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ABSTRACT

Intermittent (batteryless) devices operate solely using energy har-
vested from their environment. These devices turn on when they
have energy and turn off during energy scarcity. Intermittent de-
vices have recently become increasingly popular in smart buildings,
manufacturing plants, and medical implantables as they eliminate
the need for battery replacement and enable green computing. De-
spite their growing adoption in critical applications, the privacy
implications of intermittent devices remain largely unexplored.

In this paper, we introduce a novel remote side-channel attack.
Our observation is that the network packet frequency of an intermit-
tent device can be exploited to learn its turn-on/off patterns. From
these patterns, we can infer the energy availability of a device,
which reveals privacy-sensitive information about its operating
environment, e.g., the presence or absence of individuals.

To realize our attack, we develop a three-stage hierarchical in-
ference framework that leverages the timestamped network packet
sequence of intermittent devices. Our framework automatically ex-
tracts a set of temporal features from inter-packet-arrival timings.
It then employs a series of models to uncover (1) whether a target
intermittent device is present in the environment, (2) its energy
harvester type (e.g., vibration or water flow), and (3) its energy
availability conditions (e.g., high-vibration or no-vibration).

To validate our attack’s effectiveness, we conduct experiments
in two environments: a smart home and a miniature manufacturing
plant equipped with three intermittent devices powered by solar
energy, vibration, and temperature. By analyzing their energy avail-
ability patterns, we are able to infer user activities and presence
in the smart home and the robot’s movement patterns in the man-
ufacturing plant with an average accuracy of 85%. This sensitive
information enables an adversary to launch domain-specific attacks,
such as burglarizing a smart home when the user is asleep or timely
tampering with plant sensors to cause maximum damage.
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1 INTRODUCTION

Traditional IoT devices (sensors and actuators) used in diverse ap-
plications, such as smart buildings, wearables, industrial control
systems (ICS), and medical implantables, rely on batteries that de-
mand regular maintenance and replacement. To address this, there
has been a growing interest in intermittent devices, which harvest
energy (e.g., solar, vibration, thermal energy), thereby eliminating
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Figure 1: A motivating example for our physical side-channel
attacks against intermittent devices.

the need for batteries [4, 42, 56]. These devices have remarkable
advantages as they (a) eliminate battery replacement costs, (b) re-
duce battery waste, (c) enable applications that would be otherwise
impractical (e.g., changing an implantable medical device’s battery
may require surgery), and (d) provide redundancy for fault tolerance
in safety-critical applications due to their low maintenance.

Intermittent devices turn on when they have enough energy and
turn off when the energy is scarce. Before turning off, they perform
regular checkpoints to store run-time program states such as regis-
ter, stack, and global variables in non-volatile memory [56]. Inter-
mittent devices often have networking capabilities. When they turn
on, they report sensor measurements over a low-energy communi-
cation channel (e.g., Zigbee, BLE) to a hub [38, 42, 43, 47, 49, 58]. For
instance, an intermittent device harvests vibration energy from a
motor (e.g., an ICS robot) and reports the motor’s temperature and
vibration to a hub over BLE [1]. This device turns on and reports
sensor readings when the motor generates vibration. It then turns
off when the motor does not generate vibration. This execution
model makes this intermittent device suitable for monitoring the
motor’s health during the motor’s operation.

While intermittent devices are increasingly used in diverse ap-
plications, their security and privacy remain unexplored. Initial
works on intermittent device security are limited to RFID tags,
proposing RFID tag fingerprinting and authentication to prevent
counterfeits [40, 75]. A line of work focuses on extracting cryp-
tographic keys via side-channels and malware [44, 46, 76, 85, 92].
They also propose defenses against such attacks through secure
checkpoint architectures [51-53, 81] and remote attestation [25, 77].
Recent work uses compromised radio frequency harvesting devices
to conduct side-channel attacks against mobile devices [67]. Yet,
privacy leakages that occur due to the fluctuations in the energy
availability of intermittent devices have not yet been investigated.

In this paper, we conduct the first remote side-channel attack
targeting the energy availability of intermittent devices to infer
privacy-sensitive information related to their operating environ-
ment. Our main observation is that an adversary who learns the
times an intermittent device turns on and off (its active period) can
infer the energy available to the intermittent device. The network
packets an intermittent device transmits inevitably reveal if the de-
vice is on since a transmitted packet implies the device is on at that
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time. Thus, a remote adversary can learn the intermittent device’s
energy availability by observing the device’s active period through
its inter-packet-arrival timings (the time difference between two
consecutive network packets transmitted by the device).

Such information is privacy-sensitive since the device’s energy
availability depends on its operating environment and user ac-
tivities. To illustrate, Figure 1 shows an example where a solar-
harvesting intermittent device [23] is deployed in a smart home
for temperature and humidity monitoring. This device harvests
energy from indoor light and sends periodic sensor measurements
(e.g., every seven seconds) to an IoT hub over BLE. From this device,
an adversary can infer the light conditions within the home, indicat-
ing whether the users are at home, watching TV, or sleeping. This
would allow an adversary to conduct physical attacks (e.g., burglary
or kidnapping) or use this information for targeted advertising. As
another example, we consider a water flow harvesting device in a
water treatment plant. This device periodically reports the temper-
ature, pressure, and flow rate in pipes [33] to a control center. From
this device, an adversary can infer the treatment plant’s water flow
rate. This knowledge allows the adversary to learn when the flow
rate is high and manipulate the plant’s actuators or configuration
parameters at that time. For instance, an attacker injected malicious
actuation commands to pumps in the Maroochy water plant and
caused sewage to spill out into waterways [2]. An adversary who
knows when the water flow rate is high can conduct such attacks
timely to poison a higher amount of water.

Inferring privacy-sensitive information from the active period
of intermittent devices has three main challenges. First, the adver-
sary must distinguish the intermittent devices from the traditional
devices with batteries since they usually co-exist in real-world en-
vironments. Second, the adversary must identify the intermittent
device’s energy harvester since the privacy-sensitive information
that can be inferred is tightly coupled with the device’s harvester.
However, this is a challenging task since similar energy conditions
with different harvesters may cause devices to have similar active
periods. Lastly, the active period of intermittent devices is influ-
enced by many user-configurable factors unique to intermittent
devices, such as capacitor sizes and packet transmission intervals.
Thus, the adversary’s energy inference algorithm must integrate
these factors to accurately learn the device’s active period.

We address these challenges through a new side-channel attack
with two phases, (1) offline intermittent device analysis and (2)
online hierarchical inference. In the offline phase, we first conduct
controlled experiments to uncover the causal structure between
the intermittent device’s active period and its user-configurable
properties (e.g., firmware, capacitor size). To this end, we apply dy-
namic time warping on inter-packet-arrival timings to identify the
intermittent device properties causally related to the device’s active
period. We next conduct dynamic grid testing on the intermittent de-
vice to collect a dataset that contains timestamped packet sequences
while mutating the device properties causally related to its active
period. This allows profiling the device’s active period with the
identified device properties, different energy harvesters, and energy
availability conditions. Lastly, we model the intermittent device’s
active period through its inter-packet-arrival patterns. For this, we
introduce a three-stage hierarchical classification framework to
identify if an intermittent device is present in the environment,
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its energy harvester type, and energy availability conditions. Our
framework implements an automated feature selection technique
to derive temporal features from inter-packet-arrival timings.

In the online phase, we use a network sniffer to remotely col-
lect timestamped packet sequences from devices. We separate each
device’s packets based on their unique identifiers (e.g., MAC ad-
dresses). Lastly, we leverage our classification framework to con-
tinuously infer the intermittent device’s energy availability.

We evaluate our attack in a real smart home and (Fischertech-
nik) manufacturing plant testbed. Two real intermittent devices,
a solar-harvesting and a temperature-harvesting device, are de-
ployed to the smart home to monitor temperature and humidity. A
vibration-harvesting device is deployed to the manufacturing plant
to monitor the plant’s environmental conditions. Our results show
that an adversary can identify the intermittent devices in the envi-
ronment with 98% accuracy and recognize their harvester with 92%
accuracy. The adversary then infers (1) the light level in the smart
home with 80% accuracy from the solar-harvesting device to learn
if the user is sleeping or not at home, (2) the oven’s temperature
level with 87% accuracy from the temperature-harvesting device to
profile the user’s cooking activities, and (3) the robot’s movement
patterns with 88% accuracy from the vibration-harvesting device to
learn the time the robot is operating. Our attack requires minimal
effort, where 2 mins of sniffing is sufficient to infer the device’s en-
ergy availability conditions. We also evaluate our attack’s accuracy
when the intermittent device deploys defenses that protect against
network analysis attacks, such as traffic reshaping and injection.
Our attack achieves, on average, only 2.7% lower accuracy as these
defenses fail to hide the intermittent device’s active period.

In summary, we make the following contributions:

e We introduce a new remote side-channel attack targeting
the energy availability of intermittent devices. Our attack
leverages the intermittent device’s active period through
its inter-packet-arrival timings to infer privacy-sensitive
information related to the device’s operating environment
(e.g., user presence and robot movements).

o We develop a three-stage hierarchical inference framework
that profiles an intermittent device’s active period patterns
to identify if an intermittent device is present in an environ-
ment, its harvester, and its energy availability conditions.

e We extensively evaluate our attack with real intermittent
devices connected to three different energy harvesters (solar
energy, vibration, and temperature) deployed in a smart
home and a manufacturing plant!. Our experiments show
that an adversary can infer user activities and presence in
the smart home and the robot’s movement patterns in the
manufacturing plant with an average accuracy of 85%.

e We evaluate the feasibility of existing defense strategies
against our attacks and show that they are ineffective. We
then propose two defenses unique to intermittent devices to
protect them against our side-channel attacks.

'We make our datasets available at https:/github.com/purseclab/intermittent-traces
to foster future research on intermittent device security and privacy.
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Figure 2: Illustration of intermittent device execution.

2 BACKGROUND AND DEFINITIONS

Advancements in energy harvesting enabled intermittent (self-
powered, batteryless) devices that operate using energy harvested
from their environment, eliminating the cost required to maintain
batteries and enabling green computing [4, 56, 60].

Hardware and Execution Model. An intermittent device includes
a low-power processing unit (microcontroller), sensors, an energy
harvester, a power management integrated circuit (PMIC), and a
low-power radio for communication. Figure 2 illustrates their exe-
cution model, where they turn on when they have enough energy
to run their software and then turn off (or go into a deep sleep
mode) until they have enough energy.

This execution model brings challenges in maintaining a con-
sistent control flow and memory as the device’s energy may be
depleted during computation. To handle such cases, intermittent
devices either restart their execution from the main function [20] or
use checkpoints [57, 79]. Checkpoints involve saving the program
state (register, stack, and global variable values) in non-volatile
memory. Thus, the devices frequently save program states in check-
points, and in a power failure, they continue their execution from
the last checkpoint. Devices with a larger computation task use
checkpoints to ensure program progress, whereas sense-and-send
applications usually restart execution from the main function.

Power Management. Intermittent devices manage their energy
usage to ensure they have enough energy to operate before turning
on. For this, they use a turn-on threshold to accumulate energy
without consuming any. Without this threshold, the device would
turn on when the energy reaches its minimum operating voltage
and discharge quickly without meaningful execution.
Energy Sources. Intermittent devices harvest three types of energy
sources, (1) radiant (e.g., solar energy), (2) mechanical (e.g., wind
and vibration), and (3) thermal (e.g., friction and temperature) [4].
First, intermittent devices harvest radiant energy for indoor and
outdoor applications from light sources and radio frequency (RF)
waves. Radiant energy harvesting devices are used in environmental
monitoring and smart homes/buildings due to their high energy
availability [19, 23, 26, 27, 94]. Second, they harvest mechanical
energy from vibrations using piezoelectric devices. Piezoelectric
harvesters are common for wearable devices and cyber-physical
systems (e.g., industrial control systems and vehicles) [1, 18, 45, 48,
68]. Lastly, thermal harvesting leverages a temperature difference
between two conducting materials. Thermal harvesting devices are
common in industrial control systems and IoT environments with
high-temperature devices (e.g., ovens) [28].
Energy Storage. The energy harvester in intermittent devices
is not directly connected to the processing unit since its power
output is lower than the device’s operating voltage and current [4,
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Table 1: Existing intermittent devices that periodically send
sensor readings to a hub over a communication channel, their
energy source, and potential information leakages.

Potential
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omain ensor Functionality nergy Source | Comm. | . @ on Leak
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56]. Thus, intermittent devices use energy storage (e.g., capacitors)
between the harvester and microcontroller to buffer energy over
time. These energy storage units offer trade-offs in cost, lifetime,
and capacity. Here, the energy capacity is critical for the device
as it determines the amount of time the device needs to harvest
energy before turning on and the device’s operation time.
Definitions. We refer to intermittent devices as devices that rely
only on harvested energy for operation instead of batteries. On
the contrary, non-intermittent devices are traditional devices with
batteries that do not harvest energy, such as laptops, smart TVs,
I0T/ICS devices, and wearables with batteries. We use the term
active period to refer to the difference between the two consecutive
timestamps the intermittent device turns on. Active period patterns
are sequences of active periods over time, which display differences
based on the device’s energy availability due to the time it takes
for the device to accumulate enough energy to turn on.

3 MOTIVATION

Intermittent devices operate in bursts; they turn on when they have
energy and turn off during energy scarcity. Our main observation is
that if an adversary can remotely learn when the intermittent device
turns on and off, they can infer its energy availability by leveraging
the device’s active period as a side channel. We refer to these attacks
as physical side-channel attacks since they exploit the physical
operation of the intermittent device in an environment.

The device’s energy availability carries privacy-sensitive infor-
mation about its operating environment. We present, in Table 1,
a variety of intermittent devices, their use cases, communication
channels, and the potential information leakages related to their
energy availability. These devices all take sensor readings and peri-
odically send them to a hub. For instance, a solar energy harvesting
device measures the temperature and humidity of a smart home and
reports them to the IoT hub over BLE [23]. From this device’s energy
availability, an adversary can infer the environment’s light condi-
tions and reason if the users are not at home or sleeping. As another
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example, a heartbeat-harvesting device conducts vital sign sensing
and sends the readings to a mobile phone over a 2.4 GHz radio [47].
From this device, an adversary can infer user activities (e.g., sleep-
ing, exercising). Such information would allow an adversary to
learn a user’s routines and conduct physical attacks (e.g., burglary
or kidnapping) or create user profiles for targeted ads [29, 31, 64].

In some cases, an adversary within the victim’s visual range
could observe the information leaked through intermittent devices.
For instance, an adversary could peek through a window to see
if the lights are on or use thermal cameras to observe user activ-
ities (e.g., sleeping, exercising). However, our attack removes the
attacker’s need to be in close proximity, allowing more stealthy
attacks even against physically closed and protected environments
(e.g., control rooms or offices) without directly observing the victim.
Determining the Side-Channel Leakage Source. In our initial
attack prototype, we considered an adversary who leverages the
intermittent device’s electromagnetic (EM) emissions to learn its
active period. This is because devices create higher EM emissions
while they are turned on. Thus, the adversary can profile an intermit-
tent device’s active period through its EM emissions. Yet, capturing
EM waves requires an adversary to deploy antennas within close
proximity of the intermittent device (e.g., within millimeters) [16],
which may be infeasible. Thus, for an adversary to remotely learn a
device’s active period, we leverage the timestamped network packet
sequences transmitted from the intermittent device. Each transmit-
ted packet indicates the device is on at that time. Thus, an adversary
who sniffs the device’s network packets can learn its active period
through its inter-packet-arrival timings (the difference between
the timestamps of two consecutive network packets observed by
the adversary). We note that the intermittent device may not send
a network packet in each active period. Yet, when it does send a
packet, it means the device is on at that time.

3.1 Feasibility Study

We conduct a feasibility study to answer: Do the network packets
sent from an intermittent device indicate its energy availability?
Experimental Setup. To answer this question, we conduct ex-
periments in a real miniature manufacturing plant testbed in our
laboratory, as shown in Figure 3. This testbed is a fully automated
production factory [34] with four components. (1) Vacuum gripper
robot (VGR) moves the workpieces. (2) High-bay warehouse (HBW)
stores the workpieces. (3) Multi-processing station processes the
workpieces. (4) Sorting line sorts workpieces based on their colors.
The plant contains order and delivery phases. In the order phase,
the workpieces are processed and placed in the warehouse. During
delivery, the VGR places the workpiece at the delivery location after
it is processed at the multi-processing station and sorting line.

Intermittent devices have started to be increasingly used in ICSs
due to their ability to function in remote or inaccessible areas and
their elimination of frequent battery replacements [87]. Following
this, we connect a real vibration-harvesting intermittent device to
the VGR’s toothed gear. We use a Cypress intermittent device [23]
with a MIDE S129 vibration harvester. Our intermittent device has
similar specs to other devices in Table 1. This device transmits
temperature and humidity readings to a hub over BLE every seven
seconds (when it has enough energy).
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Figure 3: Feasibility experiment setup and results: We con-
nect a vibration-harvesting intermittent device to a minia-
ture manufacturing plant in our lab. The device’s network
packets indicate the vacuum gripper robot’s speed.

Results. We run the manufacturing plant and collect network
packet sequences from our intermittent device in three different
conditions, (1) high VGR speed, (2) low VGR speed, and (3) VGR is
stationary. Figure 3 shows the network packets received from the
intermittent device in these conditions. The packet sequences show
clear differences across different VGR conditions, where the inter-
mittent device sends packets at a higher frequency when it has
more available energy due to the vibration from VGR’s high speed.

By inferring the VGR’s speed, the adversary can timely conduct
attacks against the manufacturing plant that would cause maximum
damage. For instance, we consider the adversary aims to conduct
a malicious command injection attack, causing the VGR to drop its
workpiece. The adversary can leverage our physical side-channel
attack to infer when the manufacturing plant operates at high speed
and conduct the attack at that point to cause more severe damage
to the physical machinery, environment, and workers.

These results motivate us to design a systematic side-channel
attack to automatically infer an intermittent device’s energy avail-
ability through temporal features extracted from its network packet
sequences while accounting for the device’s unique properties.

3.2 Threat Model

We consider an adversary who aims to infer privacy-sensitive in-
formation (e.g., user activity, robot states) from an intermittent
device’s energy availability. To this end, the adversary monitors the
device’s active period through the network packets it transmits.

We assume an adversary within the wireless communication
range of intermittent devices. The adversary can install a sniffer
once and manage it remotely to obtain the network traffic. The
adversary does not intercept or inject messages but only records
the traffic. This allows the adversary to remain undetected for an
extended period of time. The adversary does not rely on the packet’s
content but only its metadata (i.e., MAC addresses and timestamps).
Thus, our attack is still applicable if the device encrypts its packet
content. We assume that the intermittent devices are installed
within an indoor closed space (e.g., manufacturing plant, smart
home, smart office). Therefore, the adversary cannot physically
access or monitor the devices through other means (e.g., a cam-
era) [30]. Lastly, similar to prior network analysis attacks against
traditional IoT devices for fingerprinting them [3, 5, 8, 11, 93], we
assume the adversary has access to a set of intermittent devices to
collect data and train their energy inference algorithm.
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3.3 Challenges

C1: Intermittent Device Identification. In real-world use cases,
intermittent devices usually coexist with non-intermittent devices
with batteries. Thus, the adversary must first identify the victim
intermittent device(s) to conduct physical side-channel attacks.

To address this challenge, one approach would be simply iden-

tifying the victim intermittent devices by recognizing their MAC
addresses since the top three bytes of a MAC address indicate the
device manufacturer. Unfortunately, recognizing the manufacturer
is not enough since each manufacturer usually produces both in-
termittent and non-intermittent devices. Another approach would
be leveraging IoT device fingerprinting techniques [3, 5, 8, 11, 93].
Yet, these techniques do not consider properties unique to inter-
mittent devices (e.g., firmware configurations, execution models,
and energy storage mechanisms). Thus, they fail to fingerprint
intermittent devices accurately and identify them.
C2: Energy Harvester Recognition. To infer privacy-sensitive
information from the victim intermittent device, the adversary
needs to infer its energy harvester. Yet, there are diverse energy
harvesters that intermittent devices might be equipped with, and
many devices allow users to connect different harvesters.

Recognizing a device’s harvester is challenging because different
harvesters yield similar active periods when their energy conditions
are similar, e.g., when a solar harvester is exposed to high illumina-
tion and a temperature harvester is exposed to high temperature.
C3: Accounting for Unique Intermittent Device Properties.
There are various properties unique to each intermittent device,
such as their voltage thresholds, packet transmission intervals, and
energy storage size. Depending on their use cases, these properties
might be configured differently by each vendor at production and
by users at deployment. For instance, a user may connect an addi-
tional capacitor to increase the device’s energy storage. Such diverse
properties impact the device’s active period and inter-packet-arrival
timings. Thus, these properties must be integrated into the adver-
sary’s energy inference algorithm to accurately learn the device’s
energy availability and desired privacy-sensitive information.

A possible solution is conducting extensive experiments with
the device to model its active period. Yet, experiments with all com-
binations of device properties, harvesters, and energy availability
conditions are infeasible. To address this, one could use a simulator.
Yet, existing simulators do not precisely simulate the active periods
of intermittent devices with networking capabilities [35, 36, 90].

4 SYSTEM DESIGN

4.1 Overview

Figure 4 shows our approach to conducting side-channel attacks
against intermittent devices. Our attack has two phases, (1) offline
intermittent device analysis and (2) online hierarchical inference.
In the offline phase (@), first, the device property analyzer identi-
fies the configurable intermittent device properties that are causally
related to the device’s active period (C3). Second, grid testing runs
the device with different combinations of the identified device prop-
erties in various environments while the device is connected to
different harvesters to collect a comprehensive timestamped packet
sequence dataset. Lastly, given the collected dataset, we model the
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Figure 4: Overview of our attack.

device’s active period patterns through its inter-packet-arrival tim-
ings with changing device properties, energy harvesters, and energy
availability. This module outputs a hierarchical inference frame-
work consisting of an intermittent device identifier (C1), energy
harvester recognizer (C2), and energy availability discoverer.

In the online phase (@), we first use a network sniffer to collect
all packets in the victim environment. We then separate the times-
tamped packet sequences from each device through their unique
identifiers (e.g., MAC addresses) and conduct a three-stage hierar-
chical inference using the models derived offline. We first identify if
one or more intermittent devices exist in the environment (Stage).
If an intermittent device exists, we infer which energy harvester is
connected to it (Stage;). Lastly, we continuously infer the intermit-
tent device’s energy availability over time to learn privacy-sensitive
information related to its energy availability (Stages).

4.2 Intermittent Device Analysis

4.2.1 Device Property Analysis. Given an intermittent device, we
first identify the properties that can be configured by users at de-
ployment and are causally related to the device’s active period. To
model an intermittent device’s active period, the adversary must
conduct data collection with the device in a surrogate testbed or
lab environment (since we do not assume the adversary has access
to the physical environment in which the device is deployed) while
accounting for its properties. Yet, intermittent devices have many
properties; thus, conducting extensive data collection with all prop-
erties incurs a high time overhead. To address this, we eliminate the
properties that are not causally related to the device’s active period
and enable scalable data collection for active period modeling.

To this end, we first analyze the intermittent device’s user man-
uals to identify its configurable properties. We next conduct con-
trolled experiments by individually changing each device property
and collecting its timestamped packet sequences. We leverage dy-
namic time warping [13, 17] to measure the active period differences
when a device property changes. Lastly, we eliminate the properties
that do not cause a change in the device’s active period.
Identifying Configurable Device Properties. Through our sur-
vey of intermittent devices, we found eight common properties in
three categories that may be causally related to their active periods.
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Hardware: The intermittent device’s microcontroller type and
sensors on board may impact the device’s energy consumption. The
device’s energy storage size also affects its active period since it
determines how long the device stays off before turning on and
how long the device operates before turning off.

Firmware: We have identified three firmware parameters that
may impact the intermittent device’s active period, (1) packet size,
(2) packet transmission interval (i.e., the duration a device waits be-
tween attempting to send two consecutive packets), and (3) voltage
thresholds for changing the device state (i.e., on/off).

Communication: The intermittent device’s radio module and
communication protocol (e.g., BLE and Zigbee) may impact the
device’s active period due to their different energy consumptions.

Although several properties may impact the device’s active pe-
riod, not all are configurable by the user at the application level. If
a property is not configurable, the adversary only needs to consider
the impact of the device’s default configuration on its active period.
Since intermittent devices are diverse, the configurable properties
also vary among them. For instance, a carbon-monoxide monitoring
intermittent device [19] does not allow changing any properties.
On the contrary, an environment monitoring device [83] has open-
source firmware and enables changing several properties, such
as the packet transmission interval. Thus, we manually study the
devices’ user guides to identify the configurable properties.
Controlled Experiments with Different Intermittent Device
Properties. We modify each configurable property on the real
intermittent device and conduct experiments to observe the changes
in its active period patterns through its inter-packet-arrival timings.

The intermittent devices’” user guides and manuals give hints on
how to change the configurable device properties. For instance, an
intermittent device’s user manual mentions app_config.h file in
the device firmware containing the configurable properties [83].
The following code block shows this device’s two configurable
properties, packet transmission interval and voltage threshold.

1 Advertising Interval [ms] <100-100000>
) #define APP_ADV_INTERVAL_MS 2000

3 // Capacitor Voltage Threshold [mV]

1 #define APP_VBAT_THRESHOLD 2500

After identifying the methods to change device properties, we con-
duct experiments with the intermittent device’s default configu-
rations and with each property changed individually to collect
timestamped packet sequences. In these experiments, we do not
change the device’s harvester and keep stable energy conditions to
observe only the property’s impact on the device’s active period.
Causal Structure Identification. We identify the causal struc-
ture between intermittent device properties and the device’s active
period by computing the active period distance (d,,) between the
timestamped packet sequence collected with the device’s default
configurations and the sequence collected with a changed property.
We eliminate the properties with d,, smaller than a threshold as
they are not causally related to the device’s active period.

We leverage dynamic time warping [13, 17] as our da, metric.
Compared to other metrics, such as Euclidean and Manhattan dis-
tances, dynamic time warping enables many-to-one comparisons
between timestamped packet sequences, enabling the detection
of shifts and shapes in the sequences. Thus, given two packet se-
quences, one with the default configuration (D = {ds,dp,...,dn})

466

Ozmen et al.

Algorithm 1 Dynamic Grid-Testing

Input: Intermittent device (D), A set of device properties (Lp), A set of energy har-
vesters (Lp), A set of energy availability conditions (L¢).
Output: Intermittent device timestamped packet sequences dataset (DS).
1: function Dynamic_Grip_TEsT(D, Lp, Ly, Lc)
2: forL €L, do

3 forh € Lp,c € Lc do

4 DS « DSU {L,h,c,D(L,h,c)}
5: end for

6: end for

7 return DS

8: end function

and the other with the changed configuration (C = {c1,cp,...,¢n}),

we first compute a distance matrix as:

dist(dj,c;) dist(di,cy) dist(dq, cn)
dist(dy, c1) dist(dy, cp)
dist(dn, c1) dist(dn, cn)

Here, dist is a standard distance metric such as Euclidean. d,p
is then defined as the minimum sum of the contiguous elements in
this matrix. We compute d,, for each intermittent device property
that can be configured by the user at deployment. This module
outputs the set of properties (Lp) with dyp larger than a threshold,
as these properties impact the device’s active period the most. This
threshold provides a tradeoff between scalability and accuracy. A
lower threshold causes more properties to be considered for active
period modeling, enabling more accurate attacks but also increasing
the testing overhead. We set this threshold by finding the value that
provides reasonable attack accuracy and scalability in Section 5.

4.2.2 Dynamic Grid-Testing. Dynamic grid-testing takes, as in-
put, the list of configurable intermittent device properties that are
causally related to the device’s active period and the list of energy
harvesters and availability conditions the adversary aims to infer.
It then runs the intermittent device with combinations of these
inputs to collect a comprehensive timestamped packet sequence
dataset from the device. This dataset enables accurate profiling of
the intermittent device’s active period. Algorithm 1 shows the steps
of conducting dynamic grid-testing on intermittent devices.

The algorithm first generates a set of test cases by considering all
combinations of device property configurations (Line 2). However,
testing the device with all combinations of configurations with nu-
merical values (e.g., packet transmission interval) is impractical. To
address this, we discretize such properties by setting their configu-
rations within their min/max ranges with equal intervals. For each
energy harvester and configuration, we set the energy availability
conditions to the ones we aim to infer and run the device (Lines
3-4). We collect network traffic from the intermittent device as a
timestamped packet sequence while it runs for a given amount of
time. We repeat this for all configurations, harvesters, and energy
conditions to generate a comprehensive dataset.

4.2.3  Active Period Modeling. We model the intermittent device’s
active period using the timestamped packet sequence dataset gener-
ated through Algorithm 1. We develop a hierarchical classification
framework that (1) distinguishes a victim intermittent device from
non-intermittent devices, (2) recognizes the device’s energy har-
vester, and (3) identifies its energy availability condition.
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Figure 5: Active period modeling architecture.

We derive a separate model for each hierarchical stage due to
two reasons. First, the intermittent device’s active period has dif-
ferent intra-execution and inter-execution patterns. Intra-execution
patterns are the changes in the device’s active period within a short
period of time, based on the amount of energy available to the device
(i.e., the device’s active period while it has available energy). Inter-
execution patterns are the active period changes over an extended
period of time, representing the time when the device does not
have energy. While intra-execution patterns are effective in identi-
fying the victim device and its energy availability, as shown by our
experiments in Section 5, they are not suitable for recognizing the
harvester. Thus, we leverage inter-execution patterns to identify the
harvester. Second, to realize our attack in practice, we sequentially
use each model to first eliminate the packets from non-intermittent
devices and identify the intermittent device’s harvester to infer
privacy-sensitive information related to its energy availability.

Here, we also require a timestamped packet sequence dataset
from non-intermittent devices to train our intermittent device iden-
tification model. This dataset can be collected from any smart home
and industrial control system, or existing datasets [5] can be used.
Figure 5 shows the general pipeline for deriving a model for each
stage of our hierarchical classification framework, as detailed below.
Window-based Temporal Feature Extraction and Selection.
Given the timestamped packet sequences, we first segment them
into multiple samples with window size (W). We next compute their
inter-packet-arrival timings and extract time-domain features (F)
(e.g., min, max, median, length, and variance) from each sample.
These features allow us to capture both intra-execution and inter-
execution patterns in the inter-packet-arrival timings.

We next leverage relative mutual information (RMI) [50, 82] to
measure each feature’s distinctiveness in distinguishing between
classes for each stage of our hierarchical model. We define RMI as:

RMI(F,Y) = H(F) + H(Y) —H(F | Y)

Y is the sequence’s ground-truth label, and H(F) and H(Y) are the
entropy of the features and ground-truth [50]. For each model, we
separately select the top k features with the highest RMI for training.

Here, the window size parameter plays a crucial role in feature
extraction and selection to model the device’s active period. The
window size should be large enough to capture the device’s intra-
execution and inter-execution patterns but small enough for the
adversary to continuously infer the device’s energy availability
conditions. Thus, we determine it by conducting a grid search
and selecting the optimal value that provides the highest cross-
validation accuracy for each model separately.

Active Period Inference Model. Our hierarchical inference mod-
els leverage random forest classifiers [14] to identify the inter-
mittent device, its energy harvester, and energy availability. They
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Algorithm 2 Hierarchical Inference

Input: Stream of timestamped packet sequences (7°), Intermittent device identifier
(M), Energy harvester recognizer (M), Energy availability discoverer (M),
time windows (Wr, Wy, Wg).

Output: Energy availability conditions (c).

1: function HierarcHICAL_INFERENCE(T, M1, My, Mg, W1, Wy, Wg)
2: IntDevices = [], IntHarvesters = []

3 test « FILTER(T) > Split the traffic to different devices
4 fori € test do
5: ts « Winbow(7, Wr)
6: if M (ts) == Intermittent then
7: IntDevices = IntDevices U i
8: end if
9: end for
10: for j € IntDevices do
11: testH « Winpow (7, Wy)
12: IntHarvesters = IntHarvesters U My (testH)
13: end for
14: for k € IntHarvesters do
15: while 7 # 0 do
16: testE « Winpow(7T, Wg)
17: return k, ¢ «— M (testE)
18: end while

19: end for
20: end function

learn the device’s active period patterns from an ensemble of deci-
sion trees, which accounts for the variance in inter-packet-arrival
timings for various device properties and harvesters. Leveraging
random forest for inference allows the adversary to infer the energy
availability of devices with high accuracy without extensive data
collection, as in the case of deep-learning-based approaches. We
train our models using timestamped network packet sequences gen-
erated with our dynamic grid testing (Section 4.2.2). We perform
cross-validation to tune the model parameters and determine the
optimal window sizes for feature extraction and selection.

4.3 Hierarchical Inference

At the online stage of our attack, we first use a network snif-
fer (e.g., BLE, Zigbee) to remotely collect timestamped packet se-
quences. We then separate the timestamped packet sequences from
each device through their unique identifiers, such as MAC addresses.
We next leverage our active period inference models for hierarchical
inference, as presented in Algorithm 2. The algorithm takes, as in-
put, a stream of timestamped packet sequences from the sniffer, the
hierarchical inference models, and time windows. It then outputs
the energy availability conditions of the intermittent devices.
Victim Intermittent Device Identification. The algorithm starts
with splitting the timestamped packet sequences to different de-
vices based on their unique identifiers (e.g., MAC addresses) (Line
3). One may consider using such unique identifiers to determine
the victim intermittent device. Yet, as discussed in Section 3.3, these
identifiers enable the adversary to only recognize a device’s manu-
facturer. As manufacturers usually produce both intermittent and
non-intermittent devices, a matching manufacturer does not imply
identifying an intermittent device. Thus, we leverage our intermit-
tent device identifier model to distinguish intermittent devices.

For each device, our algorithm extracts a window of timestamped
packet sequence of size Wr (Line 4-5). The intermittent device identi-
fier then extracts a set of features from the traffic window, classifies
the device as intermittent or non-intermittent (Line 6), and outputs
the set of identified victim intermittent devices (Line 7).
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Energy Harvester Identification. The algorithm next uses the
energy harvester recognizer to infer the energy harvesters of the
victim intermittent devices. For each intermittent device, it gen-
erates a window of timestamped packet sequences with the Wy
parameter (Line 11). Similarly, it extracts a set of features from the
timestamped packet sequences and assigns an energy harvester for
each device (Line 12). This stage outputs the set of victim intermit-
tent devices along with their energy sources.

Energy Availability Identification. The algorithm next uses en-
ergy availability discoverers to infer the energy conditions of the
device, which carries privacy-sensitive information as detailed in
Section 3. For each identified victim intermittent device, the algo-
rithm divides the stream of timestamped packet sequences into
windows of size Wg (Line 15-16). It next uses the energy availability
discoverer derived for that harvester to extract features and infer
the energy availability of the device. The algorithm continuously in-
fers and outputs the energy availability conditions of the identified
victim intermittent devices over time (Line 17).

5 EVALUATION

We evaluate our physical side-channel attacks with three energy
harvesters (solar, vibration, and temperature) connected to real
intermittent devices in three different real-life scenarios.

In the first scenario, we consider a smart home where the ad-
versary aims to infer the light conditions from a solar-harvesting
intermittent device, which indicates whether the users are at home
or sleeping (e.g., to conduct physical attacks such as burglary or
kidnapping). In the second scenario, a vibration-harvesting device
is deployed in a real miniature manufacturing plant, where the ad-
versary aims to infer the operation of a robot (e.g., to conduct sensor
spoofing attacks). In the third scenario, a temperature-harvesting
device is connected outside of an oven, where the adversary aims
to infer whether the oven is turned on (e.g., to learn the cooking
activity patterns of the residents or exploit the unintended physical
app interactions the turned-on oven may trigger [70]).

Our experiments show that an adversary can accurately recover
privacy-sensitive information from intermittent devices. We present
our results by focusing on several research questions:

RQ1 Which intermittent device properties are causally related to
the device’s active period? (Section 5.2)

RQ2 What is the accuracy in each stage of our hierarchical infer-
ence? (Section 5.3)

RQ3 How does the accuracy change with different amounts of
training data and time windows? (Section 5.3.4)

RQ4 How does the accuracy change if the adversary excludes an
intermittent device property in grid testing? (Section 5.4)

RQ5 What is the accuracy of our attack against existing network
analysis defenses? (Section 5.5)

5.1 Evaluation Setup

5.1.1 Intermittent Device. We use a Cypress device [23] equipped
with a 32-bit 48 MHz CYBLE processor with 128 KB flash memory
and 16 KB SRAM, an S6AE101A power management integrated
circuit, and a BLE radio. It takes temperature and humidity readings
every seven seconds and sends them to a hub over BLE. It has three
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100 pF capacitors for energy storage and supports an additional
capacitor. It includes built-in open-source firmware, which we do
not change except its configurable parameters.

We have selected this device for three reasons: (1) It is commer-
cially available. (2) It supports different energy harvesters, allowing
us to validate our attacks with them. (3) Its specs are similar to other
intermittent devices [1, 26, 27, 68, 94], providing a general idea of
our attack’s effectiveness on different devices. We also conduct
additional experiments to confirm the transferability of our attack
to a different intermittent device [83] in Section 6.

5.1.2  Energy Harvesters. We connect three harvesters, a Panasonic
solar harvester, a MIDE vibration harvester, and an EverGen tem-
perature harvester, to the intermittent devices. These harvesters
cover all three energy source types outlined in Section 2. We select
these harvesters as they are increasingly used in smart grids [9],
wearables [86], wireless sensor networks [22, 24], and ICS [87].

5.1.3 Data Collection. We collect network packets from the inter-
mittent devices in three datasets: (DS1) Intermittent device analysis
dataset, (DS7) Active period modeling dataset generated through
dynamic grid testing, and (DS3) Testing dataset to measure the accu-
racy of our attacks in real-world scenarios. We collect DS; and DS;
from a lab environment, whereas we collect DS3 from real environ-
ments that include various noise factors, such as different devices
that operate in the same frequency band as the intermittent devices.
This is because, in practice, the adversary may not be able to col-
lect packet sequences from intermittent devices in their operating
environments for training active period models. Therefore, we con-
sider an adversary who conducts our attack’s offline stages in a lab
environment and uses the derived models to attack intermittent
devices in practice. We note that this is a stronger attack model
(less advantageous for the adversary) as we do not assume physical
access to the devices’ operating environment.

Dataset-1. For DS1, we identify three configurable intermittent
device properties from the device’s user guide, (1) including a 220 uF
additional capacitor, (2) the packet transmission interval, and (3)
low-voltage detection threshold. Thus, we change these device
properties and collect 10 mins of network packets from the device
while it is equipped with the solar harvester and under ideal energy
conditions. We select the solar harvester as it enables testing the
most number of properties (e.g., supports operating without an
additional capacitor, while it is required for other harvesters). We
use DSy to identify which device properties impact the inter-packet-
arrival timings that guide our testing configurations for DS,.

Dataset-2. For DS;, we collect packets from the intermittent device
with all three harvesters in different energy availability conditions
and changing intermittent device properties (See Appendix Fig-
ure 10 for temperature and solar harvesting setups). We collect 30
mins of network packets with each configuration. To create dif-
ferent energy availability conditions, we create surrogate testbeds
since we assume the adversary does not have access to the device’s
real operating environment. With the solar harvester, we collect
packets in high (~ 500 lux), medium (= 200 lux), low (= 50 lux),
and no illuminance settings. For the vibration harvester, we use a
toothed gear connected to a DC motor. We collect packets when
the toothed gear operates for 15 secs with 30 secs intervals and 25
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Table 2: Real-world scenarios in our evaluation.

Energy
Harvester

Energy
Conditions
Light Off
Light Low
Light Med
Light High
No Operation
Mid Operation
High Operation
Oven Off
Oven Med
Oven High

Exp ID Scenario Information Leakage

Occupants are not

Smart Home .
at home or sleeping

Expq Solar

Manufacturing
Plant

Workpiece-carrier’s
status

Expz Vibration

Exp3 Temperature Oven Oven’s status

secs with 30 secs intervals, mimicking different operations of the
manufacturing plant [34]. Lastly, with the temperature harvester,
we use a hot plate and set its temperature to 40°C, 50°C, and 60°C.

Dataset-3. DS3 represents our testing dataset, where the adversary
uses the active period models learned with DS; to infer privacy-
sensitive information in real-world environments. Table 2 shows
the three real-world scenarios considered in our experiments?,

In the first scenario, we collect 1.5 hours of timestamped packet
sequences while the intermittent device is connected to the solar
harvester in a smart home where the light conditions change. The
adversary aims to infer the light level, indicating whether the users
are at home or sleeping. The smart home also includes other devices
(e.g., smart TV, laptop, phone), and therefore, the dataset includes
packets from 159 unique MAC addresses.

In the second scenario, we connect the vibration harvester to our
manufacturing plant testbed (Detailed in Section 3.1) and collect
network packets while the plant runs for 2 hours (See Appendix
Figure 11 for the setup). We connect the harvester to a robot in
the high-bay warehouse. This robot controls the position where
a workpiece is stored, and its movements depend on the storage
location. Here, the adversary can infer when the plant is operating
and what the workpiece position is in the warehouse.

In the last scenario, we connect the temperature harvester to the
outside of an electric oven and collect packets for 1 hour. Here, the
adversary aims to infer the oven’s status, if it is turned on or off.

All of our testing environments allow us to practically demon-
strate our attacks since they naturally include various noises that
can occur in any real-life environment, e.g., diverse physical obsta-
cles and vibrations from the other components of the manufacturing
plant. They also include noise on the communication channels since
there are different devices in these environments that operate in
the same frequency band as the intermittent devices. Therefore,
the inter-packet-arrival timings collected from these environments
are impacted by various communication factors, including channel
conditions, interference, and communication quality.

5.2 Intermittent Device Analysis Results

We present the results of our intermittent device analysis performed
on the DSy dataset. We compute the active period distance (dap)
between the time-series packets collected with default device con-
figurations and with a changed device property to determine the
properties causally related to the device’s active period. We found
that two configurable intermittent device properties, including an

2We contacted the IRB office at our university, and they advised that IRB approval is
not required because we do not collect sensitive information from human subjects.
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Figure 6: Time-series network packets transmitted from the
intermittent device with different configurations (1 indicates
packet received, 0 indicates not received).

additional capacitor and the packet transmission interval, signifi-
cantly impact the device’s active period. In contrast, the low-voltage
detection threshold minimally influences it.

Figure 6a presents the network packets received from the inter-
mittent device with default configurations (no additional energy
storage, disabled low-voltage interrupt, and 7 secs packet transmis-
sion intervals). When we connect an additional capacitor to the
device, we observe more extended periods of time between packets
(Figure 6b). The d,, between the timestamped packet sequences
with default configurations and with an additional capacitor is 5.20.
This large distance is because the additional capacitor takes extra
time to charge and incurs energy loss. We also modify the disabled
low-voltage detection to generate an interrupt when the voltage is
1.75 V. Figure 6¢ shows that the inter-packet-arrival timings with
the changed voltage detection are similar to the default configura-
tion’s timings (dap = 0). Lastly, we change the packet transmission
interval to 4 secs instead of the default 7 secs. We observe that it
causes packets to be sent in shorter bursts with more extended
periods of time in between, with a da, of 4.24 (Figure 6d).

Based on these experiments, in our dynamic grid testing, we only
consider energy storage and packet transmission interval changes
but do not change the low-voltage detection as it does not impact the
device’s inter-packet-arrival timings. This decreases the adversary’s
data collection for active period modeling since data collection for
different low-voltage detection configurations is not required.

5.3 Attack Effectiveness

We present our attack’s performance in intermittent device, energy
harvester, and energy availability identification for the three exper-
imental scenarios (Exp1, Exp2, Exp3). We train each model in our
hierarchical framework using the active period modeling dataset
(DS>) and find each model’s optimal parameters (e.g., time windows)
through grid search and cross-validation. We use the models on
the test dataset (DS3) collected from real environments that include
various noise factors (e.g., other devices sending packets in the
same frequency band) and measure our attack’s effectiveness. Ta-
ble 3 shows our attack’s effectiveness in each stage. Our results
show that we can distinguish intermittent devices from others with
98% accuracy, identify the intermittent device’s harvester with 92%
accuracy, and infer its energy availability with 85% accuracy on
average. We compare the performance of our attack with other
classifiers in Appendix Table 7.
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Table 3: Effectiveness of our attack.

Experiment Accuracy | Precision | Recall
Stage1: Intermittent Device Identification 98% 99% 98%
Stage2: Energy Harvester Identification 92% 94% 92%
Exp1: Solar Energy Availability 80% 81% 80%
Expy: Vibration Energy Availability 88% 89% 88%
Exp3: Temp Energy Availability 87% 87% 87%

5.3.1 Intermittent Device Identification. The results show that the
adversary can distinguish the packets from the victim intermittent
devices with 98% accuracy, 99% precision, and 98% recall when
the time window parameter (W1 - used for splitting the packet
sequences into windows) is set to 2 mins. We found that although
the adversary correctly identifies all intermittent devices, a small
subset (~ 3%) of non-intermittent devices is incorrectly classified
due to their packet sequences being similar to intermittent devices.
We observe that intermittent devices have longer inter-packet-
arrival timings compared to non-intermittent devices, enabling our
framework to distinguish them. This is because they must accumu-
late energy after sending a packet to send the next one. This energy
requirement prevents intermittent devices from sending packets
with high frequency. This difference is reflected in our feature selec-
tion, where the features with the highest RMI were Min and Median.
The less frequent packet transmissions cause a higher minimum
and median inter-packet-arrival timing for intermittent devices.

Public Dataset Experiments. We conduct an additional experi-
ment to show our attack’s generalizability and ability to distinguish
intermittent devices from non-intermittent IoT devices that may
have similar inter-packet arrival timing patterns with intermittent
devices. To this end, we leverage two public datasets collected in
environments similar to our setups (e.g., smart home) for finger-
printing and classifying non-intermittent IoT devices [5, 89]. We
combine our dataset collected from intermittent devices with these
datasets and run our attack’s intermittent device identification. We
split the datasets as 80% and 20% for training and testing.

Table 4 presents the description of these two datasets and the ac-
curacy, precision, and recall of our attack’s intermittent device iden-
tification. Our attack has 100% accuracy with the NCSU dataset [5]
and 96% accuracy with the UNSW dataset [89]. We found that sim-
ilar to the experiments with our non-intermittent device dataset,
Min and Median inter-packet-arrival timings have the highest RMI.

5.3.2  Energy Harvester ldentification. Our test dataset (DS3) in-
cludes timestamped packet sequences from the intermittent device
when it is connected to solar, temperature, and vibration harvesters.
We show that an adversary can identify the device’s harvester (be-
tween solar, temperature, and vibration) with 92% accuracy, 94%
precision, and 92% recall with 45 mins time windows (Wy). The
confusion matrix illustrated in Figure 7a shows that the only mis-
classifications occur between solar and vibration harvesters.

We set Wy to 45 mins as it enables our framework to capture the
inter-execution patterns between harvesters, yielding high accu-
racy. For instance, with the vibration harvester, the device sends
packets in short bursts with long wait times in between due to the
manufacturing plant’s operation. In contrast, with the solar har-
vester, the device continuously sends packets over a more extended
period of time since light-condition changes are less frequent. Thus,
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Table 4: Our attack’s effectiveness in identifying intermittent
devices from non-intermittent IoT devices.

Dataset | Year | No of Packets | No of IoT Devices | Accuracy | Precision | Recall
NCSU | 2022 >100K 11 100% 100% 100%
UNSW | 2018 >600K 22 96% 99% 96%
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Figure 7: Confusion matrices for (a) energy harvester, (b)
solar energy availability, (c) vibration energy availability,
and (d) temperature energy availability identification. The
x-axes indicate the predicted classes, and the y-axes indicate
the ground truth.

the two features that better distinguish the energy harvesters are
the max inter-packet-arrival timing and the sum of their values.
The max value indicates the inter-execution patterns as it shows the
amount of time when the device did not have enough energy. The
sum value is also highly impacted by the inter-execution patterns
since a large period of energy unavailability causes lower values.

We evaluate the effectiveness of our selected time window by
comparing its performance to the harvester identification perfor-
mance with a window of 2 mins. The accuracy drops to = 70% in this
case. This is because the model cannot capture the inter-execution
patterns within 2 mins. Thus, it cannot distinguish between simi-
lar energy conditions from different harvesters (e.g., light-high for
solar and oven-high for temperature harvester).

5.3.3 Energy Availability Identification. We measure our attack’s
effectiveness in inferring the energy conditions of each of the three
harvesters. On average, our attack achieves 85% accuracy, 86% pre-
cision, and 85% recall with 2 mins time windows (Wg).

Expj. Our attack achieves 80% accuracy in identifying the smart
home’s light level. Through this, the adversary infers when the
user is sleeping or is not at home to conduct physical attacks
(e.g., kidnapping or burglary). The Median and Min features have
the highest RMI in distinguishing light levels since they indicate
the device’s intra-execution patterns within a short time window.
The confusion matrix shows that the misclassifications are mainly
because light-high and light-med conditions cause similar inter-
packet-arrival timing patterns (Figure 7b). To confirm this, we per-
formed an additional test with two classes, light-on (encapsulating
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Figure 8: Attack accuracy with changing (a) amount of train-
ing data and (b) segmentation time windows (Wg).

light-high/med/low) and light-off, and found the adversary achieves
100% accuracy. This indicates a trade-off between attack accuracy
and granularity, where identifying energy conditions at a finer
granularity results in a decrease in accuracy.

Expz. Our attack achieves 88% accuracy in inferring the robot’s
state in the warehouse, where Figure 7c shows the confusion matrix.
The intermittent device’s energy availability changes based on
the position in which the warehouse stores the workpiece, as the
robot’s movements depend on this position. This causes differences
in the device’s packet transmissions, where the Length feature,
indicating the number of packets within the time window, provides
the highest RMI. Through this attack, the adversary learns (1) the
time that the robot is carrying an item and (2) the location where the
workpieces are stored. The adversary can use this information to
timely conduct a sensor spoofing or parameter injection attack [32,
71, 95], maximizing the damage to the plant and the workpieces.
Exps. Our attack achieves 87% accuracy in identifying if the oven
is operating at a high temperature (~ 230-250°C), medium temper-
ature (~ 200°C), or it is off. Figure 7d shows that there are misclas-
sifications between high and med temperature settings since they
sometimes cause a similar frequency in the packet sequences. Gen-
erally, with a high oven temperature, the device accumulates more
energy and transmits packets at a higher frequency. We found that
Length and Mean features were the most effective in distinguish-
ing different temperature levels because a high oven temperature
causes a higher number of transmitted packets and lower mean of
inter-packet-arrival timings. With this attack, the adversary infers
the time a person is cooking in their home. Thus, the adversary can
learn the activity patterns of the residents.

5.3.4 Attack Parameters. We evaluate the impact of the two attack
parameters: (a) the training data size for learning active period mod-
els and (b) the energy availability inference time window (Wg). We
conduct this evaluation on the solar energy availability identifica-
tion, where we learn active period models with different parameters
and test on our smart home dataset (Exp1). We vary the training
data size by using 2 to 12 hours of packet sequences and change the
time window sizes between 30 secs to 3 mins. Figure 8 presents our
results, which show that (1) increasing training data yields higher
accuracy, and (2) 2 mins time window gives the best performance,
supporting our parameter selection with cross-validated results.

Accuracy with Different Amount of Training Data. Figure 8a
shows the attack accuracy with different training data sizes. To
vary the training data size, we randomly select subsets of DS;. As
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Table 5: Ablation study on intermittent device properties.

Extra Storage Transmission Interval
ID" | No Extra Capacitor | Extra Capacitor | 7 secs | 4 secs | 1sec | Accuracy
AB4 v X v v v 75%
AB; X v 4 v v 71%
AB3 v/ v/ v/ X X 62%
AB4 v v/ X v X 60%
All v v v v v 80%

i ABy represents the ablation settings we considered (e.g., In ABq, we train our inference
model by excluding the data collected when an extra capacitor is connected to the
device). A1l represents that all intermittent device properties are considered in training.

expected, the accuracy increases with increasing training data. Yet,
the accuracy becomes stable when 8 or more hours of data are used
for training, which is always higher than 75%.

Accuracy with Different Time Windows. Figure 8b shows the
attack accuracy with different time windows (Wg) that represent
the size of the sequences we segment the packets into. The results
show that 2 mins windows give the highest accuracy (80%), whereas
smaller time windows give ~ 70% accuracy. We observe that the ac-
curacy drops when larger time windows (e.g., 3 mins) are used. This
decrease occurs because the device’s packet transmission interval
(7 secs) becomes much smaller than the time window, making the
inter-packet-arrival timing patterns less distinguishable.

5.4 Ablation Study on Device Properties

To understand the impact of device properties on our attack’s accu-
racy, we perform an ablation study by training the energy inference
model without including the data collected with certain device
properties. We perform this study on the solar harvester (Exp1),
allowing us to measure the impact of adding an additional capacitor
to the device and different packet transmission intervals. Table 5
shows our attack’s accuracy when we train the energy inference
model with datasets that include different sets of device properties.
Additional Capacitor. We exclude the additional capacitor data
(AB1) and no-additional capacitor data (AB;) from training (DS3)
while learning the models. We test them on the Expq testing dataset.
Table 5 shows excluding the additional capacitor data causes
a decrease in the attack accuracy by 5%, and excluding the no-
additional capacitor data causes a 9% decrease. The accuracy dif-
ference between the two ablation studies is because the testing
data is collected with the default configurations of our intermittent
device, which does not have an additional capacitor. Including both
capacitor settings enables the highest accuracy because it allows the
adversary to extract inter-packet-arrival timing patterns that are
applicable regardless of the device having an additional capacitor.
Packet Transmission Interval. To evaluate the importance of
changing the packet transmission intervals, we use the active period
modeling data with 7 secs interval (AB3) and 4 secs interval (ABg).
We found that excluding different packet transmission intervals
from the dataset causes a higher decrease in attack accuracy. It
decreases by 18% when only 7 secs packet transmission interval is
considered, and 20% with 4 secs interval. This is because the features
that distinguish the light levels are those that are more impacted
by the packet transmission interval configuration (e.g., min, me-
dian). Thus, including a more extensive set of packet transmission
intervals significantly improves our attack’s performance.
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Table 6: Effectiveness of our attack under traffic injection
and traffic reshaping defenses.

Experiment No-Defense Injection Reshaping
Acc. | Pre. | Rec. | Acc. | Pre. | Rec. | Acc. | Pre. | Rec.
Intermittent Device Identification | 98% | 99% | 98% | 97% | 98% | 97% | 98% | 99% | 98%
Energy Harvester Identification 92% | 94% | 92% | 83% | 75% | 83% | 83% | 75% | 83%
Solar Energy Availability 80% | 81% | 80% | 82% | 78% | 82% | 78% | 68% | 78%
Vibration Energy Availability 88% | 89% | 88% | 85% | 86% | 85% | 85% | 85% | 85%
Temp Energy Availability 87% | 87% | 87% | 87% | 87% | 87% | 87% | 87% | 87%

5.5 Attack Effectiveness against Defenses

There are three main defenses against network analysis attacks:
packet padding, traffic injection, and traffic reshaping [6, 7, 11,
93]. The packet padding concatenates dummy bytes to packets to
confuse attacks relying on packet lengths. Since our attacks only
rely on packet timings, packet padding is inherently ineffective
against our attacks. Therefore, we evaluate our attack performance
against two defenses, traffic injection and reshaping.

Defense Design. Traffic injection introduces dummy packets to
obfuscate the real network traffic in a crowd of dummy traffic. To
integrate this defense, we introduce dummy traffic to the network
packets collected from our intermittent devices. We inject dummy
packets while the device has high energy, as it is infeasible for the
device to send dummy packets in low-energy conditions.

Traffic reshaping introduces random delays between packets to
confuse attacks that rely on inter-packet-arrival timings. We sample
the delays from a uniform distribution [0, I/4], where I is the
device’s packet transmission interval. This ensures the intermittent
device can accumulate enough energy to send consecutive packets
while introducing randomness to the device’s network traffic.
Results. Table 6 shows our attack’s effectiveness without any
defense and with defenses integrated. We found that our attack
achieves, on average, only 2.7% lower accuracy with existing de-
fenses as they fail to hide an intermittent device’s active period.

During traffic injection, even the dummy packets indicate the
device is turned on. Since our attack only profiles the active periods
of devices, the adversary does not need to differentiate between
dummy and real packets while conducting the attack. As shown in
Table 6, this allows an adversary to achieve 97% accuracy in identi-
fying a victim intermittent device, 83% accuracy in recognizing its
harvester, and 85% accuracy in inferring its energy availability.

In traffic reshaping, each observed packet still indicates the in-
termittent device’s active period. Thus, our attack achieves 98%
accuracy in identifying an intermittent device, 83% in recognizing
its harvester, and 83% accuracy in inferring its energy availability.

Overall, our evaluation shows that existing network analysis
defenses, although effective against prior network analysis attacks
on IoT devices for fingerprinting them [6, 7, 11, 93], are insuffi-
cient against our physical side-channel attacks against intermittent
devices and highlights the need for new countermeasures.

6 DISCUSSION AND LIMITATIONS

6.1 Discussion

Attack Transferability to Different Intermittent Devices. We
evaluate our attack’s transferability on another intermittent device
with a 32-bit 48 MHz Arm processor, 384 KB flash memory, 88
KB SRAM memory, a custom voltage regulation circuit, and a BLE
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Figure 9: Real and predicted light levels in the smart home
when a different intermittent device is used for testing.

radio. It includes an accelerometer and temperature, humidity, and
pressure sensors. It takes periodic sensor measurements, with the
default interval set as two seconds, and sends them to a hub. For
energy storage, it includes a 47 yF capacitor.

With this device, we collect 1.5 hours of timestamped packet
sequences in a smart home setting while the device is equipped
with a solar harvester and configured with its default settings.

Our attack’s accuracy is 62% when the inference model is trained
with the CYBLE device and tested on the dataset collected with
the ARM device. Figure 9 shows the ground-truth light levels in
the smart home and those predicted with our attack. Although
the accuracy decreases when the attack targets a different device,
Figure 9 shows that the predictions are close to the real light levels.
The adversary can discover if the light is on or off, but they cannot
clearly distinguish between medium and high light levels.
Mitigation Methods. We introduce two defenses that leverage
two properties critical to an intermittent device’s active period, the
energy storage size and packet transmission interval.

The first defense is using a larger energy storage (e.g., a superca-
pacitor with high capacitance). This would cause the device to turn
off for a more extended period of time while it accumulates energy.
When the device turns on, it also stays on for an extended period of
time. This limits the adversary’s ability to learn privacy-sensitive
information as the adversary cannot know exactly when the en-
ergy is available. To confirm this, we have conducted preliminary
experiments with a 1F supercapacitor connected to our device with
the thermal harvester. We found it takes ~ 1 — 2 hours to charge the
supercapacitor, depending on the temperature level. Thus, the ad-
versary cannot infer the exact time when the energy was available
(e.g., if the oven is high in the initial or the last 30 mins). Yet, this
defense changes the device’s operation, where the device turns off
for a long time, which may not be desirable in certain applications
(e.g., in vital sign sensing, frequent sensor readings are required).

The second defense is programming the device with a large
packet transmission interval. Through this, the number of network
packets the adversary can analyze becomes minimal, limiting its
ability to recover privacy-sensitive information. For instance, we
consider a device that reports sensor readings every 24 hour. Here,
the device only needs to accumulate enough energy during this
24 hour, and the adversary cannot infer when the device stored its
energy. Yet, similar to increasing the capacitor size, this defense
also changes the device’s operation, limiting its applicability.

Future work will analyze the trade-offs between our defenses
and the intermittent devices’ usability in different scenarios.

Other Possible Defenses. One may consider implementing dif-
ferent techniques to mitigate our attacks. First, the intermittent
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device may randomly harvest energy to hide its energy availabil-
ity patterns. However, this approach is highly undesirable since it
may impair the device’s normal operation [10]. Another potential
defense involves leveraging MAC address randomization or MAC
layer encryption techniques to prevent our attacks from separating
the network traffic based on unique device identifiers. Yet, MAC
address randomization is vulnerable to tracking techniques [12].
Additionally, physical-layer fingerprinting methods that leverage
triangulation and radio signal properties can be integrated into our
attack for traffic separation against these defenses [15, 37].

6.2 Limitations

Multiple Energy Sources. With the advancements in energy har-
vesting systems, intermittent devices with multiple energy sources
(e.g., solar and vibration) are recently becoming popular [55, 72, 84].
Multiple energy sources allow these devices to increase their en-
ergy availability. Our physical side-channel attack can be applied
to such devices by including more energy availability conditions
in its dynamic grid testing based on all the harvesters the device is
equipped with. Future work will evaluate our attack on intermittent
devices with multiple harvesters.

Location Dependency. Attacks against certain intermittent de-
vices may require the adversary to know the device’s location. For
instance, to learn the robot’s position in the plant from a vibration-
harvesting device, the adversary needs to know which robot this
device is located at. To learn this information, the adversary can
use localization methods or social engineering (e.g., phishing). Yet,
attacks against most devices presented in Table 1 do not require
the adversary to know the device’s location as the energy source
directly implies privacy-sensitive information. For instance, from a
heartbeat harvesting device, the adversary can infer if the user is
resting or exercising; from a solar-harvesting device, the adversary
can infer if the users are at home; and from an RF harvesting device,
the adversary can infer the number of people in the home without
knowing the device’s exact location.

7 RELATED WORK

Intermittent Device Security and Privacy. Initial works have
conducted side-channel attacks against RFID tags to extract crypto-
graphic keys and passwords [44, 46, 76]. Yet, these works are limited
to RFID tags, and they do not infer privacy-sensitive information
related to the energy availability of intermittent devices. A line
of work has conducted physical attacks on intermittent devices to
extract their checkpoints [85, 92]. To defend against them, secure
checkpoints [51-53, 81] and remote attestation protocols [25, 77]
have been proposed. Prior work also proposed techniques to enable
secure program implementations [78] and optimize cryptographic
implementations through pre-computations [91]. Recent works
have focused on scheduling (e.g., multi-tenancy) [59, 73] and mem-
ory isolation to protect against malicious applications [39, 41]. Yet,
none of these works consider side-channel attacks against the en-
ergy availability of intermittent devices.

Recent work uses radio frequency harvesting devices to conduct
side-channel attacks against mobile devices [67]. This work assumes
an adversary who compromised an RF harvesting device. The adver-
sary then uses the deviations in the RF harvester’s voltage output
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to infer mobile app activity in its surroundings. In contrast, we
assume a remote adversary exploits the intermittent device’s active
period to infer its energy availability conditions. To our knowledge,
this work is the first to propose remote side-channel attacks against
intermittent devices to infer their energy availability.
Fingerprinting IoT Devices. Prior works fingerprint IoT devices’
network behavior to infer the device types, events, and user activi-
ties in IoT environments (e.g., smart homes) [3, 5, 8, 11, 21, 61, 63, 69,
74, 80, 93, 96]. These works use diverse features such as packet sizes,
directions, delays, protocol lists, flags, and ports to model network
traffic characteristics of non-intermittent IoT devices with batteries.
The prior work focuses on inferring privacy-sensitive information
regarding the device functionality (e.g., whether a motion sensor
generated a motion-detected event), whereas our attacks infer the
device’s energy availability, which is independent of the device func-
tionality. Additionally, these techniques do not integrate unique
intermittent device properties into their prediction algorithms and,
therefore, fail to properly fingerprint the network behavior and
active period of intermittent devices. To the best of our knowl-
edge, ours is the first work that integrates the unique properties of
intermittent devices (e.g., capacitor sizes, diverse harvesters) and an-
alyzes their packet frequency to infer privacy-sensitive information
regarding their energy availability.

There have also been various defenses proven effective against
such attacks. These defenses use packet padding, traffic reshaping,
and injection to prevent the adversary from characterizing the
devices and events through the network traffic [6, 7, 11, 88, 93]. Yet,
as shown in Section 5.5, such defenses are ineffective against our
attacks as they fail to hide the intermittent device’s active period.

8 CONCLUSIONS

In this paper, we present a novel remote side-channel attack against
intermittent devices. Our attack exploits the intermittent device’s
active period (the times it turns on and off) from its inter-packet-
arrival timings to infer its energy availability conditions. To this aim,
we design a hierarchical inference framework that profiles the inter-
mittent device’s active period to discover if an intermittent device is
present in an environment, recognize its harvester, and infer its en-
ergy availability conditions. We evaluate our attack in a real smart
home and miniature manufacturing plant with three intermittent
devices powered by solar, vibration, and temperature harvesters.
Our experiments show that we can infer privacy-sensitive infor-
mation (e.g., user presence, robot movements) with 85% accuracy
over the three harvesters. Lastly, we show that existing defenses
are insufficient to protect against our attack, and we propose two
defenses that exploit unique intermittent device properties to miti-
gate it. Through this effort, we put forth an important step toward
understanding the privacy implications of intermittent devices.

ACKNOWLEDGMENTS

We thank our shepherd and the anonymous reviewers for their
comments and suggestions. We also thank Andrew Riordan, Haozhe
Zhou, Tarcan Gul, and Rafael Zhu for their feedback on the earlier
version of this paper. This work has been partially supported by
the National Science Foundation (NSF) under grant CNS-2144645.
The views expressed are those of the authors only.



Proceedings on Privacy Enhancing Technologies 2024(3)

REFERENCES

(1]
(2]

(3]

[11

[12]

(13

[14]
[15

[16]

[17]

[18

[19]

[20]

[21

[22]

[23

[24

[25

[26]

8Power 2023. 8power Machine Condition Monitoring. https://www.8power.com/
applications/. [Online; accessed 10-Nov-2023].

M. Abrams and J. Weiss. 2008. Malicious control system cyber security attack
case study-Maroochy water services, Australia. In Technical report, MITRE CORP
MCLEAN VA MCLEAN.

Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miet-
tinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac.
2020. Peek-a-boo: I see your smart home activities, even encrypted!. In ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec).
Kofi Sarpong Adu-Manu, Nadir Adam, Cristiano Tapparello, Hoda Ayatollahi,
and Wendi Heinzelman. 2018. Energy-Harvesting Wireless Sensor Networks
(EH-WSNs) A Review. In ACM Transactions on Sensor Networks (TOSN).
Dilawer Ahmed, Anupam Das, and Fareed Zaffar. 2022. Analyzing the Feasibility
and Generalizability of Fingerprinting Internet of Things Devices. In Proceedings
on Privacy Enhancing Technologies (PoPETs).

Ahmed Alshehri, Jacob Granley, and Chuan Yue. 2020. Attacking and protecting
tunneled traffic of smart home devices. In ACM Conference on Data and Application
Security and Privacy (CODASPY).

Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and
Nick Feamster. 2019. Keeping the Smart Home Private with Smart (er) IoT Traffic
Shaping. In Proceedings on Privacy Enhancing Technologies (PoPETs).

Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and
Nick Feamster. 2017. Spying on the smart home: Privacy attacks and defenses on
encrypted IoT traffic. In arXiv preprint arXiv:1708.05044.

Omar Aragonez and Nathan Jackson. 2022. A zero power current and frequency
sensor for smart grid applications. In Smart Materials and Structures.

Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim, and Josiah Hester. 2021.
Rehash: A flexible, developer focused, heuristic adaptation platform for intermit-
tently powered computing. In ACM Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT).

Ludovic Barman, Alexandre Dumur, Apostolos Pyrgelis, and Jean-Pierre Hubaux.
2021. Every Byte Matters: Traffic Analysis of Bluetooth Wearable Devices. In
ACM Interactive, Mobile, Wearable and Ubiquitous Technologies IMWUT).
Johannes K Becker, David Li, and David Starobinski. 2019. Tracking Anonymized
Bluetooth Devices. In Proceedings on Privacy Enhancing Technologies (PoPETS).
Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find
patterns in time series. In AAAI Workshop on Knowledge Discovery in Databases.
Leo Breiman. 2001. Random forests. In Machine learning. Springer.

Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. 2008. Wireless
device identification with radiometric signatures. In ACM International Conference
on Mobile Computing and Networking (MobiCom).

Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Aurélien
Francillon. 2018. Screaming channels: When electromagnetic side channels meet
radio transceivers. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

Carmelo Cassisi, Placido Montalto, Marco Aliotta, Andrea Cannata, and Alfredo
Pulvirenti. 2012. Similarity measures and dimensionality reduction techniques
for time series data mining. In Advances in data mining knowledge discovery and
applications.

Salar Chamanian, Hasan Ulusan, Ozge Zorlu, Sajjad Baghaee, Elif Uysal-Biyikoglu,
and Haluk Kiilah. 2016. Wearable battery-less wireless sensor network with
electromagnetic energy harvesting system. In Elsevier Sensors and Actuators A:
Physical.

Cleanspace 2023. CleanSpace Tag. https://our.clean.space/. [Online; accessed
10-January-2023].

Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable
intermittent programs. In ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications.

Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. 2016. Is anybody home?
inferring activity from smart home network traffic. In IEEE Security and Privacy
Workshops (SPW).

Damiano Crescini, Alessio Galli, Davide Alghisi, and Farid Touati. 2019. Ambient
Monitoring WSNs with Harvesting-aware Power Management. In International
Symposium Electrical & Electronic Measurements Promote Industry 4.0.

Cypress 2023. Cypress Solar-Powered IoT Device Kit. https://www.digikey.com/
en/products/detail/cypress-semiconductor-corp/S6SAE101A00SA1002/5697945.
[Online; accessed 10-Nov-2023].

Alfredo D’Elia, Luca Perilli, Fabio Viola, Luca Roffia, Francesco Antoniazzi,
Roberto Canegallo, and Tullio Salmon Cinotti. 2016. A self-powered WSAN
for energy efficient heat distribution. In IEEE Sensors Applications Symposium
(SAS).

Daniel Dinu, Archanaa S Khrishnan, and Patrick Schaumont. 2019. SIA: secure
intermittent architecture for off-the-shelf resource-constrained microcontrollers.
In IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
EnOcean RF 2023. EnOcean RF-powered IoT Developer Kit for Energy Harvest-
ing Wireless Sensor Solutions. https://www.enocean.com/en/product/edk-350/.

474

[27

[28

[29

[30

)
=

(32

[33

(34

[35

&
2

(37]

[38

[39

[41

[42]

[43

[44

[45

[46

(47]

(48]

N
)

[50

[51

Ozmen et al.

[Online; accessed 10-Nov-2023].

EnOcean Solar 2023. EnOcean Solar-powered IoT Sensors. https://www.enocean.
com/en/product-category/self-powered- sensors-finished-products/. [Online;
accessed 10-Nov-2023].

Everactive 2023. Everactive: The Self-Powered IoT Platform. https://everactive.
com/. [Online; accessed 10-Nov-2023].

Habiba Farrukh, Reham Mohamed, Aniket Nare, Antonio Bianchi, and Z Berkay
Celik. 2023. LoclIn: Inferring Semantic Location from Spatial Maps in Mixed
Reality. In USENIX Security.

Habiba Farrukh, Muslum Ozgur Ozmen, Faik Kerem Ors, and Z Berkay Celik.
2023. One key to rule them all: Secure group pairing for heterogeneous IoT
devices. In IEEE Symposium on Security and Privacy (S&P).

Habiba Farrukh, Tinghan Yang, Hanwen Xu, Yuxuan Yin, He Wang, and Z Berkay
Celik. 2021. S3: Side-channel attack on stylus pencil through sensors. In ACM
Interactive, Mobile, Wearable and Ubiquitous Technologies IMWUT).

Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and Deeph Chana. 2019. A
Systematic Framework to Generate Invariants for Anomaly Detection in Indus-
trial Control Systems. In NDSS.

Fenix 2023. The Fenix Hub. https://aquarobur.com/iot-products/sensor-nodes/.
[Online; accessed 10-Nov-2023].

FischerTechnik 2023. FischerTechnik Plant. https://www.fischertechnik.de/en/
products/learning/training-models/554868-edu- training-factory-industry-4-0-
24v-education. [Online; accessed 10-Nov-2023].

Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber. 2016. Realistic
simulation for tiny batteryless sensors. In International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems.

Kai Geissdoerfer, Mikotaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
portable testbed for the batteryless IoT. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys).

Hadi Givehchian, Nishant Bhaskar, Eliana Rodriguez Herrera, Héctor Ro-
drigo Lopez Soto, Christian Dameff, Dinesh Bharadia, and Aaron Schulman.
2022. Evaluating physical-layer ble location tracking attacks on mobile devices.
In IEEE Symposium on Security and Privacy (S&P).

Rishabh Goel, Tien Pham, Phuc Nguyen, and Josiah Hester. 2023. Exploring
Batteryless UAVs by Mimicking Bird Flight. In Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications (DroNet).

Michele Grisafi, Mahmoud Ammar, Kasim Sinan Yildirim, and Bruno Crispo.
2022. MPI: Memory Protection for Intermittent Computing. IEEE Transactions
on Information Forensics and Security (TIFS).

Jinsong Han, Chen Qian, Yuqin Yang, Ge Wang, Han Ding, Xin Li, and Kui Ren.
2018. Butterfly: Environment-independent physical-layer authentication for
passive RFID. In ACM Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT).

Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber, and David
Kotz. 2018. Application memory isolation on ultra-low-power MCUs. In USENIX
ATC. 127-132.

Josiah Hester and Jacob Sorber. 2017. The future of sensing is batteryless, inter-
mittent, and awesome. In ACM Conference on Embedded Network Sensor Systems
(SenSys).

Qianyi Huang, Yan Mei, Wei Wang, and Qian Zhang. 2018. Toward battery-
free wearable devices: The synergy between two feet. In ACM Transactions on
Cyber-Physical Systems.

Michael Hutter, Stefan Mangard, and Martin Feldhofer. 2007. Power and EM
Attacks on Passive 13.56\,MHz RFID Devices. In Cryptographic Hardware and
Embedded Systems (CHES).

Geon-Tae Hwang, Venkateswarlu Annapureddy, Jae Hyun Han, Daniel J Joe,
Changyeon Baek, Dae Yong Park, Dong Hyun Kim, Jung Hwan Park, Chang Kyu
Jeong, Kwi-Il Park, et al. 2016. Self-powered wireless sensor node enabled by an
aerosol-deposited PZT flexible energy harvester. In Advanced Energy Materials.
Timo Kasper, David Oswald, and Christof Paar. 2009. EM side-channel attacks
on commercial contactless smartcards using low-cost equipment. In Information
Security Applications.

Dong Hyun Kim, Hong Ju Shin, Hyunseung Lee, Chang Kyu Jeong, Hyewon
Park, Geon-Tae Hwang, Ho-Yong Lee, Daniel J Joe, Jae Hyun Han, Seung Hyun
Lee, et al. 2017. In vivo self-powered wireless transmission using biocompatible
flexible energy harvesters. In Advanced Functional Materials.

Bo-Gun Koo, Dong-Jin Shin, Dong-Hwan Lim, Min-Soo Kim, In-Sung Kim, and
Soon-Jong Jeong. 2021. Properties of Car-Embedded Vibrating Type Piezoelectric
Harvesting System. In Applied Sciences.

Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasim Sinan Yildirim, Przemystaw
Pawelczak, and Josiah Hester. 2020. Bfree: Enabling battery-free sensor prototyp-
ing with python. In ACM Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT).

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimating
mutual information. In Physical review E.

Archanaa S Krishnan and Patrick Schaumont. 2022. Benchmarking And Con-
figuring Security Levels In Intermittent Computing. In ACM Transactions on
Embedded Computing Systems (TECS).


https://www.8power.com/applications/
https://www.8power.com/applications/
https://our.clean.space/
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/S6SAE101A00SA1002/5697945
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/S6SAE101A00SA1002/5697945
https://www.enocean.com/en/product/edk-350/
https://www.enocean.com/en/product-category/self-powered-sensors-finished-products/
https://www.enocean.com/en/product-category/self-powered-sensors-finished-products/
https://everactive.com/
https://everactive.com/
https://aquarobur.com/iot-products/sensor-nodes/
https://www.fischertechnik.de/en/products/learning/training-models/554868-edu-training-factory-industry-4-0-24v-education
https://www.fischertechnik.de/en/products/learning/training-models/554868-edu-training-factory-industry-4-0-24v-education
https://www.fischertechnik.de/en/products/learning/training-models/554868-edu-training-factory-industry-4-0-24v-education

Physical Side-Channel Attacks against Intermittent Devices

[52]

[53]

[54]

[55

[57]

[58]

[59]

[60]

[61

[62

[63]

[64]

[65

[66]

[67]

[68

[69]

[70]

71

[72]

[73]

[74

[75

Archanaa S Krishnan, Charles Suslowicz, Daniel Dinu, and Patrick Schaumont.
2019. Secure intermittent computing protocol: Protecting state across power loss.
In IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE).
Archanaa S Krishnan, Charles Suslowicz, and Patrick Schaumont. 2020. Secure
and stateful power transitions in embedded systems. In Journal of Hardware and
Systems Security. Springer.

Feng Li, Yanbing Yang, Zicheng Chi, Liya Zhao, Yaowen Yang, and Jun Luo. 2018.
Trinity: Enabling self-sustaining WSNs indoors with energy-free sensing and
networking. In ACM Transactions on Embedded Computing Systems (TECS).
Huicong Liu, Hailing Fu, Lining Sun, Chengkuo Lee, and Eric M Yeatman. 2021.
Hybrid energy harvesting technology: From materials, structural design, system
integration to applications. In Renewable and sustainable energy reviews. Elsevier.
Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent computing: Challenges and opportunities. In Summit on
Advances in Programming Languages (SNAPL).

Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming
and execution model for intermittent systems. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

Dong Ma, Guohao Lan, Mahbub Hassan, Wen Hu, and Sajal K Das. 2019. Sensing,
computing, and communications for energy harvesting IoTs: A survey. In IEEE
Communications Surveys & Tutorials.

Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin, Kasim Sinan
Yildirim, Brandon Lucia, and Przemystaw Pawelczak. 2020. Dynamic task-based
intermittent execution for energy-harvesting devices. ACM Transactions on
Sensor Networks (TOSN).

Yuyi Mao, Jun Zhang, and Khaled B Letaief. 2016. Dynamic computation offload-
ing for mobile-edge computing with energy harvesting devices. In IEEE Journal
on Selected Areas in Communications (SAC).

Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi,
and N Asokan. 2019. Audi: Toward autonomous IoT device-type identification us-
ing periodic communication. In IEEE Journal on Selected Areas in Communications
(SAC).

Patrick P Mercier, Andrew C Lysaght, Saurav Bandyopadhyay, Anantha P Chan-
drakasan, and Konstantina M Stankovic. 2012. Energy extraction from the biologic
battery in the inner ear. In Nature biotechnology.

Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza
Sadeghi, and Sasu Tarkoma. 2017. IoT sentinel: Automated device-type iden-
tification for security enforcement in IoT. In IEEE International Conference on
Distributed Computing Systems (ICDCS).

Reham Mohamed, Habiba Farrukh, Yidong Lu, He Wang, and Z Berkay Celik.
2023. Istelan: Disclosing sensitive user information by mobile magnetometer
from finger touches. In Proceedings on Privacy Enhancing Technologies (PoPETs).
Phillip Nadeau, Dina El-Damak, Dean Glettig, Yong Lin Kong, Stacy Mo, Cody
Cleveland, Lucas Booth, Niclas Roxhed, Robert Langer, Anantha P Chandrakasan,
et al. 2017. Prolonged energy harvesting for ingestible devices. In Nature Biomed-
ical Engineering.

Y Naruse, N Matsubara, K Mabuchi, M Izumi, and S Suzuki. 2009. Electrostatic
micro power generation from low-frequency vibration such as human motion.
In Journal of Micromechanics and Microengineering.

Tao Ni, Guohao Lan, Jia Wang, Qingchuan Zhao, and Weitao Xu. 2023. Eavesdrop-
ping Mobile App Activity via Radio-Frequency Energy Harvesting. In USENIX
Security.

Nowi 2023. Smart Footware. https://www.nowi-energy.com/smart-footwear/.
[Online; accessed 10-Nov-2023].

TJ OConnor, Reham Mohamed, Markus Miettinen, William Enck, Bradley Reaves,
and Ahmad-Reza Sadeghi. 2019. HomeSnitch: behavior transparency and control
for smart home IoT devices. In ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec).

Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z. Berkay Celik, Bardh Hoxha,
and Xiangyu Zhang. 2022. Discovering Physical Interaction Vulnerabilities in
IoT Deployments. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z Berkay Celik. 2023.
Evasion Attacks and Defenses on Smart Home Physical Event Verification. In
NDSS.

Yaokun Pang, Yunteng Cao, Masoud Derakhshani, Yuhui Fang, Zhong Lin Wang,
and Changyong Cao. 2021. Hybrid energy-harvesting systems based on tribo-
electric nanogenerators. In Matter. Elsevier.

Dimitris Patoukas, Kasim Sinan Yildirim, Amjad Yousef Majid, Josiah Hester, and
Przemystaw Pawelczak. 2018. Feasibility of multi-tenancy on intermittent power.
In Workshop on Energy Harvesting & Energy-Neutral Sensing Systems.

Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis.
2020. IoTfinder: Efficient large-scale identification of IoT devices via passive dns
traffic analysis. In IEEE European Symposium on Security and Privacy (EuroS&P).
Senthilkumar Chinnappa Gounder Periaswamy, Dale R Thompson, and Jia Di.
2010. Fingerprinting RFID tags. In IEEE Transactions on Dependable and Secure
Computing (TDSC).

475

(76

[77]

(78]

[80

(81]

(82]

[83

oo
=)

(85

[86

(87

[88

(89]

[90

[91

[92

(93]

)
=)

[95

[96]

A

Proceedings on Privacy Enhancing Technologies 2024(3)

Thomas Plos. 2008. Susceptibility of UHF RFID tags to electromagnetic analysis.
In The Cryptographers’ Track at the RSA Conference (CT-RSA).

Md Masoom Rabbani, Edlira Dushku, Jo Vliegen, An Braeken, Nicola Dragoni,
and Nele Mentens. 2021. RESERVE: Remote Attestation of Intermittent IoT
devices. In ACM Conference on Embedded Networked Sensor Systems (SenSys).
Amir Rahmati, Mastooreh Salajegheh, Daniel E Holcomb, Jacob Sorber, Wayne P
Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence Decay in SRAM to
Implement Secure Protocols on Embedded Devices without Clocks. In USENIX
Security.

Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System support
for long-running computation on RFID-scale devices. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Jingjing Ren, Daniel J Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information exposure from consumer IoT de-
vices: A multidimensional, network-informed measurement approach. In Internet
Measurement Conference (IMC).

Arman Roohi, Ronald F DeMara, Longfei Wang, and Selcuk Kose. 2017. Secure
intermittent-robust computation for energy harvesting device security and outage
resilience. In IEEE SmartWorld.

Brian C Ross. 2014. Mutual information between discrete and continuous data
sets. In PloS One.

RSL10 2023. Solar Cell Multi-Sensor Platform. https://www.digikey.com/en/
products/detail/onsemi/RSL10-SOLARSENS-GEVK/10261083. [Online; accessed
10-July-2023].

Hanjun Ryu, Hong-Joon Yoon, and Sang-Woo Kim. 2019. Hybrid energy har-
vesters: toward sustainable energy harvesting. In Advanced Materials.
Archanaa S Krishnan and Patrick Schaumont. 2018. Exploiting security vulnera-
bilities in intermittent computing. In International Conference on Security, Privacy,
and Applied Cryptography Engineering (SPACE). Springer.

Raffaele Salvati, Valentina Palazzi, and Luca Roselli. 2022. IoT Wearable EH system
based on Wrist Motion Kinetic Energy Harvesting. In IEEE MTT-S International
Microwave Biomedical Conference (IMBioC).

Philipp Schlogl. 2018. An Energy harvesting powered sensor node for machine
condition monitoring. Ph. D. Dissertation. Wien.

Akshaye Shenoi, Prasanna Karthik, Kanav Sabharwal, Li Jialin, and Dinil Mon
Divakaran. 2023. iPET: Privacy Enhancing Traffic Perturbations for Secure IoT
Communications. In Proceedings on Privacy Enhancing Technologies (PoPETS).
Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2018. Classifying
IoT devices in smart environments using network traffic characteristics. In IEEE
Transactions on Mobile Computing.

Sivert T Sliper, William Wang, Nikos Nikoleris, Alexander Weddell, and Geoff
Merrett. 2020. Fused: closed-loop performance and energy simulation of embed-
ded systems. In IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS).

Charles Suslowicz, Archanaa S Krishnan, and Patrick Schaumont. 2017. Optimiz-
ing cryptography in energy harvesting applications. In Workshop on Attacks and
Solutions in Hardware Security (ASHES).

Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro. 2020. Security in en-
ergy harvesting networks: a survey of current solutions and research challenges.
In IEEE Communications Surveys & Tutorials.

Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, and Brian Demsky.
2020. Packet-level signatures for smart home devices. In NDSS.

Wiliot 2023. IoT Pixel. https://www.wiliot.com/product/iot-pixel#01. [Online;
accessed 10-Nov-2023].

Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine Qamsane, Yuru Shao, Yikai
Lin, Elaine Shi, Sibin Mohan, Kira Barton, James Moyne, and Z. Morley Mao.
2019. Towards Automated Safety Vetting of PLC Code in Real-World Plants. In
IEEE Symposium on Security and Privacy (S&P).

Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. Homonit: Monitoring smart home apps from encrypted traffic. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

EXPERIMENTAL SETUP

Figure 10 demonstrates the lab environment setup to generate the
training datasets (DS;) for the temperature and solar harvesters.
Figure 11 demonstrates our manufacturing plant testbed setup for
generating the testing dataset (DS3).
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Table 7: Comparison of the effectiveness of different classifiers.
Our Attack SVM Nearest Neighbor Naive Bayes Multi-layer Perceptron
Experiment Acc. | Pre. | Rec. | Acc. | Pre. | Rec. | Acc. | Pre. | Rec. | Acc. | Pre. | Rec. | Acc. | Pre. Rec.
Stage1: Intermittent Device Identification | 98% 99% 98% 94% 97% 94% 31% 94% 31% 92% 96% 92% 75% 95% 75%
Stage2: Energy Harvester Identification 92% 94% 92% 17% 3% 17% 83% 75% 83% 83% 75% 83% 83% 75% 83%
Exp1: Solar Energy Availability 80% 81% 80% 60% 79% 60% 58% 77% 58% 62% 77% 62% 58% 67% 58%
Expy: Vibration Energy Availability 88% | 89% | 88% | 88% | 89% | 88% | 81% | 81% | 81% | 85% | 85% | 85% | 85% | 85% 85%
Exp3: Temp Energy Availability 87% | 87% | 87% | 53% | 55% | 53% | 80% | 81% | 80% | 73% | 73% | 73% | 80% | 81% 80%
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Figure 10: Our experimental setups for generating the active
period modeling dataset (DS;) with a (a) temperature har-
vester and (b) solar harvester.

~ Vibratior’
: Harvester

Figure 11: Our experimental setup for generating the test-
ing dataset (DS3) with the vibration harvester. The harvester
is connected to the toothed gear that controls the high-bay
warehouse position (instead of being connected to the vac-
uum gripper robot in Section 3.1).

B ATTACK ACCURACY WITH DIFFERENT
CLASSIFIERS

Table 7 presents the accuracy, precision, and recall of different
classifiers for each stage of our hierarchical inference framework
compared to our random forest classifiers.
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