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ABSTRACT 

Plant roots display a wide range of architectural types, each with unique spatial 

arrangement and shape characteristics. Traditional theoretical models don't fully capture this root 

architectural variation, often attributing it to genetic (G) and environmental (E) variation or the G 

by E interaction. Addressing this, we developed Dirt-Pop, a computational pipeline, designed to 

cluster the root architectural variations of a single genotype into multiple root architecture types. 

This pipeline employs the DS-curve as a shape descriptor, integrates the K-means++ clustering 

algorithm, an outlier removal strategy, and the Fréchet similarity metric. Applying this pipeline, 

three common bean (Phaseolus vulgaris L.) genotypes (DOR364, L8857 and SEQ7) exhibited 

five distinct root architecture types, with their composition varying under different water 

conditions. Validating DOR364 and SEQ7 in a mesocosm system, where water distribution was 

monitored by soil moisture sensors, both genotypes repeatedly displayed these five root 

architecture types. Moreover, the composition of SEQ7's five root architecture types changed 

across developmental stages and water conditions. By linking these root architecture types to 

published simulation models, each root architecture type observed can be assumed with a 

specific function in water and nutrients (Phosphorus and Nitrogen) uptake. We further 



investigated how root architecture types and biomass allocation impact fitness outcome in both 

monoculture and mixture of SEQ7 and DOR364 under water-limited (WL) and non-limiting 

conditions to explore plant-plant interactions through the lens of resource partitioning and kin 

selection theories. The study reveals that mixtures of these two genotypes exhibited greater 

population fitness than monocultures. SEQ7 showed a significant increase in population fitness 

in mixtures, attributed to its tendency to maintain or reduce root biomass allocation, especially 

under WL conditions, and a strategic shift towards more deep root architecture types, enhancing 

water acquisition. In contrast, DOR364 increased root allocation for belowground resources 

acquisition in mixtures, but this did not confer a fitness benefit. These results underline the 

complexity of plant interactions, showing that neither kin selection nor niche partitioning 

theories fully explain the observed trait expression and fitness outcome. 

INDEX WORDS: Phaseolus vulgaris L., root architecture, phenotypic spectrum, drought 

 

  



 

 

PHENOTYPIC SPECTRUM: CHARACTERIZING THE ROOT ARCHITECTURE 

DIVERSITY IN COMMON BEAN 

 

 

 

 

 

by 

 

LIMENG XIE 

BS, China Agricultural University, P. R. China, 2014 

MS, Texas A&M University, USA, 2016 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2024 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2024 

Limeng Xie 

All Rights Reserved 

  



 

 

PHENOTYPIC SPECTRUM: CHARACTERIZING THE ROOT DIVERSITY IN COMMON 

BEAN 

 

by 

 

LIMENG XIE  

 

 

 

 

     Major Professor: Alexander Bucksch 
     Committee:  Jim Leebens-Mack 
        Megan DeMarche 
        Maria Monteros  
         
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Ron Walcott 
Vice Provost for Graduate Education and Dean of the Graduate School 
The University of Georgia 
May 2024 



 

iv 

 

 

DEDICATION 

I dedicate this dissertation to my beloved parents, Yuxia Ji and Xueru Xie, for enduring 

the continuous 1783 days and nights of my absence.   



 

v 

 

 

ACKNOWLEDGEMENTS 

First, I want to thank Dr. Alexander Bucksch for his oversight, guidance and support of 

my Ph.D. research. His mentorship has been important in navigating the challenges of this 

academic journey, shaping my professional and personal growth. 

I am grateful to my committee members, Dr. Jim Leebens-Mack, Dr. Megan Demarche 

and Dr. Maria Monteros, for their constructive feedback and unwavering support throughout this 

journey. A sincere thank you to Dr. Maria Monteros who showed me a great example of women 

leader in ag industry during the summer of 2022. 

A big shout out to Dr. Shumei Chang, Dr. Wolfgang Lukowitz and Dr. John Burke, for 

their multifaceted support, especially during my time alone at UGA. Your kindness and 

assistance have been invaluable. 

I would also like to thank our all the lab members in computational plant science lab for 

their friendship and help. Special thanks go to Peter Pietrzyk for helping build the mesocosm 

system, Wes Bonelli for keeping DIRT running on Cyverse and creating DIRT-2D and DIRT-

Pop Docker containers for using locally. Thank you Jitrana Kengana and Sydney Page for 

helping root harvest and data collection. Thank you Suxing Liu for the friendship outside of the 

lab. Besides, I would like to thank Changyeon Kim for installing the soil moisture sensors in the 

mesocosm system. To Mike Boyd and Greg Cousins, thank you both of you for helping with all 

the greenhouse stuff and trying to keep my plants pest free.  

I would like to express the appreciation for my writing buddies, Youngjee Ko and Ariel 

Hart, for our weekly writing gatherings at UGA and my remote writing buddies Hua Xin and 



 

vi 

Joyce Wang for their company when I was writing this dissertation. A special thank you to Dr. 

Judy Milton for coordinating writing sessions and the emerging leader program for graduate 

students (and those delicious snacks and coffee!). Thank you, Aarum Youn-Heil, the UGA 

presentation practicum trainer, for her patience in helping me practice my presentation before 

every big conference.  

I'm lucky to have my friends, Rachel Xu, Yalian Pei, Longwen Xu, Dianyi Liu, and 

Siwen Deng, during this journey. Your companionship, understanding, and constant 

encouragement were a beacon of hope during every tough moment when I almost quit. A 

heartfelt thanks to my friend Li Wang and her lovely son, Dylan, who provided comforting light 

during the dark period after my miscarriage. There are so many wonderful people I've 

encountered when I was at UGA whom I haven't named here, but please know that your kindness 

and encouragement have meant the world to me. 

To my husband, Huang Chen: Your support has been my anchor throughout this Ph.D. I 

cannot thank you enough for your help with the data collection in early mornings and late nights 

for my experiment during the summer of 2023. Thank you for your financial support for the last 

two semesters to alleviate my burdens. By taking on most of our family obligations, you gave me 

the peace of mind needed to dedicate myself to writing this dissertation. Thank you for being the 

safety net beneath my every leap in this endeavor. I hope to be as strong a safety net for you as 

you have been for me.  

To my beloved parents: Being thousands of miles far away from you for almost 6 years 

has been one of the toughest parts. Every challenge I faced, your words and love got me back on 

track. I can't wait to be back home to hug you both after such a long time.  



 

vii 

To everyone who has been a part of this Ph.D. journey: each of you has played an 

irreplaceable role in bringing this to fruition. This experience has profoundly taught me the 

importance of self-care, both physically and mentally, as well as the value of having a supporting 

system and not be afraid to reach out for help. It has also instilled in me the courage to keep 

going on. I am committed to extending the kindness and support I've received from you to others 

for the rest of my life.  

This dissertation research is funded by NSF CAREER grant 1845760 “The phenotypic 

spectrum: Quantifying new patterns of architecture variation in crop roots” to Dr. Alexander 

Bucksch, UGA Plant Biology Department and the UGA Graduate School. Credit is also due to 

ChatGPT for assistance with grammar and language checking only. However, it is important to 

note that no original content was generated by ChatGPT or any other AI-based tools. These tools 

did not produce any data, texts, literature reviews, or background sections, either with or without 

references in this dissertation. 

  



 

viii 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................................ v 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ..................................................................................................................... xiii 

CHAPTER 1 ................................................................................................................................... 1 

INTRODUCTION .......................................................................................................................... 1 

Root Architecture ........................................................................................................................ 1 

Measurement of Root Architecture ............................................................................................. 2 

Sampling Strategy and Framework for Study the Root Architecture Variation Across 

Environment ................................................................................................................................ 3 

Sources of Root Architectural Variation of One Genotype ........................................................ 4 

Two Theories Help Understand Population Fitness Outcome of Plant Interaction .................... 5 

The Necessity to Develop Controlled Growth Systems to Mimic Field Conditions .................. 7 

Overview of the Dissertation ...................................................................................................... 7 

Reference .................................................................................................................................... 9 

CHAPTER 2 ................................................................................................................................. 16 

DEVELOPING A COMPUTATIONAL PIPELINE TO QUANTIFY ROOT ARCHITECTURE 

DIVERSITY IN SINGLE GENOTYPES ..................................................................................... 16 



 

ix 

Introduction ............................................................................................................................... 16 

Materials and Methods .............................................................................................................. 18 

Results ....................................................................................................................................... 23 

Acknowledgements ................................................................................................................... 30 

References ................................................................................................................................. 30 

Figures....................................................................................................................................... 37 

CHAPTER 3 ................................................................................................................................. 51 

FROM OUTDOOR TO INDOOR FIELD: THE ROOT ARCHITECTURE TYPES AND THEIR 

CHANGE OVER THE DEVELOPMENTAL STAGES IN COMMON BEAN ......................... 51 

Introduction ............................................................................................................................... 51 

Materials and Methods .............................................................................................................. 55 

Results ....................................................................................................................................... 60 

Discussion ................................................................................................................................. 63 

Acknowledgements ................................................................................................................... 69 

References ................................................................................................................................. 70 

Figures....................................................................................................................................... 74 

Appendix B ............................................................................................................................... 84 

CHAPTER 4 ................................................................................................................................. 96 

EVALUATION OF POPULATION FITNESS OF COMMON BEAN MONOCULTURE AND 

MIXTURE .................................................................................................................................... 96 



 

x 

Introduction ............................................................................................................................... 96 

Materials and Methods .............................................................................................................. 98 

Results ..................................................................................................................................... 100 

Discussion ............................................................................................................................... 101 

Acknowledgements ................................................................................................................. 102 

Reference ................................................................................................................................ 106 

Figures..................................................................................................................................... 110 

Appendix C ............................................................................................................................. 118 

CHAPTER 5 ............................................................................................................................... 121 

SUMMARY ................................................................................................................................ 121 

Reference ................................................................................................................................ 126 

Figures..................................................................................................................................... 128 

  



 

xi 

 

 

LIST OF TABLES 

Page 

Table S2.1: Sample size of common bean genotypes DOR364, L8857 and SEQ7 grown under non-

limiting (NL) and water-limited (WL) condition in the 2015 and 2016 field experiment at Willcox, 

AZ. ................................................................................................................................................ 47 

Table S2.2: The value of mean curve of each root architecture types among three genotypes 

DOR364, L8857, and SEQ7. ........................................................................................................ 48 

Table S2.3: The summary statistics of aboveground shoot biomass among root architecture types 

of three common bean genotypes between conditions in 2016 .................................................... 49 

Table S2.4 The summary statistics of aboveground shoot biomass among three common bean 

genotypes between conditions in 2016.. ....................................................................................... 50 

Table S3.1: Sample sizes across different root architecture types of SEQ7 during various growth 

stages and DOR364 at mature stage under each water condition. ................................................ 89 

Table S3.2: The mean DS curve of SEQ7 is listed across growth stages and conditions. ........... 90 

Table S3.3: The value of mean DS curve of DOR364 is listed under non-limiting (NL) and water-

limited (WL) conditions. ............................................................................................................... 91 

Table S3.4: Chi-square test of homogeneity for comparing compositions of root architecture types 

between growth stages and conditions. ......................................................................................... 92 

Table S3.5: The summary statistics for shoot biomass, root biomass and shoot/root ratio of SEQ7 

over growth stages and conditions. ............................................................................................... 93 



 

xii 

Table S3.6: Geometric mean values of D1 and D2 for each alignment of the mean DS curve at 42 

DAS for observed root architecture types and simulated root architecture models. .................... 94 

Table S4.1 Sample sizes across different root architecture types of DOR364 and SEQ7 under 

various planting scenarios and conditions.  ................................................................................ 119 

Table S4.2 Summary statistics of seed number per plant and root-shoot ratio of DOR364 and SEQ7 

over planting scenarios and conditions. ...................................................................................... 120 

  



 

xiii 

 

 

LIST OF FIGURES 

Page 

Figure 2.1: Clear architectural differences were observed among the excavated roots of 

neighboring DOR364 plants of DOR364 from a plot in 2016 (Willcox, AZ). ............................. 37 

Figure 2.2: The Dirt-Pop pipeline computes the root architecture types of a single genotype. .... 38 

Figure 2.3: Five root architecture types of DOR364 (n=822), L8857 (n=1663), and SEQ7 

(n=845) were observed across years (2015 and 2016) under non-limiting (NL) and water-limited 

(WL) conditions. ........................................................................................................................... 39 

Figure 2.4: The heatmap of Fréchet distance matrix among mean curve of each root architecture 

type of three genotypes DOR364, L8857 and SEQ7. ................................................................... 40 

Figure 2.5: The composition of root architecture types in DOR364 (n=797), L8857 (n=1772), 

and SEQ7 (n=768) under non-limiting (NL) and water-limited (WL) conditions in 2015 and 

2016............................................................................................................................................... 41 

Figure 2.6: Aboveground shoot biomass of root architecture types in three genotypes DOR364 

(n=401), L8857 (n=578), SEQ7 (n=490) under non-limiting (NL) and water-limited (WL) 

conditions in 2016. ........................................................................................................................ 42 

Figure 3.1: Five root architecture types of SEQ7 were observed across developmental stages and 

conditions. ..................................................................................................................................... 74 

Figure 3.2: The heatmap of Fréchet distance matrix confirmed that while AT1 through AT5 were 

distinct, each showed consistent internal similarity across varying growth stages and conditions.

....................................................................................................................................................... 76 



 

xiv 

Figure 3.3: Five root architecture types of DOR364 were observed at mature stage (R8-R9, 84 

days of sowing) under nonlimiting (NL, n=143) and water-limited (WL, n=118) conditions. .... 77 

Figure 3.4 The heatmap of Fréchet distance matrix showed that five root architecture types were 

similar between SEQ7 and DOR364 at mature stages (R8-R9). .................................................. 78 

Figure 3.5: The composition of root architecture types of SEQ7 changed over growth stages and 

conditions ...................................................................................................................................... 79 

Figure 3.6: Shoot biomass, root biomass and root-shoot ratio were mostly not correlated with 

root architecture types (AT) but with growth stages. ................................................................... 80 

Figure 3.7: The closest matched simulated root architecture model with root architecture types 

observed at 42 days of sowing (DAS). ......................................................................................... 82 

Figure 4.1: Seed number per plant of mixture of DOR364 and SEQ7 were higher than 

monoculture of DOR364 and SEQ7. .......................................................................................... 110 

Figure 4.2: Seed number per plant of DOR364 (A) and SEQ7 (B) were different between mixture 

and monoculture planting scenarios under between non-limiting (NL) and water-limited (WL) 

conditions. ................................................................................................................................... 111 

Figure 4.3: Comparison of root-shoot ratio of DOR364 (A) and SEQ7 (B) between mixture and 

monoculture planting scenarios under non-limiting (NL) and water-limited (WL) conditions.112 

Figure 4.4: Five root architecture types of SEQ7 and DOR364 were observed across planting 

scenarios (monoculture and mixture). ......................................................................................... 114 

Figure 4.5: The heatmap of Fréchet distance matrix confirmed that while AT1 through AT5 were 

distinct, each showed consistent internal similarity across both monoculture and mixture for 

DOR364 (panel A) and SEQ7 (panel B)..................................................................................... 115 



 

xv 

Figure 4.6: The composition of root architecture types of DOR364 (panel A) and SEQ7 (panel B) 

between planting scenarios (Mix: mixture and Mono: monoculture) and conditions (WL: Water-

limited and NL: Non-limiting). ................................................................................................... 116 

Figure 4.7: Percentage change in root architecture categories for SEQ7 and DOR364 when 

comparing mixtures to monocultures.......................................................................................... 117 

Figure 5.1: The comparison of phenotypic plasticity framework and phenotypic spectrum 

framework. .................................................................................................................................. 128 

Figure 5.2: Radar plots illustrating the different patterns of both macronutrients and 

micronutrients in seeds among root architecture types of SEQ7 under water-limited (WL) and 

non-limiting (NL) conditions. ..................................................................................................... 129 

Figure 5.3: Boxplot of both macronutrients and micronutrients in seeds among root architecture 

types (ATs) of SEQ7 under water-limited (WL) and non-limiting (NL) conditions. ................. 130 

Figure S2.1: The weather information of Willcox, AZ. The dash line is for 2016, and the solid line 

is for 2015. .................................................................................................................................... 43 

Figure S2.2: Illustration of magnitude and shape outliers in an example cluster. ........................ 44 

Figure S2.3: The mean DS-curves of five root architecture types of three genotypes DOR364, 

L8857 and SEQ7 under non-limiting and water-limited condition in 2015 and 2016. ................ 45 

Figure S2.4: Shoot biomass of three genotypes DOR364 (n=401), L8857(n=578), SEQ7 (n=490) 

under non-limiting (NL) and water-limited (WL) conditions in 2016. ........................................ 46 

Figure S3.1: Top view schematic of the mesocosm system. ........................................................ 84 

Figure S3.2: The time-series experiment of SEQ7 in the mesocosm system. .............................. 85 

Figure S3.3: The daily mean volumetric water content (vwc) across all growth stages and 

conditions. ..................................................................................................................................... 86 



 

xvi 

Figure S3.4: The five root architecture types of SEQ7 (Panel A) and DOR364 (Panel B) are 

presented from both field and mesocosm settings. ....................................................................... 87 

Figure S3.5: DS curves derived from 12 simulated root architecture models. ............................. 88 

Figure S4.1: The daily mean volumetric water content (vwc) across planting scenarios........... 118 

 

 



 

1 
 

 

 

 

CHAPTER 1 

INTRODUCTION 

Root Architecture 

Plant growth is fundamentally limited by the availability of resources, including water 

and nutrients. The root system plays a critical role in capturing these soil resources. To improve 

plant resilience, yield and efficiency, considerable effort has been invested to study the plant root 

system and to explain how they acquire resources from soil1,2. One important aspect that 

determines the plant productivity is the root architecture. Since the nutrients are distributed at 

different levels in the soil, for example, leached nitrate in the subsoil and phosphorus in the 

topsoil, not to mention other nutrients highly heterogeneous spatial distributions3. As root 

architecture is the spatial arrangement of the root system3, it determines how effectively a plant 

exploit the soil resources. In general, root architecture includes two main components: geometric 

properties, such as length, angle, and distribution of a root system, and topological structure, 

which characterizes how individual root segments connect and organize within a root system4–6. 

Root architecture is a complex biological structure that can be quantified by various 

combinations of specific root traits. For example, the root architecture of a common bean 

(Phaseolus vulgaris L.) plant is the summation of the number, angle, elongation and branch 

pattern of adventitious, basal, tap root and lateral roots and other axial roots that develop from 

these three main root classes7.  
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Measurement of Root Architecture 

Despite the importance of root architecture, it poses a considerable challenge to study. 

One obstacle is that roots are hidden belowground, making them difficult to measure directly.  

To address this, researchers have developed various root phenotyping platforms. Techniques 

such as magnetic resonance imaging (MRI)8 and X-ray9 computed tomography have been 

employed for non-destructive phenotyping of root systems in laboratory settings. More recently, 

low field magnetic resonance imaging (LF-MRI) has been implemented for non-destructively 

phenotyping root systems under field soil conditions10,11. Although these platforms have the 

potential to provide more accurate representations of root architecture without causing the 

damage of the root system, their high costs and low throughput make them impractical for large-

scale studies, particularly in field conditions. Another challenge is the complexity of root 

architecture, which displays vast variations both within and among genotypes, and even within a 

single root system, making it hard to quantify12. Early efforts to measure root architecture 

manually concentrated on simple parameters like root length and depth13,14. This not only 

oversimplified the complex nature of root architecture but was also labor-intensive. The 

commercial software, WinRhizo, (Regent Instrument Inc., Ville de Québec, QC Canada) has 

facilitated the analysis by measuring traits like root surface area, average diameter, and some 

topological traits. However, its application is restricted to younger roots due to the constraints of 

paired scanner size15–17.  

To address these limitations, Shovelomics protocols have been developed, specifically to 

measure the root architecture for mature maize and legume plants in the field7,18. This method 

involves excavating roots at the shovel-length radius and depth around the hypocotyl7,18. After 
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soil removal, the roots are positioned on a phenotyping board where dominant root angles are 

determined using a protractor7,18.Shovelomics focuses on phenotyping excavated root crowns, 

which represent the top portion of the root system. It is an efficient method for measuring the 

root architecture of mature roots in the field18,19. Bucksch et al. (2014)20 further enhanced 

Shovelomics by introducing an automated image-processing algorithm, increasing both the speed 

of analysis and the number of root architecture traits measured. Accompanied with automatic 

digital image root imaging (DIRT) platform, researchers can obtain 79 topological and geometric 

root traits, respectively20,21. Bucksch et al. (2014) firstly introduced the shape descriptor DS 

values that describe the rate of root width accumulation over rooting depth20. The curve 

connecting DS values over the 10%-90% depth range serves as an effective way to characterize 

the overall shape of root architecture. Thus, Shovelomics with DIRT computational platform is a 

powerful tool for detailed phenotyping of hundreds of mature roots of a single genotype and 

capturing architectural variations within individuals and populations.   

Sampling Strategy and Framework to Study the Root Architecture Variation Across 

Environment 

Current sampling strategies in plant phenotyping research primarily focus on capturing 

variation between genotypes, often operating under the assumption that a single genotype, in a 

given environment, exhibits a homogenous phenotype. As a result, researchers tend to seek an 

“average” phenotype representation for each genotype in that environment. Taking root studies 

for instance, researchers typically sample a small number of plant roots (usually range from 5 to 

20) and measure compound or local root traits, such as root area, maximum width or depth15–17. 

Such sampling strategy and measurement not only overlooks a substantial architectural variation 
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per genotype and but also ignores the whole root architectural organization. Moreover, when 

studying the root architecture of individual genotypes at a population scale across varied 

environments, the phenotypic plasticity framework is often employed12,22,23. This framework 

primarily uses a reaction norm to analyze how the average trait changes in response to different 

environments. However, the reaction norm is not sufficient for analyzing how the hierarchical 

organization of the whole root system changes in response to these environmental changes. To 

bridge this knowledge gap, there's a need to increase the sample size and to a new framework 

that captures the architectural variations of roots within populations across different 

environments. 

Sources of Root Architectural Variation of One Genotype 

Accessing and interpreting root architectural variation is challenging, as roots grow in 

complex soil environments involving spatial and temporal dynamics of soil resources and 

interactions with neighboring plants and soil microorganisms24. Root architectural variations in 

roots can be broadly attributed to the environmental variation, the genetic variation, and the 

interactions between these two.  

Numerous studies have shown that environmental stress can significantly alter the root 

architecture of a single genotype25. This variation in root architecture, induced by environmental 

change, is primarily associated with genotype-environment interactions, which are considered a 

major source of observed variation in root architecture. For example, common beans tend to 

develop shallower basal roots in phosphorous-limited environments, whereas they grow deeper 

roots in water-limited environments7,26,27. Similarly, maize changes the root top angle and root 
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crown number based on the availability of nitrogen and water28–30. Rice is also known to develop 

narrower root angles and deeper roots if grown in water-limited environments31.  

Root-root interactions also contribute to the observed variation in root architecture within 

a single genotype. These interactions can be competition or avoidance (avoid competition) 

among individuals of the same genotype, through resources driven or chemical signaling 

mechanism32,33. The resource-driven mechanism involves plant roots detecting the availability of 

surrounding resources, like water and nutrients, and responding to the presence of neighboring 

roots competing for these same resources34. Direct chemical interactions involve the release of 

either toxic chemicals that can inhibit the growth of neighboring roots or non-toxic chemicals 

that facilitate recognition and thus alter root growth responses35.  

The response of plants to their neighbors varies depending on the identity of those 

neighbors, with plants capable of discerning the relatedness of neighboring plants and modifying 

their responses accordingly36. For example, the sea rocket (Cakile edentula) had less root 

allocation when planted with kin-groups than with strangers37. Some species also may avoid each 

other belowground by reducing root branching intensity and specific root length in response to 

kin neighbor rather than strangers38. Such kin recognition often require soluble chemical 

signaling mediated by root exudates39. Thus, the variation in root architecture within a single 

genotype is a complex interplay of environmental conditions, genetic factors, and complex 

interactions with neighboring plants.  

Two Theories Help Understand Population Fitness Outcome of Plant Interaction 

The interaction between neighboring plants in an agricultural system is essential to 

understand the performance of plants. The intensity of these interactions can significantly 
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influence crop yields, with negative interactions potentially leading to reduced yields, while 

positive interaction might enhance productivity40. Two foundational theories in ecology are 

proposed to understand such plant interactions.  

Resource partitioning theory that individuals of the same species or genotype, sharing 

similar phenotypes, compete more intensely for the same resources compared to those of 

different genotypes41–43. This intensified competition within more genetically related populations 

can diminish overall fitness and productivity. Physiological and agronomic studies have 

suggested that avoidance between genetically distinct plants, leveraging their differing traits and 

resource needs, can lead to increased combined yields44–46. For example, the intercrop of squash, 

common bean, and maize, which exploits the complementarity in root architecture and spatial 

segregation to achieve synergistic resource utilization and enhanced yield47 

Kin selection theory, on the other hand, suggests that plants can recognize the genetic 

relatedness of their neighbors and can modulate their competitive behavior accordingly37,48,49. It 

implies that interactions with genetically similar individuals are characterized by reduced 

competition, leading to increased group fitness50. This theory is supported by ecological evidence 

indicating that closely related plants exhibit less competitive traits (e.g., decreased root allocation 

and nutrient uptake) when interacting with each other, compared to their interactions with 

genetically distant individuals37,38,51,52. Such behaviors suggest that populations comprised of 

closely related individuals may achieve higher overall fitness than those with genetically distant 

individuals.  
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The Necessity to Develop Controlled Growth Systems to Mimic Field Conditions 

Root studies conducted in controlled environments typically use containers such as 

rhizotrons, pots, or small-scale mesocosm systems such as PVC tubes or Rhizoboxes53–57. While 

these systems are invaluable for plant research, they have several limitations that hinder the 

translation of the results to the crops grown in the field. One issue is that the size and shape of 

these containers can influence the root growth of plants56. Specifically, large plants confined to 

small containers tend to develop a relatively large fraction of roots growing close to, or even 

touching the pot edges56,58, potentially altering the root architecture. Thus, researchers use these 

systems to study young roots before root growth is constrained by the pot dimensions. However, 

this brings another issue: the root architectural traits measured at the early stages of growth 

might not be consistent with those measured in fully mature plants, as root architecture tends to 

change as plants develop24. Another limitation is the common practice of planting only one plant 

per container, which excludes the possibility of inter-plant interactions. The isolated growing 

conditions diverge significantly from field conditions, where crops are grown in proximity to 

allow for root-root interaction. Consequently, the root architecture observed under such isolated 

conditions may not replicate the root architecture within a population in fields. To address these 

limitations and enhance the transferability of controlled environment studies to field conditions, 

it is important to develop growing systems that allow for root interactions and unrestricted root 

growth. 

Overview of the Dissertation 

The overall goal of this dissertation is to study the root architectural variation within a 

plant population. By leveraging both field studies and controlled environment experiments, this 
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dissertation quantifies root architectural variation within homogeneous populations under 

different water conditions and across different growth stages. Further exploration focuses on how 

root architecture variation affects plant interactions and then the overall fitness of the population 

in monoculture and mixture, to provide implications for agricultural yield applications. 

Specifically, Chapter 2 aims to develop a computational pipeline to cluster root 

architectures of homogeneous populations into distinguishable root architecture types, using root 

data from three common bean genotypes (DOR364, L8857 and SEQ7) under water-limited (WL) 

and non-limiting (NL) conditions in 2015 and 2016. This chapter examines how many root 

architecture types exist in each genotype and the change in the composition of root architecture 

types under different water conditions. Additionally, it investigates differences in aboveground 

biomass among the identified root architecture types.  

Chapter3 validates the five root architecture types observed under field conditions by 

replicating two genotypes (SEQ7 and DOR364) in a controlled mesocosm system. The goal is to 

determine if these root architecture types persist despite the considerable environmental variation 

encountered in the field. This chapter also explores changes in the composition of SEQ7's root 

architecture types throughout developmental stages and links identified root architecture types 

with existing public root simulation models to infer their functions.  

Chapter4 quantifies the overall fitness outcomes in monoculture and mixture planting 

scenarios using DOR364 and SEQ7 genotypes. This involves understanding the differences in 

plant interaction when interacting with either genetically identical or different neighbors of the 

same genotype. This chapter also investigates changes in the composition of root architecture 
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types and root biomass allocation between the monoculture and mixture under both WL and NL 

conditions.  

In summary, this dissertation proposes the phenotypic spectrum as a new framework to 

explore root architecture types within plant populations, their environmental acclimatization, and 

response in monoculture and mixture.  
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CHAPTER 2 

DEVELOPING A COMPUTATIONAL PIPELINE TO QUANTIFY ROOT ARCHITECTURE 

DIVERSITY IN SINGLE GENOTYPES 

Introduction 

Root architecture, the spatial arrangement of root systems in the soil, is crucial to 

determine how effectively plants can acquire water and nutrients, thereby significantly impacting 

plant productivity1,2. For example, root systems with steeper angles are more effective in 

accessing deep soil resources and better at tolerating drought stress, which can lead to improved 

yields under drought conditions3–6. Root architecture can be described by specific root traits, 

which vary among genotypes and species. These traits include geometric (such as length, depth 

and angle) or topological (such as branch density, branch structure and the number of root tips) 

characteristics, or one can derive a shape descriptor from the whole root system or a specific part 

of the root system of interest7–11.  

Current concepts to quantify these root architectural variations operate under the 

assumption of homogenous phenotype for a specific genotype12–14.  

1. Sampling strategies are designed to capture phenotypic variation only between 

genotypes or focus solely on the average trait of one genotype.  

2. Single traits are measured on the plant without quantifying the hierarchical 

organization of the root system. 

This sampling strategy and measurement disregards the considerable architectural 

variation exhibited by each genotype and ignores the hierarchical organization of the root 
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system. Contrary to this common assumption, we have observed clear architectural variation 

among neighboring plants’ root systems in our field experiments (Figure 2.1). This observation 

suggests current assumptions and measurements maybe insufficient in capturing this 

architectural variation.  

Hence, in Chapter 2, we tackle the coverage problem of phenotypes with the high-

throughput phenotyping platform Digital Imaging of Root Traits (DIRT)7,15. DIRT provides a 

shape descriptor DS curve to summarize the excavated root system as a function derived from 

the width profile over the excavated root depth. Thus, capturing the spatial arrangement of the 

whole root architecture shape, instead of locally measured root traits. Previous studies on root 

architectures of cowpea7, common bean15, maize7, and cassava16 demonstrated the capability of 

DS-curves in distinguishing root architectures among genotypes, thereby effectively describing 

the entire root system. Therefore, it is possible to develop a computational pipeline that 

automatically distinguishes previously observed architecture types in field experiments from 

2015 and 2016. The primary goal of this chapter is to quantify root architectural variation within 

a single genotype in a large scale of agricultural experiments. As a result, we developed a 

rigorous computing pipeline Dirt-Pop to cluster the root architectural variation within one 

genotype into different root architecture types. Dirt-Pop used Kmeans++ clustering to cluster 

DS-curves of excavated root images, eliminated excavation-induced outliers, and computed 

similarities between average DS-curves describing each root architecture type across genotypes. 

The pipeline was applied to three common bean (Phaseolus vulgaris L.) genotypes DOR364, 

L8857 and SEQ7 collected over two years 2015 and 2016 under water-limited (WL) and non-

limiting (NL) conditions.  

The specific objectives of this chapter are:  
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1. To identify how many root architecture types are present for each genotype.  

2. To investigate how the composition of root architecture types change between 

different years and conditions for each genotype. 

3. To test the difference in aboveground biomass among the identified root architecture 

types for each genotype under each condition across both years.  

Materials and Methods  

Plant material and growth conditions 

We chose the three common bean genotypes DOR364, L8857 and SEQ7 for this study 

because they represent different genetic backgrounds and morphologies. DOR364, originating 

from the Mesoamerican panel4, is a deep-rooted and phosphorus-inefficient genotype17,18. This 

genotype, known for its small red seeds, is widely cultivated in Central America19. L8857, a 

recombinant inbred line derived from the drought-resistant B98311 line and phosphorous-

tolerant TLP19 line, carries a genetic lineage from Mesoamerican panel20. This black-seeded 

cultivar exhibits a shallow root system, optimizing phosphorous uptake efficiency in topsoil21,22. 

The SEQ7 is a drought-tolerant cultivar from Andean panel23. The root of SEQ7 has two basal 

root whorls24 and has a dimorphic architecture that optimize resource uptake in the topsoil and 

deep soil (personal communication between A. Bucksch and J.P. Lynch).  

Field experiments were conducted at the Apache Root Biology Center in Willcox, AZ 

(32° 15’ 9.25” N, 109° 49’ 56.93” W) under NL and WL conditions in 2015 and 2016. The 

planting site's soil type was a loam soil type (coarse-loamy, mixed, thermic Typic Torrifluvents). 

The plants were grown from May through August, a period which saw maximum temperatures 

fluctuating from 20.60 °C to 41.10 °C in 2015, and from 21.70 °C to 44.40 °C in 2016. The 
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minimum temperatures during these periods ranged from -0.6 °C to 23.90 °C in 2015 and from 

3.3 °C to 23.90 °C in 201625. 

We planted three genotypes DOR364, L8857 and SEQ7 in plots with an in-row distance 

of 10 cm and an out-row distance of 36 cm. Each plot exclusively was planted with a single 

genotype. The sample size of each genotype grown under NL and WL conditions in 2015 and 

2016 are listed in Table S2.1. The cumulative precipitation during these growing periods was 

markedly different between the two years, with a total rainfall of 98.1 mm in 2015, increasing to 

195.1 mm in 2016. To simulate the water-limited condition, irrigation was suspended during the 

final two weeks of the growing period. It was noted that minor rainfall events occurred during 

this period in both experimental years (Figure S2.1). Apart from the variation in water supply, 

the same agricultural management practices, including routine fertilization and pest control, were 

applied under both conditions. 

We excavated the mature roots at ten weeks in the field using a specifically developed 

legume Shovelomics method15. Following excavation, we captured images of the roots using the 

DIRT root imaging protocol to determine 2D root architecture traits. In addition to obtaining the 

root images, a subset of samples from the 2016 experiment were dried at 60°C for 72 hours, after 

which each shoot's weight was measured to determine dry shoot biomass. 

Customized DIRT-Pop pipeline for clustering DS-curves into root architecture types 

We developed a customized DIRT-Pop pipeline to cluster DS-curves into several root 

architecture types (Figure 2.2). The specific steps are described below: 

Step 1: Image processing and DS-value extraction. Initially, the raw root images were 

uploaded and processed in the DIRT online platform26. During this process, each image was 

manually checked to ensure correct segmentation and accurate root identification. The DIRT 
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algorithm primarily identifies roots by focusing on the most foreground pixels. This occasionally 

results in the misidentification of sample labels, which are larger than the roots, as roots 

themselves.  To correct such errors, we used the GIMP image processing software to mask the 

sample labels with a black background color. Subsequently, we extracted nine sample points 

from the DS-curve27. We collected all the DS-curves of one genotype across WL and NL 

conditions during the year 2015 and 2016.  

Step 2: K-means++ clustering with outlier removal. Clustering algorithms, in general, 

aim to partition a dataset into clusters where items within the same cluster share greater 

similarity with each other than with those in different clusters28. Given the assumption that 

different genotypes may have different number of root architecture types, we chose to apply K-

means ++ clustering method at the genotype level. The K-means++ algorithm was chosen 

because it adopts an improved probability-weighted strategy for assigning initial cluster 

centroids. This algorithm significantly reduces the likelihood of the algorithm converging to 

suboptimal local minima, ensuring more consistent and better clustering results29. We used 

scikit-learn Python package30 to perform the K-means++ clustering algorithm, which aims to 

minimize the within-cluster variation, commonly referred to as the inertia value. Since K-

means++ is an unsupervised learning algorithm, specifying the number of clusters as input is 

needed. To determine this optimal cluster number, we used Python package kneed31 to 

implements the Kneedle algorithm32. The Kneedle algorithm identifies a balance point, either an 

'elbow' or 'knee', where adding one more cluster results in a slower reduction of inertia compared 

to not adding an extra cluster33. Within the Step 2,  we also used the R package Roahd34 to 

identify outliers within clusters based on two defined criteria: magnitude and shape. Here, 

magnitude outliers describe the DS curves that contain atypical high or low values35, which 
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mostly indicating the shape deformation resulting from unintended damage to the roots during 

excavation. Shape outliers describe the DS curves that exhibit a different shape than the rest DS 

curves within the same cluster35. For detailed visuals and statistics on these two types of outliers, 

please see Figure S2.2. The outlined process for K-means++ clustering, optimal cluster number 

determination, and outlier removal can be summarized as: 

1. Execute K-means++ algorithm i times for each k value, where we denote the number 

of iterations i=1…1000 and k denotes the number of clusters k=1…25. 

2. Apply the Kneedle algorithm to each iteration to compute the elbow/knee. The most 

frequently occurring knee/elbow point is selected as the optimal cluster number k 

through a majority voting approach. 

3. Perform K-means++ algorithm 1000 times using the optimal k value and return the 

result exhibiting the lowest inertia as the optimal solution. 

4. Using the optimal solution from the previous step, apply the shape and magnitude 

outlier algorithm to detect if there are any outliers. 

5. If outliers are detected, remove them, and return to the first step. If no outliers are 

present, finalize the current optimal solution as the output. 

Each cluster is denoted as one root architecture type. Given that shape and magnitude 

outliers have been removed, it is appropriate to represent each root architecture type using the 

mean curve of a cluster. 

Step 3: Assessing shape similarity of root architecture types among genotypes. 

Following the clustering of each genotype, we computed the Fréchet distance as a metric of 

shape similarity between the mean DS-curves of the three genotypes. The Fréchet distance can 

be thought of as the shortest leash length needed to allow two travelers to traverse each curve 
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from start to finish, possibly at different speeds36. The Fréchet distance was chosen to compute 

the shape similarity because it considers both the location and the ordering of the points along 

the curves. This offers a more comprehensive measure of similarity compared to other metrics 

that might only focus on point-wise distance without considering the sequence of points36,37, such 

as the Euclidean and Manhattan distances. Specifically, we computed the pairwise Fréchet 

distance matrix of the mean DS-curve of each root architecture type across the genotypes using 

the python package, similaritymeasures38,39. We then visualized Fréchet distance matrix by 

creating a hierarchically-clustered heatmap using the python package, Seaborn with Ward’s 

method40.  

The Dirt-Pop pipeline used in our study can be found in the GitHub repository: 

https://github.com/Computational-Plant-Science/DIRT-Pop.v1 

Statistical analysis  

After obtaining the clustering results for each genotype, to determine whether the 

frequency of each genotype's root architecture types was evenly distributed across conditions, we 

performed a pairwise Chi-square test of homogeneity between conditions. We visualized the 

frequency distribution of these root architecture types using bar plots, which were created with 

the ggplot2 package41. To analyze the difference in aboveground shoot biomass among root 

architecture types in 2016 under each condition, we applied the non-parametric Kruskal-Wallis 

test for each genotype. If the Kruskal-Wallis test indicated significance at a P-value < 0.05, we 

then used the Wilcoxon rank sum test to identify which specific root architecture types had 

higher or lower aboveground shoot biomass. The same tests were used to compare the 

aboveground shoot biomass among genotypes under each condition. All statistical analyses were 

conducted using R (v 4.2.0)42.  

https://github.com/Computational-Plant-Science/DIRT-Pop.v1
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Results  

Each genotype showed five different root architecture types across two years and two water 

conditions.  

The DIRT-Pop pipeline identified five distinct root architecture types (AT1 through AT5) 

for DOR364, L8857 and SEQ7 across both WL and NL conditions during the years 2015 and 

2016 (Figure 2.3). According to Fréchet distance matrix, AT1, AT2, AT3 and AT4 were similar, 

but AT5 was slightly different across the three genotypes (Figure 2.3, Figure 2.4 and Figure 

S2.3). The peak of DS curve indicates the depth at which most width accumulation change 

occurs, while the curve's angle or rate quantifies the pace of width accumulation over depth. By 

examining the mean curve value (Table S2.2), AT1 reached the maximum width accumulation at 

70% excavated rooting depth (Figure 2.3). In comparison, AT2 accumulated width at an almost 

steady rate over the excavated depth. AT3 reached the maximum width accumulation at 60% 

depth (Figure 2.3). On the other hand, AT3 achieved its maximal width at 60% depth, though 

with a higher rate of width accumulation compared to AT1 (Figure 2.3). AT4's width 

accumulation peaked at approximately 40% depth, gradually decreasing slowly until 90% 

excavated rooting depth (Figure 2.3). Interestingly, AT5, which was observed in DOR364 was 

different from AT5 in SEQ7 and L8857. While AT5 in DOR364 peaked in width at 40% depth, 

AT5 in both SEQ7 and L8857 reached maximal width at 60% of the depth. 

The composition of root architecture types in three common bean genotypes changed between 

different water conditions.  

DOR364 population had significant differences in root architecture type composition 

under both NL and WL conditions across two consecutive years (Chi-squared test; P = 0.032 in 

2015; P = 0.042 in 2016; Figure 2.5a). In 2015, under WL condition, DOR364 reduced AT2 by 
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11.07% while increasing AT3 and AT4 by 6.74% and 8.20%, respectively, in comparison to the 

NL condition (AT2: 37.77% NL vs. 26.70% WL; AT3: 10.31% NL vs. 17.05% WL; AT4: 

19.28% NL vs. 27.84% WL; Figure 2.5a). In 2016, DOR364 showed a similar pattern as 

observed in 2015: a decrease in AT2 by 4.96% and an increase in AT3 and AT4 by 8.16% and 

5.76%, respectively. However, there was a decrease of 9.58% in AT1 when comparing NL to 

WL conditions (AT1: 33.69% NL vs. 24.11% WL; AT2: 32.62% NL vs. 27.66% WL; AT3: 

11.70% NL vs. 19.86% WL; AT4: 17.73% NL vs. 23.40% WL; Figure 2.5a). 

L8857 showed a significant difference in the composition of root architecture types for 

between WL and NL conditions over two years (Chi-squared test; P = 0.0005 in 2015; P = 0.015 

in 2016; Figure 2.5b). In 2015, under WL conditions, L8857 showed reductions of 7.70% in AT1 

and 4.66% in AT4, while AT3 saw an increase of 7.10% compared to the NL condition (AT1: 

27.44% NL vs. 19.74% WL; AT3: 21.64% NL vs. 28.74% WL; AT4: 21.64% NL vs. 16.98% 

WL; Figure 2.5b). In 2016, a decrease of 10.95% was observed in AT2 under the WL condition, 

alongside a 7.01% increase in AT3 (AT2: 26.60% NL vs. 15.65% WL; AT3: 22.70% NL vs. 

29.71% WL; Figure 2.5b). Notably, despite changes in other root architecture type composition, 

AT5 consistently represented approximately 10% of the population across both conditions and 

years (Figure 2.5b).  

In 2015, SEQ7 underwent significant changes in the composition of root architecture 

types under varied water conditions (Chi-squared test, P = 0.0005; Figure 2.5c). Specifically, 

under the WL condition, the proportions of AT2 and AT4 decreased by 13.74% and 11.98%, 

respectively (AT2: 35.94% NL vs. 22.02% WL; AT4: 31.25% NL vs. 19.27% WL; Figure 2.5c). 

Conversely, AT1, AT3, and AT5 exhibited increases of 10.64%, 10.08%, and 4.22%, 

respectively (AT1: 21.09% NL vs. 30.73% WL; AT3: 8.59% NL vs. 20.64% WL; AT5: 3.12% 
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NL vs. 7.34% WL; Figure 2.5c). However, in 2016, the composition of root architecture types of 

SEQ7 showed no statistically significant differences between the conditions (Chi-squared test, P 

= 0.37; Figure 2.4c). Despite no significant overall change in root architecture type composition, 

there were observable shifts in the proportions of specific root architecture types when 

comparing WL and NL conditions. AT1 and AT3 decreased by 4.99% and 4.48%, respectively, 

while AT4 increased by 5.40% under the WL condition compared to the NL condition (AT1: 

33.06% NL vs. 28.07% WL; AT3: 24.00% NL vs. 19.52% WL; AT4: 18.40% NL vs. 23.80% 

WL; Figure 2.4c). The changes in root architecture type composition observed in 2016 were 

opposite from those observed in 2015. 

Variation in root architecture is not correlated with variation in aboveground shoot biomass.  

Three genotypes had significant differences in aboveground shoot biomass under each 

condition (Figure S2.4). However, for individual genotypes, there was generally no significant 

difference in root architecture types (Figure 2.6 & Figure S2.4). At the population level, the 

aboveground biomass of genotype SEQ7 (mean=27.03) was significantly lower than that of 

DOR364 (mean= 29.53, Wilcoxon rank-sum test, P <0.01) and L8857 (mean =29.53, Wilcoxon 

rank-sum test, P <0.01) under the WL condition (Figure S2.4). While, when under the NL 

condition, SEQ7 (mean= 23.97) showed significantly greater aboveground shoot biomass than 

L8857 (mean=21.82, Wilcoxon rank-sum test, P <0.01) and DOR364 (mean=19.76, Wilcoxon 

rank-sum test, P <0.01; Figure S2.4). A detailed examination within genotypes revealed no 

significant differences among root architecture types in DOR364 under either condition (Figure 

2.6). For L8857, no significant difference in aboveground shoot biomass was observed under the 

WL condition. However, under the NL condition, AT2 of L8857 exhibited significantly higher 

aboveground shoot biomass compared to the other four root architecture types (Wilcox rank sum 



 

26 
 

test, P < 0.05, Figure 2.6, Table S2.3). In the case of SEQ7, no significant difference in 

aboveground shoot biomass was found under the NL condition. Yet, under the WL condition, the 

aboveground shoot biomass of AT3 (mean=24.36) and AT5 (mean=25.58) in SEQ7 was 

significantly lower than AT1 (mean=29.29) and AT2 (mean=26.85, Wilcox rank sum test, P < 

0.05; Figure 2.6).  

Discussion 

The DIRT-Pop pipeline quantifies the diverse root architectures within common bean genotypes. 

The primary objective of this chapter was to develop the DIRT-Pop computational 

pipeline (Figure 2.1) as a tool to characterize the root architectural variations into root 

architecture types within three common bean genotypes (DOR364, L8857 and SEQ7). The 

pipeline uses the DS-curve shape descriptor, to capture the architectural organization of root 

width over the rooting depth, focusing on the whole root system's shape rather than single or 

localized root traits. Therefore, The DIRT-Pop pipeline provides an alternative approach to 

quantify root architectural variation in comparison to combining single or local root traits into 

integrated root phenotypes43,44. Two features of DIRT -Pop pipeline enhance the quality of data 

analysis. First, the incorporation of the Kneed algorithm32, combined with a majority voting 

strategy, facilitates the objective, automatic determination of the optimal number of root 

architecture types (k) for the Kmeans++ clustering algorithm. This feature eliminates the need 

for subjectively selecting k beforehand. Second, the pipeline employs an outlier removal strategy 

that excludes damaged root samples during manual extraction and removes shape outliers within 

root architecture types. Therefore, with these enhancements, the DIRT-Pop pipeline improves the 

robustness and reliability in characterization of root architecture variations. 
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By analyzing over 800 replicates per genotype, DIRT-Pop pipeline has identified five 

distinct root architectural types for each of three common bean genotypes. The result provides 

quantitative evidence against the general assumption that a single genotype has only one 

common root architecture type within a given environment. It also underscores the limitations of 

the current sampling strategy missing extensive variation in root architecture that exists within 

one genotype. As such, we hypothesize that each genotype may exhibit a specific number of root 

architecture types.  

The varied composition of root architecture types in common bean populations suggests 

acclimatization strategies to different water conditions. 

Understanding the root architectural traits of a single genotype across different 

environments is crucial for enhancing crop resilience and productivity. Typically, researchers use 

the framework of phenotypic plasticity to investigate how these traits change in response to 

environmental conditions45–47. Phenotypic plasticity refers to the ability of a single genotype to 

exhibit varied phenotypic responses under different environmental conditions48–50. It is 

commonly analyzed by using reaction norms that represent on how average traits vary across 

environmental gradients45,51–53. In this study, we adopted a different approach by analyzing 

changes in the composition of identified root architecture types by the DIRT-Pop pipeline within 

each genotype's population under differing water conditions, rather than comparing average trait 

values – the average DS curve. This method provides a deeper understanding of root 

architectural acclimatization at the population level. Three common bean genotypes showed 

different responses under two water conditions, as evidenced by shifts in the compositions of 

root architecture types. In 2015 and 2016, both DOR364 and L8857 exhibited significant shifts 

in their root architecture type compositions under two different water conditions (Figure 2.5). 
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SEQ7, however, only showed a significant change in 2015, but not in 2016 (Figure 2.5). The 

reason might be that in 2016, there was standing water left in the SEQ7 plot, which may not 

induce water stress under WL condition. Notably, the percentage of which specific root 

architecture types were changed varied among DOR364, L8857, and SEQ7. For example, under 

WL conditions, DOR364 increased the proportion of AT4 and AT2 types, whereas L8857 and 

SEQ7 increased the proportion of AT3 compared to NL conditions. This variability in response 

among the genotypes suggests that acclimatization strategies may be genotype specific. 

Therefore, we hypothesize that different common bean populations may exhibit different root 

architecture acclimatization strategies in response to varying water conditions. 

Diverse root architecture types in a single genotype showed minimal effect on aboveground 

shoot biomass.  

Another goal of this chapter was to explore the relationship between different root 

architecture types and aboveground shoot biomass in three common bean genotypes: SEQ7, 

DOR364, and L8857. Interestingly, the result revealed no significant differences in aboveground 

shoot biomass among most root architecture types within each genotype under both water 

conditions, except the AT2 in L8857 under NL conditions and the AT1 and AT2 types in SEQ7 

under WL conditions (Figure 2.6). Lynch has previously proposed three root architecture 

ideotypes, typically categorized as deep, intermediate, and shallow root systems, each having 

distinct capabilities in water and nutrient uptake1,54,55. Thus, it was anticipated that different root 

architecture types would correlate with varying levels of plant productivity, as indicated by 

aboveground shoot biomass in this study, particularly given the known association between deep 

root systems and drought resistance in various crops3,56. However, the finding did not show a 

significant variation in aboveground shoot biomass associated with each root architecture type. 
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Several reasons could explain this observation: First, as highlighted by Fitter (1994), alterations 

in root architecture do not necessarily lead changes in root biomass57, which might not alter 

biomass partitioning. Therefore, the shoot biomass associated with each root architecture type 

might remain unchanged. Supporting evidence from a previous study in Salix miygbeana showed 

no correlation between aboveground biomass and root architectural traits58. Instead, it suggested 

aboveground shoot biomass was influenced by external environmental factors, such as the soil 

type, rather than by root architecture58. Second, in the experimental setup, the common bean 

plants were grown in proximity, allowing for root interaction among neighboring plants. 

However, the specific impact of such interactions on shoot biomass remains unclear. For 

example, a plant with a deep root architecture ideotype may increase competition in water uptake 

from a neighboring plant with a similar deep root architecture ideotype, as opposed to one with a 

shallow root architecture ideotype. This is because shallow root systems exploits surface soil 

resources, whereas deep root systems capture subsoil resources, potentially reducing direct 

competition for water1,54,55. Thus, the advantages typically associated with deep root systems for 

water uptake under water-limited conditions might not necessarily lead to higher shoot biomass, 

as it also depends on the root architecture types of neighboring plants. We identified five distinct 

root architecture types co-existing within a single common bean genotype under one water 

condition, suggesting more complex interactions beyond a binary deep vs shallow root system 

interaction. There are multiple combinations of interactions among different root architecture 

types. A particular root architecture type could interact not only with identical types but also with 

up to four other types within the genotype. Nevertheless, the interactions between these diverse 

root architecture types and their impact on shoot biomass remain unexplored. Third, the specific 

functions of these five root architecture types in terms of water and nutrient uptake are not yet 
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fully understood. Without a comprehensive understanding of these roles in resource uptake, it is 

challenging to establish a direct association between root architecture type and their shoot 

biomass. Therefore, further research is essential to elucidate the specific resource uptake 

functions of the identified root architecture types and to understand their effects on plant 

productivity, when plants interact with each other.  
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Figures 

 

Figure 2.1: Clear architectural differences were observed among the excavated roots of 

neighboring DOR364 plants of DOR364 from a plot in 2016 (Willcox, AZ). These plants were 

excavated with Shovelomics. The tag in the picture is labelled as row-plot-column, such as root 

111-52-9 is grown in 111th row and 9th column in the 52nd plot. 
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Figure 2.2: The Dirt-Pop pipeline computes the root architecture types of a single genotype. In Step 1: Root images are input into 

DIRT, leading to the extraction of the shape descriptor DS-curve for each genotype. In Step 2: The Kmeans++ clustering method, 

complemented by an outlier removal strategy, is used to cluster distinct root architecture types. In Step 3: The hierarchically clustered 

heatmap using a Fréchet distance matrix to assess the similarity of root architecture types across various genotypes.
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Figure 2.3: Five root architecture types of DOR364 (n=822), L8857 (n=1663), and SEQ7 

(n=845) were observed across years (2015 and 2016) under non-limiting (NL) and water-limited 

(WL) conditions.We have graphed the mean DS curve corresponding to each root architecture 

type, with a representative root image displayed below. The reference marker measured 24.26 

mm.
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Figure 2.4: The heatmap of Fréchet distance matrix among mean curve of each root architecture 

type of three genotypes DOR364, L8857 and SEQ7. Each pixel's color in the heatmap 

corresponds to the Fréchet distance between two root architecture types, with blue representing 

higher similarity and brown denoting greater dissimilarity. The dendrograms on the axes 

represent the hierarchical clustering using wards method of the clusters based on their Fréchet 

distances.  
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Figure 2.5: The composition of root architecture types in DOR364 (n=797), L8857 (n=1772), 

and SEQ7 (n=768) under non-limiting (NL) and water-limited (WL) conditions in 2015 and 

2016. We used the Chi-squared test to compare the different ratios of root architecture types. The 

asterisk (*) denotes a significance level with a P < 0.05 while 'ns' indicates a non-significant 

level with a P > 0.05, as determined by a Chi-square test. 
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Figure 2.6: Aboveground shoot biomass of root architecture types in three genotypes DOR364 

(n=401), L8857 (n=578), SEQ7 (n=490) under non-limiting (NL) and water-limited (WL) 

conditions in 2016. We applied Kruskal-Wallis's test and pairwise Wilcoxon rank sum test after 

to identify any significant differences in these traits among ATs. Different letters label ATs with 

significant differences, with a significance threshold set as P < 0.05. The notation ns refers not 

significant. 
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 Appendix A 

 

Figure S2.1: The weather information of Willcox, AZ. The dash line is for 2016, and the solid 

line is for 2015. The red line is the precipitation (mm), the green line is the maximum 

temperature of the day, and the blue line is the minimum temperature of the day.  
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Figure S2.2: Illustration of magnitude and shape outliers in an example cluster. (a) A magnitude 

outlier (purple) identifies as a curve lying partially out of the 1.5 times of the central region 

(dark-blueish shadow band) of a univariate functional boxplot. The two board lines denote the 

range of maximum and minimum of DS values at each depth. (b) The two shape outliers (Dark 

green and purple curves) show different shapes from the rest curves. (c) The shape outlier graph 

detects outliers defined by MBD and MEI. Shape outliers are quantified using the modified band 

depth (MBD)60 and the modified epigraph index (MEI)31. The MBD represents the mean 

probability that a DS curve lies within a band formed by two random sample curves in a single 

cluster60. The MEI is an order statistic that measures a DS curve's location or centrality within a 

cluster35,61. A shape outlier curve is identified when its distance to the parabola (the dash purple 

line) surpasses the third quartile plus one interquartile range35. 
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Figure S2.3: The mean DS-curves of five root architecture types of three genotypes DOR364, 

L8857 and SEQ7 under non-limiting and water-limited condition in 2015 and 2016. 
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Figure S2.4: Shoot biomass of three genotypes DOR364 (n=401), L8857(n=578), SEQ7 (n=490) 

under non-limiting (NL) and water-limited (WL) conditions in 2016. The Kruskal-Wallis test 

was used to test any aboveground shoot biomass difference among genotypes under each 

condition. Statistical significance is denoted as: **** for P < 0.0001; *** for P < 0.001; ** for P 

< 0.01; * for P < 0.05; and ns for not significant.  
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Table S2.1: Sample size of common bean genotypes DOR364, L8857 and SEQ7 grown under 

non-limiting (NL) and water-limited (WL) condition in the 2015 and 2016 field experiment at 

Willcox, AZ. 
 

DOR364 L8857 SEQ7 
2015NL 258 423 135 
2015WL 204 792 235 
2016NL 315 311 138 
2016WL 156 341 404 
Total 933 1867 912 
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Table S2.2: The value of mean curve of each root architecture types among three genotypes 

DOR364, L8857 and SEQ7. 

 

 

 

 

 

 

 

 

 

  

Genotype AT DS10 DS20 DS30 DS40 DS50 DS60 DS70 DS80 DS90 
DOR364 AT1 0.89  1.26  1.47  1.63  1.76  1.87  1.93  1.84  1.51  
L8857 AT1 0.97  1.19  1.30  1.43  1.52  1.59  1.65  1.62  1.41  
SEQ7 AT1 0.92  1.19  1.35  1.51  1.67  1.79  1.84  1.79  1.51  
DOR364 AT2 1.15  1.40  1.47  1.48  1.44  1.42  1.41  1.37  1.19  
L8857 AT2 1.23  1.56  1.64  1.59  1.52  1.43  1.35  1.25  1.09  
SEQ7 AT2 1.12  1.33  1.40  1.43  1.43  1.42  1.39  1.30  1.12  
DOR364 AT3 0.89  1.51  1.94  2.21  2.38  2.47  2.43  2.22  1.69  
L8857 AT3 0.92  1.34  1.65  1.88  2.03  2.09  2.08  1.92  1.50  
SEQ7 AT3 0.91  1.43  1.79  2.05  2.24  2.33  2.30  2.10  1.62  
DOR364 AT4 1.20  1.78  2.06  2.15  2.09  1.89  1.65  1.39  1.10  
L8857 AT4 1.33  1.91  2.15  2.19  2.10  1.91  1.66  1.40  1.09  
SEQ7 AT4 1.24  1.74  2.00  2.10  2.02  1.84  1.60  1.38  1.12  
DOR364 AT5 1.27  2.27  2.79  2.99  2.91  2.62  2.19  1.70  1.16  
L8857 AT5 1.06  1.77  2.26  2.58  2.75  2.76  2.58  2.17  1.44  
SEQ7 AT5 1.14  2.04  2.50  2.76  2.91  2.93  2.81  2.45  1.70  
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Table S2.3: The summary statistics of aboveground shoot biomass among root architecture types 

of three common bean genotypes between conditions in 2016. 'NL' denotes non-limiting 

conditions and 'WL' denotes water-limited conditions. 

Genotype Condition Root 
Architecture 

Type 

Mean Median Interquartile 
Range (IQR)  

Standard 
Deviation 

(SD) 

Sample 
Size 
(N) 

DOR364 2016 NL AT1 19.09 18.97 5.10 4.34 91 
DOR364 2016 WL AT1 36.14 19.43 57.53 27.89 31 
DOR364 2016 NL AT2 19.93 18.64 5.08 7.09 87 
DOR364 2016 WL AT2 25.02 19.21 5.62 18.69 36 
DOR364 2016 NL AT3 19.29 19.53 3.39 3.03 31 
DOR364 2016 WL AT3 29.77 17.87 7.72 24.19 28 
DOR364 2016 NL AT4 20.91 19.51 3.77 9.51 48 
DOR364 2016 WL AT4 30.85 17.77 8.69 24.85 30 
DOR364 2016 NL AT5 20.36 20.17 8.03 4.33 12 
DOR364 2016 WL AT5 16.79 16.61 2.35 3.08 7 

L8857 2016 NL AT1 21.62 20.54 7.46 5.58 75 
L8857 2016 WL AT1 30.72 18.00 11.10 24.95 85 
L8857 2016 NL AT2 23.39 23.47 6.80 5.31 73 
L8857 2016 WL AT2 28.11 18.19 6.58 22.85 48 
L8857 2016 NL AT3 21.08 20.53 4.73 3.68 62 
L8857 2016 WL AT3 28.96 17.40 6.70 24.22 92 
L8857 2016 NL AT4 21.24 20.48 5.90 4.73 37 
L8857 2016 WL AT4 28.04 16.83 8.17 23.85 50 
L8857 2016 NL AT5 20.73 19.89 7.72 6.02 28 
L8857 2016 WL AT5 32.88 17.51 54.27 25.68 28 
SEQ7 2016 NL AT1 23.05 23.45 6.78 4.87 42 
SEQ7 2016 WL AT1 29.29 24.56 10.58 16.74 103 
SEQ7 2016 NL AT2 26.16 25.56 10.05 5.41 25 
SEQ7 2016 WL AT2 26.85 23.35 9.13 14.54 79 
SEQ7 2016 NL AT3 22.85 23.11 4.45 4.81 29 
SEQ7 2016 WL AT3 24.36 20.54 7.04 14.40 72 
SEQ7 2016 NL AT4 25.16 24.84 4.61 6.11 23 
SEQ7 2016 WL AT4 27.13 24.11 8.70 16.00 89 
SEQ7 2016 NL AT5 21.24 18.54 5.12 6.41 4 
SEQ7 2016 WL AT5 25.58 20.46 6.10 16.46 24 

  



 

50 
 

Table S2.4 The summary statistics of aboveground shoot biomass among three common bean 

genotypes between conditions in 2016. 'NL' denotes non-limiting conditions and 'WL' denotes 

water-limited conditions. 

Genotype Condition Mean Median Interquartile 
Range (IQR) 

Standard 
Deviation 

Sample 
Size (N) 

DOR364 NL 19.76 19.08 4.90 6.37 269 
DOR364 WL 29.53 18.45 7.66 23.54 132 

L8857 NL 21.82 21.20 6.55 5.13 275 
L8857 WL 29.53 17.53 9.14 24.18 303 
SEQ7 NL 23.97 23.59 7.05 5.37 123 
SEQ7 WL 27.03 22.95 8.91 15.65 367 
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CHAPTER 3 

FROM OUTDOOR TO INDOOR CONDITIONS: THE ROOT ARCHITECTURE TYPES 

AND THEIR CHANGE OVER THE DEVELOPMENTAL STAGES IN COMMON BEAN 

Introduction 

Plant roots display a wide range of architectural types, each with unique spatial 

organization and shape characteristics. Variation in root architecture is considerable both within 

and among genotypes in response to diverse environmental conditions. Chapter 2 presented 

DIRT-Pop, a computational pipeline to cluster these variations into distinct root architecture 

types. Notably, even one genotype of common bean with relatively similar genetic background, 

exhibited five distinctive root architecture types when grown in a common field. According to 

the quantitative genetic model, phenotypic variation can be assumed as the summation the 

variation of genetic (G) and environmental (E) variation, and their interaction1–3. Hence, the five 

distinctive root architecture types observed from one common bean genotype under the one 

watering condition are commonly assumed from the variation within the environment, mainly 

due to the patchy soil conditions in fields4,5. Numerous plant species modify their root systems in 

response to the heterogeneity in resources availability during development5,6.  Given this reason, 

one question this chapter seeks to address is: if environmental variation is reduced, will these 

diverse root architecture types still be observed in common bean populations?   

When examining a population at the level of individual plants, the root architectural 

variation may stem from the root-root interactions and/or as a result of the genetics driving the 

developmental program of the root7. Such differences could be a result of the strategies plants 
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use for nutrient competition with their neighbors. Current research indicates that neighboring 

roots might alter their root architecture, either growing into the same space to increase 

competition or avoiding already occupied zones to avoid competition, depending on the identity 

of the neighboring roots8,9. Plants can differentiate the relatedness of neighbors10 and alter their 

response to their neighbors. For example, that the sea rocket (Cakile edentula) had less root 

allocation when planted with kin-groups than with strangers11. Some species also avoid 

belowground competition by reducing root branching intensity and specific root length in 

response to kin neighbor12. Wuest et al (2022) even showed an allele with major effect on 

increased “cooperation” and productivity in high-density planting in Arabidopsis thaliana13. 

Such “cooperation” was quantified by reduced root allocation and a trade-off between group 

versus individual performance matrix13. As a result, plants change their root architecture 

according to their neighbors and have the genetic that detect and regulate the response to these 

neighboring plants. Thus, elucidating how these root architectural types change from the initial 

growth stages to full maturity, we can gain a deeper understanding how plants optimize resource 

uptake within population over time.  

Root architecture is important for water and nutrients uptake and therefore can impact the 

plant productivity. Lynch (2019) first proposed three bean root architecture ideotypes  for distinct 

nutrient uptake function under specific environmental conditions14: 

1. “Steep, cheap, deep” (SCD) ideotype, optimized for deep soil exploration and mobile 

resources like water, leached nitrate (N) and sulfur (S). It has fewer basal root whorls, 

fewer adventitious roots, and a steep basal root growth angle. 
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2. “Topsoil foraging” (TF) ideotype focuses on topsoil resources such as phosphorus 

(P), potassium (K), calcium (Ca), and magnesium (Mg). It is characterized by a 

shallow basal root angle and a higher number of adventitious roots. 

3. The standard ideotype balances both deep and shallow soil exploration, with a 

medium basal root angle and average numbers of adventitious roots and basal whorls. 

Greenhouse experiments confirmed that SCD ideotype in common beans showed 

superior performance under drought stress15. In contrast, the TF ideotype was more effective 

under phosphorus stress, while the standard ideotype showed resilience under both phosphorus 

and drought stress conditions15. A recent study provided detailed insights into root architecture 

phenotypes, by modeling 12 root architectures with variations in basal root whorl numbers (1-4 

whorls) and growth angles (shallow, fan, deep), it was demonstrated that multiple root 

architecture phenotypes might be optimized for a specific environment rather than only one root 

ideotype optimized for one environment16. However, both greenhouse and simulation studies had 

limitations, primarily due to restricted sample sizes of 4 to 6 plants per genotype or root 

architecture phenotype15,16. Specifically, the greenhouse study9 was performed in pots. Given 

that the pot size may restrict root growth and there's no interaction with neighboring plants, this 

could lead to biases when predicting biomass or plant productivity in field plots where plants 

grow in a population setting. Recognizing these limitations, optimizing for experimental setups 

that better replicate field conditions to accurately assess root architecture's impact on plant 

productivity are needed. This has led us to develop a mesocosm system that can accommodate 

larger sample sizes and allow for root interactions.  

By using such a mesocosm system, we explore the relationship between root architecture 

and biomass allocation in plants, particularly focusing on how different root architecture types 
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influence shoot and root biomass under varying water conditions that grow in a population 

setting. Plants respond to environmental changes by modulating their biomass allocation and root 

architectural traits17,18. A key area of interest is whether changes in root architecture leads to 

alterations in biomass allocation. For example, under drought stress, plants may not only develop 

deeper root systems (an architectural response) but also may increase biomass allocated to the 

roots (an allocation response) to access deeper water sources19,20. This interplay between root 

architecture and allocation also underscore potential trade-offs in biomass distribution between 

roots and shoots, where plants invest heavily in root biomass (allocation) to develop a particular 

root architecture (e.g., extensive lateral of roots for water acquisition) may limit the biomass 

available for shoot development19,20. However, it is also important to point out that while root 

architectural changes can result in biomass allocation changes, they can also occur without 

changes in allocation, suggesting a level of independence between these two responses21. 

Through examining the influence of root architecture types on shoot and root biomass, as well as 

biomass allocation between these components across developmental stages, we seek to better 

understand how individual plants within a population holistically respond to different water 

conditions through root acclimatization. 

To sum up, in Chapter 3, we built an indoor field, also a mesocosm system, which was 

filled with well-mixed homogenous growth medium and equipped with a sensor-regulated 

irrigation system, to achieve precisely controlled water distribution throughout the system. Using 

this setup, we can grow plants into mature stages without container restriction and allowing 

plants to interact with each other. By growing a time-series trial with genotype SEQ7 over 

different growth stages and genotype DOR364 at mature stage, we aim to answer the following 

questions:   
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1. Can we observe multiple root architecture types of DOR364 and SEQ7 in the 

mesocosm system?   

2. How does the compositions of root architecture types of SEQ7 change across growth 

stages and under NL and WL conditions? 

3. Are there differences in shoot biomass, root biomass and root-shoot ratio among root 

architecture types of SEQ7 throughout growth stages under WL and NL conditions? 

4. Can we match observed root architecture types with a recent published 12-root 

architecture models16, thereby offering insights into nutrients uptake functions of 

these root architecture types? 

Materials and Methods  

The mesocosm system setup  

We built a mesocosm system (W: 548.64 cm, L:670.56 cm, D: 55.88 cm) to mimic desert 

soil conditions in The University of Georgia campus in Athens, GA22. We first put one layer (~ 4 

cm depth) of marble rocks (The Quikrete Companies, Atlanta, GA, USA) at the bottom. We then 

filled in with well-mixed growth medium, composed of the following compounds (by volume) 

33.23%  coarse A3 vermiculite (Palmetto Vermiculite, Woodruff, SC, USA), 44.30% fine grade 

pine bark (Fernacres Farms, Washington, GA, USA), 22.15%  river bottom sand ( L.C Curtis & 

Son, Watkinsville, GA, USA), 0.18% ground limestone (Austinville Limestone Company, 

Austinville, VA, USA), 0.0466% superphosphate (Voluntary Purchasing Groups, Inc., Bonham, 

TX, USA), 0.0223% calcium nitrate (Yara North America, Tampa, FL, USA), 0.0223 % 

potassium nitrate (Haifa Group, Altamonte Springs, FL, USA), 0.0223% calcium sulfate 

dihydrate (Performance Mineral Corps, Saint John, IN, USA), 0.0223% micronutrients (ICL 
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Fertilizers, Dublin, OH, USA). The mixed growth medium had an average pH of 5.6, and an 

average lime buffer capacity of 461.83.  

To regulate the water distribution in the mesocosm system, we installed a sensor-based 

irrigation system comprising 64 sensors (EC-5; Decagon Devices, Pullman, WA, USA) placed at 

two soil depths of 15.24 cm and 38.10 cm. The sensors’ horizontal locations are detailed in the 

Figure S3.1. All the sensors were connected to a datalogger (CR1000, Campbell Scientific, 

Logan, UT, USA) via two multiplexers (AM16/32B, Campbell Scientific, Logan, UT, USA). 

The output from the sensors, initially being in voltage, was converted into volumetric water 

content (vwc) using a growth-medium specific calibration equation (vwc = (voltage/1000) * 

1.4377-0.4096, r2=0.995). The decision to initiate irrigation for each plot (4 plots in total) was 

based on the average vwc of its 16 sensors in each plot. When this average vwc dropped below a 

pre-set threshold, the irrigation system was activated for 10 seconds specifically for that plot. We 

also recorded the average vwc value from each sensor every 30 minutes. 

Plant growth condition and experimental design  

We conducted a time series trial with the common bean genotype SEQ7(Figure S3.2). 

This trial included growing the SEQ7 genotype at different stages: 7 (Unifoliate, VC), 14 

(Trifoliate, V1), 21 (Second-third trifoliate leaf, V2-V3), 42 (Vine development, V8), 63 (50%-

Full seeds, R6-R7), and 90 (Full maturity, R8-R9) days after sowing (DAS). For the 7, 14, 21, 

and 42 DAS, the threshold of vwc was set at 30% to simulate NL conditions. For the 63 and 90 

DAS stages, two different water conditions were implemented: WL and NL conditions. For the 

WL condition, we initially maintained the irrigation threshold at an average 30% vwc, 

subsequently changed it to 20% vwc during the vine developmental stages, thereby limiting the 



 

57 
 

water supply for the remainder of the growth period. The daily average vwc over all the growth 

stages and conditions of SEQ7 were plotted in the Figure S3.3.  

We also grew the genotype DOR364 until it reached full maturity (R8-R9), under two 

different water conditions: WL and NL conditions. This genotype took 84 days after sowing 

(DAS) to reach full maturity. For the WL condition, in alignment with the approach used in the 

SEQ7 experiments, the irrigation threshold for WL conditions was adjusted from 30% to 20% 

vwc during the vine development stage. For the NL condition, a constant irrigation threshold at 

30% vwc was maintained throughout the growth cycle. 

The SEQ7 and DOR364 seeds used in this experiment were self-fertilized and collected 

from multiple locations within the pods of plants that were grown in pots in a greenhouse. All 

plants were sown following a completely randomized design with an in-row spacing of 28.88 cm 

and an out-row spacing of 33.53 cm. To ensure sufficient nutrient supply, we applied 4.81 kg of 

Osmocote (18-6-12 NPK; ICL Specialty Fertilizer, Dublin, Ohio) evenly across the mesocosm 

system before each planting cycle. Alongside this, we applied routine pesticide treatment. We 

controlled the greenhouse temperature at 20 °C during the night and 25 °C during the day, with a 

photoperiod of 16 hours of artificial light and 8 hours of darkness. 

Trait measurement 

We used the legume Shovelomics method to excavate SEQ7 roots at each designated 

growth stage and DOR364 roots at mature stage. After excavation, we cleaned them with tap 

water to remove the growth medium. For roots older than 42 DAS (including 42 DAS), where 

the mature root phenotype can be observed23, we used the standard DIRT imaging protocol24,25 

for capturing root images. However, for younger roots (less than 42 DAS), we revised the 

imaging step of DIRT protocol. We placed these younger roots in a plastic tray filled with water 



 

58 
 

and we positioned LED lights around the tray to ensure even illumination. We captured images 

of these roots in a darkroom specifically to minimize the impact of overhead room light and its 

reflection on the water, which could compromise the quality of the images. The images were 

subsequently analyzed by DIRT24,25. The shoot and root tissues dried in an oven in 60 ºC degrees 

for at least 72 hours and weighed using a digital scale (Model CQT202, Readability 0.01g, Adam 

Equipment, Oxford, CT, USA). 

Statistical analysis  

We applied the DIRT-Pop pipeline, as developed in Chapter 2, for clustering root images 

from all developmental stages of SEQ7 and for the mature stages of DOR364.The DIRT-pop 

pipeline was run at the genotype level. The sample size of SEQ7 at each designated growth stage 

and DOR364 at mature stage is listed in Table S3.1. Following the identification of the root 

architecture types of SEQ7, we conducted statistical analyses in R (v 4.2.0)26. Specifically, we 

applied the pairwise Chi-square test of homogeneity to investigate whether the distribution of 

root architecture types was uniform across various developmental stages and conditions. To 

analyze the differences in shoot biomass, root biomass, and root-shoot ratio among root 

architecture types, we used the Kruskal-Wallis test, followed by pairwise Wilcoxon rank-sum 

tests. 

Matching simulated root architecture models and excavated root architecture type using anelastic 

registration approach  

The elastic registration method using Fisher-Rao Riemannian metric27,28 was used to 

align the DS curves of  simulated root architecture models16 with the mean DS curve of  root 

architecture types observed at 42 DAS. Images of 12 simulated root architecture models, varying 

in three root angles (Shallow, Fan, Deep) and 4 basal whorl numbers16, were imported into DIRT 
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to obtain the DS curves. As the simulated root architecture models represented the non-

destructive root system without the stem, and excavated root samples included the stem up to the 

first node and omitted the deepest root parts, we removed the DS90 from the DS curves of 

simulated root architecture models and DS10 from mean DS curve of root architecture types, 

retaining eight DS values for both curve types. Using the scikit-fda Python package29, we 

performed the elastic registration on the DS curves from the 12 simulated root architecture 

models, aligning them to the mean DS curve of the observed root architecture type. For each 

alignment: 

D1 was calculated as the Euclidean distance between the transformed DS curve of 

simulated root architecture and the mean DS curve of the observed root architecture type, 

representing a measure of alignment accuracy. A smaller D1 value indicates a closer 

resemblance of the transformed simulated DS curve to the mean DS curve of the root 

architecture type. 

D2 was calculated as the Euclidean distance between the original and transformed DS 

curves of the simulated root architecture, thereby quantifying the extent of the transformation. A 

smaller D2 suggests less modification of the simulated root architecture's DS curve during 

registration. 

To determine the most representative simulated root architecture model for each root 

architecture type, we examined the 12 alignments corresponding to each observed root 

architecture type. The model with the smallest geometric mean (G) of D1 and D2 was selected as 

the most representative of the observed root architecture type. This selection criterion implies 

that the selected simulated root architecture model underwent minimal transformation yet 

achieved the closest alignment with the observed root architecture type. 
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Results 

Five root architecture types of SEQ7 and DOR364 were identified in the mesocosm system.  

Five different root architecture types showed in the SEQ7 genotype throughout all the 

developmental stages (Figure 3.1). The sample sizes for each root architecture type at each 

growth stage and water condition are detailed in Table S3.1. The Fréchet distance matrix also 

confirmed that the five root architecture types AT1 through AT5, are distinct from each other ( 

Figure 3.2). However, within each individual architecture type, a consistent similarity is 

observed across different growth stages and conditions ( 

Figure 3.2). By examining the mean value of DS curve of each root architecture type in Table 

S3.2, AT1 had the maximum width accumulation at 60-80% excavated rooting depth (Table 

S3.2). AT2 accumulated width at an almost steady rate over the excavated rooting depth (Table 

S3.2). Meanwhile, AT3 achieved its maximal width at 60-80% depth, although with a higher rate 

of width accumulation compared to AT1 (Table S3.2). AT4's width accumulation peaked at 

approximately 40%-50% depth, gradually decreasing until 90% excavated rooting depth (Table 

S3.2) 

Similarly, DOR364 showed five root architecture types when at full mature stage ( 

Figure 3.3:). The five root architecture types showed in DOR364 were similar compared 

with SEQ7 (Figure 3.4). The analysis of the mean DS curve values (Table S3.3) revealed: AT1 

had its maximum width accumulation at 80% excavated rooting depth (Table S3.3). AT2 

maintained an almost uniform width accumulation over the excavated rooting depth (Table 

S3.3). AT3 achieved its maximal width at 70-80% depth, although with a higher rate of width 

accumulation compared to AT1 (Table S3.3). AT4's width accumulation peaked around 50-60% 

depth, then gradually decreased until 90% excavated rooting depth (Table S3.3). AT5 reached 
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maximal width at the mid-point (50%) of the depth, with a higher rate of width accumulation 

compared to the other root architecture types (Table S3.3). 

The composition of root architecture types changed over developmental stages and between 

conditions.  

SEQ7 showed significant shifts in the composition of root architecture type during certain 

growth stages and under varying water conditions (Figure 3.5 and Table S3.4). From 7 to 13 

DAS, the composition of root architecture type did not differ significantly (Chi-squared Test, 

P=0.296), with AT2 representing the smallest portion of the population and AT3, the largest 

from 13 to 21 DAS (Figure 3.5 and Table S3.4). From 13 to 21 DAS, a significant shift was 

observed. At DAS 21, there was an increase in the compositions of AT1 and AT2, accompanied 

by a decrease in AT3 and AT5 (Chi-squared Test, P<0.001; Figure 3.5 and Table S3.4). From 21 

DAS to 42 DAS, the composition of root architecture type did not exhibit significant changes 

(Chi-squared Test, P=0.271; Figure 3.5 and Table S3.4). Reduced water availability from 42 

DAS did not significantly impact the transition in the composition of root architecture type from 

42 to 63 DAS under WL conditions (Chi-square Test, P=0.776; Figure 3.5 and Table S3.4). Yet, 

further water reduction led to a significant shift in the composition of root architecture types 

from 63 DAS to 90 DAS, characterized by a decrease in AT4 and an increase in AT1 (Chi-

squared Test, P=0.0193; Figure 3.5 and Table S3.4). Under NL conditions, there was a 

significant shift in the composition of root architecture type from 42 to 63 NL DAS, evidenced 

by an increase in AT3 and a decrease in AT4 (Chi-squared Test, P=0.018; Figure 3.5 and Table 

S3.4). At 63 DAS and 90 DAS, the composition of root architecture types exhibited significant 

differences between NL and WL conditions (Chi-squared Test, P=0.017; Figure 3.5 and Table 

S3.4) and 90 DAS (Chi-squared Test, P=0.048; Figure 3.5 and Table S3.4). 
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Shoot biomass, root biomass and root-shoot ratio were changed over the developmental stages 

and conditions but not among root architecture types.  

The shoot biomass of SEQ7 population increased over the growth stages in NL 

conditions (Figure 3.6 and Table S3.5). However, with a limited water supply after 42 DAS, the 

shoot biomass increased until 63 DAS, followed by a reduction towards 90 DAS (Figure 3.6 and 

Table S3.5). The root biomass of SEQ population showed a similar trend in both NL and WL 

conditions, with an increase until 63 DAS and subsequently decreased to 90 DAS (Figure 3.6 

and Table S3.5). The root-shoot ratio of SEQ7 initially rose from 7 DAS to 13 DAS and then 

decreased throughout the remaining growth stages under NL condition (Figure 3.6 and Table 

S3.5). In contrast, after limiting water supply at 42 DAS, the root-shoot ratio decreased until 63 

DAS and then increased at 90 DAS (Figure 3.6 and Table S3.5). Limitations in water supply led 

to significant decreases in shoot biomass, root biomass at 63 DAS and 90 DAS compared to NL 

conditions (Figure 3.6 and Table S3.5). Interestingly, the root-shoot ratio was higher at 63 DAS 

but lower at 90 DAS under WL conditions compared to NL (Figure 3.6 and Table S3.5). 

Generally, no significant difference in shoot biomass, root biomass or root-shoot ratio 

was found among ATs throughout most developmental stages. However, there were some 

exceptions. Specifically at 7 DAS, AT5 had a significantly higher shoot biomass than AT1, AT2, 

AT3 (Wilcoxon rank-sum test, P <0.05; Figure 3.6).  At 90 DAS under NL condition, AT2 

showed a significantly higher shoot biomass than other four root architecture types (Wilcoxon 

rank-sum test, P <0.05; Figure 3.6).  At 42 DAS, AT1 and AT2 had a significant higher root 

biomass than AT3, AT4, AT5 (Wilcoxon rank-sum test, P <0.05; Figure 3.6). AT2 had 

significant higher root biomass than AT1, AT3, AT4 at 90 DAS under NL condition (Wilcoxon 
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rank-sum test, P < 0.05; Figure 3.6). Regarding the root-shoot ratio, AT5 had a significantly 

lower ratio compared to AT1, AT3, and AT4 (Wilcoxon rank-sum test, P < 0.05; Figure 3.6).  

Root architecture type observed may link to root simulation models. 

To help understand the potential functions of the identified root architecture types, we 

matched 12 simulated root architecture models (40 days old) with excavated root architecture 

types observed at 42 DAS.  The alignment results were quantified by the metrics D1 (alignment 

accuracy) and D2 (transformation extent). Table S3.6 presented the alignment results for each 

simulated root architecture model across the five root architecture types. For AT1, model 5 (Fan 

angle, 1 whorl) showed the most accurate alignment (D1=0.134, D2=1.459, Figure 3.7; Figure 

S3.5; Table S3.6), resulting in the lowest geometric mean of 0.442. This indicates a high degree 

of resemblance to the observed root architecture type with minimal transformation required. In 

contrast, model 9 (Shallow angle, 1 whorl) showed a low match for AT1 (D1=0.382, D2=2.547, 

G =0.986, Figure 3.7; Figure S3.5; Table S3.6), suggesting a significant transformation was 

needed for alignment. Moving to AT2, the closest match was with model 10 (Shallow, 2 whorls, 

D1=0.062, D2=0.500, G=0.176, Figure 3.7; Figure S3.5; Table S3.6), indicating a highly 

accurate alignment with the observed root architecture type. Conversely, model 9 (Shallow 

angle, 1 whorl) for AT2 showed a less precise alignment (D1=0.176, D2=3.372, G=0.770, Figure 

3.7; Figure S3.5; Table S3.6). For AT3, model 3 (Deep angle, 3 whorls) aligned most accurately 

(D1=0.155, D2=2.641, G=0.639, Figure 3.7; Figure S3.5; Table S3.6), demonstrating a good 

balance between resemblance and transformation extent. On the other hand, model 12 (Shallow, 

4 whorls) for AT3 had a higher geometric mean (D1=0.484, D2=2.909, G=1.187, Figure 3.7; 

Figure S3.5; Table S3.6). In the case of AT4, model 6 (Fan, 2 whorls) was the best match 

(D1=0.443, D2=1.898, G=0.917, Figure 3.7; Figure S3.5; Table S3.6), showing moderate 
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matching accuracy. However, model 1 (Deep angle, 1 whorl) for AT4 required a significant 

transformation for alignment (D1=1.106, D2=2.977, G=1.814, Figure 3.7; Figure S3.5; Table 

S3.6). Lastly, for AT5, model 9 (Shallow, 1 whorl) showed the most satisfactory alignment 

(D1=0.392, D2=1.015, G=0.631, Figure 3.7; Figure S3.5; Table S3.6). In contrast, model 12 

(Shallow, 4 whorls) for AT5 indicated a considerable transformation for alignment (D1=0.780, 

D2=4.173, G=1.804, Figure 3.7; Figure S3.5; Table S3.6). 

Discussion 

Consistent five root architecture types were observed across the mesocosm and field conditions.  

In the mesocosm system, we identified five distinct root architecture types of SEQ7 

across all developmental stages and DOR364 at the fully mature stage ( 

Figure 3.3:). Although environmental variation was controlled by mixing the growth 

medium and precisely regulating soil moisture, these five root architecture types were 

consistently observed. We then compared the mean DS curves for each root architecture type of 

DOR364 and SEQ7 at the R8-R9 stage in the mesocosm system with the mean DS curves for 

each root architecture type of DOR364 and SEQ7 of field (Figure S3.4). Similar root architecture 

types across these two environments were observed (Figure S3.4). The rate of width 

accumulation was higher in the mesocosm than in the field. This difference could be attributed to 

varied planting space– 28.88 cm in-row and 33.53 cm out-row spacing in the mesocosm, 

compared to 10 cm in-row and 36 cm out-row spacing in the field. The increased space between 

plants in the mesocosm likely allows bean roots grow wider than in the field. Nevertheless, the 

general patterns of mean DS curve of each root architecture types were similar between two 

environments (Figure S3.4). The consistent observation of root architecture types of SEQ7 and 

DOR364, suggests minimizing environmental variation does not alter the range of observable 
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root architecture types within these two genotypes. This implies a strong genetic control over 

these root architecture types, however, the precise molecular mechanisms regulating these root 

architecture types remain unclear and need further investigation. Those mechanisms that drive 

the spatial arrangement of root architectural traits could to some extent explain the observed 

variability in architecture types, such as root angle and lateral branch length. Currently, the 

observed variability is generally classified as plasticity response environmental gradients per 

measured trait. In maize, genetic components of such trait specific plasticity have been identified 

in water-stress and non-limiting environments30. Similarly, common bean genotypes show a 

specific plasticity response to phosphorus stress by altering the basal angle31. The different 

environmental gradients in our field experiment could be induced by root-root interaction. 

However, the genetic basis for how root-root interaction within one genotype is still unknown 

and needs further study32. 

The root architecture dynamics of the SEQ7 population are complex throughout the growth 

stages. 

Five distinct root architecture types of SEQ7 emerged as early as 7 DAS (Figure 3.1 & 

Figure 3.5). These early root architectural variations may be attributed to variations in seed 

weight. Seeds originating from various locations within the pod or harvested at different times 

during the growing season exhibit variation in individual seed weight33,34. Particularly, seeds 

from peduncular with lower individual weights tend to develop fewer basal roots and smaller 

taproot diameters compared to those from the stylar position34. For this experiment, we used 

SEQ7 seeds that were self-fertilized and collected from multiple locations within the pods of 

plants grown in pots. Given that plant development at such an early stage heavily relies on the 

nutritional reserves from the seed, it is expected that variations in seed weight may impact the 
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root architecture. Another contributing factor to early root architectural variations might be the 

oscillatory growth patterns observed in basal roots35. During the early stages, these patterns can 

lead to fluctuations in the basal root growth angle, further affecting root architectural variation35.  

Starting with the root architecture type composition observed at 7 DAS, this initial 

composition remained consistent until 13 DAS (Figure 3.5 & Table S3.4). However, there was a 

marked shift in the root architecture types between 13 DAS and 21 DAS (Figure 3.5 & Table 

S3.4). Several factors could account for this change. One possibility is that by this time, the 

common bean plants had depleted their seed reserves36, start to acquire external nutrients existing 

in soils. This hypothesis is supported by the fact that cotyledon abscission typically occurs 

between the 14th and 18th day after planting36. By the 18th day post-germination, the common 

bean's seed reserves are usually exhausted, leading to potential adjustments in root architecture 

types to more efficiently access resources from the soil36. Another possibility is that roots might 

start physically interacting with one another during the 13 DAS and 21 DAS (personal 

observation). The composition of root architecture types observed at 21 DAS persisted through 

42 DAS (Figure 3.5 & Table S3.4). After reducing the water supply post-42 DAS, this 

composition remained stable through 63 DAS but experienced a shift by 90 DAS (Figure 3.5 & 

Table S3.4). This indicates that the SEQ7 population might need additional time to adjust its root 

architecture in response to prolonged water stress. Conversely, under non-limiting water 

conditions, the composition of root architecture types altered at 63 DAS (Figure 3.5 & Table 

S3.4), suggesting that factors other than water availability can influence these shifts. After this 

change, the composition stabilized and remained consistent through 90 DAS (Figure 3.5 & Table 

S3.4). Comparing the composition of root architecture types under different water conditions at 

63 DAS and 90 DAS (Figure 3.5 & Table S3.4) revealed a significant shift between WL and NL 
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conditions. This observation supports the hypothesis in Chapter 2: Plant populations may adjust 

their root architecture types as a strategy to acclimate in response to environmental changes. 

Root architectural change may not result in change of shoot biomass, root biomass and biomass 

allocation. 

One objective of this chapter is to explore the relationship between root architecture type 

and shoot biomass, root biomass, and root-shoot ratio within the SEQ7 population across various 

growth stages and water conditions. At the population level, limited water availability led to a 

decrease in both shoot and root biomass, while increasing root-shoot ratio at 90 DAS in the 

SEQ7 population (Figure 3.6). This observation aligns with findings from numerous other plant 

species37. The change in biomass distribution underlines the plant's acclimatation strategy to 

allocate more resources towards root development to enhance water uptake under drought 

conditions20,38. At the individual level, the result revealed in general no significant differences in 

shoot, root, and root-shoot ratio among these architecture types (Figure 3.6). The lack of 

significant variation in biomass distribution among different root architecture types suggests that, 

in the context of the SEQ7 population, root architecture type may be independent from shoot 

biomass, root biomass and their ratios. The observation is supported by field observations of 

common bean genotypes (DOR364, L8857 and SEQ7) in Chapter 2 and is further supported by a 

recent simulation study, which suggests that different root architecture models may exhibit 

similar aboveground performance in specific environments due to internal resource competition 

and trade-offs driven by external environmental factors and interactions with neighboring 

plants16. Furthermore, the DS curve serves as a shape descriptor that to quantify root architecture 

as a whole, designed as approximately invariant to transformations like translation, rotation, and 

scaling, while root biomass is size dependent that quantifies the magnitude of mass without 
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concerning shape or spatial arrangement. The difference of shape and mass measurement 

explains why no significant difference in root biomass among different root architecture types. 

The result also provides empirical evidence to support  Fitter’s hypothesis changes in geometric 

aspects of root architecture, such as branching angle, might not necessarily translate to changes 

in biomass allocation21.   

Root architecture types may link to different nutrient uptake function.  

The exploration of linking specific root architecture types to a root architectural model 

aimed to derive functional insights from the observed five root architecture types. Given that root 

architecture plays an important role in soil resources uptake and the fact that these resources are 

not uniformly distributed in the soil39,40, we hypothesized that different root architecture types 

may have different nutrient and resource uptake strategies. Based on the elastic registration and 

matching analysis, along with N and P uptake efficiency simulation results of root architecture 

models discussed in the paper16, we inferred the P and N uptake function of five root architecture 

types under the NL condition as follows: For P uptake (mmol plant-1), the ranking is: AT3 (Deep, 

3 whorls) > AT2 (Shallow, 2 whorls) > AT4 (Fan, 2 whorls) >  AT5 (Shallow, 1 whorl) > AT1 

(Fan, 1 whorl). For N uptake (mmol plant-1), the ranking is: AT3 > AT4 > AT1 > AT2 > AT5. 

The AT3 has both better P and N uptake than other root architecture types, that is because 

nutrient uptake improves with a greater number of basal roots. However, an increase in the 

number of basal roots, particularly beyond 3 whorls would decrease the aboveground shoot 

biomass, as more resources are allocated to produce more roots16. In the paper, the authors did 

not provide any information about the N and P uptake under WL conditions, so we could not 

infer functions of the root architecture types under such condition16. From the simulation result, 
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the function of nutrients uptake of root architecture types would change under different 

environmental stress, such as N, P or combined stress of these two16. 

It is important to point out the limitation of the inferences. First of all, the root architecture 

model in the published paper does not include variable of adventitious roots, whereas the 

excavated roots in the experiment having different number of adventitious roots. Second, the 

shape descriptor DS-curve does not capture the number of basal roots and lateral root branching 

density, thus in the Figure S3.5, some of the simulated root architecture models have very similar 

DS curves. Therefore, a better root architecture model and a more distinguishable shape 

descriptor need to be developed to describe the real-world roots more accurately.  
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Figures  

 

Figure 3.1: Five root architecture types of SEQ7 were observed across developmental stages and 

conditions. The observed growth stages were: 7 days after sowing (DAS) (n=100), 13 DAS 

(n=170), 21 DAS (n=127), 42 DAS (n=138), 63 DAS under both water-limited (WL) (n=145) 

and non-limiting (NL) (n=123) conditions, and 90 DAS under both WL (n=133) and NL (n=143) 
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conditions. We have graphed the mean DS curve corresponding to each root architecture type, 

with a representative root image displayed beneath. The reference marker in the root images 

measured 11.50 mm at 7 DAS and 50.90 mm at 13 DAS. For the remaining images, the marker 

measured 24.26 mm.  
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Figure 3.2: The heatmap of Fréchet distance matrix confirmed that while AT1 through AT5 were 

distinct, each showed consistent internal similarity across varying growth stages and conditions. 

The heatmap of Fréchet distance matrix between the mean curve of each root architecture type 

across different growth stages: 7 days after sowing (DAS),13 DAS, 21 DAS, 42 DAS, 63 DAS 

under both water-limited (WL) and non-limiting (NL) conditions, and 90 DAS under both WL 

and NL conditions. Each pixel's color in the heatmap corresponds to the Fréchet distance 

between two root architecture types, with blue representing higher similarity and brown denoting 

greater dissimilarity. The dendrograms on the axes represent the hierarchical clustering of the 

clusters based on their Fréchet distances.
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Figure 3.3: Five root architecture types of DOR364 were observed at mature stage (R8-R9, 84 

days of sowing) under nonlimiting (NL, n=143) and water-limited (WL, n=118) conditions. We 

have graphed the mean DS curve corresponding to each root architecture type, with a 

representative root image displayed beneath. The reference marker in the root images measured 

24.26 mm. 
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Figure 3.4 The heatmap of Fréchet distance matrix showed that five root architecture types were 

similar between SEQ7 and DOR364 at mature stages (R8-R9). The heatmap of Fréchet distance 

matrix between the mean curve of each root architecture type of SEQ7 and DOR364 at mature 

stages (R8-R9). Each pixel's color in the heatmap corresponds to the Fréchet distance between 

two root architecture types, with blue representing higher similarity and brown denoting greater 

dissimilarity. The dendrograms on the axes represent the hierarchical clustering of the clusters 

based on their Fréchet distances. 
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Figure 3.5: The composition of root architecture types of SEQ7 changed over growth stages and 

conditions. This figure represents the composition of root architecture type of SEQ7 at various 

growth stages and conditions, including 7 days after sowing (DAS) (n=100), 13 DAS (n=170), 

21 DAS (n=127), 42 DAS (n=138), 63 DAS under both water-limited (WL) (n=145) and non-

limiting (NL) (n=123) conditions, and 90 DAS under both WL (n=143) and NL (n=133) 

conditions. We used the chi-square test of homogeneity to compare the different composition of 

root architecture types between two growth stages or condition. The statistical significance is 

denoted as follows: **P ≤ 0.01, * P ≤ 0.05 and ns: not significant.
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Figure 3.6: Shoot biomass, root biomass and root-shoot ratio were mostly not correlated with 

root architecture types (AT) but with growth stages. Line plots show the mean and standard error 
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of shoot biomass (A), root biomass (B), and root-shoot ratio (C) at 7 days after sowing (DAS) 

(n=100), 13 DAS (n=170), 21 DAS (n=127), 42 DAS (n=138), 63 DAS under both water-limited 

(WL) (n=145) and non-limiting (NL) (n=123) conditions, and 90 DAS under both WL (n=143) 

and NL (n=133). Boxplots depict the median of shoot biomass (D), root biomass (E) and root-

shoot ratio (F) for each AT bounded by the first and third quantile within each growth stage. We 

applied Kruskal-Wallis's test and pairwise Wilcoxon rank sum test to identify any significant 

differences in these traits among ATs. Different letters label ATs with significant differences, 

with significance threshold set as P < 0.05. The notation ns refers not significant.   
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Figure 3.7: The closest matched simulated root architecture model with root architecture types 

observed at 42 days of sowing (DAS). The blue line indicates the 80% depth of the DS curve 

from observed root architecture types at 42 DAS, while the orange line represents the DS curve 

of the corresponding simulated model. The dashed line represents the transformed curve of the 
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simulated root architecture model post-elastic registration. Refer to Figure S3.5 for detailed 

simulated root architecture model. D1 was calculated as the Euclidean distance between the 

transformed DS curve of simulated root architecture and the mean DS curve the observed root 

architecture type, representing as a measure of alignment accuracy. D2 was calculated as the 

Euclidean distance between the original and transformed DS curves of the simulated root 

architecture, thereby quantifying the extent of the transformation. D1, D2 and geometric mean of 

D1 and D2 were reported in each plot.   
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Appendix B 

 

Figure S3.1: Top view schematic of the mesocosm system. We marked a total of 64 sensors (the 

green rectangle) with location coordinates on the x-y plane. For each location, we installed two 

sensors at 15.24 cm and 38.10 cm depth. The white bars represent the irrigation pipes. The entire 

mesocosm is divided into 4 irrigation plots.  
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Figure S3.2: The time-series experiment of SEQ7 in the mesocosm system. We planted SEQ7 in 

completely random design for 7, 13, 21, 42 days after sowing (DAS)and 63 DAS and 90 DAS 

under water-limited (WL) and non-limiting (NL) conditions.  
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Figure S3.3: The daily mean volumetric water content (vwc) across all growth stages and 

conditions. In this figure, the color key indicates the vwc values, with darker color representing 

lower vwc, and lighter color corresponding to higher vwc. “NL” denotes for non-limiting 

conditions, while “WL” denotes water-limited conditions. “DAS” is an abbreviation for days of 

sowing. 
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Figure S3.4: The five root architecture types of SEQ7 (Panel A) and DOR364 (Panel B) are 

presented from both field and mesocosm settings.The mean DS curves for each root architecture 

type are shown in the figure. Solid lines represent the root architecture types of both SEQ7 and 

DOR364 at the mature stage, 70 days after sowing (DAS), in the field, while dashed lines 

correspond to the mature stage root architecture types of DOR364 at 84 DAS and SEQ7 at 90 

DAS in the mesocosm system.  
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Figure S3.5: DS curves derived from 12 simulated root architecture models1 .These models varied 

in 3 root angles (Shallow, Fan, Deep) and 4 basal whorl numbers. We processed images of these 

models in DIRT to generate the DS curves. Note: Only 80% of the DS values were depicted21. 
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Table S3.1: Sample sizes across different root architecture types of SEQ7 during various growth 

stages and DOR364 at mature stage under each water condition. “NL” denotes for non-limiting 

conditions, while “WL” denotes water-limited conditions. “DAS” is an abbreviation for days of 

sowing.  

 
DAS AT1 AT2 AT3 AT4 AT5 Total 
SEQ7_7 19 5 36 22 18 100 
SEQ7_13 43 9 53 47 18 170 
SEQ7_21 49 33 15 27 3 127 
SEQ7_42 40 41 14 34 9 138 
SEQ7_63NL 39 33 25 14 12 123 
SEQ7_63WL 33 48 17 35 12 145 
SEQ7_90NL 44 40 20 22 7 133 
SEQ7_90WL 40 66 11 22 4 143 
DOR364_84NL 51 42 8 39 3 143 
DOR364_84WL 21 35 10 37 15 118 
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Table S3.2: The mean DS curve of SEQ7 is listed across growth stages and conditions. In the 

“AT” column, the first number represents the days after sowing. “NL” denotes for non-limiting 

condition, while “WL” denotes water-limited conditions. “AT” refers to the root architecture 

type. 

AT DS10 DS20 DS30 DS40 DS50 DS60 DS70 DS80 DS90 
7_AT1 1.135  1.553  1.687  1.762  1.847  1.981  2.069  2.000  1.778  
7_AT2 1.196  1.326  1.489  1.533  1.419  1.510  1.555  1.634  1.510  
7_AT3 1.274  1.735  2.042  2.264  2.393  2.481  2.571  2.530  2.083  
7_AT4 1.346  1.986  2.263  2.398  2.429  2.278  1.940  1.516  1.312  
7_AT5 1.466  2.260  2.745  3.046  3.282  3.396  3.242  2.772  1.843  
13_AT1 1.160  1.478  1.686  1.827  1.935  1.974  1.964  2.012  1.861  
13_AT2 1.151  1.636  1.630  1.718  1.790  1.682  1.585  1.445  1.415  
13_AT3 1.235  1.710  2.030  2.279  2.393  2.460  2.459  2.376  2.065  
13_AT4 1.425  1.970  2.228  2.363  2.336  2.239  1.914  1.604  1.263  
13_AT5 1.435  2.098  2.567  2.760  2.993  3.090  2.975  2.614  1.756  
21_AT1 1.080  1.405  1.634  1.732  1.832  1.914  1.989  1.986  1.777  
21_AT2 1.148  1.397  1.486  1.539  1.543  1.550  1.586  1.560  1.390  
21_AT3 1.185  1.603  1.883  2.084  2.223  2.388  2.437  2.482  2.143  
21_AT4 1.332  1.790  2.127  2.326  2.329  2.088  1.961  1.614  1.043  
21_AT5 1.654  1.940  2.389  2.998  3.263  3.203  3.015  2.498  1.159  
42_AT1 1.028  1.289  1.459  1.695  1.882  2.001  2.051  2.049  1.845  
42_AT2 1.128  1.346  1.513  1.500  1.495  1.525  1.545  1.548  1.342  
42_AT3 1.113  1.583  1.873  2.139  2.353  2.459  2.499  2.474  1.984  
42_AT4 1.479  1.916  2.241  2.348  2.257  1.993  1.691  1.378  1.204  
42_AT5 1.402  2.036  2.594  2.977  3.245  3.259  3.083  2.663  1.825  
63NL_AT1 1.094  1.365  1.580  1.777  1.867  1.939  2.015  2.045  1.860  
63NL_AT2 1.038  1.309  1.530  1.604  1.504  1.493  1.486  1.446  1.413  
63NL_AT3 1.241  1.611  1.870  2.112  2.351  2.577  2.758  2.679  1.957  
63NL_AT4 1.388  1.731  2.056  2.266  2.339  2.263  1.801  1.396  1.090  
63NL_AT5 1.632  2.214  2.664  2.886  3.135  3.332  3.141  2.332  1.428  
63WL_AT1 1.047  1.375  1.555  1.701  1.849  1.973  2.031  1.949  1.697  
63WL_AT2 1.226  1.444  1.464  1.415  1.459  1.474  1.444  1.455  1.301  
63WL_AT3 1.447  1.821  2.057  2.212  2.255  2.402  2.558  2.515  1.861  
63WL_AT4 1.573  2.002  2.228  2.362  2.378  2.198  1.840  1.320  1.068  
63WL_AT5 1.294  2.120  2.706  3.023  3.211  3.298  3.091  2.550  1.641  
90WL_AT1 1.004  1.296  1.555  1.719  1.874  1.990  2.046  2.031  1.904  
90WL_AT2 1.138  1.367  1.440  1.463  1.490  1.459  1.390  1.326  1.301  
90WL_AT3 1.244  1.714  1.992  2.234  2.342  2.493  2.597  2.673  2.454  
90WL_AT4 1.634  2.037  2.272  2.365  2.321  2.301  1.951  1.482  1.063  
90WL_AT5 1.504  2.325  2.898  3.266  3.497  3.565  3.251  3.165  2.568  
90NL_AT1 1.094  1.412  1.604  1.765  1.858  1.935  2.006  2.076  1.943  
90NL_AT2 1.103  1.346  1.421  1.469  1.509  1.480  1.456  1.445  1.423  
90NL_AT3 1.340  1.697  1.914  2.120  2.267  2.417  2.521  2.421  2.035  
90NL_AT4 1.428  1.873  2.112  2.301  2.374  2.284  1.907  1.541  1.084  
90NL_AT5 1.750  2.377  2.859  3.127  3.268  3.355  3.215  2.463  0.985  
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Table S3.3: The value of mean DS curve of DOR364 is listed under non-limiting (NL) and 

water-limited (WL) conditions.

  

AT DS10 DS20 DS30 DS40 DS50 DS60 DS70 DS80 DS90 
NL_AT1 0.977  1.241  1.391  1.530  1.660  1.785  1.881  1.963  1.896  
NL_AT2 1.094  1.342  1.392  1.448  1.461  1.428  1.357  1.285  1.288  
NL_AT3 1.307  1.681  1.997  2.302  2.583  2.764  2.847  2.892  2.429  
NL_AT4 1.228  1.615  1.852  2.020  2.098  2.061  1.892  1.518  1.022  
NL_AT5 1.834  2.079  2.446  2.813  3.062  3.073  2.813  2.110  0.955  
WL_AT1 1.162  1.381  1.466  1.549  1.646  1.803  1.954  2.028  1.808  
WL_AT2 1.235  1.414  1.464  1.485  1.427  1.332  1.334  1.296  1.190  
WL_AT3 1.029  1.534  1.782  2.050  2.344  2.617  2.825  2.767  2.154  
WL_AT4 1.261  1.609  1.863  2.014  2.109  2.118  1.916  1.599  1.231  
WL_AT5 1.799  2.359  2.661  2.755  2.839  2.797  2.523  2.088  1.339  
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Table S3.4: Chi-square test of homogeneity for comparing compositions of root architecture 

types between growth stages and conditions. “NL” denotes for non-limiting conditions, while 

“WL” denotes water-limited conditions. 

 

 

  

Comparisons Chi-Squared P value 
7 vs 13 4.920958 0.295504 
13 vs 21  46.20348 2.23E-09 
21 vs 42  5.165034 0.270779 
42 vs 63NL 11.91929 0.017962 
63NL vs 90NL 4.237401 0.374829 
42 vs 63WL 1.783128 0.775568 
63WL vs 90WL 11.75064 0.019305 
90WL vs 90NL 9.649268 0.046769 
63WL vs 63NL 12.077 0.016788 
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Table S3.5: The summary statistics for shoot biomass, root biomass and shoot/root ratio of SEQ7 

over growth stages and conditions. “NL” denotes for non-limiting conditions, while “WL” 

denotes water-limited conditions.  

Shoot Biomass 
    

Growth stage and 
conditions 

Mean Standard 
Deviation 

Standard 
Error 

Median Interquartile 
range 

7 0.103  0.031  0.003  0.100  0.040  
13 0.196  0.072  0.005  0.190  0.090  
21 2.552  1.471  0.131  2.420  1.345  
42 10.486  5.903  0.502  10.180  7.573  
63NL 34.157  18.274  1.648  33.550  26.370  
63WL 24.152  12.073  1.003  22.200  14.220  
90NL 46.127  38.375  3.328  31.720  50.840  
90WL 13.166  12.165  1.017  9.130  11.285  
Root Biomass 

    

Growth stage and 
conditions 

Mean Standard 
Deviation 

Standard 
Error 

Median Interquartile 
range 

7 0.025  0.014  0.001  0.020  0.010  
13 0.076  0.034  0.003  0.080  0.040  
21 0.375  0.124  0.011  0.360  0.165  
42 0.721  0.352  0.030  0.723  0.445  
63NL 1.647  0.756  0.068  1.580  0.850  
63WL 1.130  0.648  0.054  1.043  0.770  
90NL 1.334  0.867  0.075  1.143  1.060  
90WL 0.753  0.522  0.044  0.613  0.400  
Root-Shoot Ratio 

    

Growth stage and 
conditions 

Mean Standard 
Deviation 

Standard 
Error 

Median Interquartile 
range 

7 0.272  0.192  0.019  0.222  0.167  
13 0.436  0.318  0.024  0.412  0.200  
21 0.167  0.080  0.007  0.155  0.051  
42 0.079  0.037  0.003  0.070  0.029  
63NL 0.059  0.039  0.004  0.048  0.029  
63WL 0.046  0.015  0.001  0.045  0.015  
90NL 0.041  0.041  0.004  0.032  0.020  
90WL 0.079  0.051  0.004  0.067  0.044  
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Table S3.6: Geometric mean values of D1 and D2 for each alignment of the mean DS curve at 42 

DAS for observed root architecture types and simulated root architecture models121. Note: D1 

represents the Euclidean distance between the transformed curve and the mean DS curve, 

indicating alignment accuracy after transformation. D2 denotes the Euclidean distance between 

the original simulated DS curve and its post-elastic registration transformation. 

AT 
Simulated Root 
Architecture 
Model 

D1 D2 Geometric Mean 

1 1 0.954  1.329  1.126  
1 2 0.161  1.336  0.464  
1 3 0.289  1.599  0.680  
1 4 0.307  1.254  0.620  
1 5 0.134  1.459  0.442  
1 6 0.542  1.559  0.920  
1 7 0.247  1.251  0.556  
1 8 0.247  1.688  0.646  
1 9 0.382  2.547  0.986  
1 10 0.580  1.567  0.953  
1 11 0.206  1.498  0.555  
1 12 0.248  2.022  0.708  
2 1 0.207  1.434  0.544  
2 2 0.159  1.266  0.448  
2 3 0.133  0.930  0.352  
2 4 0.161  0.870  0.374  
2 5 0.137  1.207  0.407  
2 6 0.162  0.627  0.318  
2 7 0.161  0.425  0.261  
2 8 0.161  0.828  0.365  
2 9 0.176  3.372  0.770  
2 10 0.062  0.500  0.176  
2 11 0.176  0.727  0.357  
2 12 0.211  0.992  0.458  
3 1 1.193  2.233  1.632  
3 2 0.220  2.374  0.722  
3 3 0.155  2.641  0.639  
3 4 0.275  2.207  0.780  
3 5 0.178  2.558  0.674  
3 6 0.580  2.443  1.191  
3 7 0.378  2.323  0.937  
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Table S 3.6 (continued) 

3 8 0.246  2.659  0.809  
3 9 0.553  1.699  0.969  
3 10 0.795  2.415  1.385  
3 11 0.255  2.473  0.794  
3 12 0.484  2.909  1.187  
4 1 1.106  2.977  1.814  
4 2 1.225  2.652  1.803  
4 3 1.145  2.574  1.717  
4 4 0.764  2.197  1.295  
4 5 1.225  2.735  1.831  
4 6 0.443  1.898  0.917  
4 7 0.929  2.046  1.379  
4 8 0.764  2.525  1.389  
4 9 0.533  1.691  0.949  
4 10 0.779  1.424  1.053  
4 11 0.798  2.062  1.283  
4 12 0.470  2.421  1.067  
5 1 1.555  3.762  2.419  
5 2 0.925  3.891  1.897  
5 3 0.429  4.387  1.372  
5 4 0.305  3.795  1.075  
5 5 0.743  4.251  1.778  
5 6 0.329  4.121  1.165  
5 7 0.562  3.941  1.489  
5 8 0.374  4.300  1.268  
5 9 0.392  1.015  0.631  
5 10 1.521  3.299  2.240  
5 11 0.492  3.819  1.371  
5 12 0.780  4.173  1.804  
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CHAPTER 4 

EVALUATION OF POPULATION FITNESS OF COMMON BEAN MONOCULTURE AND 

MIXTURE 

Introduction 

In agricultural systems, understanding plant-plant interactions is crucial for optimizing 

crop yield and resource use. Two primary theories—resource partitioning and kin selection—

provide a framework for understanding these interactions, but often yield contradictory 

predictions. Resource partitioning theory assumes that individuals of the same species or 

genotype generally exhibit similar phenotypes and, hence, have similar resource needs1–3. This 

could intensify competition within the same species or genotype compared to competition 

between different species or genotypes, and potentially lead to decreased overall fitness in 

populations comprised of closely related genotypes4. At the same time, physiological and 

agronomic experiments have demonstrated that avoidance between genetically distinct plants can 

result in increased combined yield5–7. This improvement often occurs because these plants have 

differing traits and resource requirements, allowing for more effective resource capture. An 

example of such enhanced yield through polycultures is the intercropping of squash, common 

bean and maize, which utilize differences in root architecture and spatial root segregation for 

synergistic resource acquisition8. 

Conversely, kin selection theory argues that plants are capable of recognizing the identity 

of their neighbors, modulating their competitive behavior based on the genetic relatedness of 

neighboring plants9–11. Interactions with genetically similar individuals may lead to reduced 



 

97 
 

competition and, consequently, increased group fitness, suggesting that populations of closely 

related genotypes could exhibit higher overall fitness than genetically distinct populations12. 

Supporting this theory, ecological studies have shown that closely related plants showed less 

competitive traits, such as decreased root allocation, less branch density and lower nutrient and 

water uptake, among themselves compared to distantly related ones9,13–15. Molecular data further 

supports the kin selection theory. A study on rice genotypes grown in transparent gel media 

revealed less competition and larger distance between roots of related genotypes scavenging for 

a limiting nutrition resource16.  

Both the niche partition and kin selection theories have limitations. The niche partition 

theory has an underlying assumption that genetically similar individuals have similar phenotype 

and resource use, thus may overlook the intra-genotypic or intra-species variation. The 

observations presented in Chapter 2 and Chapter 3 challenge this assumption, revealing that a 

single common bean genotype has five distinct root architecture types with different associated 

functions.  

Empirical research supporting kin selection in plants often concludes that kin groups 

exhibit less competitive traits and higher group fitness compared to non-kin groups9,17–19. 

However, the observed higher fitness in kin groups could be alternatively explained by variation 

in plant size within non-kin groups20. Specifically, Jensen's inequality suggests that, when plant 

size and fitness measured by seed number follow a decelerating function and the plants in non-

kin groups have large size asymmetry, non-kin groups will have lower group fitness than those in 

kin groups20.  

Chapter 4 focuses on the population fitness outcomes of three agricultural planting 

scenarios: monocultures of common bean genotypes SEQ7 and DOR364, and a mixture of both. 
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Following on Chapters 2 and 3 that suggest a pre-determined root architecture diversity with 

associated function, we ask how a single genotype can benefit from multiple root architecture 

types. The primary objective of this chapter is to investigate the fitness outcomes in these three 

planting scenarios, particularly when plants interact with genetically similar or varied neighbors. 

This chapter further examine the differences in belowground competition, as quantified by the 

root-shoot ratio—a measure of plant belowground competitive ability9,17,21, between 

monocultures and mixtures under both water-limited (WL) and nutrient-limited (NL) conditions. 

The root-shoot ratio indicates how a plant allocates its resources between root and shoot growth. 

In environments where belowground resources (such as water and nutrients) are limited, plants 

may allocate more resources to root growth to enhance their competitive ability for these limiting 

resources22. The additional analysis includes the compositions of root architecture types between 

the monocultures and mixtures under both WL and NL conditions to understand how different 

genotypes adjust their root architecture types for resource uptake in different planting scenarios.   

Materials and Methods 

Plant growth condition and experimental design  

Mixtures of DOR364 and SEQ7 under NL and WL conditions were planted in the 

mesocosm system at The University of Georgia Botany greenhouse in Athens, GA. Genotypes 

DOR364 and SEQ7 were planted in a chessboard pattern to ensure that each plant was 

surrounded by four neighbors of the other genotype. The specific growth media and dimension 

of the mesocosm system was detailed in Chapter 3. The experimental conditions, NL and WL, 

were implemented as previously described in Chapter 3. For the WL condition, we initially 

maintained the irrigation threshold at an average 30% volumetric water content (vwc), 

subsequently changed it to 20% vwc during the vine developmental stages, thereby limiting the 
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water supply for the remainder of the growth period. To represent monoculture in this study, we 

used data from the SEQ7 and DOR364 experiment described in Chapter 3, where both the SEQ7 

and DOR364 genotypes were grown separately to full maturity. The daily average vwc for these 

three planting scenarios were plotted in the Figure S4.1: The daily mean volumetric water 

content (vwc) across planting scenarios. In this figure, the color key indicates the VWC values, 

with darker color representing lower VWC, and lighter color corresponding to higher VWC. 

“NL” denotes for non-limiting conditions, while “WL” denotes water-limited conditions. Mix 

refers to mixture and Mono refers monoculture. The mixture of SEQ7 and DOR364 was grown 

for 93 days, SEQ7 monoculture for 90 days, and DOR364 monoculture for 84 days. It is noted 

that DOR364 reached maturity earlier than SEQ7 (personal observation).. 

Trait measurement 

We harvested the mixtures of DOR364 and SEQ7at 94 DAS when plants reached full 

maturity. The standard legume Shovelomics method23 and the DIRT software24,25 was used to 

extract root architecture traits. Both shoot and root tissues were dried in an oven at 60 ºC for a 

minimum of 72 hours before weighing them on a digital balance (Model CQT202, Readability 

0.01g, Adam Equipment, Oxford, CT, USA). For the monoculture of SEQ7, we used the Seed 

Counter Android app26 to quantify the seed number per plant for majority of samples. For 

samples not easily detected by the app, we manually counted the seeds. For both the monoculture 

of DOR364 and mixtures of DOR364 and SEQ7, the seed numbers were counted for each 

individual plant using the python package GridFree27. We quantified the population's fitness by 

measuring the average number of seeds per plant across various planting scenarios and water 

conditions. 
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Statistical analysis  

We applied the DIRT-Pop pipeline developed in Chapter 2 to cluster the root architecture 

types of mixtures of DOR364 and SEQ7. The clustering result for monocultures of SEQ7 and 

DOR364 were obtained from Chapter 3. Once root architecture types were assigned, we 

employed the Fréchet pairwise distance matrix across both monoculture and mixture for 

DOR364 and SEQ7. This analysis allowed us to correlate the identified root architecture types 

with the simulated root architecture models discussed in Chapter 3. Subsequent statistical 

analyses were conducted in R (v 4.2.0)28 for testing any difference in the composition of root 

architecture types, seed number and root-shoot ratio between monoculture and mixture for each 

genotype and water condition. First, we used the pairwise Chi-square test of homogeneity to 

determine whether the composition of root architecture types was uniform under different 

planting scenarios and conditions. We then used the non-parametric Wilcoxon rank-sum test to 

test for significant differences in seed number per plant and root-shoot ratio between 

monoculture and mixture for each genotype and water condition. 

Results 

Mixtures of SEQ7 and DOR364 exhibited greater population fitness than monocultures, with 

distinct fitness responses observed within each genotype. 

In assessing population fitness through average seed number per plant, the mixture of 

SEQ7 and DOR364 (mean=133.33, NL; mean=102.31, WL) had significantly higher fitness than 

SEQ7 monoculture (mean=68.95, NL; mean=24.68, WL) and DOR364 (mean=96.97, NL; 

mean=76.25, WL) under both water conditions (Wilcoxon rank-sum test, P <0.05; Figure 4.1 & 

Table S4.2). The fitness of DOR364 was significantly lower in mixture (mean=87.10, NL; 

mean=71.62, WL) than in monoculture (mean=96.97, NL; mean=76.25, WL) under both water 
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conditions (Wilcoxon rank-sum test, P <0.05; Figure 4.2 & Table S4.2). In contrast, while SEQ7 

showed a significant increase in fitness in mixtures (mean=175.89, NL; mean=127.25, WL) 

compared to its fitness in monocultures (mean=68.95, NL; mean=24.68, WL) for both water 

conditions (Wilcoxon rank-sum test, P <0.05; Figure 4.2 & Table S4.2).  

SEQ7 and DOR364 showed differences in change of root-shoot ratio and proportions of root 

architecture types in response to different planting scenarios.  

In examining the root-shoot ratios of SEQ7 and DOR364 in monocultures and mixtures 

(Figure 4.4), DOR364 significantly increased root-shoot ratio in mixture and monoculture under 

both NL (mean=0.09, mixture; mean=0.049, monoculture) and WL (mean=0.09, mixture; 

mean=0.053, monoculture) conditions (Wilcoxon rank-sum test, P <0.05). SEQ7 maintained a 

similar root-shoot ratio between mixture and monoculture under NL conditions (mean=0.037, 

mixture; mean=0.040, monoculture) conditions. However, under WL conditions, SEQ7 

demonstrated a significant decrease in root-shoot ratio in mixtures compared to monocultures 

(mean=0.038 in mixture; mean=0.079 in monoculture; Wilcoxon rank-sum test, P < 0.05). 

Regarding the root architecture types, DOR364 showed a significant difference in the 

composition of root architecture types between monocultures and mixtures under NL conditions 

(Figure 4.6; Chi-square test: P < 0.05) but was not under WL (Figure 4.6; Chi-square test: P 

=0.273) conditions. Under both WL and NL conditions, DOR364 exhibited an increase in AT2 

root architecture in mixtures by 9.53% and 8.56%, respectively (Figure 4.6). On the other hand, 

SEQ7 showed a significant shift in the composition of root architecture types between 

monocultures and mixtures under WL conditions (Figure 4.6; Chi-square test: P <0.05) but not 

under NL conditions (Figure 4.6; Chi-square test: P =0.257). Specifically, SEQ7 showed a 
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decrease in AT2 by 14.58% (WL) and 9.45% (NL) in mixtures, accompanied by a decline in 

AT3 by 18.92% (WL) and 9.45% (NL) in mixtures, respectively (Figure 4.6).  

Using the linked root architecture model results in Chapter3, we grouped the root 

architecture types of DOR364 and SEQ7 into three main categories: deep (AT3), fan (AT1 and 

AT4), and shallow (AT2 and AT5). Under the NL condition, DOR364 increased proportion of 

shallow root category by 15.08%, slightly increased proportion of deep root category by 4.75%, 

while decreased proportion of fan root category by 19.83% in the mixture than monoculture 

(Figure 4.3 & Figure 4.7). While under the WL condition, DOR364 increased shallow root 

category by 1.86%, fan root category by 4.69%, but decreased deep root category by 6.55% in 

the mixture than the monoculture (Figure 4.3 & Figure 4.7). For SEQ7, under NL conditions, 

there was a decrease in shallow root category by 6.77%, a decrease in fan root category by 

3.59%, and an increase in deep root category by 10.36% in mixtures compared to monocultures 

(Figure 4.3 & Figure 4.7). Under WL conditions, the pattern intensified, with decreases in 

shallow (8.33%) and fan (10.54%) root category, coupled with a significant increase in deep root 

category by 18.87% (Figure 4.3 & Figure 4.7). 

Discussion 

In this chapter, the differential root allocation strategies and architectural changes 

exhibited by SEQ7 and DOR364 when grown as monoculture versus mixture offer insights into 

the complexity of plant competition dynamics and their implications in agriculture. SEQ7 

exhibited a tendency to either maintain or reduce its root biomass allocation in mixture compared 

to monoculture under both NL and WL conditions (Figure 4.3 & Table S4.2). In contrast, 

DOR364 consistently increased its root biomass allocation in mixture compared to monoculture 

under both conditions (Figure 4.3 & Table S4.2). Interestingly, the corresponding population 
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fitness of DOR364 decreased by 10.17% under the NL and 6.04% under the WL condition in 

mixture compared to monoculture, while the population fitness of SEQ7 increased dramatically 

by 155.10% under the NL condition and 415.60% under the WL condition in mixture than 

monoculture. Together, the combined population fitness of the mixture SEQ7 and DOR364 were 

significantly higher than its monocultures DOR364 and SEQ7 (Table S 4.2, Table S 4.3, Figure 

4.1). This could be attributed to the average seed number per plant of SEQ7 increasing more 

substantially than the decrease observed in DOR364's average seed number per plant, thus 

enhancing the overall fitness of the mixture over monocultures. These findings suggest that 

although DOR364 allocates more resources to root biomass in competition, this strategy does not 

confer a fitness advantage. The increased root proliferation maybe a cost of competition, as 

increased root biomass can be a trade-off with aboveground biomass, consequently fitness13,21. 

On the other hand, SEQ7, with its less or similar root allocation between monocultures and 

mixtures under both water condition, have a significant fitness benefit.  

Another notable observation was a difference in the composition of root architecture 

types of DOR364 and SEQ7, when plants were grown in monoculture or mixture.  Overall, when 

grown with DOR364, SEQ7 predominantly shifted towards producing a higher proportion of 

deep root phenotype under both water conditions, notably doubling the proportion under WL 

conditions. In contrast, when growing with SEQ7, DOR364 tended to produce more shallow root 

phenotype under the NL condition and reduced its deep root phenotype proportion under the WL 

condition. These findings suggest both genotypes, SEQ7 and DOR364, appear to employ 

strategies to avoid acquisition for same soil resources, with DOR364 focusing on topsoil and 

SEQ7 targeting subsoil resources when in mixture. This differentiation in resource utilization 
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suggests a form of niche partitioning, allowing both to coexist by avoiding direct competition in 

the soil layers.  

To summarize, when in mixture, DOR364 increased root allocation, investing more in 

root growth for competition than in monoculture when interacting with its own kind. The 

increased root allocations in mixture in line with kin selection theory prediction, which anticipate 

intensified competition in mixture9,19. However, the more investment root growth for 

competition may represent a fitness trade-off for DOR364. In comparison, SEQ7 either 

maintained or decreased root allocation in the presence of DOR364, which is more consistent 

with niche partitioning theory prediction. Architecturally, DOR364 and SEQ7 showed 

complementary root architecture categories to avoid competition. Specifically, SEQ7 increased 

frequency of deep root architecture phenotype potentially advantageous for water acquisition, 

particularly under stress conditions. This shift in root architecture type within SEQ7’s 

population, as opposed to a mere change in allocation, contribute to its higher fitness levels when 

competing with DOR364. Chapter 3 also showed root architectural change was independent of 

root allocation change, may not be a cost of fitness, implying that changing the fraction of root 

architecture types could be a more effective strategy for competing with other plants than 

changing how resources are allocated to roots. The differential responses of DOR364 and SEQ7, 

suggest that neither kin selection nor niche partitioning theories can fully account for the 

complexity of plant root interactions. The fitness outcomes of plant interactions also depend on 

the specific genotypes involved6,12,29–31. Differences in genotypes regarding quantitative traits 

such as plant size, growth rate, and allocation can lead to variations in competitive abilities. The 

fitness outcomes of monoculture and mixture can range from positive to neutral or even 
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negative32. This variability suggests a continuum of fitness outcome influenced by both kin 

selection and niche differentiation, rather than dichotomy. 
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Figures  

 

Figure 4.1: Seed number per plant of mixture of DOR364 and SEQ7 were higher than 

monoculture of DOR364 and SEQ7. Boxplots depict the median of seed number per plant in 

each planting scenario bounded by the first and third quantile. We applied the pairwise Wilcoxon 

rank sum test to identify any significant differences in seed number among planting scenarios. 

Different letters label planting scenarios with significant differences, with significance threshold 

set as P < 0.05.   
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Figure 4.2: Seed number per plant of DOR364 (A) and SEQ7 (B) were different between mixture 

and monoculture planting scenarios under between non-limiting (NL) and water-limited (WL) 

conditions. Boxplots depict the median of seed number per plant by the first and third quantile 

between mixture and monoculture planting scenarios. We applied the Wilcoxon rank-sum test to 

identify any significant differences in seed number per plant between the planting scenarios 

under each condition. Different letters label planting scenarios with significant differences, with 

significance threshold set as P < 0.05.   
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Figure 4.3: Comparison of root-shoot ratio of DOR364 (A) and SEQ7 (B) between mixture and 

monoculture planting scenarios under non-limiting (NL) and water-limited (WL) conditions. 

Boxplots depict the median of root-shoot ratio by the first and third quantile between mixture 

and monoculture planting scenarios. We applied the Wilcoxon rank-sum test to identify any 

significant differences in root-shoot ratio between the planting scenarios under each condition. 

Different letters label planting scenarios with significant differences, with significance threshold 

set as P < 0.05.   
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Figure 4.4: Five root architecture types of SEQ7 and DOR364 were observed across planting 

scenarios (monoculture and mixture). We have graphed the mean DS curve corresponding to 

each root architecture type: DOR364 in monoculture (Panel A, n=261; DOR364 in mixture 

(Panel B, n=110); SEQ7 in monoculture (Panel C, n=276)); SEQ7 in mixture (Panel D, n=127). 

with a representative root image displayed beneath. The diameter of reference marker in the root 

images measured 24.26 mm. 
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Figure 4.5: The heatmap of Fréchet distance matrix confirmed that while AT1 through AT5 were 

distinct, each showed consistent internal similarity across both monoculture and mixture for 

DOR364 (panel A) and SEQ7 (panel B). The heatmap depicts the Fréchet distances between the 

mean curves of each root architecture type in different planting scenarios. Each pixel's color in 

the heatmap corresponds to the Fréchet distance between two root architecture types, with blue 

representing higher similarity and brown denoting greater dissimilarity. The dendrograms on the 

axes represent the hierarchical clustering of the clusters based on their Fréchet distances.  
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Figure 4.6: The composition of root architecture types of DOR364 (panel A) and SEQ7 (panel B) 

between planting scenarios (Mix: mixture and Mono: monoculture) and conditions (WL: Water-

limited and NL: Non-limiting). The sample size for each planting scenario and condition of each 

genotype were detailed in Table S4.1. We used the chi-square test of homogeneity to compare 

the different distribution of root architecture types between planting scenarios for each genotype. 

The statistical significance is denoted as follows: **P ≤ 0.01, * P ≤ 0.05, • P<0.1 and ns: not 

significant.  
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Figure 4.7: Percentage change in root architecture categories for SEQ7 and DOR364 when 

comparing mixtures to monocultures. Root architecture types were categorized based on Chapter 

3's findings into three main models: Deep (AT3 with 3 whorls), Fan (AT1 with 1 whorl, AT4 

with 2 whorls), and Shallow (AT2 with 2 whorls, AT5 with 1 whorl). The percentage changes 

were determined by subtracting the proportions of each root architecture type in mixtures to 

those in monocultures. 

  



 

118 
 

Appendix C 

 

Figure S4.1: The daily mean volumetric water content (vwc) across planting scenarios. In this 

figure, the color key indicates the VWC values, with darker color representing lower VWC, and 

lighter color corresponding to higher VWC. “NL” denotes for non-limiting conditions, while 

“WL” denotes water-limited conditions. Mix refers to mixture and Mono refers monoculture. 

The mixture of SEQ7 and DOR364 was grown for 93 days, SEQ7 monoculture for 90 days, and 

DOR364 monoculture for 84 days. It is noted that DOR364 reached maturity earlier than SEQ7 

(personal observation).  
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Table S4.1: Sample sizes across different root architecture types of DOR364 and SEQ7 under 

various planting scenarios and conditions. 'NL' represents non-limiting conditions, while 'WL' 

represents water-limited conditions. 'Mix' means mixture and 'Mono' means monoculture.  
 

AT1 AT2 AT3 AT4 AT5 Total 
Mix_NL_DOR364 13 22 6 12 5 58 
Mix_WL_DOR364 11 20 1 17 3 52 
Mono_NL_DOR364 51 42 8 39 3 143 
Mono_WL_DOR364 21 35 10 37 15 118 
Mix_NL_SEQ7 22 13 16 7 5 63 
Mix_WL_SEQ7 14 20 17 7 6 64 
Mono_NL_SEQ7 44 40 20 22 7                                  133 
Mono_WL_SEQ7 40 66 11 22 4 143 
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Table S4.2: The summary statistics of seed number per plant and root-shoot ratio of DOR364 

and SEQ7 over planting scenarios and conditions. 'NL' denotes for non-limiting conditions, 

while 'WL' denotes water-limited conditions. Mixed denotes mixed-cropping, while Mono 

denotes mono-cropping. 

 
Trait Condition Planting & 

Genotype 
Mean Median Standard 

Error 
Standard 
Deviation 

Seed 
Number 
Per Plant 

NL MixedDOR364 87.10  70.50  7.76  59.10  
NL MixedSEQ7 175.89  158.00  12.96  102.89  
NL MonoDOR364 96.97  91.00  3.28  39.27  
NL MonoSEQ7 68.95  51.00  4.97  57.30  
WL MixedDOR364 71.62  65.00  5.47  39.42  
WL MixedSEQ7 127.25  107.00  9.07  72.52  
WL MonoDOR364 76.25  71.50  2.77  30.08  
WL MonoSEQ7 24.68  17.00  1.79  21.46  

Root-
Shoot  
Ratio 

NL MixedDOR364 0.090  0.077  0.070  0.009  
NL MixedSEQ7 0.037  0.034  0.016  0.002  
NL MonoDOR364 0.049  0.048  0.013  0.001  
NL MonoSEQ7 0.040  0.032  0.036  0.003  
WL MixedDOR364 0.090  0.075  0.073  0.010  
WL MixedSEQ7 0.038  0.036  0.013  0.002  
WL MonoDOR364 0.053  0.052  0.014  0.001  
WL MonoSEQ7 0.079  0.067  0.051  0.004  
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CHAPTER 5 

SUMMARY 

The central theme of this dissertation is the exploration of root architectural variation 

within plant populations. The common bean (Phaseolus vulgaris L.) was used as the model 

system to conduct studies in both field conditions and controlled environments. One aim was to 

confirm the existence of varied root architecture types within a single genotype across years and 

conditions and to understand how these types change in response to different water conditions 

and over the developmental stages. This dissertation also delved into the role these root 

architectural types play in plant competition and their subsequent impact on the fitness of the 

population in both monoculture and mixture, using two genotypes: DOR364 and SEQ7.  

Chapter 2 challenged the current sampling strategy, which typically involves sampling 

only a few plants per genotype, and proposed that to capture the full extent of root architectural 

variation, researchers need to increase their sample size per genotype. In Chapter 2, we 

developed a computational pipeline, DIRT-Pop as a computational tool to analyze the root 

architectural variation of one genotype. This pipeline employs the DS-curve, a mathematical 

shape descriptor, to capture the entire root architecture. Applying this pipeline to a field dataset 

encompassing three common bean genotypes, DOR364, L8857 and SEQ7, under non-limiting 

(NL) and water-limited (WL) conditions, we have identified five distinct root architecture types 

across these genotypes and conditions. Additionally, five root architecture types of three 

genotypes have changed their composition in response to the most varying water conditions. 

Based on this finding, we hypothesize that plants might adopt specific belowground strategies 
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including modifications in the composition of root architecture types to acclimate to 

environmental changes without impacting their aboveground growth. 

Chapter 3 introduced a newly developed mesocosm system that mimics field conditions 

with a sensor-controlled irrigation system, aiming to minimize environmental variations. By 

replicating the SEQ7 and DOR364 genotypes in this in a controlled mesocosm environment 

under WL and NL condition, we also observed the similar five root architecture types of SEQ7 

and DOR364, suggesting that environmental variation in the field may not be the primary driver 

of these root architecture types. The results showed that the composition of these root 

architecture types within the SEQ7 population varied under different water conditions and 

developmental stages. This observation supports the hypothesis presented in Chapter 2 that plant 

populations may adjust their root architecture types as a strategy to acclimate in response to 

environmental changes. We also discussed that the changes in the composition of root 

architecture types during the early developmental stages could be triggered by seed reserve 

depletion and the beginning of root interaction. Further observations indicated that the shoot 

biomass, root biomass, and their root-to-shoot ratio did not significantly differ among the root 

architecture types, indicating that the change in root architecture could be independent of 

changes in biomass allocation. By linking identified root architecture types with existing public 

root simulation models, we hypothesized that each observed root architecture type may have a 

unique function in nitrogen and phosphorus uptake under the non-limiting condition.  

In Chapters 2 and 3, we identified the presence of five root architecture types within a 

single genotype of the common bean, raising the questions about the fitness benefits of such 

diverse root architecture of one genotype when interacting with either with itself or with a 

different genotype as a neighbor. To address this, Chapter 4 further investigated how root 



 

123 
 

architecture types and biomass allocation impact fitness outcome in monoculture and mixture 

under WL and NL conditions, using SEQ7 and DOR364 genotypes. This exploration, through 

the lens of resource partitioning and kin selection theories, shed light on plant-plant interactions. 

The results showed that mixtures of these two genotypes had higher fitness compared to 

monocultures, primarily due to the significant fitness increase observed in SEQ7, in contrast to 

the fitness decrease in DOR364. Specifically, SEQ7 reduced root biomass allocation and 

increased the proportion of deep-root phenotypes in mixtures compared to monocultures, a 

strategy that significantly increased SEQ7's fitness. Conversely, DOR364 allocated more 

resources to root biomass and increased the proportion of shallow-root phenotypes in the 

mixture, which came at a cost to its short-term fitness. The different responses of DOR364 and 

SEQ7 in terms of root allocation and root architecture type, along with the observed fitness 

outcomes in monoculture and mixture, suggest that the two theories may not fully capture the 

complexities of root interactions. This indicates a need for further exploration into the 

mechanisms underlying these interactions and their consequences for plant fitness and ecosystem 

dynamics. 

In the end, we would introduce the phenotypic spectrum framework (Figure 5.1) to study 

the diversity of crop roots. This framework serves as an extension to the existing phenotypic 

plasticity framework. The traditional phenotypic plasticity framework assume that a single 

genotype has a common root architecture (or ideotype) in a given environment. By measuring 

the mean of a particular root trait across various environments with significant differences, we 

can observe that the genotype exhibits phenotypic plasticity. However, the phenotypic spectrum 

framework assumes a single genotype can express a finite number of root architecture types 

within the same environmental context. This framework shifts the focus from assessing mean 
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trait variations to examining the ratios of distinct root architecture types within a genotype. A 

significant shift in these ratios across different environments is interpreted as the genotype’s 

acclimatation strategy to environmental changes. The phenotypic spectrum categorizes 

phenotypic variation into several types, that goes beyond mere average trait analyses. Such a 

perspective allows for a more comprehensive understanding of how genotypes adapt to 

environmental challenges.  

However, there are several limitations and future directions that can help us better 

understand root architectural variation and their implication in agriculture. Below are some 

examples of what these limitations and possible areas of exploration could be.  

First, the DS curve used in DIRT-Pop Pipeline only measure the change of normalized 

root width over the rooting depth, which does not include information about lateral root branch 

density, number of basal roots and so on. The introduction of a new shape descriptor from the 

Dirt3D platform, which calculates area accumulation over depth without normalization, presents 

a promising avenue for better categorizing root architecture types1. Further development of 

descriptors that capture details like root branch patterns could enrich our understanding of these 

root architectural variation, potentially revealing a broader spectrum of root architecture types 

identified for crop roots.  

Second, Chapter 3 used the published root architecture models to infer the nutrient uptake 

function of each root architecture type. These simulated root architecture models were generated 

using the average parameters (number of basal whorls, top root angle, lateral root branch density) 

from several samples per genotype and no variation in adventitious shoot2. Thus, the simulation 

model may not reflect the range of diverse root architecture type observed in the real world 

setting. As previously mentioned, the shape descriptor employed in the Dirt-Pop pipeline lacks 
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information regarding the number of basal roots and the density of lateral root branching. 

Consequently, the DS curves of some of simulated root architecture models appear similar, 

which may hinder the nutrient uptake function prediction. To improve inferring nutrient uptake 

function of root architecture types from the root architecture models, it is necessary to develop 

root architecture models and shape descriptors that more represent the real-world root systems. 

Given that root architecture types may be linked to specific nutrient uptake functions, such 

differences could influence the nutrient contents in seeds. We sent a subset of seeds from the 

SEQ7 genotype at 90 DAS under both water conditions was sent to the University of Georgia 

Extension Ag & Environmental Services Lab for macronutrients (Calcium, Ca; Sulfur, S; 

Nitrogen, N; Phosphorus, P; Magnesium, Mg; Potassium, K) and micronutrients (Boron, B; 

Copper, Cu; Iron, Fe; Manganese, Mn; Molybdenum, Mo; Chlorine, Cl) analysis. A preliminary 

analysis of macronutrients and micronutrients in the seed content data for each root architecture 

type within SEQ7 revealed distinctive patterns (Figure 5.2). However, due to the small sample 

size, the differences in seed content across root architecture types were not statistically 

significant (Figure 5.3). Nonetheless, this observation offers a potential direction for future 

research, particularly in exploring how root architecture might influence seed nutrient content. 

As demonstrated in Chapters 2 and 3, root architecture types were not correlated with 

aboveground biomass, suggesting that enhancing crop nutrient profiles through root architecture 

could offer a sustainable solution to improve food quality without the trade-off of reduced 

productivity.  

Chapter 4 presented the different responses of DOR364 and SEQ7 in terms of root 

allocation and root architecture type, along with the observed fitness outcomes in monoculture 

and mixture of these two genotypes. SEQ7 showed more root avoidance in mixture than 
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monoculture, while DOR364 showed more root avoidance in monoculture than in mixture. This 

indicates a genotypic variation in adopting strategies of avoidance or competition when in 

response to in monoculture or mixed with a different genotype. According to the niche partition 

theory, intercropping different genotypes or species to exploit differences in spatial segregation 

and resource uptake, thereby avoid direct competition, achieving higher yields. For instance, 

successfully intercropping legumes with cereals demonstrates how niche partitioning can 

enhance grain production through more complete resource utilization in nitrogen3. However, not 

all intercropping systems guarantee yield or fitness benefits; this depends on the specific species 

or genotypes involved, the sowing ratio, and the growing conditions4. In contrast, kin selection 

theory advocates for the breeding of less competitive genotypes in monoculture, based on the 

plant’s ability to recognize the identity of their neighbors and reduce competition with their 

closely related kin5,6.  

The variability in genotype responses underscores the importance of context-specific 

strategies, suggesting that the success of such approaches, either in intercropping of multiple 

crop species or genotypes or in breeding for less competitive traits in monoculture, will depend 

on careful consideration of genetic compatibility, environmental conditions, and crop 

management practices. Future research should aim to further elucidate the genetic basis of plant 

avoidance and competition, providing a more nuanced understanding of plant behavior that can 

inform the development of more resilient and productive agricultural systems. 
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Figures 

 

Figure 5.1: The comparison of phenotypic plasticity framework and phenotypic spectrum 

framework. The phenotypic plasticity framework assume that a single genotype has a common 

root architecture (or ideotype) in a given environment. By measuring the mean of a particular 

root trait across various environments with significant differences indicating the genotype 

exhibits phenotypic plasticity. The phenotypic spectrum framework assumes a single genotype 

can express a finite number of root architecture types within the same environmental context, by 

examining the ratios of distinct root architecture types within a genotype, a significant shift in 

these ratios across different environments is interpreted as the genotype’s acclimatation strategy 

to environmental changes.  
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Figure 5.2: Radar plots illustrating the different patterns of both macronutrients and 

micronutrients in seeds among root architecture types of SEQ7 under water-limited (WL) and 

non-limiting (NL) conditions. In each plot, the dots indicate average normalized values, scaled 

from 0 to 100%. Panels (A, B) represent the patterns for macronutrients (Calcium, Ca; Sulfur, S; 

Nitrogen, N; Phosphorus, P; Magnesium, Mg; Potassium, K), whereas panels (C, D) represent 

the patterns for micronutrients (Boron, B; Copper, Cu; Iron, Fe; Manganese, Mn; Molybdenum, 

Mo; Zinc, Zn) under WL and NL conditions, respectively. 
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Figure 5.3: Boxplot of both macronutrients and micronutrients in seeds among root architecture 

types (ATs) of SEQ7 under water-limited (WL) and non-limiting (NL) conditions. Panels (A, C) 

show comparison of macronutrients (Calcium, Ca; Sulfur, S; Nitrogen, N; Phosphorus, P; 

Magnesium, Mg; Potassium, K), whereas panels (B, D) show the patterns for micronutrients 

(Boron, B; Copper, Cu; Iron, Fe; Manganese, Mn; Molybdenum, Mo; Chlorine, Cl) among root 

architecture types under WL and NL conditions, respectively. We applied Kruskal-Wallis’s test 

to identify any significant differences in these nutrients among ATs. Different letters label ATs 

with significant differences, with significance threshold set as P < 0.05. The notation ns refers 

not significant. Sample sizes for WL conditions were: AT1 (n=7), AT2 (n=9), AT3 (n=3), AT4 

(n=7), AT5 (n=3). For NL conditions, they were: AT1 (n=8), AT2 (n=6), AT3 (n=4), AT4 (n=6), 

AT5 (n=4). 

 


