Wear’s my Data?
Understanding the Cross-Device Runtime Permission Model in Wearables

Doguhan Yeke!, Muhammad Ibrahim’, Giiliz Seray Tuncay*, Habiba Farrukh'
Abdullah Imran®, Antonio Bianchif, and Z. Berkay Celik’
T Purdue University, {dyeke, ibrahi23, hfarrukh, imran8, antoniob, zcelik} @purdue.edu
! Google, gulizseray@google.com ¥ University of California, Irvine

Abstract—Wearable devices are becoming increasingly impor-
tant, helping us stay healthy and connected. There are a variety
of app-based wearable platforms that can be used to manage
these devices. The apps on wearable devices often work with a
companion app on users’ smartphones. The wearable device and
the smartphone typically use two separate permission models
that work synchronously to protect sensitive data. However, this
design creates an opaque view of the management of permission-
protected data, resulting in over-privileged data access without
the user’s explicit consent. In this paper, we performed the first
systematic analysis of the interaction between the Android and
Wear OS permission models. Our analysis is two-fold. First,
through taint analysis, we showed that cross-device flows of
permission-protected data happen in the wild, demonstrating
that 28 apps (out of the 150 we studied) on Google Play
have sensitive data flows between the wearable app and its
companion app. We found that these data flows occur without
the users’ explicit consent, introducing the risk of violating
user expectations. Second, we conducted an in-lab user study
to assess users’ understanding of permissions when subject to
cross-device communication (n = 63). We found that 66.7% of
the users are unaware of the possibility of cross-device sensitive
data flows, which impairs their understanding of permissions in
the context of wearable devices and puts their sensitive data at
risk. We also showed that users are vulnerable to a new class of
attacks that we call cross-device permission phishing attacks on
wearable devices. Lastly, we performed a preliminary study on
other watch platforms (i.e., Apple’s watchOS, Fitbit, Garmin
OS) and found that all these platforms suffer from similar
privacy issues. As countermeasures for the potential privacy
violations in cross-device apps, we suggest improvements in the
system prompts and the permission model to enable users to
make better-informed decisions, as well as on app markets to
identify malicious cross-device data flows.

1. Introduction

Wearable devices, such as smartwatches and fitness
trackers, are becoming increasingly ubiquitous in our lives.
They offer a wealth of practical and convenient features, such
as making payments, sending voice messages, controlling
smart devices, and monitoring and recording fitness activity.
The operating systems for wearable devices can be developed

9 Allow Fitness App |
to access this
device's location?

[Allow Fitness App’

Data Flows o
to access this

device's location?

X

Deny Allow

Fitness App
(companion app)

Fitness App
(wearable app)

Figure 1: Illustration of two separate runtime permission
models and unintended data flows on Wear OS and Android.

either from scratch (e.g., Garmin OS, Fitbit) or based on
existing mobile platforms (e.g., Wear OS from Android,
watchOS from i0S). These platforms allow users to install
wearable apps, which frequently communicate with their des-
ignated “companion” app running on the users’ smartphones.
These apps can share data back and forth to facilitate their
use cases. For instance, a wearable app might use the camera
of the paired device to capture photos via its companion
app. We call such apps that operate on separate devices and
collaborate for their functionality cross-device apps.

In the mobile-wearable ecosystem, the wearable and
smartphone platforms have their own permission models
that work synchronously to protect users’ sensitive data, as
illustrated in Figure 1. However, the interaction between a
wearable app and its companion app poses unique challenges
for managing user data. In particular, the sensitive data
exchange in cross-device apps that take place without
the user’s awareness leads to serious privacy issues.

First, due to the complex multi-device permission model,
it is difficult for users to understand the consequences of
granting permission on a specific device (or both). This
leads to scenarios where the user is confused regarding
what data the wearable and the companion app can access.
Second, this model may give users a false sense of security
as they might assume that providing access to an app running
on a device without internet access would mean that their
sensitive data cannot be leaked online. However, the peer-to-
peer connection between the devices (e.g., Bluetooth) can
be used to reveal their data through the other device with
an internet connection. Lastly, the permission dialog can be
initiated from the wearable app to its companion app (and
vice versa) using developer-managed prompts, which we
call redirection prompts. These prompts could confuse the

users either inadvertently or with malicious intent from a
developer to phish for permissions by performing what we
call cross-device permission phishing attacks.

Prior work has rigorously examined permissions on
mobile platforms through a range of studies and showed
that users have many misconceptions about permissions [1],
[2], [3], [4], [5], [6]. However, they have focused on apps that
operate on a single device, falling short of addressing users’
understanding of permissions on apps that run on multiple
devices and their awareness of data flows between a wearable
app and its companion app. A recent work, WearFlow [7],
studied the privacy violations of the Wear OS ecosystem due
to data leakages between a wearable app and a companion
app. However, it does not study users’ comprehension of
the permission model and their mental models for access
capabilities in cross-device apps.

In this paper, we focus specifically on understanding the
privacy implications of the dual permission model adopted
by Wear OS and Android to govern user data by two
independent permission models. To do so, we performed
the first comprehensive analysis of cross-device apps to
understand their communication patterns. More specifically,
we investigated if cross-device flows of permission-protected
data occur in practice using a dedicated static-analysis
approach. Our tool FLOWFINDER revealed 28 (out of 150)
apps on Google Play with at least one data flow between
the wearable app and its Android companion app.

In addition, we designed and conducted a user study (n =
63) to objectively quantify users’ understanding of the Wear
OS permission model when working in conjunction with
Android’s permission model. Our results revealed that the
majority of users (66.7%) struggle with distinguishing the
access capabilities of wearable apps and their companions
as they are unaware of the potential data flows between
them. We also demonstrated that users are susceptible to
cross-device permission phishing attacks as they can be
manipulated by an attacker to grant a different permission

than they are initially asked for via redirection prompts.

Lastly, we identified a related privacy issue in the location
notice used by Wear OS during device pairing, which
misleads users into believing cross-device location data
transfer is impossible. We reported our findings to Google,
who rewarded us with a bug bounty.

Guided by our findings, we conducted a preliminary
investigation on other wearable platforms, i.e., Apple’s
watchOS, Fitbit, and Garmin OS. Our analysis revealed
that all platforms are subject to the issues we discuss in
the context of Wear OS, as they similarly adopt a dual
permission model to control user data. Our findings suggest
that managing sensitive user data in the existence of data
flows in cross-device apps is a challenging problem that
concerns many mobile and wearable platforms.

To mitigate the issues discussed in this paper, we suggest
potential improvements to the Wear OS permission model
that might help users better understand the effects of granting
or denying permissions. We also recommend app markets
implement strategies to identify potentially malicious or
dangerous cross-device data flows.

Our contributions can be summarized as follows:

« We systematically studied the permission models of
Android and Wear OS and identified privacy issues when
used in the context of cross-device apps. In addition, we
conducted a preliminary study on other wearable plat-
forms and found that they also suffer from similar issues.

o We introduced FLOWFINDER, a dedicated static analysis
tool, to analyze real-world wearable apps and their
corresponding companion apps and show that cross-
device permission-protected data flows occur in practice.

e We performed an in-lab study to assess users’
understanding of the Wear OS permission model when
working in conjunction with Android. Our results
show that users have various misconceptions as they
are unaware of the sensitive data flows between the
devices. In addition, we demonstrated that users are
susceptible to cross-device permission phishing.

o We found that wearable platforms fail to provide users
with sufficient information to address the identified
issues, and in some cases, they even provide incorrect
or misleading information.

« We proposed practical countermeasures to mitigate the
issues that arise from adapting a dual permission model.

Our code and data are available at https://github.com/
purseclab/WearOS for public use and validation.

2. Background

Wear OS. Wear OS (formerly known as Android Wear)
is primarily designed for smartwatches and provides an
infrastructure for apps to run on wearable devices [8]. Wear
OS apps can either be standalone (i.e., run only on the
smartwatch) or can be developed as a pair of apps installed
together on both the smartwatch and the phone to cooperate
for their functionality [9]. We refer to the app installed on
the smartwatch as the wearable app and the app installed
on the mobile phone as the companion app. The wearable
app can communicate with its companion app to access or
control the resources on the smartphone (and vice versa).

Runtime Permission Model on Cross-device Apps. An-
droid uses a permission model to regulate access to sensitive
user data and resources. Before Android 6.0, permissions
were granted during app installation [10]. With Android
6.0, the Android platform introduced the runtime permis-
sion model, which requires developers to explicitly request
user consent for highly-sensitive (dangerous level) data via
system-generated permission dialogs at app runtime [11].
As of September 2022, there are 41 dangerous permissions
available in Android [12]. For simplicity, in this paper, we
refer to them as “permissions”.

We call the apps that run on multiple operating systems,
such as Android and Wear OS, cross-device apps. On these
operating systems, cross-device apps work under a dual
permission model, where each app is subjected only to the
permission model of the device it is running on. We refer

https://github.com/purseclab/WearOS
https://github.com/purseclab/WearOS

to this scheme with two independent permissions models as
the runtime permission model on cross-device apps.

With this model, a permission dialog can be triggered
directly by the app running on that device, or by the app
running on the other device via “redirection prompts”. Similar
to rationale messages [13], the redirection prompts are not
system-generated but instead controlled by the developer,
who can provide explanations on why users need to grant
permission or how their data will be accessed. Once the
user grants permission, the app can access the corresponding
resource on the device where the permission has been granted.
While some resources, such as the microphone and location,
can be available on both devices, some resources are unique
to a single device. For example, the camera may only be
available in the smartphone, while the bioimpedance and
heart rate sensors may only be available on the smartwatch.

All permissions required by an app must be listed in the
app’s manifest file. The wearable app and its companion must
have separate manifests, which list the required permissions
for the resources on the smartwatch and the smartphone.

Wear OS-Android Communication. The communication
between the mobile phone and the smartwatch requires a
pairing process. To pair the mobile phone with the wearable
device, the Wear OS by Google Smartwatch app [14] on Wear
OS 2 or OEM-specific apps (e.g., Galaxy Wearable App [15])
on Wear OS 3 should be downloaded from the Google
Play. After pairing, the apps can use local connectivity
(e.g., Bluetooth) to share data or Google’s Data Layer
API [16], which can only be used when paired with an
Android phone. Google’s Data Layer API provides high-
level functions such as sendMessage function of MessageClient
class for the communication between devices. The Data
Layer API’s low-level communication is established between
devices via Bluetooth, Wi-Fi, or cellular data [16].

3. Threat Model and Motivation

3.1. Threat Model

We consider an adversary whose goal is to obtain
permission-protected data without the user’s awareness. For
this purpose, the adversary can either (1) abuse the cross-
device data flows by obtaining permission on one device
and leaking the data to the other device or (2) they can
perform cross-device permission phishing to access the user’s
sensitive data by leveraging their lack of attention. We assume
that the victim’s smartphone and smartwatch are paired, and
a connection is set up through communication channels such
as Bluetooth. In addition, we assume the victim grants at
least one permission on one of the devices and internet access
is available on at least one device.

3.2. Cross-device Sensitive Data Flows

The runtime permission models running separately on
the wearable device and the smartphone allow cross-device
sensitive data flows without the users’ explicit consent. To

Smartwatch and Mobile Phone Pairing

, / Precedihg Steps \

Play Store .
) ’
’ 0
‘

Location notice

Your watch may use the location from your
phone, or the watch GPS if available.

G
¢+ Pairing
oy .
°) s, Process
0 prevent your watch from using any location

\
PhoneJ \ information, turn off location in your watch
‘\ settings. This will keep your watch from using
\ location information from your phone, as well as

GPS on your watch.

\ Subsequent Steps /

Figure 2: The location prompt shown on Wear OS 2 at the
pairing process misinforms the users.

illustrate, we consider a scenario where a user installs a
Fitness Tracking app that requires location permission on the
wearable app and its companion app. The Android companion
app requests the location permission to find the nearby
running tracks, and the wearable app requests it to track
the number of miles the user has run.

Turning to the scenario in Figure 1, the user grants the
location permission on the companion app as they only want
to see the nearby tracks. However, they turn off the phone’s
Wi-Fi and cellular data to prevent the location data from being
transmitted over the Internet. Additionally, the user does not
grant the location permission on the wearable app as they
think their LTE-enabled watch is connected to the Internet
and can transmit the location data. Hence, they expect they
can search the nearby running tracks without their location
leaving their smartphone. Overall, the user expects that the
smartphone can access their location but cannot transmit it
over the Internet, and the smartwatch cannot access their
location since they denied permission to it.

The companion app, however, can send the user’s location
to the wearable app via the various communication methods
between apps (e.g., via Bluetooth), and the wearable app can
then transmit this data over the Internet. In the scenario above,
the platform does not explicitly inform users about these
communication methods. As we will show in Section 5, users
are generally unaware that sensitive permission-protected data
can be transmitted between the devices.

Misinforming Users. To make this problem worse, we
found that Android misinforms the users about the possibility
of such sensitive data flows while pairing the smartwatch
with the smartphone. Figure 2 shows the location notice,
which states that after a user revokes location permission on
the smartwatch settings, the smartwatch cannot access the
smartwatch’s and mobile phone’s location data. However,
due to the cross-device sensitive data flows, the location data
is still accessible on the smartwatch.

Upon further investigation, we found that the flawed

send the request to the companion app

def requestPermissionFromPhone(input) :
show the prompt
text =
textView.setText (text)
permission = Android.Manifest.READ_EXTERNAL_STORAGE
send the permission request to the phone
sendMessage (nodeId, path= , permission)
return

O 001NN B W —

handle the received request from the wearable app
def handleRequest (input):
if input.path == : # check the path
if ActivityCompat.checkSelfPermission(input.receivedPerm):
sendMessage(nodeId, path, data) # send data to watch
else:
show the user the permission dialog
startActivity(Intent, input.requestedPermission)
return

O 001NN AW —

Listing 1: Sender code block on the wearable app (Left), and Receiver code block on the companion app (Right).

location notice in Figure 2 exists on the pairing and device
control app named “Wear OS by Google Smartwatch” used
across devices on Wear OS 2. Starting with Wear OS 3,
OEMs abandoned using this app and switched to developing
their own apps for pairing and device control. However, a
similar issue still exists in the updated location notices in the
recent Samsung Galaxy Wearable app and the Pixel Watch
app (See Figure § in Appendix A). Additionally, as we will
detail in Section 5, the location toggle itself continues to be
a point of confusion for users, as turning this toggle off on
the watch does not prevent a wearable app from being able
to retrieve the location from the companion app.

We responsibly disclosed our findings regarding the
location notice to Google, who acknowledged our findings
and awarded us with a bug bounty.

3.3. Cross-device Permission Phishing

When a wearable app requires permission to be granted
on the companion app or vice versa, the developer shows a
redirection prompt that asks the user to grant the permission
on the paired device as shown in Figure 3.

As redirection prompts are not system-controlled, devel-
opers can customize them for malicious purposes. To perform
a cross-device permission phishing attack, an adversary can
exploit these redirection prompts to misguide the user and
attempt to obtain permissions without their awareness. More
specifically, the adversary designs a redirection prompt to
intentionally misguide the user by informing them about
the need for a different permission than the one that will
be requested on the other device. Therefore, the user may
inadvertently grant the permission without being fully aware
of which permission they granted. This leads the app to have
access to sensitive data without the user’s informed consent.

Figure 3 demonstrates the attack steps. The user installs
both the wearable app and the companion app on their
respective devices and starts interacting with the wearable
app. First, the user clicks the “Camera Permission on Phone”
button on the wearable app’s user interface (@). This action
opens a redirection prompt stating: “This app needs your
Camera access”. When the button “Open on phone” is clicked,
it navigates the user to the companion app (@). Lastly, the
user sees the permission dialog on the phone screen and
grants it since she expects that the related permission request
is sent by the companion device (@).

In this scenario, although the correct permission shown to
the user should be the camera permission (CAMERA) based on

Camera
——)|Permission
on Phone

h Allow Fitness App to
D access photos, media,
and your files on your

'.Q N ?
TN Deny

device?

This app
needs your
Camera access.

Fitness App
(wearable app)

Fitness App

Open on
(companion app)

phone

Figure 3: Demonstration of the cross-device permission phish-
ing attacks on Wear OS 2. Notice the permission presented
in step @ and @ (Camera) differs from the permission shown
in @ (External Storage).

the redirection prompt, the permission dialog shown to the
user is the storage permission (WRITE_EXTERNAL_STORAGE and
READ_EXTERNAL_STORAGE). Since the redirection prompt asks
for the camera permission, it is possible that the user grants
the permission for storage access while thinking that they
are granting the camera permission. If the user is not aware
that they granted the storage permission, then we consider
the permission phishing attack to have been successful, as
the app now has access to permission-protected data without
the user’s informed consent.

Listing | provides a proof-of-concept (PoC) for the cross-
device permission phishing scenario we described above.
For this PoC, we modified the sample code provided by
Android [17]. The code block on the left runs on the wearable
app. It prompts the user with information about camera use
(Lines 4-5) and sends a request for different permission (i.e.,
storage) to the companion app (Lines 6 and 8). The code
block on the right runs on the companion app. Since the
Activity component is optional in Android, the adversary
can remove it from the companion app and show it as a
redirection prompt on the wearable app.

We confirmed with Google that the app we developed
could bypass Google’s vetting process in the app review
process. We also conducted a user study to show that users
are indeed vulnerable to such permission phishing attacks.

4. Data Flow Extraction

We perform a taint analysis to show and quantify the
existence of permission-protected sensitive data flows be-
tween the wearable app and its companion app. This analysis
aims to demonstrate if real-world cross-device apps already

()
APK Kotlin AOSP,
Callbacks SuSi,
-/
Axplorer

SR
A Taint
Jimple IR Wrappers
-

S
Sensor
Data

Instrumented
Jimple IR

Wear OS
Data Layer

Requested

Manifest.xml
Verified

. . Permission
Taint Analysis Matching Data
Flows

AOSP
Annotations,

API Docs Permission

Mapping

Instrumentation

Flow Detection Flow Verification

Figure 4: Overview of FLOWFINDER architecture.

share permission-protected sensitive data, which may lead
to privacy concerns when users are unaware of this sharing.

Regarding cross-device apps, standard taint analysis tools
have two main limitations. First, standard taint tracking tools
cannot track the taints across devices to deal with both
wearable and companion apps. Second, these tools use APIs
as sources, but in the case of sensitive data in Wear OS,
often there are no such APIs that can be directly used as
sources, which is the case for sensitive data such as sensor
data. To overcome these limitations, we develop our taint
analysis tool, FLOWFINDER, and perform taint analysis of
150 real-world cross-device apps.

As data sources, FLOWFINDER uses any API that
gives access to permission-protected data. These data
sources include APIs such as Location.getlLatitude,
TelephonyManager.getDeviceId, and SQLiteDatabase.query.
As data sinks, it uses any API involved in inter-
device communication from the Wear OS Data Layer.
These data sinks include APIs such as DataMap.putAsset,
MessageClient.sendMessage, and ChannelClient.sendFile.

As illustrated in Figure 4, FLOWFINDER takes an APK
as input and outputs the data flows from the sources to
the sinks. In implementing FLOWFINDER, we address the
following additional challenges, which are not handled by
existing taint analysis tools:

e Source and Sink List: Our taint analysis requires a
comprehensive list of APIs as data sources and data sinks.
However, prior work does not provide a comprehensive list
of such APIs. FLOWFINDER semi-automatically generates a
list of APIs that are sources of permission-protected data.
As sinks, it uses a comprehensive manually curated list of
Wear OS Data Layer APIs that covers all possible ways
to leak data between devices.

« Complex Data Flows (False Negatives): Real-world cross-
device apps involve complex data flows that previous work
on taint analysis fails to detect. For instance, data flows
that originate from sources without a defined method,
e.g., sensor data, and those that involve data modifications,
e.g., operations on JSON objects. FLOWFINDER improves
the taint analysis by instrumenting the app code to handle
such data flows; specifically, we improve code reachability
and taint propagation on data flows.

o App Permissions (False Positives): Due to the high
complexity of real-world cross-device apps, taint anal-
ysis approaches over-approximate taint propagation which
results in the detection of high false positive data flows.

FLOWFINDER mitigates false positives by automatically
discarding flows from permission-protected data sources
for which an app does not have the required permissions.

4.1. FLowFINnDER Implementation

FLOWFINDER leverages existing static analysis frame-
works including Soot [18] and FlowDroid [19] to perform
the app analysis. Specifically, it is built on top of Soot
for instrumentation and FlowDroid for the taint analysis.
FlowDroid requires a list of sources and sinks as input for
performing taint analysis on an APK. We provide the details
of compiling source and sink lists below.

Source List Extraction. Our goal is to identify possible
sensitive data sources that an app can exploit. For our
analysis, we define a data source as sensitive if it is guarded
by dangerous permissions. This is because they require user
interaction, and we focus on evaluating the user’s interaction
with the devices.

To extract such sensitive data sources, we systematically
analyze the Android Open Source Project (AOSP) source
code. Specifically, we leverage the @RequiresPermission
method annotation in the AOSP to identify sensitive data
sources. This method annotation specifies the permission an
app requires to access that method. FLOWFINDER extracts
all annotated methods from the AOSP and filters the ones
requiring permissions.

However, not all sensitive data sources have
@RequiresPermission annotation. To include such data
sources in our analysis, FLOWFINDER also uses data sources
lists compiled by previous works [20], [21] and includes the
sources that require permissions. Finally, we also manually
analyzed the Android documentation to find additional
sensitive data sources.

Sink List Extraction. Our goal is to identify all possible
APIs in the Wear OS Data Layer used for data communication
between devices. To achieve this goal, we systematically
analyzed the Wear OS Data Layer, extracted such APIs, and
used them as sinks in our taint analysis.

By using the generated lists of sources and sinks,
FLOWFINDER performs the following steps on each APK.

Instrumentation. In this step, FLOWFINDER performs in-
strumentation necessary to detect sensitive Data Layer data
flows. Specifically, we leverage Soot to convert app code to
Jimple IR (Intermediate Representation) and instrument the
Jimple IR to prepare it for taint analysis using FlowDroid.

We perform the instrumentation of the SensorEvent API
in Android. Android mobile phones and most Wear OS
watches have sensors to gather data (e.g., heart rate and
movement speed). This sensor data is accessible to the apps
by the SensorEvent API which is guarded by permissions.

The SensorEvent API is pertinent to our analysis since
watch apps primarily use the sensors on the watch and can
possibly leak the sensor data to the phone. Yet, we cannot use
these APIs as sources directly because the SensorEvent API
does not have an explicit method that can be used as a source
for the taint analysis, and an app gets access to this data
in a callback method (SensorEventListener.onSensorChanged)
which is unreachable in the Soot call-graph. Thus, we need
to instrument the SensorEvent data access and make the
callback method reachable.

To this aim, FLOWFINDER leverages Soot to instrument
the Android SensorEvent API. Specifically, it detects the
access to SensorEvent data and instruments the data access
by replacing it with an invocation to a dummy method. It
then uses this dummy method as a source in the taint analysis.
Furthermore, FLOWFINDER adds an edge to the SensorEvent
callback in the onCreate method of the classes registering
to the onSensorChanged callback. This makes the callback
reachable during the taint analysis.

FLOWFINDER leverages FlowDroid to perform the taint
analysis of apps. FlowDroid tries to model the Android app
life-cycle by modifying the app call-graph. However, modern
Android apps use callbacks that FlowDroid does not model.
For example, modern apps increasingly use Kotlin [22]
methods which are not handled by FlowDroid. This issue
results in FlowDroid computing an incomplete call-graph
that leads to false negative data flows. Since many sources
and sinks can be inside these callback methods, we designed
FLOWFINDER to detect and parse an extensive list of callback
methods, including Kotlin and Data Layer API callbacks.

Furthermore, real-world apps use APIs that can fail taint
propagation, e.g., due to saving data in JSON objects. Flow-
Droid addresses this by defining taint propagation rules using
taint wrappers. However, the list of FlowDroid taint wrappers
is insufficient for handling taint propagation in real-world
apps since real-world apps use various APIs that FlowDroid
does not address. To address this issue, FLOWFINDER adds
an extensive list of taint wrappers necessary for detecting
data flows in real-world apps.

Flow Detection. In this step, FLOWFINDER leverages Flow-
Droid to perform the taint analysis on the instrumented apps.
FlowDroid requires a list of sources and sinks to perform
taint analysis. FlowDroid provides a list of sinks and sources;
however, that list is insufficient for detecting permission-
protected data flows across devices. For this reason, we use
the source and sink lists complied by FLOWFINDER.

Flow Verification. In this step, FLOWFINDER extracts the
permissions requested by the app from the app’s manifest
file. Then, it checks if the app has requested the permissions
required for accessing the data sources in the data flows
detected by FLOWFINDER in the previous step. If the app has
not requested the required permissions, we consider the data

flow impossible and discard it. For example, the getLatitude
method requires an app to have permission for the Location.
If FLOWFINDER detects a flow from getLatitude in an app
that has not requested the Location permission, then the
detected flow is discarded.

4.2. App Collection

With FLOWFINDER, we explore and analyze the data flows
in real-world apps in a large-scale study. Although current
third-party websites (e.g., AndroZoo [23]) provide a compre-
hensive and structured dataset for Android apps, filtering only
cross-device apps from these datasets is challenging. This is
mainly because these websites do not include wearable apps,
or when they do, they do not specifically categorize them as
wearables. In addition, Google Play does not provide the full
list of wearable apps; as of August 2022, it only provides a
small subset of 104 wearable apps.

To overcome these challenges, we thus, scrape two
third-party websites, Goko Store [24] and Android Wear
Center [25], and the official Google Play app market to
obtain the package names of all wearable apps. Overall, we
find 3691 unique package names. Out of these, only 1892,
including free and paid apps, have an up-to-date Google
Play Store link. Since we analyze wearable apps with their
companion apps, we filter this list based on whether a
companion app is compatible with an Android device. This
leaves us with 336 package names.

Following this, we download both the Wear OS and
Android APKs for these package names. As stated in the
official Google documentation [26], wearable apps that have
a companion Android app can be distributed in two ways.
Some wearable APKs are packaged inside their compan-
ion Android APK while others use Google’s multiple-apk
delivery method [27]. Previous work [7] downloaded the
corresponding APKs from AndroZoo [23] and extracted the
watch APK from the downloaded Android APK residing
in the “/res/raw” path of the Android APK. However, this
approach only works on a subset of apps as this method does
not cater to apps using the multiple-apk delivery method.

We, therefore, follow a different approach to curate
our dataset. We first use the package names to find the
corresponding Google Play Store app link. We then use
this link to download and install the app on an Android
phone and a Wear OS watch. In this way, Google Play Store
automatically installs the compatible APK for the device
type. Lastly, we use the adb [28] command line tools to
extract the APK from both devices. We detail the number
of apps after each step in Appendix B.

From the 336 collected apps, we removed the apps having
code obfuscation and are left with a total of 150 apps. We
note that determining flows in obfuscated apps requires a
different type of analysis (See Section 8).

4.3. Data Flow Results

Among the collected 150 apps, FLOWFINDER found 28
apps (with the combined number of downloads > 13M) that

TABLE 1: Permission groups and the number of apps with
corresponding data flows. P — W is for data being sent from
phone to watch. W — P is for from watch to phone.

Permission Group | # of Apps (P — W) | # of Apps (W — P) | Total

Location 7 2 9
Sensors 0 1
Storage 4 0 4
Contacts 8 0 8
Physical Activity 9 1 10
Total 28 4 32

shared permission-protected sensitive data between devices.
Table 1 shows an overview of the data flow directions
and their corresponding permission groups. The permission
groups are based on the permissions required by the data
source APIs in the detected data flows. These permission
groups represent the following data types:

e Location: Data that can reveal the user’s physical
location, such as latitude and longitude.

o Sensors: Data accessed from the onboard device sensors,
such as the heart rate sensor.

« Storage: Files stored on the device’s external storage.

o Contacts: User account information on the device.

« Physical Activity: Health data provided by the Google
Fitness API [29], such as steps and calories.

Among the 32 detected data flows, 28 apps send sensitive
data from the smartphone to the smartwatch. One app sends
data from two permission groups (Location and Storage)
to the smartwatch. We found four wearable apps that send
sensitive data from the smartwatch to the smartphone. 3
apps send data (i.e., location and physical activity) in both
directions. We show the details of each app in Table 2.

As shown in Table 1, most data flows (28%) occur be-
cause companion apps share physical activity data with wear-
able apps. All apps sending this data from the smartphone
to the smartwatch are the watch face apps. Watch face apps
change the wallpaper on the watch’s lock screen and show
information such as time, steps, and health data of the user.
These apps access health data from the Google Fitness API on
the user’s smartphone and show it on the user’s smartwatch.
One reason to access the physical activity data from the
smartphone rather than the smartwatch is to save battery,
bandwidth, and other resources on the smartwatch. Among
the detected flows from watch face apps, we found one
app (watch.richface.androidwear.valiant) sending physical
activity data in both directions; yet, we noticed no apparent
use case of physical activity data on the companion app.

We note that apps targeting an SDK level lower than 29
do not need permission to access the physical activity data.
Thus, they do not need to show a runtime permission dialog
before accessing this data. There are only six such apps in our
dataset. We note that we include all apps accessing physical
activity data in our results, as newer Android versions require
apps to explicitly request this permission.

Among the other detected flows, seven apps send location
data from the smartphone to the smartwatch. Two apps track
users’ trail runs and send the user’s location on the trail from
the smartphone to the smartwatch. Four apps sending the
smartphone’s location to the smartwatch are watch face apps.

TABLE 2: The groups and directions of 32 data flows in the
28 apps detected by FLOWFINDER.

App Package Name P->WW—>P

com.smartartstudios.digitalforcefree.interactive.watchface PA'
fr.thema.wear.watch.octane
fr.thema.wear.watch.destroy

com.rockgecko.dips

fr.thema.wear.watch.futuristicgui
watch.richface.androidwear.valiant
com.bravetheskies.ghostracer
com.watch.richface.smartdrive
de.esymetric.rungps_trial

com.thehoodiestudio.rwrk

fr.thema.wear.watch.venom

com.skimble.workouts

com.bosenko.watchfaceblack
com.smartartstudios.extremefree.interactive.watchface
com.turndapage.navmusic
ga.westpoint.gaugewatchface
com.thehoodiestudio.mustachewatchface
fr.thema.wear.watch.feisar

com.watch.richface.power
com.smartartstudios.minimusfree.interactive.watchface
fr.thema.wear.watch.rapier
fr.thema.wear.watch.guardian

com.watch.richface.neo PA
com.watch.richface.rolling PA
uk.co.chunkybacon.harmonywear.pro S
com.moletag.gallery S
com.smartartstudios.hexane.interactive.watchface PA
fr.thema.wear.watch.master C

>

PA

CTaran
o

wn

SE

oo;gorrmgr OF‘F‘;

T PA: Physical Activity, C: Contacts, L: Location, S: Storage, SE: Sensors

The apps sending contact information from the smartphone
to the smartwatch are also watch face apps. These watch
face apps send information about all the Google Accounts
registered on the smartphone. This information includes
account email and user name, which are considered sensitive
information guarded by permissions. One app sends data
from the smartwatch’s onboard sensors, such as heart rate,
to the smartphone.

To contextualize the discovered data flows, we manually
checked the data flows of 28 apps. We discovered that some
of these data flows occur due to the apps’ capabilities and the
device’s functionality. For instance, watch face apps are not
explicitly listed on the smartwatch menu; thus, users cannot
open the wearable app. Therefore, to request permission
from users, the watch face apps ask for location permission
on the smartphone and transmit this data to the smartwatch.
Two watch faces that transmit the smartphone’s location
to the smartwatch use the location to calculate sunrise and
sunset times. The other two watch faces display weather
data, which could potentially justify the use of location
data. Similarly, as an example of how device capability
affects the data flows, a fitness app (com.skimble.workouts)
requests sensor permission on the smartwatch since the
sensor data (e.g., heart rate) is available on the smartwatch.
The developers then transmit this data from the smartwatch
to the smartphone to display the user’s health-related data.
These examples demonstrate that app capabilities and device
functionalities results in data flows between devices.

There are also pairs of wearable and companion apps
that do not transfer permission-protected data across devices.
One example of such an app (com.mydiabetes) is designed

to monitor insulin injections for diabetes patients. The app
sends logs of insulin injections across devices. Since the user
manually inputs this data, it is not permission protected and
not considered a sensitive data flow under our analysis. In this
case, the companion app requests permission-protected data,
including location and contacts. This data only provides
functionality on the companion app, so there is no need
to send data to the wearable app. Another example is an
app (com.opl.transitnow) used for locating public transport
such as buses. The companion app uses the location data to
get to nearby bus stops. The schedules of incoming buses
and nearby bus stops are sent to the wearable app.

To determine if these 28 apps inform users about data
transfers, we conducted an analysis of their app descriptions
on the Google Play Store and the privacy policies provided
by the developers. Only two apps mentioned data transfers
across devices in their app descriptions. One of these apps
(com.moletag.gallery) is used for syncing images and videos,
while the other (com.turndapage.navmusic) is for syncing
music across devices.

In the privacy policies, only one app explicitly stated
which data is transferred and provided reasons for the
transfers (com.bosenko.watchfaceblack). Ten apps mentioned
that user data is collected to provide app functionality, but
did not clarify if data is transferred across devices. 12 apps’
privacy policies denied any data transfers across devices and
assured the data remains on the device. Additionally, five
apps either did not disclose how they use data in their privacy
policies or did not have a privacy policy. Our analysis shows
that apps do not adequately inform users about data transfers
across devices, potentially posing privacy concerns.

Summary of Results. FLOWFINDER’s app analysis re-
sults show that both wearable and companion apps share
permission-protected data with their respective counterparts.
The type of permission-protected data being shared includes
location, sensor, health data, account information, and data
stored in the device’s external storage. This problem poses
serious privacy concerns since users are generally unaware
of the possibility of these cross-device data flows, as demon-
strated by our user study in Section 5.

4.4. Evaluation of FLOWFINDER

We evaluate FLOWFINDER on 40 apps and compare our
results with an existing tool called WearFlow [7], which
also performs cross-device app taint analysis. The evaluated
apps also include the WearBench [30] dataset created by the
WearFlow authors. The complete list of evaluated apps is
available in Table 7 in Appendix B. FLOWFINDER detects all
flows correctly on the WearBench apps and yields 37% less
false negatives than WearFlow. For brevity, we detail below
a subset, shown in Table 3, of the evaluated apps.

For our first evaluation, we develop a set of five
benchmark apps. These apps have cross-device app data
flows originating from various permission-protected sources.
FLOWFINDER can correctly detect all the flows in the bench-
mark apps without any false positives or negatives. On the
contrary, WearFlow does not detect any data flows.

TABLE 3: Data flow comparison of FLOWFINDER against
WearFlow for selected apps. @ means a flow is found, O
means no flow is found.

WearFlow FLOWFINDER
Benchmark Apps*

App/Package Name

Location
DataNetwork
NetworkType
DownloadedFile
AuthToken

OO0000

Real-World Apps with Flows

com.sparkistic.photowear
com.estela
com.ammarptn.willow.digital.watch.face
com.moletag.gallery
com.skimble.workouts

Real-World Apps with No Flows
com.sousoum.droneswear
com.appfour.wearweather
com.kjsk.watchface.jesus
ch.sooon.hub
huskydev.android.watchface.atlas

O@000
00000 000 0000

00000

* Synthetic apps developed by the authors for evaluation.

For false positive evaluation, we analyze real-world apps
with no data flows. To find apps without data flows, we
manually check four properties: (1) we analyze the apps’
manifest file to see if the app is a non-standalone app, (2)
if there is any permission listed in the manifest file, (3)
if the app is using the relevant permission-protected API
and Wear OS Data Layer APIs, and (4) if the app is not
sending the permission-protected data across devices. Out of
the candidate apps, we randomly select five apps. We then
run both FLOWFINDER and WearFlow on these apps; both
tools report zero false positives.

To further compare FLOWFINDER with WearFlow, we
also run WearFlow on our dataset of 150 real-world apps.
WearFlow is able to identify the permission-protected sen-
sitive data flow in only one of these apps. In contrast,
FLOWFINDER detects the flow in three out of these five apps
with permission-protected sensitive data flows.

WearFlow is not able to detect flows due to its fol-
lowing three main technical limitations: (1) Insufficient
Sources/Sinks: WearFlow does not use a comprehensive list
of sources and sinks (Section 4.1) required for detecting
permission-protected data flows in cross-device apps. (2)
Broken Taint Propagation: WearFlow does not consider
complex data flows in real-world apps which require ad-
ditional instrumentation for detection. (3) Restricted Call-
graph: WearFlow does not consider the life-cycle of modern
real-world Android apps, and its generated call-graph does
not reach code locations where sources and sinks are invoked.

FLOWFINDER addresses these technical challenges (as
explained in Section 4.1) and performs better by detecting
three flows. The data flows are not detected in the other
two apps for two reasons. First, the call-graph generated by
Soot (and used by FlowDroid) is not able to reach the code
locations where the source and sink functions are invoked.
Second, FLOWFINDER is not able to track tainted data when
the data is stored in a file and accessed later by the app.

5. Users’ Understanding of Runtime Permis-
sions on Cross-device Apps

Our analysis of real-world apps revealed the existence
of sensitive data flows in cross-device apps. These sensitive
data flows violate users’ privacy if they are unaware or not
explicitly informed about such flows. We conduct a user
study to investigate users’ understanding of permissions in
the existence of cross-device data flows. Our study aims to
answer the following two research questions:

RQ1 How do users perceive permissions to work, and
what are their mental models around apps’ access
capabilities in the existence of cross-device data flows?

RQ2 Can an adversary misguide users into unknowingly
granting access to sensitive data?

To answer these research questions, we conducted an
in-lab user study with 63 participants. First, we explored user
awareness by asking participants about their understanding
of which app(s) (i.e., the wearable app and/or the companion
app) could access data when the relevant permission was
granted only on one of the apps. Second, we investigated
the feasibility of a cross-device permissions phishing attack
by showing the participants malicious prompts and gauging
their understanding of app capabilities. We evaluated the
participants’ understanding through categorical questions
and semi-structured interviews for both research questions.

5.1. Participant Recruitment

We recruited participants by advertising our study on
Slack channels, mailing groups, and distributing flyers. To
participate in our study, we stipulated that participants must
be over 18 years old, fluent in English, and active Android-
based mobile device users. To avoid priming the participants,
we do not reveal that the study is related to the security and
privacy of mobile devices. Instead, we state that our study is
about users’ interaction with Android and Wear OS devices.

We designed an online screening questionnaire to de-
termine if the participants had experience using Android
and/or Wear OS devices. 150 participants completed our
screening questionnaire. Among these participants, 92 had
prior experience with Android and/or Wear OS devices.
We invited these participants for an in-lab study. All 63
participants who completed the study were compensated
with a $10 Amazon gift card. We provide the demographics
of the participants in Appendix C.

Ethical Considerations. Our study was approved by Purdue
University’s IRB office. Prior to recording the interviews,
we obtained participants’ consent for the audio recording of
the session. We provided participants with devices and did
not collect any personal data during the study.

5.2. Interview Design

To answer RQ1 and RQ2, we designed an in-lab user
study where we invited participants to interact with a Google
Pixel 3a smartphone running Android 9.0 and a Huawei

App needs your
Camera access.

&

App needs access to
your photos, media,
and files

E;

Figure 5: Redirection prompts shown to the participant on the
smartwatch in Scenario-1: (Left) the benign prompt, (Right)
the phishing prompt.

Watch 2 running Wear OS 2. We note that we do not expect
the minor UI changes in Wear OS 3 and the later Android
versions to affect our results.

We divide our study into three scenarios to study users’
understanding of the runtime permission model on cross-
device apps and the consequences of granting permissions
to sensitive data on the two devices. For each scenario,
we provide step-by-step instructions for the participants to
follow. After executing the steps for each scenario, we ask the
participants a series of questions and collect their responses
via audio recording (The screening and interview questions
are available at our project GitHub repository). As a data
collection method, audio recording is chosen over a survey
to capture more detailed, explanatory, and contextually rich
responses. We conclude the study by asking the participants
to self-report their demographics.

Pairing Process. Each participant is first instructed to follow
the standard procedure for pairing an Android smartphone
with a Wear OS smartwatch. This involves navigating through
a sequence of prompts on the smartphone and the smartwatch
until the two devices are paired. After the devices are paired,
we ask the participants if they have performed a similar
pairing process before and how they generally respond to
the prompts displayed during the process.

Scenario-1: Phishing. To investigate whether the runtime
permission model on cross-device apps makes users suscep-
tible to cross-device permission phishing attacks (as detailed
in Section 3), we designed and developed a Travel App and
installed it on both the smartphone and the smartwatch. The
Travel App on the smartwatch shows a redirection prompt
related to camera usage; when clicked, this prompt navigates
the user to the companion app to grant storage permission.

To eliminate any associations or confounding factors
involving the camera and storage permissions, we divided
the 63 participants into two groups, i.e., G.1 (control) and G.2
(experimental). We compare the results of both groups to test
our null hypothesis that malicious redirection prompts do not
increase the number of users with a wrong perception of the
granted permission. We define phishing as the inconsistency
between the permission shown in the redirection prompt
on one device and the actual permission requested on the
other device. The scenario above highlights the impact of
this inconsistency on users.

Figure 5 demonstrates the redirection prompts shown to
the participants in the groups. The benign prompt on the
left shows the user information about storage access, and
the phishing prompt on the right shows the user information
about camera access. G.1 is presented with a benign version
of Travel App, which shows information about storage
permission on the redirection prompt, and the permission
requested on the smartphone is for storage access as well.
In contrast, G.2 is presented with the phishing version of the
same app, which displays that app needs camera permission
on the redirection prompt while the permission requested on
the smartphone is for storage access.

Since the participants in our study do not use their
personal devices, we do not evaluate whether they grant or
deny permissions. Following prior work [31], we evaluated
their awareness of the consequences of different permission
choices by asking them to read the prompts and grant the
permission shown on the smartphone. Thereafter, we first
asked both groups to describe the capabilities that the Travel
App gains on the smartwatch and smartphone after granting
permission. We then asked whether the Travel App on the
smartphone is able to (1) access photos and media, (2) view
SMS messages, and (3) take pictures and videos.

Scenario-2: Permissions Subjected to Cross-device Flows.
To assess users’ understanding of permissions in the exis-
tence of cross-device flows and their awareness of sensitive
data exchange between a wearable app and its companion
Android app, we ask 63 participants to interact with a
real app, Swim.com. This app is used for “tracking the
swimming performance and comparing stats with teammates
and friends” [32] and is available on the Google Play Store.
We install the Swim.com app on both devices and ask the
participants to interact with the apps for a few minutes to get
familiar with the app’s features. We then ask the participants
to click the search icon on the Swim.com companion app
to search for nearby pools. This action triggers a location
permission prompt on the companion app. To understand if
participants make different choices on two devices, we ask
the participants to allow or deny the permission as they prefer.
Next, we ask the participants to navigate to the smartwatch
and launch the Swim.com wearable app. The app shows a
location permission prompt once it opens, and we ask the
participants to allow or deny this permission based on their
preference. After these steps, we ask the participants whether
they grant the location permission on the two devices.
Additionally, we ask participants about their perceptions
when the location permission is granted on Swim.com
companion app but denied on its wearable app. Based on this
permission setup, we ask participants which Swim.com app(s)
can access the smartphone’s and smartwatch’s locations.

Scenario-3: Location Notice. We also investigate whether
the runtime permission model on cross-device apps impacts
users’ understanding of the smartwatch permission settings.
For this, we ask the participants to navigate to the Settings
— Connectivity — Location from Phone & Watch on the
smartwatch, as in Figure 2. We then ask them to describe
their understanding of this setting’s functionality. We next

10

TABLE 4: Participants’ responses on apps’ location access
capability when the location permission is granted on the
smartphone but denied on the smartwatch?.

Data Choices Participants
Phone’s Location Both Apps 19 (31.7%)
Phone App 40 (66.7%)
Watch App 0 (0%)
Neither of the Apps 1 (1.7%)

T Three participants said “Not Sure”, not shown here for brevity.

instruct them to turn off the setting and ask them how the
change of this setting impacts location access for companion
and wearable apps.

Pilot Study. After developing the first draft of the interview
scenarios, we conducted pilot studies with four participants
to evaluate the clarity of our interview design. We eliminated
redundant questions and rectified any ambiguous language or
unclear wording in the questionnaire based on participants’
feedback. In the interviews, we introduced the phishing
scenario and asked the related questions before the data flow
scenario to mitigate bias and avoid unnecessarily alerting
the users about the permission prompts.

Data Analysis. We used inductive coding to thematically an-
alyze users’ responses to our open-ended questions. Two au-
thors first familiarized themselves with responses and gener-
ated initial codes independently. The two independent coders
next grouped the codes into themes, ensuring that they accu-
rately represent users’ responses. Coders met to reconcile dif-
ferences before generating the final codebook'. We note that
coders achieved substantial agreement (Cohen’s-kappa > 0.8).

5.3. Understanding of Permissions with Cross-
device Flows

To assess users’ mental models of permissions in the
existence of cross-device data flows [RQ1], we focus on
their understanding of which device can access sensitive
data when they grant or deny the relevant permission on
the wearable and/or companion app. Specifically, we note
participants’ responses in Scenario-2 on which app(s) could
access the smartphone and smartwatch’s location data after
they granted location permission on the smartphone but
denied the location permission on the smartwatch.

Table 4 presents participants’ understanding of access to
location data by Swim.com companion and wearable apps.
Among the 63 participants, only 19 (31.7%) state that both
apps can access the smartphone’s location data when the
location permission is only granted to the companion app.
The remaining 40 (66.7%) participants specify that only the
companion app can access the smartphone’s location data.
This highlights that although the Swim.com app on both
smartphone and smartwatch can access the smartphone’s
location through data flows, the majority of the participants
(40 out of 63) are unaware of this data exchange.

Most participants are confused by the separate location
permission requests on two devices. Participants consider that

1. The codebook is available at https://github.com/purseclab/WearOS.

https://github.com/purseclab/WearOS

o 5 10 15 20 25
mmm Both Apps

Only Phone App
Em Neither of the Apps

Android+Other , 59%

Smartwatch Users IS /| { o/,

Android+WearOS Users

81%
I g0/,

4%
Android Users B

63%
L ELTA

Figure 6: Participants’ understanding of which app(s) can
access the smartphone’s location based on their prior experi-
ence with Android, Wear OS, and other smartwatches (Three
participants that answered “Not Sure” are not included).

the apps on the two devices operate independently, regardless
of the pairing process. Based on their understanding of
app usage scenarios, participants make different choices for
a given permission on the two devices. For instance, one
participant stated, “I prefer disabling location permission on
the phone since I can search the nearby pools by myself, but
I would prefer granting location permission on the watch
since it may need to measure the distance I swam.” Moreover,
they believe if permission to access sensitive data is granted
on only one device, only that device can access it. For
instance, one participant noted that if location permission
is granted on the companion app, only this app can access
the smartphone’s and smartwatch’s location. They stated
“The watch app won’t be able to get the phone’s location. |
think the phone app can access the watch’s location since [
granted the location permission on the phone and the devices
are paired. However, the watch app will be unable to get the
phone’s location since we denied the location permission on
the watch.” Similarly, another participant highlighted “Apps
are on independent devices, so I would think that two apps
do not depend on each other.”

Among the 19 participants who believe both apps can
access location data, 16% believe data exchange is possible
since they logged in to apps on both devices with the same
account. For instance, one participant stated that “Phone app
has the location. The watch app will get the location data
from the phone because the account in the app is the same.
If there is no account, then the watch app will not get the
location data.” However, this understanding is false since
apps can exchange data without relying on a user account.

Among the participants, three participants were uncertain
about which app(s) could access the location data. One
of these participants explained that “I am not sure. I just
want to say phone app only. But I do not know if they are
communicating, although I did the pairing steps.”

Interestingly, when asked about the smartwatch’s location,
most participants (49, 77.8%) correctly stated that none of the
apps could access the smartwatch’s location. They highlight
that denying the location permission on the smartwatch
limits apps’ access to the smartwatch’s location. Among
the remaining 14 participants, five mentioned both apps
could access the smartwatch’s location, while eight believed
only the companion app could access it. These participants
reasoned that if devices are paired and in close proximity,
both apps or at least the companion app can access the

11

smartphone’s location. Lastly, a participant stated only the
wearable app could access the smartwatch’s location.

Impact of Prior Device Usage. We investigated whether
prior experience with Wear OS devices affects users’ un-
derstanding of permissions when subjected to cross-device
data flows in Scenario-2. 16 participants identified as active
Android and Wear OS device users, 30 as only Android users,
and 17 as Android users with experience using smartwatches
other than the Wear OS-installed watches.

Figure 6 demonstrates the participants’ responses when
asked about which app(s) can access the smartphone’s loca-
tion after they granted location permission on the smartphone
but denied it on the smartwatch in the data flow scenario.
We observe that regardless of their experience with devices,
participants are unaware that location data could be shared
between the Swim.com apps on two devices. We perform the
Fisher-Freeman-Halton test [33] on the responses from the
three groups and observe no significant difference (p = .40).
This shows that prior device usage does not change users’
understanding of permissions across cross-device apps.

Impact of Smartwatch Settings. 51 out of 63 participants
stated that a wearable app could not access the user’s
location after following the steps stated in the location notice
and disabling the setting. These participants believe that
turning off the location setting prevents any app on the
smartwatch from accessing location data from the smartwatch
or smartphone. For instance, one participant stated “The
setting should turn off getting data from phone and watch,
that’s why the watch app cannot know the user’s location.”
This understanding aligns with the location notice shown
to the participants during pairing. Yet, our analysis shows
that a wearable app can still access the user’s location
through the companion app with location access. Therefore,
the information provided by Google during pairing further
exacerbates users’ confusion about sensitive data exchange
between cross-device apps.

Summary of Findings. Our study showed that 66.7% of the
participants believe that only the companion app can access
the smartphone’s location. This observation demonstrates that
participants are confused by the separate permission requests
on the smartphone and smartwatch. They are unaware of the
data flows between the wearable app and its companion app
and do not fully understand the consequences of granting
permissions to sensitive data on cross-device apps.

5.4. Feasibility of Cross-device Permission Phishing

Using the participant responses in Scenario-1, we evalu-
ate whether deceptive explanations on redirection prompts
can impact the users’ perception of which permission is
granted [RQ2]. We note that Android users typically have
an understanding that an app should access storage (i.e.,
photos, media, and files) to take pictures and videos (i.e.,
the camera permission) [5]. Therefore, to determine whether
users’ understanding of storage access is affected by the
malicious redirection prompt or their prior misunderstandings
about permissions, we consider the difference in the number

TABLE 5: Participants’ understanding of app’s storage access
after interacting with benign (G.1) and phishing (G.2) apps.
App can access storage
G.1f 33 (100%)
G.2 24 (83%)

T One participant in G.1 answered “Not Sure”.

App cannot access storage

0 (0%)
5 (17%)

of participants that believe the app has storage access in the
benign (G.1) and phishing (G.2) groups.

Table 5 shows participants’ responses in G.1 (presented
with a benign app) and G.2 (presented with a phishing app)
when asked about whether the Travel App can access device
storage (i.e., photos, media, files). While all the participants
in G.1 stated that the Travel App could access storage, a
significant portion of the participants in G.2 (5 out of 29)
said that the app could not access it. Comparing results for
G.1 and G.2, we find that phishing redirection prompts effec-
tively deceive the participants into unintentionally granting
permission for storage access. Specifically, the percentage
of participants who mistakenly believe that the app cannot
access storage after seeing the redirection prompt increases
from 0% in G.1 to 17% in G.2.

To determine whether the cross-device permission phish-
ing attack causes statistically significant results, we tested the
null hypothesis Hy: “Malicious redirection prompt does not
increase the number of participants with a wrong perception
of which permission is granted.” To evaluate the hypothesis,
we performed Fisher’s exact test (one-tailed) [34]. Fisher’s
exact test shows a significant difference between the control
and phished groups (p = .018). Thus, we reject the null
hypothesis and conclude that malicious redirection prompts
lead to an increased number of participants with an incorrect
perception of the granted permissions.

When we asked participants why they believed the Travel
App could access storage, most participants noted that the
permission dialog mentioned storage and therefore the app
gains storage access. However, a few participants explained
that they consider the redirection prompts as permission
dialogs; thus, when they click to proceed, they think that
the permission is granted. For instance, one stated that “7
gave the permission on watch...Because I started giving
the permission on watch.” Moreover, a few participants in
G.2 who believed the app could access storage highlighted
that this was possible since the app had camera access.
For instance, one participant stated that “It asked for the
camera permission. So, it can also access photos and videos.”
Similarly, another participant said that “It needs to save the
image somewhere, so it can access the storage.” This aligns
with users’ misunderstanding about permissions, where they
believe granting camera permission to an app automatically
grants it storage access [5].

Among the phished participants in G.2 who believed app
could not access storage, we noted that participants did not
pay attention to the permission dialog they saw after being
directed from the redirection prompt and immediately granted
the permission without reading. For example, one participant
said that “I don’t remember what I saw on the phone, but

12

I only remember some information about the camera”. It
demonstrates that these participants were phished as they
believed they granted a different permission (i.e., camera)
than the one that was actually requested (i.e., storage).
Lastly, we did not observe any significant correlation between
participants’ device usage and their phishing susceptibility.
Summary of Findings. Our study showed that malicious
redirection prompts could mislead participants with an
incorrect perception of the granted permission, revealing
users’ sensitive data without their awareness.

6. Other Wearable Platforms and Ecosystems

We conducted a preliminary study on other watch plat-
forms and ecosystems (i.e., watchOS, Fitbit, Garmin OS) to
understand the extent of the identified issues across different
mobile and wearable platforms.

iOS and watchOS. We investigated the Apple ecosystem
to understand how it deals with the cross-device transfer of
permission-protected data for wearable devices. Figure 9 in
Appendix A illustrates permission dialogs and toggles on
watchOS. We found that Apple also adopts a “dual permission
model”, but it implements further improvements, possibly to
mitigate the issues discussed in this paper. Specifically, Apple
implements permission synchronization, where the decisions
made by the user on one device will be propagated to the
other paired device. Interestingly, while apps can request
permissions on either device through permission dialogs,
users are allowed to revoke permissions only on their phones
as the permission settings are disabled on the watch.

This strategy takes an initial step at addressing the
found issues; however, we argue that it is far from being
fully effective due to the limited flexibility, control, and
information provided to users over their permissions. First,
we observed that Apple does not provide any information
directly via the system prompts to the users regarding
adopting the permission synchronization strategy; hence,
users might be unaware that their permission decisions on
one device are being copied to the other device. Second,
once permissions are granted, the user cannot revoke them
on the watch. These design decisions significantly limit the
users’ control over their own data and may potentially create
serious privacy issues for the users.

To illustrate these issues, we consider a scenario where
a user installs an app on their iPhone and Apple watch and
goes for a run, leaving their phone at home. Suppose the
user does not intend to be tracked during their run. First,
if the user granted permission to this app on their phone,
they might not be aware that the wearable app can also
access their location. Second, the user might decide to stop
sharing their location with the app during their run when
they suddenly realize they cannot do so as they no longer
have access to their phone. They would have to turn off the
location on their watch, which, undesirably, disables location
access to all the wearable apps. We note that the strategy to
turn off location completely would not work for other data
types as only a subset has designated toggles.

Permission Notice

Any data protected by permissions
granted to Swim.com will be accessible
by Swim.com on the following paired
device:

Huawei Watch

Companion Wearable
App App

,
CONTINUE ’
.

Figure 7: Information prompts to better inform the user about
the possible cross-device sensitive data flows.

Fitbit and Garmin OS. Fitbit and Garmin OS have their
own permission models working in conjunction with the
mobile platform they are paired with. For both platforms,
the watch permissions can be granted only on the phone
via the designated companion apps of these platforms (i.e.,
Garmin Connect and Fitbit apps), as shown in Figure 10
in Appendix A. For Garmin OS, permissions are granted
at installation and can never be revoked. Fitbit also uses
install-time permissions but allows users to revoke them
after installation.

Two separate permission models operating independently
on user data in Fitbit and Garmin OS make both watch
platforms vulnerable to the issues discussed in this paper.
However, we argue that the strategy to enable permission
control only on the phone at installation may exacerbate the
problem. This is because it makes it less likely for users
to be conscious of the interactions between the two devices
that may have access to sensitive data.

Summary. Our study revealed that watchOS, Fitbit, and
Garmin OS have similar privacy issues we discussed thor-
oughly for Wear OS. These findings suggest that the man-
agement of sensitive data and permissions in the existence
of cross-device data transfer is a complex problem across
mobile and wearable platforms, and there is a need for a
careful design to address all use cases and scenarios while
balancing usability and privacy.

7. Countermeasures

To address the found issue, we introduce several possible
improvements to the current permission model in Wear OS,
and we present them in order of implementation complexity.
These improvements aim not only to increase the security
of privileged data but also to improve users’ understanding
regarding the use of sensitive data by apps. We note that the
solutions we provide are intended as recommendations that
provide guidance on the possible directions to take to address
the issues. All the proposed solutions require rigorous design
and user testing before adoption in the real world.

Additional Information Prompts. For users to correctly
understand the consequences of granting permission, an
additional information prompt can be shown to them by
the Android or Wear OS platform, as depicted in Figure 7.
Before the user grants permission on one device, a system
prompt should inform the user that by granting the mentioned
permission, the permission-protected data can be potentially
accessed by the other paired device. To improve user

13

experience, this new prompt could be shown to the user
only once every few minutes per app instead of displaying
it before requesting permission. Another possible alternative
is to integrate this new text into permission requests without
introducing a new prompt.

Unified Permission Model. A possible alternative design
for a permission model for cross-device apps would be to
allow the user to control the permissions of a cross-device
app using a unified permission model. In this design, the
permission decisions taken by the user on one device will
be synchronized by default to the other device. However,
to allow for flexibility, the user will be given the option to
overwrite their decisions on either device. As can be seen, this
design corresponds to what is currently implemented in the
Apple smartphones/smartwatches ecosystem [35]. However,
by giving the privacy-conscious user the option to change
their permissions on either device, we prevent the issues
discussed previously in Section 6.

To securely manage permissions on both devices in the
aforementioned way necessitates a permission management
protocol that enables cross-device permission synchroniza-
tion. This is easily achieved for devices like the Apple watch,
which is only designed to be paired with an iPhone, and
both devices share the same, close ecosystem since they are
products of the same company. On the other hand, Wear OS
is designed to be used by watches from multiple vendors
and is meant to be used with Android smartphones, as well
as with smartphones from other vendors including iPhones.
To make matters worse, many existing wearable devices
(e.g., Garmin, Fitbit) can be paired with both iPhones and
Android devices. Therefore, it is challenging to develop a
standardized cross-device permission management protocol
supported by all the operating systems and wearable devices.

A solution that would work for all wearable platforms and
ecosystems is a highly challenging, if not infeasible, task as
it requires the cooperation of many smartphone and wearable
device vendors. For this reason, we limit our focus to solving
the problem for vendors that simultaneously control both
the mobile and the paired wearable device (e.g., when a
Wear OS watch is working with Android). On Wear OS, we
propose using a unified permission model that synchronizes
permissions by default when paired with an Android phone
and gives the conscious user the option to override this
synchronization to provide flexibility. Since Android and
Wear OS are managed by Google, developing and deploying
a unified permission model is practical.

Cross-device Data Flow Detection. App markets such as
Google Play can use program analysis techniques to detect
potentially malicious cross-device data flows. For this, the
techniques we implemented in FLOWFINDER can be used to
detect any unauthorized flows that use the Data Layer API
on Android and Wear OS. Although this approach does not
work for sideloaded apps, it can serve as a complimentary
strategy to the two aforementioned countermeasures.

8. Discussion and Limitations

First, we used Wear OS 2 and Android 9 in our user
study. While changes exist in the permission Uls of the later
versions of Android and Wear OS, we expect their effect on
our results to be marginal since the changes are minimal and
not directly related to the phenomena tested in our study.

Second, our main focus is on the permission model of
Android and Wear OS in the context of cross-device apps.
We have only conducted a preliminary investigation on other
wearable platforms (i.e., watchOS, Fitbit, and Garmin OS);
however, we were able to demonstrate the existence of similar
issues on all these platforms due to the dual permission
model in place to guard user data. We leave a more thorough
investigation of other wearable platforms to future work.

Third, FLOWFINDER builds upon existing static analysis
tools (e.g., Flowdroid [19]) and therefore inherits their limita-
tions. We implemented several techniques to address various
limitations of these tools, as discussed in Section 4. However,
further improvements are possible, such as propagating taints
across file operations and obfuscated APIs.

Fourth, we do not evaluate users’ prior understanding of
permission models. Previous work extensively analyzed users’
comprehension of runtime permissions on a single device [3],
[2], [36], [6], [S]. However, users’ understanding of multi-
device permission models remains largely unexplored. Hence,
we extend prior literature by focusing on users’ understanding
of runtime permissions for cross-device apps.

Lastly, our proposed improvements require changing the
Android and Wear OS permission systems. To evaluate these
changes, we plan to implement them and conduct a user
study to compare the results of user perception between the
current permission model and our proposed models.

9. Related Work

Extracting Sensitive Data Flows. A line of prior work
has studied data flows in Android apps [37], [38], [39],
[40], [19], [7]; however, they do not consider Android apps’
communication with Wear OS and do not propagate taints for
the Data Layer APIs used for cross-device communication. A
recent work proposed WearFlow [7] that models the DataLink
API functions to detect data flows between the wearable app
and its companion app. However, as detailed in Section 4,
WearFlow cannot accurately detect the sensitive data flows
in real-world apps. In contrast, we detect sensitive data flows
by identifying the relevant source and sink functions and
performing instrumentation on the apps.

Users’ Comprehension of Permission Models. Another
line of prior work has investigated users’ comprehension
of Android permissions granted at app installation [41],
[1], [4]. With the introduction of the runtime permission
model in Android 6.0, several recent works have explored
different factors that affect users’ decisions for granting
runtime permissions [3], [2], [36], [6], [5]. While these
works revealed users’ comprehension of permission models,
they focused on permissions on a single device. In contrast,

14

we investigate the user’s understanding of permissions in the
existence of cross-device data flows for wearables.

Attacks on Android Permissions. Prior research has demon-
strated a variety of attacks on Android permissions to obtain
users’ sensitive data from a single mobile device [42],
[43], [44], [45], [31], [46]. In contrast, we demonstrate that
an adversary can leverage developer-generated redirection
prompts, triggered by permission requests from the wearable
app to its companion app (and vice versa), to phish users to
unintentionally grant permissions in a cross-device setting.

Improvements for Runtime Permission Model. Recent
work has proposed improvements on Android permissions
to provide more comprehensive information, enabling users
to make better-informed decisions [6], [47]. Yet, we propose
additional rationale messages to help the users understand
the runtime permission model on cross-device apps.

10. Conclusions

In this paper, we systematically studied the permission
model of Wear OS and demonstrated the privacy issues
caused by the possibility of cross-device sensitive data
transfer between wearable devices and their smartphone com-
panions. Via taint analysis, we demonstrated that there are
apps on Google Play that have sensitive data flows between
the wearable app and its companion app. Subsequently, we
conducted an in-lab user study to assess users’ understanding
of permissions and their awareness of cross-device sensitive
data flows. Our findings revealed that users struggle with
determining the access capabilities of apps in the existence
of cross-device data flows due to a lack of awareness of
such flows and are also vulnerable to cross-device phishing
attacks. Although our main focus was on Android and Wear
OS, we also conducted a preliminary study on other watch
platforms and showed that they suffer from similar privacy
issues, demonstrating that cross-device sensitive data transfer
is a complex problem across mobile and wearable platforms.
Lastly, we proposed potential improvements (1) in the app
markets to identify cross-device data flows and (2) on the
watch and mobile platforms to better inform users about
sensitive data flows, creating transparency regarding the
handling of user data. Informing users about the sensitive data
flows through these improvements could potentially improve
the security and privacy of cross-device apps and ultimately
lead to increased user trust in the mobile ecosystem.

Acknowledgments

This work has been partially supported by the National
Science Foundation (NSF) under grant CNS-2144645 and by
Google with an ASPIRE Research Award. We thank Ehsan
Nourbakhsh, Bjorn Kilburn, Mario Kosmiskas, Kamran
Mustafa, and Arpit Midha of Wear OS, Dave Kleidermacher,
Michael Specter, and Sudhi Herle of Android Security and
Privacy of Google, as well as our anonymous reviewers and
shepherd for their feedback.

References

(1]

(2]

(3]

[4]

[3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta
Akhawe, David A Wagner, et al. How to ask for permission. In
HotSec, 2012.

Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina Taft.
Exploring decision making with android’s runtime permission dialogs
using in-context surveys. In SOUPS, 2017.

Weicheng Cao, Chunqiu Xia, Sai Teja Peddinti, David Lie, Nina Taft,
and Lisa M Austin. A large scale study of user behavior, expectations
and engagement with android permissions. In USENIX Security, 2021.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner. Android permissions: User attention,
comprehension, and behavior. In SOUPS, 2012.

Bingyu Shen, Lili Wei, Chengcheng Xiang, Yudong Wu, Mingyao
Shen, Yuanyuan Zhou, and Xinxin Jin. Can systems explain permis-
sions better? understanding users’ misperceptions under smartphone
runtime permission model. In USENIX Security, 2021.

Yusra Elbitar, Michael Schilling, Trung Tin Nguyen, Michael Backes,
and Sven Bugiel. Explanation beats context: The effect of timing
& rationales on users’ runtime permission decisions. In USENIX
Security, 2021.

Marcos Tileria, Jorge Blasco, Guillermo Suarez-Tangil, et al. Wearflow:
Expanding information flow analysis to companion apps in wear os.
In Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020.

Wear OS by Google. https://wearos.google.com/, 2022.
accessed 01-March-2023].

[Online;

Standalone versus non-standalone wear os apps. https://developer.
android.com/training/wearables/overlays/standalone-apps, 2022. [On-
line; accessed 01-March-2023].

Android permission overview. https://developer.android.com/guide/
topics/permissions/overview, 2022. [Online; accessed 01-March-2023].

Request runtime permissions. https://developer.android.com/training/
permissions/requesting, 2022. [Online; accessed 01-March-2023].

Manifest.permission. https://developer.android.com/reference/android/
Manifest.permission, 2022. [Online; accessed 01-March-2023].

Explain access to more sensitive data. https://developer.android.com/
training/permissions/explaining-access, 2022. [Online; accessed 01-
March-2023].

Wear OS by Google Smartwatch. https://play.google.com/store/apps/
details?id=com.google.android.wearable.app&hl=en_US&gl=US,
2022. [Online; accessed 01-March-2023].

Galaxy wearable app. https://play.google.com/store/apps/details?id=
com.samsung.android.app.watchmanager, 2022. [Online; accessed
01-March-2023].

Data layer api. https://developer.android.com/training/wearables/data/
data-layer#send-and-sync-with-API, 2022. [Online; accessed 01-
March-2023].

Android runtimepermissionswear sample. https://github.com/android/
wear-os-samples/tree/main/RuntimePermissionsWear, 2022. [Online;
accessed 01-March-2023].

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot: A java bytecode optimization
framework. In CASCON First Decade High Impact Papers, 2010.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In SIGPLAN, 2014.

Susi: Source and sink. https://github.com/secure-software-engineering/
SuSi, 2022. [Online; accessed 01-March-2023].

15

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien
Octeau, and Sebastian Weisgerber. On demystifying the android
application framework: Re-visiting Android permission specification
analysis. In USENIX Security, 2016.

Android’s kotlin-first approach. https://developer.android.com/kotlin/
first, 2023. [Online; accessed 12-April-2023].

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of Android apps for
the research community. In Int. Conference on Mining Software
Repositories (MSR), 2016.

Goko store. https://goko.me/, 2022. [Online; accessed 01-March-
2023].

Android wear center. https://www.androidwearcenter.com/, 2022.
[Online; accessed 01-March-2023].

Package and distribute wear apps.
training/wearables/packaging, 2022.
2023].

https://developer.android.com/
[Online; accessed 01-March-

Multiple apk support. https://developer.android.com/google/play/
publishing/multiple-apks, 2022. [Online; accessed 01-March-2023].

Google Android debug bridge (adb). https://developer.android.com/
studio/command-line/adb, 2022. [Online; accessed 01-March-2023].

Google fit. https://www.google.com/fit/, 2023.
12-April-2023].

[Online; accessed

Marcos Tileria, Jorge Blasco, Guillermo Suarez-Tangil, et al. Wear-
bench, 2020.

Giiliz Seray Tuncay, Jingyu Qian, and Carl A Gunter. See no evil:
phishing for permissions with false transparency. In USENIX Security,
2020.

Swim.com app. https://www.swim.com/, 2022. [Online; accessed
01-March-2023].

GH Freeman and John H Halton. Note on an exact treatment of
contingency, goodness of fit and other problems of significance.
Biometrika, 1951.

Peter Sprent. Fisher exact test. In International Encyclopedia of
Statistical Science, 2011.

Watchos permissions. https://developer.apple.com/documentation/
watchos-apps, 2023. [Online; accessed 1-April-2023].

Panagiotis Andriotis, Martina Angela Sasse, and Gianluca Stringhini.
Permissions snapshots: Assessing users’ adaptation to the android
runtime permission model. In IEEE WIFS, 2016.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems, 2014.

Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A precise
and general inter-component data flow analysis framework for security
vetting of android apps. ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo
Bauer. Android taint flow analysis for app sets. In SIGPLAN, 2014.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick McDaniel. Iccta: Detecting inter-component
privacy leaks in android apps. In ICSE, 2015.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In ACM CCS, 2011.

Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve
Hanna, and Erika Chin. Permission re-delegation: Attacks and defenses.
In USENIX Security, 2011.

https://wearos.google.com/
https://developer.android.com/training/wearables/overlays/standalone-apps
https://developer.android.com/training/wearables/overlays/standalone-apps
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/training/permissions/explaining-access
https://developer.android.com/training/permissions/explaining-access
https://play.google.com/store/apps/details?id=com.google.android.wearable.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.google.android.wearable.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.samsung.android.app.watchmanager
https://play.google.com/store/apps/details?id=com.samsung.android.app.watchmanager
https://developer.android.com/training/wearables/data/data-layer#send-and-sync-with-API
https://developer.android.com/training/wearables/data/data-layer#send-and-sync-with-API
https://github.com/android/wear-os-samples/tree/main/RuntimePermissionsWear
https://github.com/android/wear-os-samples/tree/main/RuntimePermissionsWear
https://github.com/secure-software-engineering/SuSi
https://github.com/secure-software-engineering/SuSi
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://goko.me/
https://www.androidwearcenter.com/
https://developer.android.com/training/wearables/packaging
https://developer.android.com/training/wearables/packaging
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.google.com/fit/
https://www.swim.com/
https://developer.apple.com/documentation/watchos-apps
https://developer.apple.com/documentation/watchos-apps

[43] Giiliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and Carl A
Gunter. Resolving the predicament of Android custom permissions.
In NDSS, 2018.

[44] Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit Elazari Bar On,

Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your
data: An exploration of apps’ circumvention of the android permissions
system. In USENIX Security, 2019.

[45] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio,

Christopher Kruegel, and Giovanni Vigna. What the app is that?
deception and countermeasures in the Android user interface. In JEEE
Symposium on Security and Privacy (S&P), 2015.
[46] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang Zhai,
and Tao Xie. A large-scale empirical study on android runtime-
permission rationale messages. In IEEE VL/HCC, 2018.

[47] Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes, Serge

Egelman, David Wagner, Nathan Good, and Jung-Wei Chen. Turtle
guard: Helping android users apply contextual privacy preferences. In
SOUPS, 2017.

Appendix A.
Wearable Platforms and Ecosystems

Wear OS. Figure 8 demonstrates the location notice shown
in the pairing process of the Google Pixel Watch App
and Galaxy Wearable App, and the watch setting on
the Google Pixel Watch App for Wear OS 3. On the
Galaxy Wearable App, users can revisit this setting by
navigating to Galaxy Wearable App— Watch Settings— About
Watch—Legal Information—Google Privacy Options. We
note that the location notice and watch setting are synchro-
nized. Specifically, when the user turns off the watch location
setting, the choice for the location notice on the smartphone
is also updated. Yet, this change does not affect its location
setting (“on”

iOS and watchOS. Figure 9 shows the permission model in
the i0S-watchOS ecosystem. Within this ecosystem, the user
can interact with a permission dialog on any app (wearable
or companion app). Upon interacting with this dialog, the
user’s decision is applied to the companion device (or vice
versa). We note that once this decision has been made, it
cannot be modified via the watch settings. Instead, users
seeking to change their permission choices must navigate to
the phone settings.

Fitbit and Garmin OS. Figure 10 depicts the install-time
permission models for Fitbit and Garmin OS. The user needs
to grant multiple permissions within the same prompt. After
granting the permissions, the app can access the system
resources to provide its functionality.

Appendix B.
Dataflow Details

Table 6 presents the number of apps after each inter-
mediary step in the app collection presented in Section 4.
After scraping the apps, we have 5,415 package names.
Following that, we filter out the duplicate ones since two
third-party websites and the Google Play Store have some
common package names listed on their websites. We then

16

Location

Use location

From pho atch

\ \App location permissions

a in an anonymous

(b)

Figure 8: (a) Location setting shown in the pairing on
Android and (b) watch location setting shown on Wear OS.

TABLE 6: The number of apps after each intermediary step
in creating the cross-device app dataset.

App Dataset Details

Number of scraped package names 5415
Number of unique package names 3691
Number of existing package names 1892
Number of downloaded package names 336

check whether the app is still listed in Google Play Store.
As a last step, we filter only the wearable apps, having 336
wearable and companion apps in our dataset.

Table 7 demonstrates the full results of data flow com-
parison of FLOWFINDER with WearFlow on 40 apps (See
Section 4). Overall, FLOWFINDER yields 37% lower false
negatives than WearFlow. We also test against WearFlow’s
benchmark dataset called WearBench. Since the WearBench
apps do not transfer permission-protected data, we added
the required data-source methods to evaluate FLOWFINDER
on WearBench. With the required methods, FLOWFINDER
detects all of the flows in the WearBench dataset.

Appendix C.
Participant Demographics

In Table 8, we show the participant demographics. We
note that our screening and interview questions are avail-
able at our project GitHub repository, https://github.com/
purseclab/WearOS.

https://github.com/purseclab/WearOS
https://github.com/purseclab/WearOS

Swim.com

: " t Time Or When | Share
Allow "Swim.com" to use

your location?

Allow Swim.com to use your
location to support pool and club
searches. Your location is also used
to automatically associate your
swims with pools you swim in.

< Swim.com

sing the App

Never
Ask or When | Share
While Using the App

7

Precise Always

Allow Once Precise
Location

Allow While Using App
Don't Allow

Allows apps to use your specific location.
With this setting off, apps can only
determine your approximate location.

(b)

Figure 9: Illustration of permission model on iOS-watchOS. (a) The user grants permission on the watch. (b) The watch
setting is disabled against any permission decision change. (c) The user can modify permission settings via the phone setting.

TABLE 7: Data flow comparison results on the validation

dataset. @ means flow is found, O means flow is not found.

App/Package Name WearFlow FLOWFINDER "Sunset" Needs Permissions
Benchmark Apps o t Spetand
i missions bel Maps4Garmin (Free) with
ILegrlitem O . Weather Radar (Paid)
DataNetwork O [) =
elect This app requires ess to:
INEe I Q 4 e T e
DownloadedFile O [) Group Storage « Send/receive nformation to/from the Interet
AuthToken O [et AL~ i e
WearBench Apps
Asset . . Location Cancel
Dataltem! [) [)
Dataltem?2 [) [) e
InterDataltem [) o
InterDataltem?2 [) [)
SimpleChannel [) [)
Messages [) [)
SimpleDataltem [) [) (@) ()
SimpleDataltem?2 [) [)
SimpleDataltem3 4 ® Figure 10: Tllustration of the install-time permission models
SimpleDataltemOld o o of (a) Fitbit and (b) Garmin OS.
SimpleMessage [) [)
SimpleMessage2 o o TABLE 8: Demographics of participants.
SimpleMessage3 [) [) . -
SimpleMessageOld ® ® Choices Participants
Real-World Apps with Flows getween 52 ang %451 %g Eigg"g
R Age etween an o
.sparkistic.phot g

com.sparkistic.photowear O O Between 35 and 50 6 (10%)
com.estela O [)

. .. Man 43 (68%)
com.ammarptn.willow.digital.watch.face O O Gender Woman 19 (30%)
com.moletag.gallery (] (] Prefer not to say 1 2%)
com.skimble.workouts O [) CS Related Yes 40 (63%)
com.thehoodiestudio.rwrk O [) elate No 23 (37%)
com.sparkistic.photowear O O Up to high school 5 8%)
com.rockgecko.dips O o Education Some co{lege (1-4 years, no degree) 6 (10%)
com.smartartstudios.hexane.interactive.watchface O [) Bachelor’s degree 31 (49%)

. . Graduate degree 21 (33%)
de.esymetric.rungps_trial O [) -
. More than 1 year 18 (29%)
Real-World Apps with No Flows

. A few months 13 (21%)

com.sousoum.droneswear @) @) Smartwatch Usage Time 1 oo than one month 2 (3%)
com.appfour.wearweather O O I don’t have a watch 30 (48%)
com.kjsk.watchface.jesus O O Messaging 20 (61%)
ch.sooon.hub O O Activity tracking 31 (94%)
huskydev.android.watchface.atlas O O Phone calls 13 (39%)
com.mydiabetes O O Smartwatch Usage Purposes Mus'lc } 14 (42%)
hole19golf.hole19.beta O O Navigation 8 (24%)
UL g' . : Payments 8 (24%)
com.opl.transitnow O O Other 7 (21%)
com.watch.richface.neo O O Simil .. . Yes 38 (60%)
adarshurs.android.vlcmobileremote O O imilar Pairing Experience 25 (40%)

17

Appendix D.
Meta-Review

D.1. Summary

The paper develops a static analysis tool to study the
interaction between wearable apps on Wear OS devices and
their companion apps on Android devices. An analysis of 150
real-world apps finds that in 28 apps, presumable unintended,
protected data flows between those apps. A user study with
63 participants indicates that most users are unaware of this
data transfer and that users can be phished into granting
permissions.

D.2. Scientific Contributions

o Independent Confirmation of Important Results with
Limited Prior Research

o Creates a New Tool to Enable Future Science

« Identifies an Impactful Vulnerability

D.3. Reasons for Acceptance

1) The paper confirms data leakage between the Wear
OS app and the companion app, similar to the study
by Tileria et al. (WearFlow), by developing a tool that
extends the state-of-the-art solution to increase coverage
of flows (for example, an augmented list of sources and
sinks)

The paper complements those results with a user study
that identifies gaps in the users’ understanding of the
permission model in the cross-device app setting.

2)

D.4. Noteworthy Concerns

The methodology for studying the phishing attacks could
have been improved: Phished and benign permission may be
too close to each other to have a strong enough effect size
to capture users’ susceptibility to phishing accurately. Users
typically have an understanding that an app should access
storage to take pictures and videos. Choosing a phished
permission unrelated to the phishing scenario (camera remote
control) would have been a better choice. Additionally, the
study design asked users “what they think the app can
do” instead of whether they knowingly granted the storage
permission. This type of question may trigger users to
rationalize app behavior (e.g., creating these aforementioned
associations like “if the app can take pictures, it also can
access storage”).

Appendix E.
Response to the Meta-Review

We split the noteworthy concern into two parts regarding
our phishing study (Section 5.2): (1) semantically-related
permissions and (2) direct questions vs. general queries of
app capabilities. We answer each concern below.

18

Semantically-related Permissions. It is true that the per-
missions we used in our study to assess the feasibility of
cross-device permission phishing (i.e., camera and storage
permissions) are semantically related from the user’s perspec-
tive, which has the potential to mislead them into not being
able to correctly differentiate the capabilities of these two
permissions [5]. This might make it difficult to distinguish in
a user study such as ours if users fell victim to the phishing
attack or are simply confused about the capabilities of the
two permissions due to their apparent semantic connection.

We, however, accounted for this phenomenon and elimi-
nated its effects in our study by checking if the likelihood of
misperception of the granted permission among the partici-
pants increases under the phishing scenario. More specifically,
we formed the null hypothesis as “Malicious redirection
prompts do not increase the number of participants with a
wrong perception of which permission is granted”.

We consequently conducted our study in two phases,
where 1) we had an experimental group presented with the
phishing scenario in which the redirection prompt shows
camera-related information and the requested permission
is storage and 2) a control group presented with a benign
scenario, where the redirection prompt shows storage-related
information and the requested permission is storage. For the
purposes of this study, we define phishing in terms of a
misconception of the granted permission: If a user believes
that the storage permission has not been granted, despite
them having just granted it, such a user is categorized as
“phished”. Our findings indicate that the phishing prompt
does indeed increase the likelihood of users misinterpreting
which permissions they have granted.

Direct Questions vs. General Queries of App Capabilities.
The preliminary findings in our pilot study show that
participants are unable to articulate their reasoning with
technical terms, such as “permission”. For this reason, rather
than posing direct questions about the permissions granted,
we were careful to use terminology that is familiar to Android
users. Specifically, in the phishing part of our user study,
we first asked participants generic questions about the app’s
functionality. Subsequently, we asked more targeted questions
regarding app capabilities after the permission grant. While
framing our questions, we aligned them with the terminology
used in the system dialogs. For instance, the Android system
prompts show the following prompts:
« Allow [Appname] to access photos and media on your
device? [storage permission]
« Allow [Appname] to take pictures and record videos?
[camera permission]
and we framed our questions as follows:
e Do you think the [Appname] on the phone is able to
access photos and media?
o Do you think the [Appname] on the phone is able to
take pictures and videos?

	Introduction
	Background
	Threat Model and Motivation
	Threat Model
	Cross-device Sensitive Data Flows
	Cross-device Permission Phishing

	Data Flow Extraction
	FlowFinder Implementation
	App Collection
	Data Flow Results
	Evaluation of FlowFinder

	Users' Understanding of Runtime Permissions on Cross-device Apps
	Participant Recruitment
	Interview Design
	Understanding of Permissions with Cross-device Flows
	Feasibility of Cross-device Permission Phishing

	Other Wearable Platforms and Ecosystems
	Countermeasures
	Discussion and Limitations
	Related Work
	Conclusions
	References
	Appendix A: Wearable Platforms and Ecosystems
	Appendix B: Dataflow Details
	Appendix C: Participant Demographics
	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix E: Response to the Meta-Review

