ ︸

Term0f0

+R(T, Ã∗, {r̂tn, ∀n, t})−R(T, {Ã̃t, ∀t}, {r̂tn, ∀n, t})
︸ ︷︷ ︸

Term1

+R(T, {Ã̃t, ∀t}, {r̂tn, ∀n, t})−R(T, {Ã̃t, ∀t}, {rtn, ∀n, t})
︸ ︷︷ ︸

Term2

+R(T, {Ã̃t, ∀t}, {rtn, ∀n, t})−
T∑

t=1

Rt(Ã
t)

︸ ︷︷ ︸

Term3

. (17)

Specifically, Term0 f 0 holds due to Lemma 5.2 and the

overestimation of adversarial rewards. Term1 is the per-

formance gap between the optimal policy Ã∗ of the relaxed

problem (7) and the OMD updated policy {Ã̃t, ∀t} under the

plausible MDP selected from the confidence set in (5). Since

we leverage the OMD to update the occupancy measures,

to bound Term1, the key is to connect items in Term1

with the occupancy measure, which leverages the result in

Lemma 5.2. Term2 is the regret due to the overestima-

tion of the adversarial reward estimator, i.e., r̂tn g rtn, ∀n, t.
Term3 is the performance gap between the policy {Ã̃t, ∀t}
in the optimistic plausible MDP and the learned RMI index

policy {Ãt, ∀t} for the true MDP. We bound it based on the

count of visits of each state-action pair.

Bounding Term1. We first bound Term1, i.e., the regret

due to OMD online optimization.

Lemma 5.4. With probability 1 − 2ϵ, we have Term1 f
NH ln(|S|2|A|)

¸ + ¸NH(T + 1).

Bounding Term1 is equivalent to bound the inner prod-

uct
∑T

t=1

∑N
n=1ïµ∗

n − ztn, r̂
t
nð, with ztn, ∀n ∈ [N ] being

controlled by the OMD updates, a proper ¸ (as given in

Theorem 5.1) is required to guarantee Õ(H
√
T ) regret.

Bounding Term2. We then bound Term2, i.e., the regret

due to bandit-feedback adversarial reward.

Lemma 5.5. With probability 1 − 3ϵ, we have Term2 f
H
√

2NT ln 4|S||A|NT
ϵ +HN

√

NT ln 1
ϵ .

Bounding Term2 requires us to bound the inner product
∑T

t=1

∑N
n=1ïztn, r̂tn − rtnð, which is dominated by the gap

of r̂tn − rtn. An overestimation can guarantee that ïztn, r̂tn −
rtnð g 0, ∀n ∈ [N ], t ∈ [T ].

Bounding Term3. Finally, we bound Term3, i.e., the

regret due to RMI index policy.

Lemma 5.6. With probability 1 − 2ϵ, we have Term3 f
(√

2 ln 4|S||A|NTH
ϵ + 2B

)√

|S||A|NTH.

Since the adversarial rewards (i.e., r̂tn) do not impact

Term3, we decompose Term3 into each episode. The

key is to characterize the number of visits of each state-

action pair, which is related to the instantaneous activation

constraint B and has a Õ(B
√
TH) regret.
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Figure 2: The learning performance comparison for case

study-CPAP.
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Figure 3: The learning performance comparison for case

study-A Deadline Scheduling Problem.

6. Numerical Study

In this section, we demonstrate the utility of UCMD-ARMAB

by evaluating it under two real-world applications of RMAB

in the presence of adversarial rewards, i.e., the continuous

positive airway pressure therapy (CPAP) (Kang et al., 2013;

Herlihy et al., 2023; Li & Varakantham, 2022; Wang et al.,

2024) and a deadline scheduling problem (Xiong et al.,

2022a). The detailed setup of these two problems are pro-

vided in Appendix C.

We compare our UCMD-ARMAB with a benchmark named

RMAB-UCRL (Xiong et al., 2022c), which was developed

for stochastic RMAB, in terms of accumulated rewards and

accumulated regret. As observed from Figure 2 and Figure 3,

our UCMD-ARMAB significantly outperforms RMAB-UCRL

in adversarial settings. In particular, our UCMD-ARMAB

achieves a significant improvement over the accumulated

reward as shown in in Figure 2a and Figure 3a, and ex-

hibits a provably sublinear regret as shown in Figure 2b

and Figure 3b, while the regret of RMAB-UCRL increases

exponentially under adversarial settings. These verify the

effectiveness of the proposed UCMD-ARMAB on handling

adversarial RMABs.
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A. Details and Proofs in Section 4

We provide all omitted details and proofs of the key lemmas of the main paper in this appendix.

A.1. Efficient Solver of Updating Occupancy Measure (12)

In this subsection, we provide details on how to efficiently solve the updating occupancy measure problem in (12). Similar

to Rosenberg & Mansour (2019b), the solution of (12) can be yielded by decomposing the original problem into two

subproblems. Specifically, the first subproblem is to solve the objective in (12) as an unconstrainted problem as

z̃t = argmax
zt

H∑

h=1

N∑

n=1

∑

(s,a,s′)

¸ztn(s, a, s
′, h)r̂t−1

n (s, a)−D(zt||zt−1), (18)

which can be easily solved and has a closed-form solution as

z̃tn(s, a, s
′;h) = zt−1

n (s, a, s′;h)e¸r̂
t−1
n (s,a), ∀s ∈ S, a ∈ A, h ∈ [H], n ∈ [N ]. (19)

The second subproblem is then to project the solution in (19) to the feasible set of zt in episode t by minimizing the

KL-divergence of zt and z̃t. To simplify the notations, we denote the feasible set of zt that satisfies the constraints in (12) as

Zt, and thus the subproblem is expresses as follows

zt = arg min
z∈Zt

D(z||z̃t). (20)

Defining some Lagrangian parameters as ´ : S 7→ R and µ = (µ+, µ−) with µ+, µ− : S × A × S 7→ Rg0, and

Bµ,´
n,t (s, a, s

′, h) as

Bµ,´
n,t (s, a, s

′, h) = µ−(s, a, s′, h)− µ+(s, a, s′, h) + (µ+(s, a, s′, h) + µ−(s, a, s′, h))¶tn(s, a)

+ ´(s′, h)− ´(s, h) + ¸r̂tn(s, a) +
∑

s′′

P̂ t
n(s

′′|s, a)(µ+(s, a, s′′, h)− µ−(s, a, s′′, h)).

Hence, the following theorem from Rosenberg & Mansour (2019b) provides the solution of (20) and the detailed proof can

be found in Jin et al. (2020).

Theorem A.1 (Theorem 4.2 (Rosenberg & Mansour, 2019b)). Let t > 1 and define the function

Zt,h
n (µ, ´) =

∑

s,a,s′

ztn(s, a, s
′, h)eB

µ,´
n,t (s,a,s

′,h),

the solution to (20) is

zt+1
n (s, a, s′, h) =

ztn(s, a, s
′, h)eB

µt,´t

n,t (s,a,s′,h)

Zt,h
n (µt, ´t)

,

where µt, ´t are obtained by solving a convex optimization with non-negativity constraints as

µt, ´t = arg min
µ,´>0

H∑

h=1

lnZt,h
n (µ, ´).

A.2. Index Policy Design and proof of Theorem 4.4

Following the method of the celebrated Whittle index (Whittle, 1988) for conventional RMAB problems, we first relax the

“hard” activation constraint in (2) as an averaged constraint, which gives rise to the following relaxed problem.

max
Ã

T∑

t=1

Rt s.t. EÃ

[
N∑

n=1

At,h
n

]

f B, h ∈ [H], t ∈ [T ]. (21)

Provided the definition of occupancy measure in (8), the relaxed problem (21) can be reformulated as a linear programming

(LP) (Altman, 1999) expressed in the following lemma.

12
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Lemma A.2. The relaxed problem (21) is equivalent to the following LP

max
µ

T∑

t=1

N∑

n=1

H∑

h=1

∑

(s,a)

µn(s, a;h)r
t
n(s, a) (22)

s.t.

N∑

n=1

∑

(s,a)

aµn(s, a;h) f B, ∀h ∈ [H], (23)

∑

a∈A
µn(s, a;h)=

∑

(s′,a′)

µn(s
′, a′;h− 1)Pn(s

′, a′, s), (24)

µn(s, a;h) g 0, ∀s ∈ S, a ∈ A, h ∈ [H], n ∈ [N ], (25)

where (23) is a restatement of the constraint in (21); (24) indicates the transition of the occupancy measure from time slot

h− 1 to time slot h; and (25) guarantees that the occupancy measures are non-negative.

The RMI is designed upon the optimal occupancy measure µ⋆ = {µ⋆
n(s, a;h) : n ∈ [N ], h ∈ [1, . . . , H]} to the above LP.

The first step is to construct a Markovian randomized policy À⋆n(s, a;h) :=
µ⋆
n(s,a;h)∑

a∈A
µ⋆
n(s,a;h)

, and then set À⋆n(s, 1;h) as the

RMI. Thereafter, we prioritize the users according to a decreasing order of their RMIs, and then activate the B arms with the

highest indices. Note that our proposed RMI policy is well-defined even when the problem is not indexable (Whittle, 1988;

Weber & Weiss, 1990).

Proof of Theorem 4.4. We now show that our RMI policy is asymptotically optimal when both the number of arms N
and the activation constraint B go to infinity while holding B/N constant as that in Whittle (Whittle, 1988) and others

(Weber & Weiss, 1990). For abuse of notation, let the number of arms be ÄN and the resource constraint be ÄW in the

asymptotic regime with Ä → ∞. In other words, we consider N different classes of arms with each class containing Ä arms.

Let RÃ(ÄB, ÄN) denote the expected total reward of the original problem (2) under an arbitrary policy Ã for such a system.

To show the asymptotical optimality of RMI, according to Xiong et al. (2022a), it is sufficient to show that

lim
¸→∞

1

Ä

(

RÃopt

(¸W, ¸N)−RÃ⋆

(¸W, ¸N)
)

= 0, (26)

with Ã∗ being the RMI index policy and Ãopt is the optimal one. The equation in (26) indicates that as the number of

per-class arms goes to infinity, the average gap between the performance achieved by our RMI index policy Ã⋆ and the

optimal policy Ãopt of the original problem in (2) tends to be zero.

The proof comes from both side of (26). First, we have that for any policy Ã⋆, the left-hand side of (26) is non-negative

since any policy cannot achieve a higher reward compared with that of the optimal policy Ãopt, i.e.,

lim
Ä→∞

1

Ä

(

RÃopt

(ÄW, ÄN)−RÃ⋆

(ÄB, ÄN)
)

g 0.

Hence we need to show the other direction of (26) that for induced RMI index policy Ã⋆, the following holds

lim
Ä→∞

1

Ä

(

RÃopt

(ÄW, ÄN)−RÃ⋆

(ÄB, ÄN)
)

f 0.

Let Bn(s;h) be the number of class n arms in state s at time h and Dn(s, a;h) be the number of class n arms in state s at

time h that are being served with action a ∈ A \ {0}. Similar to Xiong et al. (2022a), by using induction, we show that

Ä → ∞, the following event occurs almost surely,

Bn(s;h)/Ä → Pn(s;h),

Dn(s, a;h)/Ä → Pn(s;h)À
⋆
n(s, a;h)

respectively. This leads to the fact that

lim
Ä→∞

1

Ä
RÃ⋆

(ÄB, ÄN) =

N∑

n=1

H∑

h=1

∑

(s,a)

µ⋆
n(s, a;h)rn(s, a),

which converges the optimal solution to the LP in Lemma A.2, which is an upper bound of limÄ→∞
1
ÄR

Ãopt

(ÄB, ÄN) due

to Lemma 5.2. This completes the proof.
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B. Proofs in Section 5

In this section, we provide proofs for Lemmas in Section 5.

B.1. Proof of Lemma 5.2

There exists a set of occupancy measures µ∗
Ã := {µ∗

n(s, a;h), ∀n ∈ [N ], s ∈ S, a ∈ A, h ∈ [h]} under policy Ã that

optimally solve (2) with a relaxed constraint such that EÃ

[
∑N

n=1 A
t,h
n

]

f B, h ∈ [H], t ∈ [T ]. In addition,
∑T

t=1ïµ∗
Ã, r

tð
is no less than R(s1, T, Ã

opt), where µ∗
Ã is the stacked vector of all occupancy measures µ∗

n(s, a;h) and rt is the stacked

vector of all rewards rtn(s, a) for all n, s, a. According to Lemma A.2, if the ”hard” activation constraint in (2) is relaxed to

an averaged one as EÃ

[
∑N

n=1 A
t,h
n

]

f B, h ∈ [H], t ∈ [T ], there is an equivalent LP expressed as in (22)-(25). To prove

Lemme 5.2, it is sufficient to show that the relaxed problem achieves no less average reward than the original problem in (2).

The proof is straightforward since the constraints in the relaxed problem expand the feasible region of the original problem

in (2). Denote the feasible region of the original problem as

Γ :=

{

At,h
n , ∀h, t

∣
∣
∣
∣
∣

N∑

n=1

At,h
n f B, ∀h

}

,

and the feasible region of the relaxed problem as

Γ′ :=

{

At,h
n , ∀h, t

∣
∣
∣
∣
∣
EÃ

[
N∑

n=1

At,h
n f B, ∀h

]}

.

It is clear that the relaxed problem expands the feasible region of the original problem in (2), i.e., Γ ¦ Γ′. Therefore,

the relaxed problem achieves an objective value no less than that of the original problem in (2) because the original

optimal solution is also inside the relaxed feasibility set (Altman, 1999), i.e., Γ′. Denote the optimal occupancy measures

of LP in (22)-(25) as µ∗
Ã := {µ∗

n(s, a;h), ∀n ∈ [N ], s ∈ S, a ∈ A, h ∈ [h]} under a stationary policy Ã induced by

{µ∗
n(s, a;h), ∀n ∈ [N ], s ∈ S, a ∈ A, h ∈ [h]}, and hence the maximum reward achieved for the LP in (22)-(25) is equal

to
∑T

t=1ïµÃ, r
tð. Therefore, it follows that

∑T
t=1ïµÃ, r

tð g R(s1, T, Ã
opt), which completes the proof.

B.2. Proof of Lemma 5.3

According to the definition of regret in (3), we have the following inequality

∆(T ) = R(s1, T, Ã
opt)−R(s1, T, {Ãt, ∀t})

= R(s1, T, Ã
opt)−R(s1, T, Ã

opt, {r̂tn, ∀n, t})
︸ ︷︷ ︸

Term0f0

+R(s1, T, Ã
opt, {r̂tn, ∀n, t})−R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})

︸ ︷︷ ︸

Term1

+R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})−R(s1, T, {Ã̃t, ∀t}, {rtn, ∀n ∈ [N ], t ∈ [T ]})
︸ ︷︷ ︸

Term2

+R(s1, T, {Ã̃t, ∀t}, {rtn, ∀n ∈ [N ], t ∈ [T ]})−R(s1, T, {Ãt, ∀t})
︸ ︷︷ ︸

Term3

f R(s1, T, Ã
µ∗

, {r̂tn, ∀n, t})−R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})
︸ ︷︷ ︸

Term1

+R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})−R(s1, T, {Ã̃t, ∀t}, {rtn, ∀n ∈ [N ], t ∈ [T ]})
︸ ︷︷ ︸

Term2

+R(s1, T, {Ã̃t, ∀t}, {rtn, ∀n ∈ [N ], t ∈ [T ]})−R(s1, T, {Ãt, ∀t})
︸ ︷︷ ︸

Term3

.

The first inequality holds due to two reasons. First, Term0 is non-positive as {r̂tn, ∀n, t} is an overestimation of the true

rtn, ∀n, t. Second, R(s1, T, Ã
µ∗

, {r̂tn, ∀n, t}) is no less than R(s1, T, Ã
opt, {r̂tn, ∀n, t}) according to Lemma 5.2.
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B.3. Proof of Lemma 5.4

Denote the true MDP as M := {Mn, ∀n}. Hence, we have the following event occurs with high probability when the true

transition kernel is inside the confidence ball defined in (5), i.e.,

Et
p : = {∀(s, a), n, |Pn(s

′|s, a)− P̂ t
n(s

′|s, a)| < ¶tn(s, a)}. (27)

The cumulative probability that the failure events occur is bounded as follows.

Lemma B.1. With probability at least 1− 2ϵ, we have the true transition P is within the confidence set Pt := {Pt
n, ∀n ∈

[N ]}, i.e., event Et
p occurs, when ¶tn(s, a)=

√

1
2Ct−1

n (s,a)
log
(

4|S||A|N(t−1)H
ϵ

)

.

Proof. By Chernoff-Hoeffding inequality (Hoeffding, 1994), we have

P
(
|Pn(s

′|s, a)− P̂ t
n(s

′|s, a)| > ¶tn(s, a)
)
f 2ϵ

|S||A|N(t− 1)H
.

Using union bound on all states, actions and users, we have

P(1{Et
p}) g 1−

N∑

n=1

∑

(s,a)

P
(
|Pn(s

′|s, a)− P̂ t
n(s

′|s, a)| > ¶tn(s, a)
)

g 1− 2ϵ

(t− 1)H
.

Next, we have the inequality related with OMD update in Algorithm 1, similar to Jin et al. (2020) as follows.

Lemma B.2. The OMD update with z1n(s, a, s
′) = 1

|S|2|A| for all (s, a, s′) ∈ S × A × S, and zt+1
n =

argmaxzn∈∆t ¸ïzn, r̂tð −D(zn ∥ ztn) ensures

T∑

t=1

N∑

n=1

ïzn − ztn, r̂
t
nð f

NH ln(|S|2|A|)
¸

+ ¸NH(T + 1).

for any z ∈ ∩t ∆
t, as long as 0 f ¸r̂tn(s, a) f 1 for all t, n, s, a.

Proof. Based on (19), we have z̃t as

z̃tn(s, a, s
′;h) = zt−1

n (s, a, s′;h) exp
(
¸r̂tn(s, a)

)
,

and ztn = argminz∈∆t D(z ∥ z̃tn). According to (11), we have

D(zn ∥ ztn)−D(zn ∥ z̃t+1
n ) +D(ztn ∥ z̃t+1

n )

=
∑

s,a,s′,h

zn(s, a, s
′, h) ln

zn(s, a, s
′, h)

ztn(s, a, s
′, h)

− zn(s, a, s
′, h) + ztn(s, a, s

′, h)

−
∑

s,a,s′,h

zn(s, a, s
′, h) ln

zn(s, a, s
′, h)

z̃t+1
n (s, a, s′, h)

+ zn(s, a, s
′, h)− z̃t+1

n (s, a, s′, h)

+
∑

s,a,s′,h

ztn(s, a, s
′, h) ln

ztn(s, a, s
′, h)

z̃t+1
n (s, a, s′, h)

− ztn(s, a, s
′, h) + z̃t+1

n (s, a, s′, h)

=
∑

s,a,s′,h

zn(s, a, s
′, h) ln

z̃t+1
n (s, a, s′, h)

ztn(s, a, s
′, h)

−
∑

s,a,s′,h

ztn(s, a, s
′, h) ln

z̃t+1
n (s, a, s′, h)

ztn(s, a, s
′, h)

= ¸ïzn − ztn, r̂
t
nð, (28)
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where the last inequality is due to (19). Furthermore, according to (20) generalized Pythagorean theorem, we have

D(zn ∥ zt+1
n ) f D(zn ∥ z̃t+1

n ). Hence, the following inequality holds

¸
T∑

t=1

N∑

n=1

ïzn − ztn, r̂
t
nð f

T∑

t=1

N∑

n=1

D(zn ∥ ztn)−D(zn ∥ zt+1
n ) +D(ztn ∥ z̃t+1

n )

=

N∑

n=1

D(zn ∥ z1n)−D(zn ∥ zT+1
n ) +

T∑

t=1

N∑

n=1

D(ztn ∥ z̃t+1
n )

=

N∑

n=1

∑

s,a,s′,h

zn(s, a, s
′, h) ln

zT+1
n (s, a, s′, h)

z1n(s, a, s
′, h)

︸ ︷︷ ︸

(a1)

+
N∑

n=1

∑

s,a,s′,h

z1n(s, a, s
′, h)− zT+1

n (s, a, s′, h)

︸ ︷︷ ︸

(a2)

+
T∑

t=1

N∑

n=1

D(ztn ∥ z̃t+1
n )

︸ ︷︷ ︸

(a3)

. (29)

Next, we bound each term in (29). (a1) is bounded as

(a1) f
N∑

n=1

∑

s,a,s′,h

zn(s, a, s
′, h) ln(|S|2|A|) f NH ln(|S|2|A|),

due to the initialization of z1n(s, a, s
′, h), ∀s, a, h. Similarly, (a2) is bounded as (a2) f NH . (a3) is bounded as follows,

D(ztn ∥ z̃t+1
n ) =

∑

s,a,s′,h

ztn(s, a, s
′, h) ln

zn(s, a, s
′, h)

z̃t+1
n (s, a, s′, h)

− zn(s, a, s
′, h) + z̃t+1

n (s, a, s′, h)

=
∑

s,a,s′,h

−¸r̂tn(s, a)z
t
n(s, a, s

′, h)− ztn(s, a, s
′, h) + ztn(s, a, s

′, h) exp(¸r̂tn(s, a))

f ¸2
∑

s,a,s′,h

ztn(s, a, s
′, h) f H¸2,

where the first inequality is due to the fact ez − 1− z f z2 for all z ∈ [0, 1], and the second inequality is due to the property

of occupancy measure. Substituting (a1)− (a3) back to (29), we have

T∑

t=1

N∑

n=1

ïzn − ztn, r̂
t
nð f

NH ln(|S|2|A|)
¸

+ ¸NH(T + 1).

This completes the proof.

According to the definition of Ãµ∗

and Ã̃t and the fact that they are working on the problem with relaxed activation constraint,

we can transform Term1 into the following form:

Term1 = R(s1, T, Ã
µ∗

, {r̂tn, ∀n, t})−R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})

=
T∑

t=1

N∑

n=1

ïµ∗
n, r̂

t
nð −

T∑

t=1

N∑

n=1

ïztn, r̂tnð

=

T∑

t=1

N∑

n=1

ïµ∗
n − ztn, r̂

t
nð.

Since with probability 1− 2ϵ, we have µ∗
n ∈ ∩tZt according to Lemma B.1. Hence, Lemma 5.4 directly follows Lemma

B.2.
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B.4. Proof of Lemma 5.5

According to the definition, we can rewrite Term2 as

Term2 = R(s1, T, {Ã̃t, ∀t}, {r̂tn, ∀n ∈ [N ], t ∈ [T ]})−R(s1, T, {Ã̃t, ∀t}, {rtn, ∀n ∈ [N ], t ∈ [T ]})

=

T∑

t=1

N∑

n=1

ïztn, r̂tn − rtnð.

The key is to characterize the gap between r̂tn − rtn. We first present the widely used Hoeffding inequality in the following

lemma.

Lemma B.3 (Hoeffding inequality (Bercu et al., 2015)). Let X1, X2, . . . be independent random variables with b f |Xi| f c
for all i. Define Sn = X1 + . . .+Xn. Then for all ϵ > 0

Pr (Sn − E[Sn] > ϵ) f exp

(

− ϵ2

2n(c− b)2

)

.

Notice that ïztn, r̂tnð f HN due to the overestimation of r̂tn in (14), according the Hoeffding inequality in Lemma B.3, we

have that with probablity at least 1− ϵ, such taht

T∑

t=1

N∑

n=1

ïztn, r̂tn − E[r̂tn]ð f HN
√

TN ln 1/ϵ.

Thus, we have at least probability 1− 3ϵ that

Term2 f
T∑

t=1

N∑

n=1

ïztn,E[r̂tn]− rtnð+HN
√

TN ln 1/ϵ f
T∑

t=1

N∑

n=1

ïztn, ¶tnð+HN
√

TN ln 1/ϵ, (30)

where the inequality holds due to the definition of r̂tn(s, a) and the fact that
rn(s,a)1(∃h,St

n(h)=s,A
t
n(h)=a)

max{ctn(s,a),1}/H
is an unbiased

estimator of rtn(s, a).

Next, we bound
∑T

t=1

∑N
n=1ïztn, ¶tnð in the following lemma.

Lemma B.4. The following inequality holds

T∑

t=1

N∑

n=1

ïztn, ¶tnð f
√
2H

√

ln
4SANT

ϵ
·
√
NT.

Proof. The proof goes as follows.

T∑

t=1

N∑

n=1

ïztn, ¶tnð
(a)

f H

T∑

t=1

N∑

n=1

∑

s,a

¶tn(s, a)

f H

T∑

t=1

N∑

n=1

∑

s,a

√

1

2Ct
n(s, a)

ln
4SANT

ϵ

fH

√

ln
4SANT

ϵ

N∑

n=1

∑

(s,a)

√

CT
n (s, a)

(b)

f
√
2H

√

ln
4SANT

ϵ

N∑

n=1

√
∑

(s,a)

CT
n (s, a)

(c)

f
√
2H

√

ln
4SANT

ϵ
·
√
NT,

where (a) follows since ztn is a probability measure, (b) follows Cauchy-Schwartz inequality and (c) uses the fact that
∑N

n=1

∑

(s,a) C
T
n (s, a) f NT. This completes the proof.
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Bound on Term2. Combining the results in (30) and Lemma B.4, we can bound Term2 as

Term2 f
√
2H

√

ln
4SANT

ϵ
·
√
NT +HN

√

TN ln 1/ϵ.

B.5. Proof of Lemma 5.6

According to Lemma B.1, with probability at least 1 − 2ϵ, the true transition kernel P is inside the confidence ball as

defined in (27). Due to the optimism of the confidence ball, in each episode, we have that Ã̃t under an optimisitic MDP with

transition P̃ achieves no worse performance than Ãt under the true MDP with transition P . Hence, we decompose the regret

in Term3 into episodic regrets. For simplicity, we denote ctn(s, a) :=
∑H

h=1 1(S
t,h
n = s,At,h

n = a) as the state-action

counts for (s, a) in episode t, and µt,∗ as the average reward achieved per decision epoch by policy Ã̃t. Then, we define the

regret during episode t as follows,

∆t := Hµt,∗ −
∑

(s,a)

∑

n

ctn(s, a)r
t
n(s, a). (31)

The relation between the total regret in Term3 and the episodic regrets ∆k is as follows.

Lemma B.5. The regret in Term3 is upper-bounded by

Term3 f
T∑

t=1

∆t +

√

1

4
T log

( |S||A|NT

ϵ

)

, (32)

with probability at least 1− ϵ.

Proof. Using Azuma-Hoeffding’s inequality, we have

P

(

R(s1, T, {Ãt, ∀t}) f
T∑

t=1

∑

n

∑

(s,a)

ctn(s, a)r
t
n(s, a)−

√

1

4
T log

( |S||A|NT

ϵ

)
)

f
(

ϵ

|S||A|NT

)1/2

. (33)

Therefore,

∆(T ) =

T∑

t=1

Hµt,∗ −R(s1, T, {Ãt, ∀t})

f
T∑

t=1

Hµt,∗ −
T∑

t=1

∑

n

∑

(s,a)

ctn(s, a)r
t
n(s, a) +

√

1

4
T log

( |S||A|NT

ϵ

)

=

K∑

k=1

∆k +

√

1

4
T log(

|S||A|NT

ϵ
).

This completes the proof.

The following lemma characterizes the regret under scenario where the true transition P is outside of the confidence ball,

which occurs at a small probability at most 2ϵ.

Lemma B.6. We have
T∑

t=1

∆t1(P /∈ Et
p) f B

√
TH.
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Proof. By Lemma B.1, we have

T∑

t=1

∆t1(P /∈ Et
p) f

T∑

t=1

∑

n

∑

(s,a)

ctn(s, a)1(P /∈ Et
p)

f
T∑

t=1

HB1(P /∈ Ek
p )

f B

TH∑

i=1

i1(P /∈ Et
p) f B

√
TH.

We next bound the regrets ∆k when the true transition lies in the confidence ball, i.e., event Et
p occurs.

Lemma B.7. Under event Et
p, we have

∆t1(P ∈ Et
p) f

∑

(s,a)

∑

n

ctn(s, a)(µ
t,∗/B − rtn(s, a))

+
∑

(s,a)

∑

n

ctn(s, a)»1, (34)

where »1 > 0 is as in Lemma B.8 and µ̃t is the average reward achieved by an optimistic policy induced from the confidence

ball (i.e., Et
p) when the rewards is shifted by 2¶tn(s, a), ∀s, a, n, i.e., r̃tn(s, a) := rtn(s, a) + 2¶tn(s, a).

Proof. This result follows directly from the definition of episodic regret in (31) and the fact that the total activated arms

count should be less than HB per episode.

Lemma B.8. With probability at least 1− 2ϵ, we have µ̃t g µt,∗ − »1, where »1 = O( c1√
tH

) with 0 < c1 < 1.

Proof. We denote by St
h and St,∗

h the arms that are activated by an optimistic policy and Ã̃t under true reward and at the

h-th decision epoch of episode t. For abuse of notation, we use r̃tn(h) to denote the reward of a specific state-action pair

(s, a) visited at h for arm n. Due to optimism, we have

∑

n∈St
h
\St,∗

h

r̃tn(h) g
∑

n∈St,⋆

h
\St

h

r̃tn(h).

When conditioned on the event Et
p simultaneously, we have

∑

n∈Sk
h
\Sk,∗

h

rtn(h) + 2¶kn g
∑

n∈Sk
h
\Sk,∗

h

r̃tn(h) g
∑

n∈Sk,∗

h
\Sk

h

r̃tn(h)

g
∑

n∈Sk,∗

h
\Sk

h

rtn(h).

Hence, we have

∑

n∈S
t,(∗)
h

\St
h

rtn(h)−
∑

n∈St
h
\St,∗

h

rtn(h) f
∑

n∈St
h
\St,∗

h

2¶tn f 2B¶t,

where ¶tn = ¶t, ∀n and is given in Lemma B.1. Therefore, we have µt,∗ − µ̃t f 2B¶ = O
(

2B√
tH

)

.

Upon combining the results obtained in Lemma B.7 and Lemma B.8, we obtain the following.
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Lemma B.9. We have

T∑

t=1

∆t1(P ∈ Et
p) f

(
√

2 log
(4|S||A|NTH

ϵ

)

+ 2B
)√

|S||A|NTH.

Proof. From Lemma B.7 and Lemma B.8, we can rewrite the summation over ∆t as follows:

T∑

t=1

∆k1(P∈E t
p)f

T∑

t=1

∑

(s,a)

∑

n

ctn(s, a)(µ
t,∗/B−r̃tn(s, a))

︸ ︷︷ ︸

(I)

+

T∑

t=1

∑

(s,a)

∑

n

ctn(s, a)
(

r̃tn(s, a)− rtn(s, a) +
1√
tH

)

︸ ︷︷ ︸

(II)

.

It is clear that (I) is non-positive. Conditioned on good events, it is clear that r̃tn(s, a)− rtn(s, a) f 2¶tn(s, a). Therefore, we

have

T∑

t=1

∆t1(P ∈ Ek
p ) f

(√

2 log
(4|S||A|NTH

ϵ

)

+ 2B

)
T∑

t=1

N∑

n=1

∑

(s,a)

ctn(s, a)
√

Ct
n(s, a)

f
(√

2 log
(4|S||A|NTH

ϵ

)

+ 2B

)
√

|S||A|NTH,

where last inequality is due to Jensen’s inequality and Lemma B.10.

Lemma B.10. For any sequence of numbers w1, w2, ..., wT with 0 f wk, define Wk :=
∑k

i=1 wi,

T∑

k=1

wk√
Wk

f (
√
2 + 1)

√

WT .

Proof. The proof follows by induction. When t = 1, it is true as 1 f
√
2 + 1. Assume for all k f t − 1, the inequality

holds, then we have the following:

T∑

k=1

wk√
Wk

=

T−1∑

k=1

wk√
Wk

+
wT√
WT

f (
√
2 + 1)

√

WT−1 +
wT√
WT

=

√

(
√
2 + 1)

2
WT−1 + 2(

√
2 + 1)wT

√

WT−1

WT
+

wT
2

WT

f

√
√
√
√(

√
2 + 1)

2
WT−1 + 2(

√
2 + 1)wT

√

WT−1

WT−1
+

wTWT

WT

=

√

(
√
2 + 1)

2
WT−1 + (2(

√
2 + 1) + 1)wT

= (
√
2 + 1)

√

(WT−1 + wT )

= (
√
2 + 1)

√

WT .
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C. Details of the Numerical Case-Study

Continuous Positive Airway Pressure Therapy (CPAP). The CPAP (Kang et al., 2013; Herlihy et al., 2023; Li &

Varakantham, 2022; Wang et al., 2024) is a highly effective treatment when it is used consistently during sleeping for

adults with obstructive sleep apnea. Similar non-adherence to CPAP in patients hinders the effectiveness, we adapt the

Markov model of CPAP adherence behavior to a two-state system with the clinical adherence criteria. To elaborate, three

distinct states are defined to characterize adherence levels: low, intermediate, and acceptable. Patients are categorized into

two clusters: “Adherence” and “Non-Adherence.” Those within the “Adherence” cluster exhibit a greater likelihood of

maintaining an acceptable level of adherence. In particular, the state space is 1, 2, 3, which represents low, intermediate and

acceptable adherence level respectively. The difference between these two groups reflects on their transition probabilities, as

in Figures. 4- 5. Generally speaking, the first group has a higher probability of staying in a good adherence level. From each

group, we construct 10 arms, whose transition probability matrices are generated by adding a small noise to the original one.

Actions such as text patients/ making a call/ visit in person will cause a 5% to 50% increase in adherence level. The budget

is set to B = 10. The objective is to maximize the total adherence level.

In standard CPAP, which is used for stochastic RMAB setting, the reward is set as the 1 for state “low adherence”, 2 for state

“intermediate adherence”, and 3 for state “high adherence”. Based on this, we randomly generate a sequence of coefficients

to increase or decrease the reward for each episode. In our setting, we consider an MDP with 50 episode, and each episode

contains 50 time steps. The control coefficient for episode i is 0.5 + (i− 1)/49. The whole experiment runs in 1000 Monte

Carlo independent rounds.

3

1 2

0.0385

0.0257

0.9615

0.9498

0.0245

1

Figure 4: Transition diagram for CPAP Cluster 1

3

1 2

0.7427

0.2323

0.1835

0.0741

0.6657

0.1020

0.4967

0.3399

0.1634

Figure 5: Transition diagram for CPAP Cluster 2
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A Deadline Scheduling Problem. We consider the deadline scheduling problem for the scheduling of electrical vehicle

charging stations. A charging station (agent) has total N charging spots (arms) and can charge M vehicles in each round.

The charging station obtains a reward for each unit of electricity that it provides to a vehicle and receives a penalty (negative

reward) when a vehicle is not fully charged. The goal of the station is to maximize its net reward. We use exactly the same

setting as in (Xiong et al. 2022a) for our experiment. More specifically, the state of an arm is denoted by a pair of integers

(D;B), where B is the amount of electricity that the vehicle still needs and D is the time until the vehicle leaves the station.

When a charging spot is available, its state is (0; 0). B and D are upper-bounded by 9 and 12, respectively. Hence, the size

of state space is 109 for each arm. The state transition is given by

Si(t+ 1) =

{

(Di(t)− 1, Bi(t)− ai(t)), if Di(t) > 1,

(D,B), with prob. 0.7 if Di(t) f 1,

where (D,B) is a random state when a new vehicle arrives at the charging spot i. Specifically, ai(t) = 0 means being

passive and ai(t) = 1 means being active. There are total N = 100 charging spots and a maximum M = 30 can be served

at each time.

The agent receives a base reward at each time from arm i according to

ri(t) =







(1− 0.5)ai(t), if Bi(t) > 0, Di(t) > 1,

(1− 0.5)ai(t)− 0.2(Bi(t)− ai(t))
2,

if Bi(t) > 0, Di(t) = 1,

0, Otherwise.

Based on this, we randomly generate a sequence of coefficients to increase or decrease the reward for each episode. In

our setting, we consider an MDP with 100 episode, and each episode contains 100 time steps. The control coefficient for

episode i is 0.5 + (i− 1)/99. The whole experiment runs in 1000 Monte Carlo independent rounds.
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