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Abstract— Zero-day vulnerabilities pose a significant challenge
to robot cyber-physical systems (CPS). Attackers can exploit
software vulnerabilities in widely-used robotics software, such
as the Robot Operating System (ROS), to manipulate robot
behavior, compromising both safety and operational effectiveness.
The hidden nature of these vulnerabilities requires strong defense
mechanisms to guarantee the safety and dependability of robotic
systems. In this paper, we introduce ROBOCOP, a cyber-physical
attack detection framework designed to protect robots from
zero-day threats. ROBOCOP leverages static software features in
the pre-execution analysis along with runtime state monitoring
to identify attack patterns and deviations that signal attacks,
thus ensuring the robot’s operational integrity. We evaluated
ROBOCOP on the F1-tenth autonomous car platform. It achieves
a 93% detection accuracy against a variety of zero-day attacks
targeting sensors, actuators, and controller logic. Importantly, in
on-robot deployments, it identifies attacks in less than 7 seconds
with a 12% computational overhead.

I. INTRODUCTION

Robot cyber-physical systems (Robot CPS) integrate
computational algorithms with physical agents to perform
complex tasks in the real world, transforming industries with
applications such as self-driving cars [1], robot assistants [2],
and delivery drones [3]. However, as Robot CPS become
increasingly prevalent in everyday life, they face cyber-
physical attacks.

Cyber-physical attacks refer to malicious actions that
exploit vulnerabilities in both the cyber (software, networks)
and physical (sensors, actuators) components of a robotic
system [4]. The attack goal is to disrupt or manipulate the
robot’s behavior, potentially leading to safety hazards, privacy
breaches, or operational failures. For example, attackers have
remotely manipulated the messages from the Robot Operating
System (ROS) to cause malfunctions in surgical robots,
compromising patient safety [5]. Similarly, drones have also
been compromised to illegally capture videos of critical sites,
jeopardizing national security and confidentiality [6].

Despite recent considerable advances in vulnerability
discovery and security enforcement, e.g., [7], [8], securing
robot CPS presents unique challenges that remain unaddressed.
The tight coupling of computational and physical elements
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Fig. 1. ROBOCOP validates the overall robot behavior to identify attacks
launched through the cyber or physical layers.

creates a more complex and multifaceted attack surface [9]–
[11]. One particularly dangerous threat is posed by zero-day
vulnerabilities that are not yet publicly known or discovered.
In the context of Robot CPS, these vulnerabilities are
especially dangerous, as they exploit the complex interactions
between software and hardware, allowing attackers to gain
control before defenses can be deployed. For example, a
strategically placed piece of tape tricked an autonomous car
into exceeding speed limits [12]. The widespread use of
common platforms, such as ROS, exacerbates the risk by
making multiple systems vulnerable to the same exploit [13].

Current security frameworks for Robot CPS primarily
focus on known attack vectors, such as sensor spoofing, and
often address detection and mitigation after an attack has
occurred [11], [14]–[18]. Although these post-attack strategies
are valuable, they are insufficient to anticipate and defend
against zero-day vulnerabilities, which cannot be mitigated
using traditional defense methods [5], [19]–[21]. Furthermore,
many frameworks do not fully consider the hybrid nature of
robotics systems, where the interplay between software and
hardware creates novel attack vectors not typically found in
conventional IT systems.

In this paper, we focus on zero-day cyber-physical attacks
targeting robot CPS. We map the extensive attack surface,
identifying vulnerabilities arising from manipulations in the
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code that govern sensors, actuators, and controllers. By
analyzing known weaknesses within ROS and widely used
robotic software stacks [22], [23], we propose a novel
detection framework ROBOCOP, aimed at identifying and
mitigating zero-day cyber-physical threats, particularly those
exploiting unauthorized code injections to compromise critical
components. ROBOCOP is a two-stage approach to protect
robotic systems. In the pre-execution stage, the framework
scrutinizes the robot’s software stack, using zero-shot learning
to detect anomalies indicative of potential zero-day exploits.
During runtime, ROBOCOP employs a reinforcement learning-
based monitoring system that continually assesses the robot’s
behavior in real time, ensuring swift detection and mitigation
of attacks bypassing initial defenses.

In this paper, we make the following contributions.
• We introduce ROBOCOP, a framework that combines

pre-execution evaluation and real-time hardware-aware
monitoring for the comprehensive detection of zero-day
cyber-physical attacks in robots. This allows ROBOCOP

to identify such attacks before execution and to continu-
ously monitor for anomalies during operation.

• We introduce a pre-execution evaluation model built
on zero-shot learning. This model establishes a latent
feature space to identify unseen cyber-physical attacks,
preventing them from gaining control of the robot.

• ROBOCOP also comprises a reinforcement learning-based
online monitoring. This approach enables real-time
detection of malicious intent across short and long
horizons by continuously monitoring static and dynamic
robot behaviors.

• We validated the effectiveness of ROBOCOP on a robot ve-
hicle using simulation and real-world tests. Additionally,
we evaluated its latency and computational overhead to
ensure suitability for resource-constrained hardware.

II. THREAT MODEL AND ATTACK VECTORS

The architecture of robot CPS includes a cyber layer where
users transmit commands and executables to the system
and a controller layer that integrates these commands and
processes sensor inputs from the physical layer to generate
control outputs. These outputs, in turn, actuate the mechanical
components in the physical layer, as depicted in Fig. 1. In this
section, we present a taxonomy of attack vectors relevant to
robotic CPS, highlighting the multifaceted nature of potential
threats that affect the system.

A. Attack Vectors for Robots

Robot systems, by their very nature, are a collection of
sensors, actuators, and control units, each presenting unique
attack surfaces. Sensors, which serve as the eyes of the system,
can be deceived by spoofing or jamming [16], [24], [25],
leading to erroneous perception of data. Actuators translate
computational commands into physical action and can be
hijacked to execute unintended movements or operations. At
the core, the controller, whether a simple PID controller or
an advanced neural network, interprets sensor data to issue

commands to actuators. Compromising this central decision-
making unit can have cascading effects, affecting the robot’s
functionality and mission [14], [26], [27]. We broadly classify
these attacks within the context of robot CPS as follows:

• Sensor Attacks: These involve the manipulation of
sensor outputs to feed false data to the controller,
thereby skewing its perception of the environment or
the robot’s state. Attackers might employ techniques,
from simple noise injection to sophisticated adversarial
signal spoofing, to manipulate sensor readings [28].
For instance, malicious code can obfuscate the true
measurements and inject randomized noise to cause
the robot to misbehave. Stealthy attacks also ensure that
the true value zk of any sensor k is altered within the
accepted threshold ZT to avoid easy detection.

• Controller Attacks: The controller is the decision-making
component of a robot. Attacks targeting controller logic
could recalibrate control algorithms, alter command
execution, or disrupt the robot’s intended behavior,
potentially leading to detrimental operational outcomes.
For example, in the case of a PID controller, the output
is calculated as a function of the tracked error and the
current state, as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(1)

where Kp, Ki, Kd are the proportional, integral, and
derivative gains, e(t) is the current error of the system
and u(t) is the control command. The heading is calcu-
lated as a correction to the controller error. Alteration
of any of these parameters will lead to erratic behavior,
which may even lead to physical crashes.

• Actuator Attacks: By tampering with the command
signals to the actuators, adversaries can orchestrate
unauthorized actions or induce mechanical failures. This
challenges the system’s ability to execute controlled
movements or tasks. Therefore, instead of the true
actuation yt, at any instant t given inputs xt, the actuators
receive input ŷt. For a general robot vehicle, these can
be of two types: velocity attacks and steering attacks.
Velocity attacks may cause the robot to go faster or
slower than intended, while steering attacks may cause
it to have swerving motion; both may result in collisions.

We highlight that these attacks are often designed to be
stealthy. In addition, as robot code becomes increasingly
available as shared open-source software, the risk of crafting
attacks targeting widely used robotic platforms, such as
robotic arms and even surgical robots, increases significantly.

B. Threat Model

We consider an attacker who has a deep understanding
of the target robot’s software and hardware, including its
controller software, sensor suite, and actuator configurations.
This knowledge enables the attacker to identify and exploit
zero-day vulnerabilities. The prevalence of open-source
software in robotics makes this a realistic threat model. The
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Fig. 2. The ROBOCOP architecture illustrating the pipeline from pre-execution to online monitoring for zero-day attack detection.

attacker’s objective is to compromise the robot’s operation
by injecting malicious code that can manipulate sensor data,
disrupt controller logic, and hijack actuators. The attacker’s
in-depth knowledge of the system allows them to craft attacks
that exploit the complex interactions between the cyber and
physical components of the robot, making them particularly
challenging to identify and mitigate. The evaluation of
ROBOCOP in Section IV focuses on its ability to defend
against such sophisticated zero-day cyber-physical attacks.

III. THE ROBOCOP FRAMEWORK

A. Overview of ROBOCOP

The ROBOCOP framework detects cyber-physical attacks in
two stages: (1) Pre-Execution: Using a zero-shot learning-
based classifier on the raw controller software to detect known
and unknown attacks, and (2) Online Monitoring: which
uses a deep reinforcement learning agent to monitor robot
behavior during run time to stop malicious attacks, as shown
in Fig. 2. Together, this system helps prioritize safe operation
by evaluating the immediate and long-term consequences of
the state and actions of the robot.

B. Pre-Execution

In the pre-execution stage, we parse the controller exe-
cutable using a multilayer neural network to extract features.
The neural network acts as a zero-shot classifier, extracting
features from known classes in a given dataset and encoding
them into a latent feature space. Using a center-loss-based
model, we encoded the similarity map onto this latent feature
map. For unknown classes, the model identifies their distance
from known classes for classification.

Feature Extraction. To extract key features, each input
binary executable is converted into a string of hexadecimal
values. As shown in Fig. 2, the network consists of an
embedding layer followed by three parallel one-dimensional
convolutional neural networks (1D CNN) and max pooling
layers. The string is encoded using an embedding layer with a
vocabulary of 257 (0 to 256 hex representation). This encoding

ensures a fixed-length representation, allowing finer-grained
learning and the capture of intrinsic semantic relationships.

The refined inputs are then parsed through parallel 1D CNN
layers. These layers, with different filter sizes, capture various
hierarchies of local mappings. The parallel architectures of
CNNs optimize for speed and outperform serial structures.
Finally, the pooled and concatenated layers create the latent
feature space. Mathematically, the output of this component
can be formulated as:

Xcj = fsj
m (σ1(f

kj
c (edw(xi)))), 1 ≤ j ≤ 3, (2)

C = [Xc1 , Xc2 , Xc3 ], (3)

Xd = σ3(w
T
2 σ2(w

T
1 (C) + b1) + b2) (4)

where, ed and fk,w
c represent the embedding layer with

input dimension dw and convolutional layers j with kernel
size k, respectively.

The output of the convolutional layers is grouped using the
maximum pooling layers fs

m with stride s to generate a set of
features Xcj , where 1 ≤ j ≤ 3 for the three parallel layers.
The output of the parallel max pooling layers is concatenated
as C, which is then input into the two dense layers with
weight w1, w2 and biases b1, b2. Each layer has its activation
function σ(.). During training, the network is trained with the
categorical cross-entropy loss Lce for the known set of attack
classes and center loss Lc to increase the distance among
these classes in the latent space, defined as:

Lce =
−1
s

s∑
i=1

yilog(F(Xd(xi))) (5)

Lc =
1

2

s∑
i=1

max(∥x∗
yi
− cyi

∥22, 1) (6)

LT = Lce + λc ∗ Lc (7)

where s is the batch size, c is the center of the yth class,
where yi ∈ k. While yi is the given label, the classifier
label is derived by F(Xd(xi)), where xi is the executable
input controller. The total loss LT is the sum of the
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categorical cross-entropy loss and the center loss, where
λc is a hyperparameter used to balance the influence of the
center loss.

During test phase, we extract the characteristic vector
(Xd(xt)). We calculate the Mahalanobis distance dM (., .)
between this feature vector and the known class centers in
the latent feature space, defined as:

dM (Xd(xt), ck) =
√
(Xd(xt)− ck)A

−1
k (Xd(xt)− ck)T

(8)
where A is the feature transformation matrix for each class
k in the latent feature space. To distinguish between known
and unknown classes, we use a threshold Θ, which is the
minimum distance between the centers of known classes.
If the distance for any test feature dt < Θ, then it is a
known class; otherwise, it is an unknown class. The classifier
F assigns a label to the input with probability p. If this
probability is below a threshold Θ2, the online monitoring
investigates the robot behavior. The controller is allowed to
run if the binary is deemed benign or stopped if it is deemed
malicious.

C. Online Monitoring

In online monitoring, the goal is to detect signs of
malicious behavior as early as possible to prevent catastrophic
deviations, such as crashes. We formulate this as a Markov
Decision Process (MDP) with state (st), action (at), and
reward (rt) in a given environment at a given time t. The
state includes the robot sensor inputs (IMU, LiDAR, etc.),
the actuator commands (velocity, steering angle), and the
controller errors operating at the sampling frequency of the
controller block. This formulation allows us to model the
trade-off between the urgency of correct decision-making
while also ensuring continuity of operation.

The online monitoring stage operates on the robot computer
in parallel to the main robot control. At any time t, it
decides whether the robot behaves expectantly or maliciously,
choosing whether to CONTINUE (at = 0) or STOP (at = 1).
The STOP action triggers a reset of the controller block to
the last known good state, stored in the history buffer. Thus,
the system has a sparse action space in a discrete observation
space. The model learns a policy π(at|st) that learns the
appropriate action for a given state of the robot. Formally,
this is defined as

πt(at|st) = argmax
ai

Q′(st, a
i
t|θt),wherei = {0, 1} (9)

here, i signifies the action, and Q(.) is the action-value
function. The rewards are determined based on two factors:
1) assessing the behavior of the robot as the correct label
and 2) making the decision as fast as possible to prevent
catastrophic events such as crashes. Therefore, the reward is
scaled over time, defined as

rt(st, a
i
t) =

{
R(1− β t

T ), if yi = L

0, otherwise
(10)

where, L is the true label and yi is label chosen by the agent.
The maximum possible reward R is scaled by a factor β

Algorithm 1: The RoboCop Pre-Execution Training

1 Input: Dtrain, M{Em,Conv(Wc), d(W ), σ,Lce,Lc}
2 Output: M(w)
3 for epoch ≤ Epochs do
4 Nb ← Dtrain;
5 for n(x, y) in Nb do
6 yp ←Mx;
7 gw ← Lce(yp, y);
8 ew ← Lc(yp, y);
9 Store gw, ew;

10 end
11 Update w ← w + α×BackProp(w, gw);
12 Update ci
13 Store w, ci;
14 end

Algorithm 2: The RoboCop Online Monitoring

1 Input: Agent A, actions [as, ac]
2 Output: πt(at∥st)
3 for epoch do
4 for e ∈ episodes do
5 st ← envt;
6 at ∈ Q(st, a);
7 A← rat; st+1 ← ŝt;
8 Update Q(s, a)← Q+ r(st, at) + γQ′(ŝt, ât∥θt);
9 Store Hbuff ← [Q, s, a];

10 end
11 end

within the time horizon T to force the agent to make faster
decisions.

The agent uses a double Q learning algorithm to approx-
imate the action value function. The Q-function is updated
after each batch sample as,

Q(st, a
i
t|θt) = r(st, a

i
t) + γQ′(st, a

i
t|θt) (11)

here, R is the reward obtained, γ is the discount factor,
and T is the time horizon. The scaled reward encourages
the agent to take the STOP action when a malicious label is
detected and to minimize the time it takes to detect anomalies.
RL with time-scaled rewards is inherently suited for such
sequential decision-making processes, as it evaluates the
long-term consequences of actions, allowing proactive and
preventive responses to threats.

IV. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of ROBOCOP, we conducted
a series of experiments that focused on both simulation and
real world environments. These experiments were designed
to test its resilience against a wide range of cyber-physical
attacks, specifically targeting zero-day vulnerabilities on the
F1-tenth autonomous car platform [29]. Our objective is to
validate the detection capabilities of ROBOCOP in various
attack scenarios, benchmark its performance against existing
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TABLE I
THE PERFORMANCE RESULTS

Model Globalized Evaluation Zero Day Evaluation

Accuracy Precision F1 Score FNR Sensor Controller Velocity Steering

MLP [20] 0.70 0.71 0.71 0.3 0.77 0.78 0.63 0.56
RF [20] 0.68 0.65 0.68 0.28 0.66 0.68 0.63 0.69
SeqCNN [20] 0.76 0.79 0.75 0.27 0.79 0.81 0.74 0.66
LightGBM 0.79 0.81 0.78 0.23 0.84 0.78 0.81 0.78
RoboMal [20] 0.85 0.87 0.87 0.17 0.91 0.82 0.8 0.71
RoboCop (PE) 0.87 0.89 0.87 0.24 0.85 0.91 0.89 0.83
RoboCop (PE+OM) 0.94 0.95 0.93 0.02 0.93 0.92 0.97 0.93

(a) (b)

Fig. 3. (a) The simulator and (b) robot vehicle used as a sim-to-real
validation pipeline for the ROBOCOP framework.

models, and investigate the impact of online monitoring on
robot performance.

A. Data Collection and Implementation

The effective evaluation of the ROBOCOP framework
requires testing it against a wide array of attacks that span the
entire spectrum of potential cyber-physical threats. To achieve
this, we use the RoboMal dataset [20], a comprehensive
collection of 452 benign and malicious binary executables
designed to simulate cyber-physical attacks on robotic systems.
This dataset, uniquely focused on robotic malware, includes
examples of sensor, actuator, and controller logic attacks,
making it an ideal basis for evaluating ROBOCOP’s detection
algorithms. Notably, RoboMal is a publicly available dataset
specifically designed for cyber-physical and malware attacks
targeting robots, built upon the F1-tenth robot car code base.
The dataset provides binaries and configurations for both
benign and attack scenarios, which we replicated using a
simulator, as illustrated in Fig. 3(a), for a wall-following task
along a track. We augmented the dataset by replicating attacks
through generated code files and established a simulator-to-
real robot evaluation pipeline using a robot vehicle, as shown
in Fig. 3(b), to enable physical robot validation.

In our simulations, we executed a range of cyber-physical
attacks including sensor, velocity, steering, and controller
manipulations. During sensor attacks, we intentionally in-
troduced a random bias in the input code for sensor data,
distorting the sensor’s output from its true measurements. For
controller attacks, we altered parameters such as limits, gain
values, and processing steps to compromise the controller
logic. Actuator attacks were simulated by modifying the
parameters that influence velocity and steering, such as
actuator limits and scaling factors, as well as the equations that
govern their operations. These attacks are visualized in Fig. 4,
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Fig. 4. The (a) velocity, (b) steering, (c) controller, and (d) sensor attacks
with their respective benign behaviors as detected by ROBOCOP.

where each scenario demonstrates significant deviations in
the robot behavior under attack compared to its standard
operation. It is critical to emphasize that, while various
modifications can impact the robot’s performance, not all
lead to outright malicious behavior. Therefore, an accurate
annotation of the dataset is crucial to distinguish benign
anomalies from genuine attacks. This distinction enables the
ROBOCOP framework to effectively differentiate between mere
performance degradation and actual malicious activities.

B. Experiment: Zero-Day Attack Detection Performance

The ROBOCOP framework was evaluated under two con-
ditions: globalized and zero-day. Globalized performance
evaluates the overall effectiveness of the model in classifying
malicious and benign code, in which a stratified mix of all
classes of attacks is used in the training. On the other hand,
zero-day performance takes a one-vs.-rest approach, wherein
one class is completely removed from the dataset and is used
in the test set only. Therefore, the model learns nothing about
that class from the training stage and must make the decision
based on the latent space mapping by deriving correlations.
This creates true zero-day conditions. In both cases, the model
predicts a benign or malicious class for each input sample.

The model was trained and tested using a 10-fold cross-
evaluation while training for 200 epochs. Hyperparameters,
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TABLE II
THE COMPARISON OF SCOPE OF ATTACK DETECTION IN ROBOT CPS

Threats [27] [18] [14] Ours

Sensor Spoofing ✓ ✓ ✓ ✓
Control Parameter ✓ ✗ ✗ ✓
Control Signal Spoofing ✓ ✓ ✗ ✓
Actuator Spoofing ✓ ✓ ✓ ✓
Zero-Day ✗ ✗ ✗ ✓

such as kernel size, dense neurons, and Mahalanobis threshold,
were determined using a validation set and fine-tuning. We use
the Adam optimizer with a learning rate of 1e-4. After fine-
tuning, the kernel sizes of [3, 5, 8] with two max clusters were
set as optimal. The Mahalanobis threshold varies between
0.3 and 0.7 for the latent space.

For the agent, training was carried out for 200 epochs,
with each having 100 episodes on the F1-tenth simulator with
the Porto track as the setting environment. We use a 3-layer
MLP for the DQN with 150, 75, and 25 layers. The layers
use ReLU activation. Probability thresholds are empirically
learned at 0.4 and 0.7, respectively.

For comparison, we chose other established models that
have been studied for malware detection and have been
evaluated on the RoboMal dataset, particularly. The results
of the test are tabulated in Table I. Although globalized
performance covers metrics such as accuracy and false
negative rate (FNR), the zero-day evaluation shows the
accuracy of detection.

The results illustrate the strength of the ROBOCOP zero-day
detection framework to identify known classes and zero-day
attacks. Latent space mapping adds to the overall performance
of the model and allows it to showcase its strength even on
the unseen set of classes. The online monitoring stage further
boosts the effectiveness of the framework as is observed by
the improvement in the overall performance of the system
from just using pre-execution.
Scope of Attacks. Comparing the scope of ROBOCOP with
other models of cyber and physical attack detection, as shown
in Table II, we notice that only ROBOCOP can detect a wide
family of attacks that originate in either the cyber realm
or the physical realm due to its coupled detection strategy.
Most of the other models are specific to sensor attacks or
tuned for run-time behavior monitoring only. ROBOCOP is
the only framework among these that can prevent an attacker
from gaining control of the robot and detecting zero-day
attacks. Moreover, the ROBOCOP framework can be easily
extended to cover purely physical attacks that rely on physical
interactions, such as placing adversarial signals to obfuscate
sensor measurements.

C. Ablation Study: The Impact of Online Monitoring

We further investigate the effectiveness of online
monitoring in detecting cyber-physical attacks. To this end,
a set of completely unseen attacks were deployed onto the
software that the pre-execution stage could not identify. The
evaluation was carried out in both simulations and on a
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Fig. 5. Without ROBOCOP, a compromised robot crashes while navigating
a hallway. However, with ROBOCOP in place, the robot is safely halted
before any collision occurs.

physical robot for 20 crafted attacks. In the simulation, the
robot vehicle takes about 48 seconds to cover one loop
around the track. The physical robot vehicle navigates a
hallway in 4 minutes, as shown in Fig. 5. Without ROBOCOP,
the compromised controller causes the robot to crash into
the track wall in 17 seconds. However, ROBOCOP stops the
robot in 7 seconds to prevent such a crash. In 18 of 20
cases, the model stops the vehicle in less than 25% of the
total execution time. Only one crash is reported, and in
one case the robot vehicle stops in 30% of the execution
time. Furthermore, we note that the overall computational
overhead of the online verification system is only 12% during
runtime, while the framework takes about 20MB of space
after deployment through the TinyML pipeline [30], [31].

V. CONCLUSION AND DISCUSSION

ROBOCOP represents an advancement in security for robotic
cyber-physical systems (CPS), effectively addressing the
critical challenge of zero-day cyber-physical attack detection.
Its strength lies in its two-tiered defense architecture. The
pre-execution verification leverages zero-shot learning to
identify and neutralize unseen attacks by analyzing static
software features. This proactive approach is complemented
by a sophisticated online monitoring mechanism that employs
reinforcement learning to provide continuous and dynamic
protection during robot operation. The combination of these
components enables ROBOCOP to offer a robust defense
against the complex landscape of cyber-physical threats.

Our experimental validation in both simulation and real-
world deployment on the F1-tenth autonomous car platform
demonstrates ROBOCOP’s capability to detect and mitigate a
wide range of cyber-physical threats. The system achieves an
average zero-day detection accuracy of 93% and an overall
accuracy of 94%. Moreover, ROBOCOP operates efficiently
during active robot deployments, preventing attacks in 7
seconds, with only a 12% increase in computational overhead.

The implications of ROBOCOP extend beyond its immediate
technical contributions. By strengthening the security of
robotic CPS against zero-day threats, ROBOCOP improves
the trust and adoption of these technologies. In future work,
we aim to improve ROBOCOP’s capabilities to be robot and
controller-agnostic using physics-based methods.
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