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Abstract

Legged robots move around by using their legs to make and break contact with the ground.
Thanks to this unique form of locomotion, legged robots have the great potential to navigate
over difficult terrains and assist humans in performing demanding tasks in hazardous
environments. However, the existing approaches of dynamic modeling, motion planning,
and control design do not explicitly address the challenges of legged locomotion on dynamic
rigid surfaces (i.e., rigid surfaces that move in the inertial frame). This dissertation aims
to bridge the existing knowledge gaps in the modeling, planning, and control of legged
robot locomotion on dynamic rigid surfaces (DRS). To achieve the overarching goal, this
dissertation comprises the following three main studies.

The first study derives a full-order dynamic model of legged walking on DRS, proposes
a provably stabilizing controller, and validates the modeling and control framework in
simulations and hardware experiments. The control approach is synthesized based on the
formulation of the full-order robot model as a hybrid, time-varying system. The stability
analysis of the closed-loop control system is performed through the construction of multi-
ple Lyapunov functions. The validation results in simulations and hardware experiments
confirm the effectiveness of the proposed control approach in guaranteeing the stability and
robustness of a quadrupedal robot walking on DRS with known periodic motions. Still, this
study relies on computationally expensive offline trajectory planning, which is unsuitable
for real-world applications where frequent replanning is typically demanded to ensure lo-
comotion robustness under uncertainties. To that end, the subsequent contributions aim to
realize efficient trajectory planning for real-time applications.

The second study derives a reduced-order dynamic model of legged walking on DRS
and introduces an approximate analytical solution to the model under vertical sinusoidal
DRS motion (e.g., ship motion in regular sea waves). Furthermore, the study designs
a hierarchical planner that exploits the proposed analytical solution to enable real-time,
physically feasible motion generation for locomotion on DRS. The validation results support
the efficiency and accuracy of the proposed solution in simulations, as well as the efficiency
and physical feasibility of the proposed planner through 3-D realistic simulations and
hardware experiments. Yet, this framework only solves the real-time locomotion planning
problem for DRS with sinusoidal vertical movements, which may not be suitable for DRS
with general motions. To overcome this limitation, the last focus of this dissertation research
is on legged locomotion under unknown general (periodic or aperiodic) vertical DRS
movements.

The final study of this dissertation presents a hierarchical control framework to enable
robust legged locomotion on DRSes with general unknown vertical motions. The key
novelty of the framework lies in its higher layer, which is a discrete-time, robustly stabilizing
footstep controller. One basis of the footstep controller is a new hybrid, time-varying,
linear inverted pendulum (HT-LIP) model that is computationally efficient and accurately
captures the essential hybrid dynamics of DRS locomotion. Also, a new set of sufficient
stability conditions is derived to directly guide the controller design for ensuring the robust
stability of the HT-LIP model under general, uncertain, vertical DRS motions. Further,
the footstep controller is cast as a quadratic program, integrating the proposed HT-LIP
model and essential stability conditions. The middle layer of the framework takes the



desired footstep locations as input to produce kinematically feasible whole-body reference
trajectories, which are then accurately tracked by a lower-layer full-body torque controller.
Hardware experiments on a Unitree Gol quadrupedal robot confirm the robustness of
the proposed framework under various general vertical DRS motions and uncertainties
(e.g., slippery and uneven surfaces, external solid and liquid load, unknown sway motion,
and sudden pushes). The studies presented in this dissertation showcase the evolution of
research to solve the theoretical knowledge gaps and practical challenges in designing and
implementing a control framework that enables robust quadrupedal robot locomotion on
dynamic surfaces with unknown general vertical motion.
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Chapter 1

Introduction

1.1 Motivation

Legged robots are robots that move around by using their legs to make and break contact
with the ground. Because of this unique form of locomotion, legged robots could potentially
negotiate terrains that are prohibitively challenging for wheeled or tracked robots, such as
ladders, gaps, and stairs. For this reason, legged robots capable of robust locomotion in
complex environments could benefit a wide range of critical applications such as firefighting,
emergency response [2, 3], maintenance [4, 5], and inspection [6, 7].

While dynamic modeling, motion planning, and control have been extensively studied
for legged locomotion on stationary surfaces [8, 9, 10, 11], locomotion on a rigid surface
that moves in the inertial frame, which we call a “dynamic rigid surfaces (DRS),” remains
a new legged robot functionality that has not been fully solved. Real-world examples of
DRS include ships, oil platforms, public transportation vehicles, trains, and aircraft. Legged
robots that can reliably move on such surfaces could be used to assist humans in performing
challenging and dangerous missions such as maintenance and service operations on vessels,
firefighting and fire suppression on ships and oil platforms [12, 13, 14], and safety and
surveillance tasks on moving public transit vehicles [15, 16, 17].

However, modeling, planning, and control for legged locomotion on DRS are funda-
mentally challenging due to (a) high-dimensional, hybrid, and nonlinear walking dynam-

ics [18, 19] and (b) time-varying unknown movement of the robot’s contact points on the



surface [20].

Towards solving this fundamental challenge for achieving reliable legged locomotion
performance on DRS, this dissertation draws upon dynamic modeling, nonlinear control
theory, theory of hybrid systems, and optimization to create new methods of dynamic
modeling, motion planning, and control design for DRS locomotion. Furthermore, this

dissertation extensively validates the proposed methods in hardware experiments.

1.2 Literature Review and Knowledge Gaps

Enabling reliable legged locomotion on DRS requires appropriate methods of dynamic
modeling, motion planning, and controller design. To that end, this chapter briefly reviews
existing modeling, planning, and control approaches to legged robot locomotion on sta-
tionary surfaces and summarizes the associated knowledge gaps for enabling reliable DRS

locomotion.

1.2.1 Dynamic Modeling

This section presents various existing dynamic models of legged locomotion on static sur-
faces that have been utilized to develop model-based robot planners and controllers. A model
is a simplified representation of a real-world system expressed by mathematical equations.
In legged robotics, models are utilized to describe or predict system behaviors, develop
planning and control algorithms, and analyze stability and safety. A full-order model is a
detailed model of a legged robot’s kinematics and dynamics and is often computationally
expensive and unsuitable for real-time planning and control. In contrast, reduced-order
models are simplified models of the system with reduced degrees of freedom. Although
reduced-order models are generally less accurate than full-order models, the low dimension-
ality of reduced-order models makes them more computationally efficient than full-order
models and thus more suitable for real-time planning and control.

In purely mathematical terms, the dynamic model of legged locomotion during continu-

ous phases (when the swing foot moves in the air) is described as the following nonlinear



dynamical process with state x and input u:

x(1) = f(x(t),u(7)). (1.1)

The model in (1.1) predicts the evolution of state X in response to the input u. This general
mathematical representation can be used as the basis for all the models discussed in the

following subsections.

(1) Linear Inverted Pendulum Model

A widely used reduced-order model of legged robot locomotion is the classical three-
dimensional (3D) inverted pendulum model illustrated in Fig. 1-1.

The model represents the dynamics of a point mass atop a massless leg and can be
transformed into a 3D linear inverted pendulum (LIP) model [21] under the following

assumptions:

(A1) The point mass of the LIP maintains a constant vertical height with respect to the

support point of the LIP.

(A2) The centroidal angular momentum of the robot is negligible (or the angular velocity

and angular accelerations are negligibly small).

(A3) The walking surface is rigid and flat (i.e., all the successive steps of the robot are at

constant height).

Under assumptions (A1)-(A3), the LIP dynamics become:

i=%x and j= &y, (1.2)
20 20

where x- and y- are the horizontal coordinates of the center of mass (CoM) with respect
to the support point S, g is the magnitude of the acceleration due to gravity, and zg is the
vertical (aligned with gravity vector) height between the support point and the CoM. This

linear model is an approximate representation of legged robot dynamics on static surfaces.



Figure 1-1: LIP model on a rigid surface.

The LIP model has been extensively used for walking pattern generation and control
design of legged robots such as bipeds [21, 10, 22] and quadrupeds [23, 24]. Due to the
simplicity of the LIP, it has been used as a basis to form balance [10] and stability [25]
criteria, and its inherent connection with another widely studied reduced-order model,
hybrid zero dynamics [26], has recently been analyzed [27]. Moreover, the simplicity of
the model helps in elegantly defining key concepts of walking dynamics, e.g., capture point
[25], capturability [28, 29], the divergent component of motion (DCM) [30], etc. These
definitions are exploited for motion panning of the actual robot. The LIP model has been
extended to more complex scenarios by considering a varying CoM height [31], CoM
movement on a 3-D plane [32], nontrivial centroidal angular momentum [25], hybrid robot

dynamics [33], and walking on DRS [34].

(2) Spring-Loaded Inverted Pendulum Model

The spring-loaded inverted pendulum (SLIP) model [35, 36, 37] is a classical reduced-
order model for bouncy-legged animal locomotion [38, 39]. The spring of the SLIP model
eliminates impulsive impact at touchdown and recycles kinetic energy during the stance
phase, which helps explain the efficient legged animal locomotion [35, 37]. The SLIP model
can also be used to explain insect locomotion dynamics [40, 41]. The running and hopping

models in the sagittal plane of locomotion on a rigid flat surface can be expressed based on
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Figure 1-2: SLIP model on a rigid surface.

a SLIP model [42, 43]. The SLIP dynamics are simplified under the following assumption:
(A4) The spring leg of the SLIP model is massless.

During a flight phase, the SLIP dynamics are only affected by gravity (see Fig. 1-2) and

under the assumption (A4), it is given as:

dzxs(t) — 0and dzys(t)

di2 dr2 =—-&, (13)

where x; and y; represent the x- and y- positions of the SLIP center of mass, respectively, g
is the magnitude of gravitational acceleration, and v¢,ys in Fig. 1-2 shows the direction of

CoM velocity. The stance-phase dynamics of the SLIP are given by:

d’x,(t)  —F(t) and d?ys(t) _ _g+i(’) (1.4)

a2 my dr? my

where F, and F, are the components of spring force along x and y direction of the world

frame.

(3) Centroidal Dynamics Model

The centroidal dynamics model is simplified under the following assumptions:

(AS5) All the segments of the robot are rigid bodies.



(A6) The contact surface is rigid.

Under the assumptions (AS) and (A6), the centroidal dynamics model expresses the
rate of change of momentum about a reference frame anchored at the centroid (i.e., current
CoM) in terms of all external forces as:

mg+ Yoo, fe

AG+Aq= ) = , (1.5)
chzl (pC - r) X fC

where A € R®*" is the centroidal momentum matrix [44], m is the total mass of the robot, g
is the gravitational vector, n is the number of generalized coordinates, f. is the contact force
at contact point ¢, n. is the number of contact points, r is the position vector of the current
CoM with respect to a world frame, and p. is the position vector of contact points with
respect to a world frame. q, q, and { are the generalized position, velocity, and acceleration
of the robot, respectively.

The centroidal dynamics model is a more general and reliable description of the robot
dynamics compared to the LIP as it accounts for orientation dynamics and does not constrain
the CoM position trajectory. However, the accuracy comes at a cost, as the centroidal
dynamics model can be nonlinear and computationally expensive [44]. This model has been
used for locomotion planning and control of bipeds [45, 46] and quadrupeds [47, 48].

For high-dimensional robots, the planning and control based on the complete centroidal
dynamics model are slower than the LIP model [49], which may make this model unsuitable
for a dynamic real-world application with limited computing capacity. This is because
the model transfers the momentum contribution of each rigid body of the robots to the
centroid, which is computationally expensive. The reduced-order model introduced next is a
simplification of the centroidal dynamics model and has been widely used for quadrupedal

planning and control.

(4) Single Rigid Body Dynamics Model

The single rigid body dynamics (SRBD) model is a simplification of the centroidal dynamics

model as it assumes that the centroidal momentum contributions of joint velocity are
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Figure 1-3: An illustration of the SRBD model of a quadrupedal robot.

negligible and the whole-body inertia of the robot remains similar to one of its nominal
configurations [50]. An illustration of the SRBD model is shown in Fig. 1-3. The simplifying

assumptions of the SRBD model are the following:
(A7) The centroidal momentum contributions of joint velocity are negligible.

(A8) The whole-body inertia of the robot remains similar to one of its nominal configura-

tions.

The SRBD model of a robot can be given as [51]:

Y .ot _ m(g++¥) , (1.6)

Yoo (pe—r) xfe Lo+ ox o
where I is the centroidal moment of inertia of the robot, m is the total mass of the robot,
g is the gravitational vector, f. is the contact force at contact point ¢, n. is the number of
contact points, r is the position vector of current CoM with respect to a world frame, p, is
the position vector of contact points with respect to the world frame, and @ is the vector of
the angular acceleration of the base.

Such a model is low-dimensional and more accurate than the LIP model. A quadruped



Npitch

)

Knee pitch

Figure 1-4: Full-order quadrupedal robot model.

with lighter limbs and a heavier trunk tends to faithfully satisfy assumptions (A7) and (AS8).
Thus, many quadrupeds modeled as SRBD show impressive real-world performance in

static, flat, or uneven terrain [1, 51].

(5) Full-Order Dynamic Model

Full-order models are a detailed representation of a legged robot’s kinematics and dynamics.
As many of today’s legged robots are made of highly stiff links, their full-order models
typically assume that all the links of a multi-body robot are rigid, as outlined in the as-
sumption (AS). An illustration of a full-order quadrupedal model is shown in Fig. 1-4. The
continuous-time equation of motion of such a model is derived using Lagrange’s method

[52, 20]. The unconstrained full-order robot dynamics can be given as:
M(q)§ +C(q,q) == Bu+J. Fe, (1.7)

where M(q) : Q — R("+0)x("+6) i the inertia matrix, C(q,q) : 7Q — R("+0)x! represents
the sum of Coriolis, centrifugal, and gravitational terms, B € R H6)xm g the actuator

selection matrix, F. € R" is the generalized external force acting at the contact points



between the robot and its environment, and J.(q) is the Jacobian of contact points. Here, Q
is the configuration space and 7 Q is the tangent bundle of Q.

For locomotion on stationary rigid surfaces, the contact constraints enforce the no-
slip condition between the contact points of the robot and the surface by the holonomic
constraints expressed as:

Jeq+J.q=0. (1.8)

Discrete impact dynamics: During a swing-foot landing event, an impact between
the foot and the ground leads to an instantaneous jump in velocity . The position  stays
continuous due to the instantaneous nature of the jump event. By integrating the dynamics

(1.7) and constraints (1.8) across the impact event, we get:
M(G"—q ) =J/6F. and J.q" =0, (1.9)

where x~ and x represent the values of x right before and after the impact, respectively,

OF. is the impulsive impact force. Rearranging the above equation gives:

-1

q | _ M@ -J(@)| [M(@)g | (110

5FC JC (q) Onct XNt 0
where 0, xp,, 18 @ ne X ne zero matrix. Equation (1.10) can then be used to obtain the jump

in the generalized velocities as:

qa =R(q)q". (1.11)

where R : Rt x 0 — R("0)x("+6) - The (continuous-time and hybrid) full-order rigid
body dynamic model has been widely utilized for planning and control of legged robots
[53, 54, 20, 23, 55, 56, 57] and manipulators [58, 59, 60]. As reviewed earlier, full-order
robot models provide an accurate representation of a robotic system’s behavior by capturing
all degrees of freedom. However, their high computational demands may limit their utility

for real-time planning in dynamic environments with varying parameters.
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(1) Knowledge Gap 1

Dynamic modeling for legged locomotion on stationary surfaces has been well studied,
as reviewed earlier. However, these models may not be valid for describing the dynamics
of legged robot locomotion on a dynamically moving rigid surface, especially when the
surface motion is significant. This is because these models all assume that the surface
is stationary. The existing robot dynamics models for locomotion on moving surfaces
(reviewed in Chapters 2.1.1, 3.1.1, and 4.1.1) do not explicitly consider surface motion
for DRS with large inertia or rigid actuation such as ships and aircraft. To date, dynamic
modeling of locomotion accounting for independent motion of the surface remains an open

question.

1.2.2 Trajectory Planning

Trajectory planners generate the desired robot motions that a controller should reliably track
[61, 62, 63, 23]. The trajectory planning problems of legged robots are complex partly due
to the robot’s underactuated base (e.g., trunk), which cannot be directly affected by the
joint motors. Furthermore, the legged robot’s dynamics are high-dimensional, hybrid, and

nonlinear, further compounding the planning challenges.

(1) Decoupled Planning Based on Reduce-Order Models

The base movement of a legged robot is directly dependent on the foot’s or the end effector’s
interaction with the environment. For this reason, traditionally, the planning problem of a
legged robot has been decoupled into footstep planning and base planning. In this existing
planning approach, the footstep location is computed first [64, 65, 66], and then the base
trajectories are generated based on the corresponding zero moment points [67, 68], capture
point [25, 69, 70], or divergent components of motion [30] of the robot. These planning
approaches are reviewed in Section 3.1.1 of Chapter 3. This approach of decoupled planning
is relatively fast as the base trajectory planning is based upon a reduced-order model such as

LIP [10].
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(2) Trajectory Optimization Based on Full-Order Models

The other important approach for gait or trajectory planning of legged robots uses the
full-order robot model [53, 71] and aims to optimize some of the performance metrics
(e.g., motor torque and cost of transport) while respecting all the feasibility constraints of
the robot. The general formulation for such a planning approach can be mathematically

described as:
min  h()
o (1.12)

subjectto  f,(0) =0, Zineg(@) <0,

where @ is the vector of optimization variables, i(@) is the cost function that needs to be
minimized, and the vector functions f,, and g;,., are the sets of all equality and inequality
constraints, respectively. The constraints function ensures kinematics feasibility (e.g.,
joints limit), dynamic feasibility (e.g., actuator and velocity limits, friction cone, unilateral
constraint, and power limit), and stability of the generated trajectory. The cost function is set
up to optimize a desired performance metric (e.g., input torque or cost of transport). Such a

formulation for trajectory planning problems is also referred to as trajectory optimization

[72, 73].

(3) Trajectory Planning Based on Model Predictive Control

The trajectory planning problem can also be formulated as a model predictive control (MPC)
problem. The MPC-based planner generally shows more robust locomotion performance
[74, 75] compared to the conventional footstep planner or trajectory optimization due to its
capability of continuously adjusting the desired trajectories based on the current robot state.
The MPC-based planner can be used for reduced-order model-based footstep planning [76]
or full-order model-based trajectory planner [77, 78]. Depending on the constraints in the
MPC problem, the formulation can be a linear or nonlinear problem. A linear MPC problem
can be cast as a quadratic program, which can be solved much faster than a nonlinear MPC
[79]. Advances in MPC solution finding algorithms allow speeding up nonlinear MPC for

planning and control applications [80].
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Knowledge Gap 2

Generating a feasible and optimal trajectory for a real-world scenario is still a challenge as
we often need to balance the trade-off between optimality and speed [81, 82, 83]. While
existing robot planners can achieve reasonable computational efficiency and feasibility for
stationary surface locomotion, it is still an open research problem to extend these methods

to dynamic surface locomotion due to the lack of suitable reduced-order robot models.

1.2.3 Controller Design

The top priority of controller design for legged robot locomotion is to ensure locomotion
stability. The stability of legged locomotion can be loosely defined as the robot’s ability
to sustain locomotion without falling over to the ground. This loose definition has been
translated into various stability criteria to guide the design of legged robot controllers. The
following paragraphs briefly summarize some of the most widely used stability criteria and

control methods for legged locomotion on static surfaces.

(1) Zero Moment Point

The zero moment point (ZMP) is a point on the ground where the influence of all the forces
acting on the robot can be replaced by a single force [84]. This criterion is widely used
for the balance and control of legged robots [67, 68, 85]. The ZMP-based controllers have
realized walking [86], running [87], and balancing [88] of legged robots. Controller design
based on the ZMP criteria often relies on a reduced-order model such as LIP [89, 86].
The ZMP controllers are versatile but typically require full actuation of the robot. The
full-actuation requirement is restrictive because underactuation will occur in the event of

foot slipping and rolling, and cannot be addressed by the ZMP controllers.

(2) Capture Point

The concept of the capture point has also been utilized for control design. At any instant,
a capture point is a point on the walking surface where the robot needs to instantaneously

step to in order to come to a complete stop [25]. Capture point trajectories are typically
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computed for a reduced-order LIP model of the robot [25, 90]. The capture point-based
controller design has been used for enabling the locomotion of legged robots on static flat

surfaces [25, 29] and uneven surfaces [91].

(3) Hybrid Zero Dynamics

The hybrid zero dynamics (HZD) approach is a popular framework utilized to design a
provably stable controller for the hybrid model of legged robot locomotion [92, 9, 20, 52,
18, 93, 54]. The distinct feature of the HZD framework lies in that it explicitly treats the
hybrid dynamics of legged robot locomotion based on nonlinear control theory and the
theory of hybrid dynamical systems. Legged locomotion dynamics are naturally hybrid,
involving discrete-time behaviors of foot landings and continuous-time motions of foot
swinging. By explicitly addressing the hybrid locomotion behaviors, the HZD framework
has realized remarkable locomotion performance for the periodic gait of fully actuated [94]

and underactuated [95, 96] robot locomotion on static surfaces.

(4) Whole-Body Controller

The whole-body control approach has been extensively utilized to coordinate the full-body
movements of a legged robot during the execution of multiple tasks [97, 98, 99]. Such a
control approach has been proven effective for real-world multi-task scenarios [99, 100, 101]

and robust locomotion on static uneven surfaces, stairs, rocks, and sand [102, 101].

(5) Learning-based Controller

Recently, learning-based control methods [103, 104, 105] have shown promise in achieving
remarkably robust locomotion on static and locally deformable surfaces under a broad
spectrum of unstructured real-world environments (e.g., sand, grass, hiking trails, and
creeks). A contact-adaptive learning-based controller policy for quadrupedal locomotion
[106] leads to efficient and robust walking on static surfaces. Integrating perception modal-
ities to learning [107] improves the terrain awareness of the learning-based control and

thus enhances locomotion robustness. However, the perturbations induced by DRS (e.g.,
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moving ships) act as persistent and continuous disturbances to legged locomotion, which are
fundamentally different from those induced by ground with a stationary base but uncertain

surface properties such as unevenness, compliance, and inclination.

Knowledge Gap 3

As reviewed earlier, various existing control frameworks have produced remarkably stable
legged locomotion on static surfaces. However, they may not sustain stable walking on DRS
because they are typically designed assuming that the surface is stationary. Both theoretical
and experimental investigations are needed to formulate a control framework that stabilizes

legged locomotion on DRS.

Performance Gap

Based on the literature review and the testing of state-of-the-art proprietary controller
developed for legged robots, we observe that the existing control framework design for static
surface locomotion does not perform reliably and can even fail to sustain walking when the
robot moves on DRS. For instance, the results of our tracking control simulations in Fig.
2-8 show that a controller designed for a static surface is unreliable in tracking the desired
trajectory on DRS and eventually the robot falls over. Therefore, a new control approach is

needed to provably attain reliable performance for legged locomotion on DRS.

1.3 Contributions and Impacts

This dissertation aims to achieve robust quadrupedal locomotion on vertically moving rigid
surfaces by creating new models, planners, and control algorithms. Specifically, the objective
of this dissertation is to address the identified knowledge gaps pertaining to the advancement
of modeling, planning, and control frameworks for legged locomotion on DRS, as well
as to mitigate the observed performance limitations present in state-of-the-art proprietary
controllers when operating on DRS. The contributions of this dissertation are based on the
following articles [20, 34, 108, 109, 110].

The main contributions are:
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(a) Deriving a provably stabilizing controller for quadrupedal locomotion on DRS by
formulating the full-order robot model as a hybrid, time-varying system and analyzing
the closed-loop control system through the construction of multiple Lyapunov func-
tions [20]. This contribution uncovers the high complexity of the full-order models
of legged locomotion on DRS and introduces a provably stabilizing controller for

sustaining walking motion.

(b) Proposing reduced-order models and approximate analytical solutions of legged
walking under a vertical sinusoidal DRS motion and designing a hierarchical planner
based on the proposed analytical solutions for real-time motion planning [108]. This
effort reveals the essential dynamic behaviors of DRS locomotion and contributes to
solving the problem of online, physically feasible planning for locomotion on DRS

experiencing a vertical sinusoidal motion.

(c) Developing a robust control framework for legged locomotion on DRS under unknown
general vertical motion by establishing stability conditions for a hybrid time-varying
linear inverted pendulum (HT-LIP) model and utilizing it in the design of a robust
footstep controller through a quadratic program [109]. Validation experiments of
this framework demonstrate its effectiveness in addressing the challenges posed by
unknown surface motion and common external disturbances encountered in real-world

applications.

The above contributions address scientific knowledge gaps in the control of legged locomo-
tion on dynamically moving rigid surfaces and propose an effective solution to a practical
problem of legged robot deployment on rigid surfaces with dynamic motion, such as ships
and vessels that support the transport of 80% of the world trade volume [111]. The impacts
of this work are grouped into the following categories.

Theoretical or scientific impacts: This dissertation aims to solve the control problem
for quadrupedal locomotion on DRS by deriving new theorems and algorithms to fill the
Knowledge Gaps 1-3 in the literature. The work in this dissertation has filled the following

theoretical knowledge gaps.



16

* Deriving nonlinear hybrid time-varying full-order dynamic model of legged locomo-

tion on DRS

* Proposing reduced-order and full-order dynamic models of legged locomotion over

rigid surfaces with general dynamic motion

* Developing physically feasible real-time trajectory planning methods for legged

locomotion on dynamic rigid surfaces

* Developing control frameworks that ensure provable stability and robust performance

under unknown general vertical surface motion and real-world uncertainties

* Deriving provable stability conditions of the overall full-order and reduced-order

time-varying models

The above contributions provide the basis for further development of modeling, analysis, and
control frameworks for legged locomotion on rigid surfaces with general dynamic motion.
Practical or engineering impacts on society: The dissertation research aims to solve real-
world legged robot deployment and performance concerns on rigid surfaces with dynamic
motion, e.g., ships. This problem is of practical value because more than 80% of the world
trade volume is through sea routes [111]. Existing literature does not explicitly address the
legged locomotion control problem for DRS such as vessels and aircraft. To that end, we
aim to develop new control frameworks that ensure provable locomotion performance on
DRS and validate the framework in hardware experiments.

Developing a control framework that ensures robust locomotion and provable perfor-
mance on such surfaces can lead to legged robot deployment on ships or any other DRS
for autonomous firefighting, inspection, services, search and rescue, and surveillance. The
experimental validations of the robust control framework, presented in Chapter 4 showcase
robust performance under unknown vertical surface motion, uncertain sway motion, and
various uncertainties (e.g., slippery and uneven surfaces, external solid and liquid load, and
sudden pushes) that a robot may encounter in real-world operation. These results enable the
application of the research in this dissertation to address high-value engineering challenges

associated with deploying legged robots for ship inspection, services, and maintenance.
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This dissertation has uncovered inconsistent and unstable performance of the proprietary
quadruped controllers on DRS, developed the world’s first robust control framework, and
experimentally enabled the world’s first robust quadrupedal walking on rigid surfaces with
unknown motions that emulate ships in sea waves.

The following is a brief outline of the subsequent chapters in this dissertation:
Chapter 2 reports the results corresponding to item (a) in the aforementioned contributions
list. The work has been published as a journal paper titled “Provably Stabilizing Controllers
for Quadrupedal Robot Locomotion on Dynamic Rigid Platforms [20].”

Chapter 3 presents the work associated with item (b) of the contributions. The results have
been published as a journal paper titled “Analytical Solution to a Time-Varying LIP Model
for Quadrupedal Walking on a Vertically Oscillating Surface [108].”

Chapter 4 describes the work associated with the item (c) of the contributions list. Part of the
results in this chapter is published as a peer-reviewed conference paper titled “ Asymptotic
Stabilization of Aperiodic Trajectories of a Hybrid-Linear Inverted Pendulum Walking on a
Vertically Moving Surface [109].”

Chapter S presents the conclusions, lessons learned, and future works for further enhancing

the impact of this dissertation.
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Chapter 2

Full-Order Modeling and Provably
Stabilizing Control Under Known

Periodic Surface Motions

This chapter presents the derivation of a nonlinear hybrid time-varying full-order dynamic
model and the design of a provably stabilizing controller for quadrupedal robot locomotion
on dynamic rigid surfaces (DRS) with known periodic motion. The contents of this chapter

have been published in the following peer-reviewed journal article.

* Igbal, A., Gao, Y. and Gu, Y., 2020. Provably Stabilizing Controllers for Quadrupedal
Robot Locomotion on Dynamic Rigid Platforms. IEEE/ASME Transactions on Mecha-
tronics, 25(4), pp.2035-2044.

2.1 Introduction

Legged robots have the potential to assist human operators in critical real-world applications
such as emergency response and disaster relief [112, 113]. These applications may demand
the capabilities of a legged robot in reliably traversing platforms that exhibit dynamic
behaviors. Real-world examples of dynamic platforms include unstable buildings on disaster

sites, vessels, and aircraft.



19

However, as reviewed in Chapter 1, dynamic modeling and controller design for
quadrupedal robot locomotion on dynamic platforms pose a challenging problem due to the
high complexity of the associated robot dynamics. Essentially, walking robot dynamics are
inherently hybrid involving complex discrete behaviors [114, 115, 116, 117, 118, 119, 120,
121, 122, 123] (i.e., uncontrolled sudden jumps in a robot’s joint velocities when the swing
foot strikes the platform surface). Furthermore, the robot dynamics may become explicitly
time-varying when the robot moves on dynamic platforms.

This chapter reports our research that aims to fill Knowledge Gaps 1 and 3 (reviewed
in Chapter 1). This work has been published in a journal article [20] entitled “Provably

Stabilizing Controllers for Quadrupedal Robot Walking on Dynamic Rigid Surfaces.”

2.1.1 Related Work

Previous research on control design for legged robot locomotion has been mainly focused
on static platforms, including flat and uneven terrains [10, 26, 124, 125, 126, 127, 128].
However, these approaches cannot reliably sustain stable legged locomotion on dynamic
platforms, as demonstrated by the simulation results in Fig. 2-8, because such approaches
do not explicitly account for the motion of the stance feet induced by the movement of the
platform surface.

Control design for legged locomotion on dynamic platforms is an active research topic.
Recently, locomotion on granular terrains, such as sand and gravels, has been increasingly
intensively studied [129, 130]. Granular terrains are considered dynamic platforms because
the contact surface between a robot’s stance foot and the terrain is subject to constant, and
often significant, movements. Based on the previous modeling result, control approaches
have been derived to enable impulsive robot hopping on granular terrains [131]. A stability
criterion for planar bipedal robot walking on a granular terrain has been developed based on
a general model of the leg-terrain interaction force [132], which can be used to guide the
controller design for locomotion stabilization on granular terrains.

Besides granular terrains, floating-base platforms with a rigid surface, which are referred

to as dynamic rigid platforms in this chapter, form another class of dynamic platforms
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that commonly exist in real-world environments, such as airplanes, vessels, and ground
vehicles. Recently, control design for legged locomotion over dynamic rigid platforms has
been increasingly researched [133, 30]. However, these control approaches only address
the robot’s continuous-phase dynamics but not the discrete foot-landing behaviors. The
resulting model discrepancy may deteriorate the control performance, particularly when the
landing impacts are significant during dynamic walking [26].

In addition to the hybrid nature, robot dynamics associated with locomotion over dy-
namic rigid platforms are also time-varying, due to the time-varying movement of the
foot-platform contact points induced by the platform motion. To date, control design that ex-
plicitly addresses such hybrid, time-varying behaviors remains unsolved and underexplored.

Motivated by the current research needs, the objective of this chapter is to derive a
control approach that provably realizes stable quadrupedal robot locomotion on dynamic
rigid platforms by explicitly addressing the associated hybrid, time-varying robot dynamics.
We have previously introduced a model-based controller design for hybrid systems with
state-triggered jumps that include legged robots walking on static platforms [54, 134]. The
controller explicitly addresses the robot’s hybrid dynamics associated with static-terrain
walking. Yet, the previous control approach is not directly applicable to legged locomotion
on a dynamic platform, because it does not consider the time-varying global movement of

the platform-robot contact points induced by the platform motion.

2.1.2 Contributions

The main contribution of this chapter is the derivation of a control approach that provably
achieves stable quadrupedal robot locomotion on dynamic rigid platforms by explicitly
addressing the associated hybrid, time-varying walking dynamics.

As the initial step of our ongoing research on dynamic-platform locomotion, this research
focuses on tackling the controller design challenge and assumes that the platform motion

has been sensed or estimated. The specific contributions of this chapter include:

(a) Formulating the model of a quadrupedal robot that walks on a dynamic rigid surface

as a hybrid, time-varying system with state-triggered jumps.
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(b) Extending our previous model-based control approach for static-terrain walking with
the proposed system model to provably stabilize the hybrid, time-varying control

system for realizing stable locomotion on dynamic rigid platforms.

(c) Demonstrating through simulations that control laws synthesized for static-terrain

walking may not guarantee stable locomotion on dynamic platforms.

(d) Validating the effectiveness of the proposed control approach in guaranteeing the
stability and robustness of locomotion on dynamic rigid platforms, both through

simulations and experimentally on a physical quadrupedal robot.

2.2 Full-Order Modeling of Hybrid Time-Varying Walking
Dynamics

This section introduces the modeling of the hybrid, time-varying dynamics of a quadrupedal
robot that walks on a dynamic rigid platform. The model serves as a basis for the proposed
controller design.

Quadrupedal robot walking naturally involves hybrid dynamic behaviors. A complete
quadrupedal walking cycle can be decomposed into four continuous phases connected by
four discrete events, as illustrated in Fig. 2-1. When the swing leg moves in the air, the
robot dynamics are continuous. When the swing leg strikes the walking surface, a foot-
landing impact occurs and causes a sudden jump in the robot’s joint velocities [26], which is
sometimes referred to as a state-triggered jump.

Let q be the generalized coordinates of the robot, which is defined as:

T
q:-= p[fa YI{7 q1, 492, --- CIn:| € Q’ (21)

where pj, 1= [xp, Vp, zb]T is the vector of a robot’s floating-base position with respect to the

world coordinate frame, ¥, := [@,, 05, W] is the vector of the floating-base roll, pitch, and
T
yaw angles with respect to the world coordinate frame, [ql q2 ... Qni| is the vector of the

robot’s joint angles, and Q C R™*© is the configuration space of the robot.
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Phase 1: front left Phase 2: rear right
leg swings ) \_ leg swings
-

Phase 4: rear left Phase 3: front right
\_ leg swings Y, \_ leg swings Y,

Figure 2-1: Illustration of a complete quadrupedal walking cycle. Swing and stance legs are
marked with arrows and circles, respectively.

Letu € U C R™ be a vector of the robot’s joint torques, where U is the set of admissible
joint torques.
The degree of underactuation (DOU) of a walking quadrupedal robot can be computed
as [135]:
DOU =n+6— (ny —nei) —m, 2.2)

where n.; is the number of all holonomic constraints and 7.; is the number of internal
constraints.

During three-dimensional (3-D) quadrupedal walking, n,;, = 9 and n.; = 3. Suppose that
all of the robot’s joints are independently actuated. Then, DOU = 0. Thus, the robot is fully
actuated, and all of its degrees of freedom (DOFs) can be directly commanded. The DOF
can be calculated as:

DOF =n+6—ng. 2.3)

The class of dynamic platforms considered in this chapter are dynamic platforms with rigid

surfaces, such as vessels, airplanes, and ground vehicles. As platform dynamics may be
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unknown or difficult to estimate during real-world robot operations, the motion of a platform
instead of its dynamics is considered in the derivation of the robot’s dynamic model.
Modeling of the robot dynamics during a continuous phase and under a foot-landing

impact is introduced next along with a mathematical definition of the impact event.

2.2.1 Continuous-Phase Dynamics

During a continuous phase of quadrupedal robot walking, three of the four legs contact the
platform surface at their far ends (i.e., stance feet). Let p.(q) € R" be the position vector
of the three stance feet in the world coordinate frame. When the stance feet do not slip on

the platform surface, the associated holonomic constraints can be expressed as:
Jed+Jeq =Ap(1), 2.4)

where J.(q) := %—I(’l“ (q). Note that the expressions of J. during different continuous phases
within a complete walking cycle are different because the stance feet are different. The
variable A, € R" is the vector of the platform accelerations at the contact points, which is
explicitly time-dependent when the platform is dynamic.

With Lagrange’s method, the continuous-phase dynamics of a quadrupedal robot that

walks on a dynamic platform can be obtained as:
M(q)i+C(q,q) = Bu+J(F,, 2.5)

where M(q) : Q — R("+0)x(7+6) g the inertia matrix, C(q,q) : 7Q — R"+0)*1 represents
the sum of Coriolis, centrifugal, and gravitational terms, B € R(H6)xm jg the actuator
selection matrix, and F. € R" is the generalized external force induced by the contact
between the robot’s stance feet and the platform surface. Here, 7 Q is the tangent bundleof
Q.

From Eqgs. (2.4) and (2.5), F. can be obtained as:

Fc = _<JCM71JZ)71(JCM71<BU - C) ‘|—ch - AP<t)> (26)
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Substituting Eq. (2.6) into Eq. (2.5) yields:

M(q)id+C(t,q,q) = B(q)u, 2.7)

where

C:=C-J M D) IM'C—Jeq+A,())

and

B:=B-JIJM JH~1g.M'B).

Note that C is explicitly time-dependent during dynamic-platform walking because A, is

explicitly time-dependent.

2.2.2 Switching Surface

When a swing foot strikes the platform surface, an impact occurs, causing a sudden jump in
the generalized velocities . Thus, the foot-landing event connects a discrete impact and a
continuous phase, which can be mathematically defined as the following switching surface
APR

S,:=1(t,q,q) e R" x TQ:dy,(t,q) =0,
g :=1{(t,q,9) X (t,q) 28

dy(1.9,4) < 0},

where dj,, : RT x Q — R can be chosen as the shortest distance between the swing foot and

the platform surface.

2.2.3 Discrete Impact Dynamics

Upon a swing-foot landing event, an impact occurs between the foot and the platform surface.
Due to the instantaneous nature of the impact, the value of q remains continuous under an
impact. However, the value of ¢ jumps.

Under an impulsive impact, the continuous dynamics in Eq. (2.5) and the holonomic



25
constraint in Eq. (2.4) become:
M(q"—q)=J 8F andJ.q" =V}, (2.9)

where x~ and x represent the values of x right before and after the impact, respectively,
OF. is the impulsive impact force, and V,, is the vector of the platform velocities at the
three contact points. The value of V), also jumps because the platform velocities at the
new foot-contact points right after the impact are not necessarily the same as the platform
velocities at the previous foot-contact points right before the impact.

Rearranging the above equation gives:

-1

a | _ M@ -J(@)| [M@)q | 210

5Fc Jc(q) Onc, XNy V;
where 0, xp,, 18 @ e X 1 zero matrix. Equation (2.10) can then be used to obtain the jump

in the generalized velocities as:

q"=R(,q)q" 2.11)

where R : RT x Q — R(*T0)x("+6) " Note that the expression of R is explicitly time-
dependent because R contains the explicitly time-dependent function V,,. Also, the expres-
sions of R during different continuous phases within a complete walking cycle are different
because the expressions of the corresponding Jacobian matrices J. are different.

The model derived in this section clearly shows that the dynamics of a robot that walks
on a dynamic platform are hybrid, time-varying, and involve state-triggered jumps that

cannot be directly controlled due to their infinitesimally short periods of duration.

2.3 Model-Based Feedback Control During Continuous
Phases

This section introduces a continuous-phase control law that provably stabilizes continuous-

phase quadrupedal walking over dynamic rigid platforms. To guarantee that the control
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law also provably stabilizes the overall hybrid walking process, a Lyapunov-based stability

analysis is performed as explained in Section 2.4.

2.3.1 Continuous Model-Based Control

In this work, stable walking over dynamic platforms is achieved through the provable
stabilization of the hybrid, time-varying control system.

Leth(q) and h,(z, q) be the control variables and their reference trajectories, respectively.
Suppose that all of the robot’s joints are independently actuated, i.e., m = n, and that h,(z,q)
is smooth in # within each continuous domain. Then, by Eq. (2.2), the robot is fully actuated.
Thus, the number of control variables can be chosen as the same as the robot’s DOF. From
Eq. (2.3), we have h € R*H6—"a

The trajectory tracking error can be defined as:

€,(t,q) :=h(q) —hy(t,q). (2.12)

The control objective is then: to drive ||€|| to a bounded small number at the steady state
for the overall hybrid closed-loop system.

Since the discrete impact dynamics cannot be directly controlled due to their infinitesi-
mally short periods of duration, we choose to derive a continuous control law to directly

stabilize the continuous-phase dynamics.

Platform motion at the Platform motion at the
desired new contact points current contact points
Reference |, ¥ y v 1 u h
' d=~Y JK |15 Input-output s ReBEt .
Hejeclory it | L I linearization
generation T q. q
=Kd .

q.9

Figure 2-2: A block diagram of the proposed continuous-phase control law.

The proposed continuous control law is derived based on the full-order model of the
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continuous-phase walking dynamics as derived in Section 2.2. A block diagram of the
proposed control law is shown in Fig. 2-2.

To simplify the controller design, input-output linearization [136] is utilized to transform
the continuous-phase nonlinear dynamics into a linear system.

With the trajectory tracking error €, chosen as the output function y, we have y =

aE’lq + %5 ae" and § = (ae" qQ)q+ a8’1q+ a;" From Eq. (2.7), we have § = M~ (Bu —
C). Substituting the expression of § into the expression of §, we have y = aaq(aeh qQ)q+
d - 92
aith (BM - C) + Tgh
Thus, by choosing a continuous control law as
e na—lak Enna—l e D (08, sva 8
u=(52M 'B)"(G2MIC— 5o (Ga)g— 55+ ), (2.13)

where (-)* denotes the pseudoinverse of a matrix (-), we obtain the linearized output function
dynamics as y = v.

Define v as a proportional-derivative (PD) control law:

v=—-K,y—-Kyy, (2.14)

where K, and K, are PD gains. Then, the closed-loop dynamics during continuous phases
are y = — K,y —K;y.

By properly assigning values for the PD gains, the proposed input-output linearizing
control law can provably guarantee the stability of the closed-loop control system during
continuous phases.

However, due to the presence of the uncontrolled impact dynamics, the proposed control
law cannot automatically guarantee the provable stabilization of the overall hybrid, time-
varying walking dynamics. To derive sufficient conditions under which the proposed control
law can provably solve the stabilization problem, the stability of the closed-loop system is
analyzed in Section 2.4.

Before introducing the stability analysis, we first introduce the construction of impact

invariance that can be used to satisfy a necessary condition for asymptotic stabilization.
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2.3.2 Impact Invariance Construction

If y" =0 and y© = 0 hold when y~ = 0 and y~ = 0 under an impact, then y and y are
called “impact invariant” [26]. The impact invariance condition essentially requires that
the reference trajectory should respect the impact dynamics. It is a necessary condition for
achieving asymptotic stabilization of hybrid systems with state-triggered jumps that include
the robot dynamics as derived in Section 2.2.

To meet the impact invariance condition, we have previously derived a method of
constructing impact invariance [54] for the design of trajectory tracking controllers for
legged locomotion on static platforms. The method translates the condition into equality
constraints and enforces the constraints through trajectory generation. In this research, we
extend the previous method from the controller design for legged locomotion on static
platforms to dynamic platforms.

Consider a complete gait cycle of quadrupedal robot walking. Let q = q4(¢) € R"° be
the solution to the equation h(q) —hy(7,q) = 0. By definition, to meet the impact invariance

condition, the following equations should hold:
9a(7) = 4a(7,)s 9a(Ty) = da(Tiy)s (2.15)

qa(7;) = R(%i,9a(7 ) Aa (T )5 216
4a(7o) = R(Tk4,9a(7 4))da(T; )-

Here, i € {1,2,3},and 0 < Tp o < T,1 < Tk2 < T3 < Tk4. The variables TZO and Tp 4 Are

the initial and the final instants of the complete k" gait cycle (k € {1,2,3,...}). The variable

T; (i € {1,2,3}) is the planned instant of a foot-landing event between ¢t = T]: pandt = ’c,; 4

Equation (2.15) always holds due to the continuity of the generalized coordinates q

under an impact. Thus, to construct impact invariance, only Eq. (2.16) needs to be enforced

through trajectory generation as explained in Section V.
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2.4 Closed-Loop Stability Analysis Based on Lyapunov
Theory

This section presents the stability analysis of the closed-loop hybrid, time-varying system
under the proposed continuous control law. The analysis result is a set of sufficient conditions
that the proposed controller should satisfy in order to provably stabilize the hybrid closed-
loop control system for achieving stable walking on dynamic rigid platforms.

Define x := [y” y7]7. Under the proposed continuous-phase control law in Egs. (2.13)

and (2.14), the closed-loop output function dynamics can be compactly expressed as:

(
X = AXx, if (r,x7) ¢ S(¢,x);
(2.17)
KXJF:A(I,X_), if (¢,x7) € S(¢,x),
where A := , 0 and I are zero and identity matrices with appropriate dimen-
K, —K,

sions, and the expressiohs of § and A can be obtained from the switching surface S, in
Eq. (2.8), the reset map R in Eq. (2.11), and the trajectory tracking error € in Eq. (2.12). For
notational simplicity, one continuous phase and the subsequent discrete jump of a complete
walking cycle are given in Eq. (2.17).

The continuous-phase dynamics can be provably stabilized by properly selecting the PD
gains such that A is Hurwitz. However, the instantaneous, uncontrolled impact dynamics
cannot be directly regulated. Hence, we will utilize the construction of multiple Lyapunov
functions [137] to derive sufficient conditions for the overall hybrid, time-varying closed-
loop system.

The proposed stability analysis is an extension of our previous work on trajectory
tracking control of static-platform locomotion [54]. The previous analysis cannot be directly
performed on the hybrid, time-varying system in Eq. (2.17) because it does not consider
the time dependence of the system dynamics induced by the platform motion. To this end,
this chapter extends the previous analysis with the consideration of platform motions as

summarized in the following assumption:
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(A9) The platform acceleration at the foot-contact points, A, (1), is differentiable in 7 within

a continuous phase.

The assumption (A9) is valid for real-world dynamic rigid platforms such as vessels moving
in regular waves [138].

Before explaining the proposed stability analysis, several related variables and concepts
are first introduced.

Let 7 and #; be the planned and the actual k" impact timings, respectively. The variables
f, and t,j denote the time instants right before and after the k" impact, respectively. For
notational simplicity, x(t,_;) and x(r;" ) are denoted as x|,__, and x|, respectively, for
the rest of this chapter.

A fictitious system is introduced and defined as X := AX such that under the initial
condition X(#)) = Xp, a solution of the system is given by X(¢;%9,Xo), V ¢ > fp. Then, the
solution to the actual continuous-phase system between the (k — 1)’ and the k' impacts
satisfies:

x(t) =x(t;t," |, x|} 1), Vi€ (i1, 1. (2.18)

Main Theorem (Closed-Loop Stability Conditions): The closed-loop control system in

Eq. (2.17) is locally asymptotically stable if the following two conditions are met:

(C1) Reference trajectories are planned with the impact invariance condition met to respect

the impact dynamics.

(C2) The PD gains are chosen such that A is Hurwitz and that the state x converges to zero

sufficiently fast during continuous phases. [

Proof: By the theory of multiple Lyapunov functions [137], a hybrid system is asymptoti-
cally stable if there exists a Lyapunov function candidate and a positive number r such that
for all x|] € B,(0) := {x: ||x|| < r}, the following two conditions hold: 1) the Lyapunov
function candidate asymptotically decreases during each continuous phase and 2) its values
at the initial instants of all continuous phases form a strictly decreasing sequence.

We begin the stability analysis with continuous phases.
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Suppose that the PD gains are chosen such that the matrix A is Hurwitz. Then, there

exists a Lyapunov function candidate V (x) and positive numbers cy, ¢z, and c¢3 such that
c1][x[]? < V(x) < ¢;|x[[? and V (x) < —c3|x|? (2.19)
hold for all x during continuous phases [136]. Then,
+ o~ 2ty +
Vii<e @ VI, ke{l,2,...}. (2.20)

Next, the evolution of the Lyapunov function candidate V across a state-triggered jump
is analyzed. By the triangle inequality principle, the norm of the state x right after the k"

impact can be approximated as:

[ 1= llAG x| <A x]) — Az x| )|
+ AT x| ) — A(T, 0)[| 4 [[A(7, 0.

(2.21)

By the condition (C1), we have A(t;,0) = 0.

Under the assumption (A9), the platform velocity at the foot-contact points, V,,(z), is
continuously differentiable in ¢. Then, Eq. (2.11) and the definition of x indicate that A(z,x)
is locally continuously differentiable in 7 and x. Thus, there exist Lipschitz constants, L,

and Ly, and a positive number r, such that for any x|J € B,,(0), we have:

1A X[ ) = AT X PO < La, [l = el (2.22)

1A X[ ) = AT, 0)]] < La,[Ix[ I (2.23)

Since the continuous-phase dynamics of the hybrid system in Eq. (2.17) is defined by a
function (i.e., AX) that is continuously differentiable in x, there exists a Lipschitz constant
L; and a positive number 7, such that the difference between the actual and the planned k"

impact timings can be approximated as [139]:

e = Tl < LelIR (e X[l (2.24)
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for all x| € B, (0).
Combining Egs. (2.22) and (2.24) yields

1At %], ) — AT, X[ || < La L% (st x [ p)- (2.25)
From Egs. (2.21)-(2.25), we have
e | < La Lell%( 6”6 )l + La I | (2.26)

for any x; € B,(0), where r := min(ra, ;).

From Egs. (2.19) and (2.20), we have

_ B (4

Il | < /22 x| 2.27)
_ 3

%1 < y/2e7 =0T k. (2.28)

5 _8 B (g
From Egs. (2.26)-(2.28), we have x|, || < \/&(La L +Lae 2 =)y g2, (% t"*‘)||x|,j_1 I
By the condition (C2), the PD gains can be assigned to allow a sufficiently high convergence
8y
rate. Then, suppose that the PD gains are chosen such that e 2 (=) < 1+ € holds for

some positive number €. Then, for any x| € B(0), we have ||x|;"|| < o|x|] || with

c3
—5=A
1= /2 (LaLi+La(1+8))e 227"

2
and At := 7 — ;1. Therefore, V[,” <QV|/ |, Q:= 2%,

c1
If the PD gains are chosen such that A is Hurwitz and that % < 1 holds (i.e., Q < 1),

then V|, V||, V|7 ... form a strictly decreasing sequence. By the definition of o, if the

continuous-phase convergence rate % can be chosen sufficiently large, then ¢ < , /% holds

6202
€1

(i.e., < 1 is satisfied). Then, by the stability theory based on the construction of multiple
Lyapunov functions, the closed-loop hybrid system is locally asymptotically stable for any

x|§ € B,(0). u
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2.5 Reference Trajectory Generation

This section explains the proposed trajectory generation method for planning the desired

quadrupedal walking motions on dynamic rigid platforms.

2.5.1 Formulation of a Model-Based Optimization Problem

In this chapter, the problem of trajectory generation is formulated as an optimization problem.
The solution of the optimization problem is the reference trajectories, h;, which represent
kinematically and dynamically feasible walking motions over dynamic rigid platforms.

The formulation of the optimization problem begins with properly defining h;. Without
loss of generality, h; is defined based on walking pattern encoding [26]. A walking pattern
represents the relative evolution of configuration-based variables with respect to a phase
variable that presents how far or how long a robot has walked within a gait cycle. Let 0
be the phase variable. Let 6 and 6~ be the planned values of 6 at the beginning and the
end of a complete gait cycle, respectively. Then, the normalized phase variable s is defined
as s(0) := %. The desired walking pattern of the control variable h can be encoded
by 5(8) as h(q) —hy(s(8)) = 0. The N"*-order Bézier curves can be used to define h, as
hy(s) =YY, ai%si (1—s)N=I. Here, a; € R""0~" are the coefficients of the Bézier
curves, and are in turn used as optimization variables.

The cost function of the optimization problem can be chosen as the energy consumed
during walking [26].

Necessary constraints are considered to ensure that the optimized reference trajectories
would correspond to kinematically and dynamically feasible quadrupedal locomotion over
dynamic rigid platforms. These constraints include: 1) switching surfaces as derived in
Section 2.2.2; 2) the impact invariance condition derived in Section 2.3.2; 3) joint position
and velocity limits; 4) joint torque limits with the torque from Eq. (2.13); 5) platform-contact
constraints (e.g., unilateral constraints and friction-cone constraints) with the contact force
from Eq. (2.6); and 6) desired gait features (e.g., the desired duration of the gait cycle).

Both continuous-phase and discrete dynamics are contained in the constraints. The

continuous-phase dynamics in Eq. (2.5) are contained in the joint torque limits and the
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platform-contact constraints. The discrete impact dynamics in Eq. (2.11) are contained in
the impact invariance condition.

The platform motions (e.g., V, and A ) are also contained in the constraints because
the platform motion directly affects the contact force between the robot and the platform,
the occurrence of a swing-foot landing event, and the impact dynamics, as explained in

Section 2.2.

2.5.2 Optimization Setup

hip-pitch angle

L .

‘ L knee-pitch angle

¢

Figure 2-3: A Laikago quadrupedal robot (developed by Unitree) used for experimental
validation. Each leg of the robot has three actuated joints, which are hip-roll, hip-pitch, and
knee-pitch joints.

hip-roll angle

The optimization is set up as a nonlinear programming (NLP) problem. The software
tool used to solve the NLP is MATLAB’s fmincon function. As the focus of this chapter is
on controller design, the planning is solved offline.

The control variables h are chosen as the base pose (i.e., position and orientation) and
swing-foot position; that is, h(q) := [pg(q)’ 71{(‘1)7PSTW(q)] T .

In general, the phase variable 0 can be defined based on either generalized coordinates
q [26, 134] or time 7 [54]. In this chapter, 6 is defined as time-dependent; i.e., 6(r) :=
t—1, k€{1,2,..} during the k’" walking cycle (i.e., t € (f,x+1]). Thus, 6 represents the
current instant relative to the planned initial instant of the k" walking cycle. With the phase

variable chosen as time-based, the reference trajectories h; become functions of ¢ alone, i.e.,

hy(,q) = ha(2).
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2.6 Simulations and Experiments

This section presents the validation results obtained through simulations and experiments.

2.6.1 Simulation and Experimental Setup

In this chapter, MATLAB simulations are used to validate the theoretical control law derived
in Section 2.3. Simulations on PyBullet, which is a 3-D realistic robot simulator [140], are
conducted to gain preliminary insight into the controller implementation on hardware. Exper-
iments on a physical quadrupedal robot (see Fig. 2-3) are used to evaluate the effectiveness
of the proposed control approach as well.

The dynamic rigid platform used for validation is:

(P1) A platform with a whole-body pitching motion and a surface translating motion

(Nominal pitching amplitude = +5°. Nominal pitching frequency = 0.5 Hz).

In experiments, the platform (P1) is chosen as a pitching treadmill with translating belts on
the surface.

To validate the proposed control approach during walking motions with different gait
characteristics, three sets of reference trajectories are used in simulations and experiments.
They are generated using the optimization-based planning method in Section 2.5. The gait

characteristics are:

(G1) Step length = 10 cm. Maximum swing-foot height = 6 cm. (Treadmill belt speed = 5
cm/s).

(G2) Step length = 16 cm. Maximum swing-foot height = 6 cm. (Treadmill belt speed = 8
cm/s).

(G3) Step length = 16 cm. Maximum swing-foot height =9 cm. (Treadmill belt speed = 8
cm/s).

For simplicity, the optimization enforces the exact correspondence between the duration of
the reference gait cycle and one period of the platform pitching motion. These reference

trajectories are displayed in Figs. A-4 to A-6 in Appendix A.
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Figure 2-4: PyBullet simulation and experimental setup for assessing the performance of
the proposed control strategy. (): treadmill. Q): Laikago robot and its walking direction.
®: rotating axis of the treadmill. @): moving direction of the treadmill belt.

As it is assumed that the platform motion is known (i.e., sensed or estimated) in the
theoretical controller design, we added perturbations to the platform motion to assess the
robustness of the proposed control approach under uncertainties. Two sets of perturbations

are implemented with the platform (P1), including:
(U1l) Uncertainties in the pitching amplitude.
(U2) Uncertainties in the belt speed.

More details on the setups of MATLAB and PyBullet simulations as well as experiments
are given next.
MATLAB Simulation Setup: The robot model derived in Section 2.2 is used to simulate
the closed-loop system under the control law in Eqgs. (2.13) and (2.14). The PD gains
for gait (G1) are chosen as K, = diag(100,36,110,100,36,110,36,64,110) and K; =
diag(20,12,21,20,12,21,12,16,21), yielding closed-loop poles with negative real parts
between -10.5 and -6. The PD gains for the uncertainty case (U1) are chosen the same as
gait (G1). The PD gains for other cases are included in Appendix A.
PyBullet Simulation Setup: A 3-D realistic robot model that closely emulates the physical
and geometric properties of the physical quadrupedal robot is used in the simulation, as

shown in Fig. 2-4. The “PD” control gains are set as 1.0 and 0.25, respectively. Note that
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these values may not reflect the true PD gains implemented in PyBullet due to the intrinsic
gain multipliers used in the simulator.

Experimental Setup: The experimental setup consists of a quadrupedal robot and a tread-
mill, as shown in Fig. 2-4. The “PD gains” of the joint-level controllers are set as 5.5
and 0.2, respectively. Similar to PyBullet, these values may not reflect the true PD gains
implemented on the physical robot’s joint motors due to the intrinsic gain multipliers of the
hardware. These PD gains in MATLAB, PyBullet, and experiments are tuned to produce

similar continuous-phase convergence rates.

x| Compute

() =t — 1
v 00
Reference Compute joint position reference

trajectory |——»| q,(?) via inverse kinematics
generation | M) | h(q,(1) — h(0(1) = 0

l qu'(r)
Platform motion — — —
at the desired new Individual-joint position
contact points controller

Figure 2-5: A flow chart of the controller implementation procedure used in PyBullet
simulations and hardware experiments.

The treadmill used in the experiment is a split-belt Motek M-gait treadmill[141], which
is capable of performing pre-programmed sinusoidal pitching motions. Its dimension is: 2.3
m (length) by 1.82 m (width) by 0.5 m (height). Its total mass is 750 kg. Each of its two
belts is powered by a 4.5 kW servo motor. During experiments, the motion of the two belts
is always synchronized.

The physical robot used for experimental validation is a quadrupedal Laikago robot
developed by Unitree [142] (see Fig. 2-3). Its dimension is 0.56 m (length) by 0.35 m (width)
by 0.6 m (height). Its total mass is 25 kg, and each leg weighs 2.9 kg. Each leg has three
independently actuated joints, i.e., hip-roll, hip-pitch, and knee-pitch joints, with a power

density of 0.80 kW/kg and a torque limit of 20 Nm, 55 Nm, and 55 Nm, respectively. These
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torque limits are incorporated into the robot models used for the controller implementation

in MATLAB and PyBullet simulations.

2.6.2 Controller Implementation in PyBullet and Experiments

In PyBullet simulations and experiments, the proposed control law in Egs. (2.13) and
(2.14), which is a torque command, is implemented as an individual-joint PD controller,
which is preferred in robot walking experiments in the presence of model uncertainties [26].
Accordingly, the original reference trajectories h, are converted into joint-position reference
trajectories g (), which are then sent to the robot’s individual-joint controllers, as illustrated

in Fig. 2-5.

2.6.3 Validation Results with a Periodically Pitching Rigid Platform

Validation results obtained from MATLAB, PyBullet, and experiments with the reference
gait (G1) and the platform (P1) are displayed in Fig. 2-6. The joint trajectory tracking
results in Fig. 2-6 (a) demonstrate the reliable tracking performance of the proposed control
approach across simulations and experiments. The base roll and pitch trajectories in Fig. 2-6
(b) show that the robot maintains a relatively steady base pose, indicating stable walking on
the pitching platform.

Joint torque profiles in Fig. 2-6 (c) overall show relatively consistent trends between
simulations and experiments. Note that the hip-pitch torque profile obtained through
experiments shows peaks of -10 Nm near 2 sec and 4 sec, whereas MATLAB and PyBullet
results do not exhibit such jumps near those time instants. This might be caused by the
impact modeling discrepancies between the physical robot and the simulated robots. During
the experiment, the rear-left leg of the physical robot slightly rebounds near those time
instants right after the rear-right leg strikes the platform surface. However, such rebounding
behavior is not captured by the dynamic model as derived in Section 2.2.

The validation results obtained with the gaits (G2) and (G3) demonstrate similar effec-
tiveness of the proposed control approach. These results are displayed in Figs. A-1 and A-2

in Appendix A.
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Figure 2-6: Trajectory tracking results with gait (G1): (a) joint position trajectories, (b)
base roll and pitch trajectories, and (c) joint torque profiles of the rear-left leg.

2.6.4 Validation Results on Robustness

To assess the robustness of the proposed control approach under uncertainties such as sensor
noise and estimation errors, perturbations in the platform motions are implemented in both
simulations and experiments.

With the uncertainties (U1), up to +20 % uncertainties, which approximately correspond
to a variation of 4 cm in the stance-foot height, are added to the nominal pitching amplitude
of the platform. Figure 2-7 displays the walking control results obtained from MATLAB,
PyBullet, and experiments with the reference gait (G1) and under the uncertainties (U1).
The results match relatively closely with those obtained without the uncertainties (U1)
in Fig. 2-6, which demonstrates the robustness of the proposed controller in mitigating a
relatively moderate level of uncertainties.

With the uncertainties (U2), up to +20 % uncertainties, which approximately correspond
to a variation of 8 cm in the stance-foot height over 10 gait cycles, are added to the belt speed
of the treadmill. The robot’s motion was shaky during experiments, but the robot was able

to sustain motion for over twenty steps, which indicates that the inherent robustness of the
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proposed control approach is able to tackle the implemented uncertainties in the treadmill
belt speed. These results are displayed in Fig. A-3 of the Appendix A and match closely
with the nominal validation experiments in Fig. A-1 of the Appendix A.

Under a 40% uncertainty in the DRS motion, the robot walking becomes unstable during
experiments. This observation can be partly attributed to the reliance of the input-output
linearizing controller on the accuracy of the robot model. Handling an error of 40% proves
challenging for the controller because it significantly deviates from the nominal DRS motion.
Consequently, the stability of the walking motion is compromised, indicating the sensitivity

of the controller to the model accuracy.

2.6.5 Comparative Simulations of a Static-Platform Controller

(a) Joint trajectories tracking {b) Base roll and pitch trajectories
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Figure 2-7: Trajectory tracking results with gait (G1) under uncertainties (U1): (a) joint
position trajectories, (b) base roll and pitch trajectories, and (c) joint torque profiles of the
rear-left leg.

A controller designed for static-platform locomotion is simulated to demonstrate the
necessity of explicitly accounting for the time-varying robot dynamics induced by platform

movement through controller design. The controller is chosen as our previous control
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Figure 2-8: Comparative simulation results of the robot’s base pose trajectories under a
controller designed for static platforms, obtained during (a) walking on a static platform and
(b) walking on the dynamic platform (P1).

approach for static-platform locomotion [54], which does not account for the time-varying

robot dynamics induced by platform movement. The “PD” gains for PyBullet simulations

are set as 1.0 and 0.25, respectively.

Figure 2-8 (a) shows the robot’s base pose trajectories during static-terrain walking in

PyBullet, which indicates a relatively steady base pose and thus demonstrates stable walking

motions on the static terrain. However, the controller fails to sustain stable walking when

the robot walks on a pitching platform (i.e., the platform (P1)), as revealed by the irregular

base motion in the two trials in Fig. 2-8 (b).

2.7

Discussion

This chapter has derived a model-based control approach that achieves stable quadrupedal

locomotion over dynamic rigid platforms by explicitly addressing the associated hybrid, time-

varying robot dynamics. Thanks to the inherent robustness of feedback control, the controller

demonstrates robustness under moderate levels of platform motion uncertainties, which
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indicates that the proposed control could be effective even in the presence of uncertainties
caused by platform motion estimation. Despite the impressive estimation accuracy achieved
by recent studies on static-platform legged locomotion [143, 144], state estimation for
dynamic-platform locomotion remains an open question. To this end, we will investigate
state estimator design for dynamic-platform locomotion and integrate the estimator with the
proposed control approach in our future work.

To enhance the robustness of the proposed control approach for real-world robot applica-
tions, we will extend the construction of multiple Lyapunov functions to synthesize robust
control laws for hybrid, time-varying systems that include quadrupedal robots traversing
dynamic rigid platforms. Uncertainties that we plan to address include model discrepancies,
state estimation errors, and disturbances.

To enable robot locomotion over dynamic platforms with complex, nonperiodic motions,
online motion planning techniques will be demanded in addition to a reliable control
approach. Online motion planning for legged robots is a challenging problem because of the
associated high computational burden. To reduce the computation burden, we will explore
the possibility of using a reduced-order robot model instead of a full-order one in online
motion planning. This approach is potentially promising because a physical quadrupedal
robot typically has a heavy trunk and lightweight legs and thus may be relatively accurately

described by a reduced-order model.

2.8 Conclusion

In this chapter, we have introduced a control approach that realizes stable quadrupedal
robot locomotion on dynamic rigid platforms by provably stabilizing the associated hybrid,
time-varying control system. The model of a quadrupedal robot that walks on a dynamic
rigid platform was formulated as a hybrid, time-varying system consisting of continuous
phases and state-triggered jumps. A continuous control law was derived to provably stabilize
the system during the continuous phases. Lyapunov-based stability analysis was performed
to derive sufficient conditions that can be used to directly guide the controller design for

provably stabilizing the overall hybrid, time-varying control system. MATLAB and PyBullet
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simulations, as well as experiments on a physical quadrupedal robot and a pitching treadmill,
were performed to validate the proposed control approach. The validation results demon-
strated the effectiveness of the proposed approach in realizing stable quadrupedal locomotion

on dynamic rigid platforms even in the presence of moderate levels of uncertainties.
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Chapter 3

Reduced-Order Modeling and Analytical
Solution for Online Planning Under

Periodic Surface Motions

This chapter introduces a time-varying linear inverted pendulum (LIP) locomotion model on
DRS, an analytically approximate solution for sinusoidal surface motion, and a real-time
hierarchical planning framework utilizing the proposed analytical solution. The contents
of this chapter have been published in the following peer-reviewed journal and conference

articles.

* Igbal, A., Veer, S. and Gu, Y., 2023. Analytical Solution to a Time-Varying LIP Model
for Quadrupedal Walking on a Vertically Oscillating Surface. IFAC Mechatronics,
96(103073).

* Igbal, A. and Gu, Y., 2021. Extended Capture Point and Optimization-Based Control
for Quadrupedal Robot Walking on Dynamic Rigid Surfaces. In Proc. of IFAC
Modeling, Estimation and Control Conference, 54(20), pp. 72-77.
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3.1 Introduction

This chapter presents the modeling and analysis of the essential dynamic behaviors of
a legged robot that walks on a vertically oscillating DRS, and the design of an efficient
and feasible pattern generator of quadrupedal walking that exploits the analytical results.
There has been ample work on reduced-order modeling and trajectory generation of legged
locomotion on stationary surfaces, but not for DRS. The research in this chapter constitutes
one of the first attempts to build a reduced-order model and leverage such a model in motion
planning for DRS locomotion. However, reduced-order modeling and analysis of DRS
locomotion are fundamentally complex due to the nonlinear robot dynamics [145, 146, 147]
and the time-varying movement of surface-foot contact points [20, 148]. This chapter aims
to derive a new reduced-order model for locomotion on DRS and its analytical solution to
facilitate real-time trajectory planning, which can be infeasible to achieve with the full-order

model introduced in Chapter 2.

3.1.1 Related Work
(1) Reduced-Order Models of Legged Locomotion on Stationary or Dynamic Surfaces

For locomotion on DRS whose motions are affected by the robot (e.g., passive and relatively
lightweight surfaces), several reduced-order robot dynamics models have been recently
introduced, including an extended LIP [149], centroidal dynamics [150], and rimless-wheel
models [151]. Still, it is unclear how to expand these models to DRS whose motion cannot
be affected by the robot (e.g., trains, vessels, and elevators). For such substantially heavy or
rigidly actuated DRS, the effects of the DRS motion on a spring-loaded inverted pendulum
model have been numerically studied [43]. However, the stability conditions and analytical
solution of the model remain unknown.

Beyond the scope of legged locomotion, the modeling and analysis of an inverted pendu-
lum with vertically oscillating support, i.e., the Kapitza pendulum [152], is a classical physics
problem. The Kapitza pendulum has an intriguing property that under high-frequency sup-
port oscillations, the pendulum’s upper equilibrium becomes stable whereas its lower one is

unstable. Yet, it is an open question whether and when the Kapitza pendulum is a reasonable
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approximation of DRS locomotion. Furthermore, the motion frequencies of real-world DRS
(e.g., vessels [153]) are commonly too low to meet the conditions underlying the Kapitza

pendulum.

(2) Walking Pattern Generation Based on Pendulum Models

Since the LIP model represents the low-dimensional CoM dynamics of robot walking, it has
been utilized to efficiently plan physically feasible walking motions on a static surface. Given
the user-specified footstep and CoP positions, the exact closed-form analytical solution of
the classical LIP [10, 27, 154, 155] has been used to enable real-time planning of feasible
CoM trajectories for static-surface walking. This analytical solution has been augmented
with the discrete-time jump of the CoM position (relative to the CoP) at a foot-landing
event, which is then used to derive the desired footstep locations that provably stabilizes
the hybrid LIP model [156, 157]. Recently, the exact capturability conditions of a LIP
model with a time-varying CoM height have been derived based on the closed-form solution
of the model’s time-varying damping function at a robot’s desired final CoM state [91].
These conditions are then used to plan the desired CoM and CoP trajectories with provable
capturability guarantees. As reviewed in Chapter 1, the underlying LIP models of these
planners assume a stationary walking surface, and therefore the planner may not be directly

used for DRS locomotion when the surface motion is significant.

3.1.2 Contributions

This chapter focuses on addressing the open questions in reduced-order dynamic modeling
and walking pattern generation for locomotion on DRS, as discussed in Section 3.1.1.
Motivated by these research needs, this chapter aims to theoretically extend the classical
LIP model [21] from stationary surfaces to substantially heavy or rigidly actuated DRS
(e.g., ships), introduce an analytical approximate solution to the extended LIP model
(termed as “DRS-LIP”), and develop and experimentally validate a real-time walking pattern
generator that uses the proposed solution to ensure planning efficiency and feasibility. The

contributions of this chapter are:
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(a) Deriving the DRS-LIP model to explicitly consider the time-varying movement of the

foot-surface contact region.

(b) Forming the analytical approximate solution of the DRS-LIP under a vertical, sinu-

soidal DRS motion.

(c) Providing the sufficient and necessary stability conditions of the DRS-LIP model
based on the Floquet theory, and performing stability analysis under common ranges

of surface motions and gait parameters.

(d) Designing a hierarchical walking pattern generator that utilizes the proposed analytical

solution to efficiently plan feasible robot motions.

(e) Validating the accuracy and computational efficiency of the proposed analytical

approximate solution through comparison with a highly accurate numerical solution.

(f) Demonstrating the planner efficiency, feasibility, and robustness through both realistic
PyBullet simulations and hardware experiments under various surface movements,

gait parameters, and uncertainties.

The chapter is organized as follows. Section 3.2 introduces the derivation of the proposed
reduced-order model of locomotion on DRS. Section 3.3 presents the analytical approximate
solution of the proposed model under a vertical, sinusoidal surface motion. Section 3.4
explains the stability condition and analysis of the proposed model. Section 3.5 develops an
efficient walking pattern generator based on the analytical results. Section 3.6 reports the
validation outcomes of the proposed analytical solution and planner. Section 3.7 discusses
the capabilities and limitations of the proposed methods. Finally, Section 3.8 provides the

concluding remarks.

3.2 Reduced-Order Model of DRS Locomotion

This section introduces an analytically tractable and computationally efficient reduced-order

model that captures the essential robot dynamics associated with legged walking on DRS.
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The model is derived by extending the classical LIP model [21] from a static surface to DRS,
and is called “DRS-LIP”.

Since today’s legged robots typically have a heavy upper body and lightweight legs, their
CoM dynamics can be approximately described by a LIP, i.e., a point mass atop a massless
leg [21], under the assumptions (A1)-(A3). These assumptions are relisted here for ease of

referencing.

(A1) The point mass of the LIP maintains a constant vertical height with respect to the

support point of the LIP.

(A2) The centroidal angular momentum of the robot is negligible (or the angular velocity

and angular accelerations are negligibly small).

(A3) The walking surface is rigid and flat (i.e., all the successive steps of the robot are at

constant height).

In this chapter, we use a 3-D LIP to capture the essential dynamics of a 3-D legged
robot walking on DRS, as shown in Fig. 4-2. The point mass and support point S in Fig. 4-2
correspond to the robot’s CoM and CoP.

Let

Iye = [ch; Ywe ch]T 3.1

and

Iys = [sta Yws, Zws]T (3.2)

respectively denote the positions of the CoM and point S in the world frame.

Then, the CoM position relative to point S, denoted as ry, is defined as:

Fge = ye — Ly =! [xsw Yse, ZSC]T' (3.3)
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The CoM dynamics during DRS locomotion can be obtained as:

f aXsc

Xpe = sin 9,
mr

Vwe = JaYse sin@, and 3.4)
mr

. a
Zwe = ——c0s 60 — g,
m

where m is the robot’s total mass, 0 is the angle of the position vector ry. relative to the
vertical axis, g is the norm of the gravitational acceleration, r is the projected length of r,.
on the horizontal plane, and f, is the norm of the ground contact force pointing from point §

to the CoM.

Figure 3-1: Illustration of the proposed DRS-LIP model. All three grid planes are horizontal.
The top and middle ones pass through the CoM and the leg’s far end S, respectively. The
bottom one is fixed to the world frame.

3.2.1 DRS-LIP under a General Vertical Surface Motion

Under the assumption (A1) on the vertical distance z;. between the CoM and point S (see

Fig. 4-2), we have:

Zsc = <0-
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This assumption is the simplifying assumption of the classical LIP model that the point-mass
height over the stationary surface is constant [21].

Under assumption (A1), the relationships
Zwe = Zws  and  Zye = Ziws

hold, and thus the axial force f, becomes

. m(zws +g)

fa= cos O 3-5)

Accordingly, the horizontal components of the LIP dynamics in Eq. (3.4) become:

Xsc

Xye = (ZWS +g)_ and
20
3.6)
. . Ysc
Ywe = (Zws +g)_-
20

From Eq. (3.3), we know X, = X,y5 + Xsc and y,,c = s + V5. Substituting them into

Eq. (3.6) yields the following horizontal LIP dynamics:

Xse — (Zws +g)xsc = —X,s and
20
(Zws ‘l'g) o
Yse = Ys¢ = —Yws-
20

Note that the DRS’ acceleration at S equals the acceleration of point S, i.e., (X5, Vs, Zws)
in Eq. (3.7), when there is no slippage between the support point S and the surface.

To account for the effects of the DRS motion on the LIP dynamics in Eq. (3.7), we
choose to treat the DRS acceleration (X,,s, s, Zws) as explicit time functions, instead of
building a separate dynamics model for the DRS [150, 151]. The rationale for this design
choice is twofold. First, for real-world rigidly actuated and/or heavy DRS such as vessels,
the physical interaction between a robot and DRS has a negligible effect on the dynamics of
DRS. Second, in real-world applications, the time profiles of DRS motion are commonly
sensed, estimated, and predicted by real-time monitoring systems [158].

With the surface motion modeled as time functions, the LIP dynamics in Eq. (3.7)
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are linear, nonhomogeneous, and time-varying. Since DRS, such as cruising ships in
regular sea waves, have relatively small horizontal acceleration compared with vertical

acceleration [159, 160, 148], we assume:
(A10) The horizontal accelerations of point S (i.e., %,,s and J,,s) are negligible.

Under assumption (A10), the forcing terms in Eq. (3.7) (i.e., —¥,,; and —Jj,,;) vanish, and

the horizontal LIP dynamics in Eq. (3.7) become linear, time-varying, and homogeneous:

-X:SC — stc — O and
20
. (3.8)
. Zws T+
oo — Mysc —0.
20

Recall that the vertical CoM position relative to the support point S, zs., is constant under
assumption (A1), and given by:

Zse = 20- (3.9)
Remark 1. (DRS-LIP) The LIP model in Egs. (3.8) and (3.9) describe the simplified
dynamics of DRS walking under the assumptions (Al)-(A3) and (A10), which we call
“DRS-LIP”.

3.2.2 DRS-LIP under a Vertical Sinusoidal Surface Motion

A real-world DRS, such as a vessel in regular sea waves, typically exhibits a vertical,
sinusoidal motion with a constant amplitude and frequency [160]. Thus, we focus on such
motions for further analysis of the DRS-LIP.

Under a vertical, sinusoidal surface motion, the vertical acceleration %, of point S is
sinusoidal, and Eq. (3.8) becomes the well-known Mathieu’s equation [161], as explained
next.

For generality, the vertical sinusoidal motion of the DRS at the surface-foot contact point
can be expressed as:

Zs = Asin ot (3.10)

where the real scalar parameters A and ® are the amplitude and frequency of the vertical

surface motion, respectively.
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Then, the surface acceleration Z,,s at the support point is Z,,s := —A ®? sin wt, with which

the horizontal CoM dynamics in Eq. (3.8) becomes:

(g — Aw?sin wr)

X — X =0 and
20
3.11
. (g—Ao’*sinwr) -11)
Yse — 2 Yse = 0.

In Eq. (3.11), the two equations of motion in the x- and y-directions are decoupled and
share the same structure. Therefore, their solutions have the same form. For brevity, we
focus on the DRS-LIP model in the x-direction for solution derivation and stability analysis
in the rest of this chapter.

With a new time variable defined as

o T+2mt
=

(3.12)

the DRS-LIP dynamics in Eq. (3.11) can be transformed into the standard Mathieu’s equation

as:
2
d”Xgc
dt?

+ (co —2¢1€0827T) x5 =0, (3.13)
where the real scalar coefficients cg and c¢; are defined as

4g 2A
cor=——— and cp:=—.
w70 20

3.3 Approximate Analytical Solution

This section introduces a reasonably accurate and computationally efficient approximate
analytical solution of the proposed DRS-LIP dynamics model under a vertical, sinusoidal

surface motion.

3.3.1 Exact Analytical Solution

The DRS-LIP model in Eq. (3.13) generally does not have an exact, closed-form analytical

solution. One straightforward approach to derive an approximate analytical solution is to
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utilize the fundamental solution matrix based on the Floquet theory [161]. Alternatively, we
choose to exploit the existing analytical results of the well-studied Mathieu’s equation to
obtain a more computationally efficient solution.

There are various existing analytical approximate solutions of Mathieu’s equation,
including periodic solutions [162] and those expressed through power series [161]. In this
chapter, we adopt the exact analytical solution from [163] because of its generality and

accuracy:

Theorem 1. (Exact solution of Mathieu’s equation) The exact, general (periodic or non-

periodic) analytical solution of Mathieu’s equation in Eq. (3.13) is as follows:

xsc(f) = oMt Z Czneizm-i-OCze_”T Z Czne_izm. (3.14)

Nn——oo Nn——oo

Here, UL is the characteristic exponent of Eq. (3.13), a1 and o are real scalar coefficients,

n is an integer, i is a unit imaginary number, and Cy,,’s are complex scalar coefficients.

The proof of Theorem 1 is omitted for brevity, which can be readily obtained based on
derivations in [163].

Despite its generality and exact accuracy, the analytical solution in Eq. (3.14) may
demand an overly high computational load for real-time trajectory planning. Therefore, we
use the exact solution to obtain an approximate solution that is reasonably accurate with a
low computational cost.

To compute such an approximate solution, we need to determine the number of terms
to keep in the approximate solution as well as the values of the parameters u, o, oy, and

C2,’s, which is explained in the rest of this section.

3.3.2 Recurrence relationship between characteristic exponent u and

solution parameters f3,’s

To compute the characteristic exponent tt for obtaining the approximate solution, we first

derive the recurrence relationship between u and the solution parameters f3,’s.
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The solution of Mathieu’s equation can be assumed as [164]:
Xe(T) =T Y Crue. (3.15)

Substituting Eq. (3.15) into Mathieu’s equation in Eq. (3.13), we obtain:

[e5)

Y [(1?+(i2n)* +4iun)Cay

n—=—oo

+(co — 2¢1 €08 2T)Caplel T = 0,

. i2 —i2 . .
With cos(27) = ¢ T*; *, this equation becomes:

[e)

Y, [(? = (2n)* +2(ip) (2n) +o)Can
n==e (3.16)

— e (eiZT _i_efi2r)czn]e(i2n+u)r =0,
which can be further rearranged as:

(o)

Y [(()* + (2n)2 = 2(ip)(2n) — co) Cape 4"
T (3.17)

+C]C2n€(i2(n+1)+”)f +C]C2ne(i2(n71)+'u)f] — 0

Since the sum in Eq. (3.17) is over n € (—o0,0), we can relabel all n’s in ¢ Czne(i2<”+] )T

and Cy,e2(=D+1)% ag 1 and n+ 1, respectively.

This relabeling transforms Eq. (3.17) into:

(o)

Y [((2n—in)? —co)Can
n=—eo (3.18)

+01C2(,,+1)+01C2(n_1)]e(i2”+”)7 =0.

From Eq. (3.18), we obtain the recurrence relationship between the characteristic expo-

nent u and the solution parameters f3,’s as follows:

Br(1)Co g1y + Con + Bu (1) Copn—1) = O, (3.19)
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where the complex scalar function f3, is defined as

C1
(2n—iu)* —co’

Ba(u) == (3.20)

3.3.3 Analytical expression of characteristic exponent

Equation (3.19) for all n € Z* generates the following infinite set of linear homogeneous

equations with the coefficients Cy,,’s as the unknown variables:

T
A(H) 0y Cogy Cogy C Co,y Gy Gy, G, :| =0, (3.21)

where 0 is a zero column vector with an infinite dimension and

0B, 1 By O 0O
Aw):==|-- 0 0 Bo 1 PBo 0 0 ---]. (3.22)
0 0 0 B 1 B O

This set of linear equations have nontrivial solutions for the unknown coefficients C,,,’s if
the determinant of A(u), denoted as |A(u)|, equals zero. From [164], we know |A(u)| =0

can be compactly expressed as:
T/
2|A(0)|sin? (TCO) — 1 — cosh(u7). (3.23)

Solving Eq. (3.23) provides the exact analytical expression of u as:

1 /4
u :iEcosh—l(l —2|A(0)]sin? ( \F)). (3.24)
Remark 2. (Offline computation of parameters |1 and A(11)) Recall that ¢y := —;Tio and

cli= 3—‘3. Therefore, the values of cy and cy are known if the user-specified CoM height zg is
known and if the surface motion frequency ® and magnitude A are measured, estimated, or

predicted in real-time (e.g., by a surface motion monitoring system [158]). With known c
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and c1, the values of B,(0) (for all n € Z'*) and |A(0)| are known. Then, we can pre-compute
W using its analytical expression in Eq. (3.24), which could then be used to compute the

analytical solution during online walking pattern generation.

3.3.4 Truncation of infinite series

Since the two infinite series in the exact solution in Eq. (3.14) are absolutely and uniformly
convergent for any 0 < 7 < o [165], the exact solution is also convergent and can be
approximated as a sum of finite terms.

We use £5.(7) to denote the approximate solution. With N terms kept, the approximate

solution is given by:

N N
fe(T) = et Y Cone® e MY Coue T (3.25)
n=—N n=—N

To simultaneously ensure sufficient accuracy and efficiency for the solution computation,
we can determine the number of terms kept, N, offline for the considered range of DRS
motion parameters and the user-specified solution tolerance. Specifically, we can numerically
compute the minimum number of terms kept that results in a series truncation error less than

the tolerance for the given DRS parameter range, which can then be used as the value of N.

3.3.5 Computation of coefficients C,,’s

With the characteristic exponent, u, and the number of terms kept, N, determined, we can
obtain the value of the coefficient C, (n € {0, 1,...,N}) recursively based on Eq. (3.19), by
setting Coy = 0 and Cyp = A [163].

The recurrence relationship in Eq. (3.19) indicates that the coefficient satisfies

for sufficiently large index n (e.g., n > N).

Hence, the coefficients with sufficiently large indices can be neglected; that is, Cy(y 1) &~
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With Gy 1) = 0, solving the recurrence relation in Eq. (3.19) for all indices n €

{0,1,...,N} gives:

forn =N :
BNCon+1) +Con + BvCon—1) = 0,

= Coy = _ﬁNCZ(N—1)7 since CZ(N—H) =0

forn=N-—-1:

Bn-1Con +Coy—1) + Bv—1Cov—2) = 0,

—Bn-1
=>Cny=—F5—Coyn_
2(N—1) 1 _BNBNfl 2(N-2)
forn=N—-2: (3.27)
Bn—2Cov—1) + Cov—2) + Bv—2Cov—3) = 0,
—Bn—2
= O = WCZ(N—3)
1—By_1Bn
Hence, Cy,, (n € {0,1,...N}) can be expressed as:
Con = A
M BB 2l (3.28)
__ Bug1Buyo

) Bn+2ﬁ(n+3)
I P—

By setting Cyp = A in Eq. (3.28), all other coefficients can be determined using Eq. (3.28).
The relation in Eq. (3.28) can also be used to find the coefficients C_,,, by replacing the

index n with its additive inverse —n.

3.3.6 Computation of coefficients ¢&; and o,

The last set of parameters that need to be determined for computing the approximate
analytical solution X;. are a; and o, which can be obtained based on the given initial

condition of X, as introduced next.
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Recall that the coefficient 3, is defined in Eq. (3.20). This definition indicates that S_,
is the complex conjugate of f3,, and accordingly C_5, is the complex conjugate of Cy,,.

We can express the scalar, complex coefficient Cy, using the following generic form:
Con = r2e®, (3.29)

where ry, and 6,,, are real constants.
Then, substituting C,, = r2,¢'%" into the approximate analytical solution in Eq. (3.25)
gives:
N . -
)esc(f) = ale'ur Z r2neleznel2m:

n=—N

N
+ aze—ur Z rznezez,,e—lZnT
n=—N
N
_ 0616'[” Z [’”O +r2n(ei(2nr+02,,) +e—i(2nr+92n))]
n=1 (3.30)

N
+ OCze_“T Z [”O + rzn(e—i(an—Bz,l) +ei(2nr—92n))]
n=1

N
= oMt Z [ro + 2ry, cos(2nT + 65,)]

n=1

N
+ e M7 Z [r() +2r, COS(ZI’Z”L' — an)].

n=1

Recall 7:= @ Replacing 7 with @ in Eq. (3.30) yields:

. 'u%ert N nmw
XSC(Z‘) = 0e” 2 Z [}’0 +2r, 008(7 +nowt + 92n)]
n=l (3.31)
- %Jra)t N nw
+ O0he == [ro—|—2r2n COS(T—i-n(Dt— Gzn)].
n=1

Given initial condition (£5.(0), %5.(0)), we can compute the coefficients &y and o based on
the solution in Eq. (3.31).

Finally, with the values of the parameters u, C»,,’s, ¢, and o obtained as explained
earlier, we can readily compute the approximate solution by substituting those parameter

values in the solution expression in Eq. (3.25).
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3.4 Stability Analysis

This section presents the stability conditions of the DRS-LIP model, along with the associ-

ated stability analysis based on the proposed approximate analytical solution.

3.4.1 Sufficient and necessary stability condition

Before introducing the stability condition, we first define the notion of stability for the

DRS-LIP model.

Definition 1. (Stability of the DRS-LIP model) By the Floquet theory [166], the DRS-LIP
in Eq. (3.11) is called “stable” if all its solutions are bounded for anyt > 0, and is “unstable”

if an unbounded solution exists for t > 0.

The stability of the DRS-LIP, as defined in Definition 1, can be determined with the
characteristic exponents i. Since the DRS-LIP is a linear, second-order ordinary differential

equation, it has two characteristic exponents, denoted as tt; and .

Theorem 2. (Stability condition) Let Re(11;) and Re(l) respectively denote the real parts
of W and L. Suppose that Re(1)) < Re(Up). Then, by the Floquet theory, the model is
stable if and only if Re(l;),Re(1) < 0.

3.4.2 Numerical stability analysis
For typical ship motions in regular sea waves, the parameters (i.e., displacement magnitude
A and frequency w) of the DRS-LIP model in Eq. (3.13) take values within [153]:

A<100cm and o <27 rad/s.

Also, the kinematically feasible CoM height zg of a typical quadrupedal robot (e.g.,
Unitree’s Laikago) is within:

0.3m < z9 <0.55 m.
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Figure 3-2: Unbounded time evolution of solution £,.(¢) of the DRS-LIP model under: (a)
the same model parameters (A =7 cm, @ = 7 rad/s, and zo = 42 cm) but 100 different initial
conditions satisfying |x,(0)| < 0.4 m and |x,(0)| < 0.4 m/s and (b) different parameters
0O < w<2mrad/s, 0 <A <100 cm, and 30 < zg < 55 cm) but the same initial condition
(x5¢(0) = 0.02 m and %,(0) = 0.1 m/s).

Under these parameter ranges, we use Eq. (3.24) to numerically compute the character-

istic exponents and obtain that

Re(uy) >0 and Re(u;) <O.

Therefore, by the Floquet theory [166], the DRS-LIP is unstable (i.e., an unbounded
solution exists on ¢ > 0) under the considered operating condition.

To illustrate this physical insight, Fig. 3-2 presents the corresponding approximate
analytical solutions. Subplot (a) displays the approximate solutions under different initial
conditions (|xs(0)| < 0.4 m and |%;.(0)| < 0.4 m/s) and DRS-LIP parameters (& = 7 rad/s,
A =7 cm, and zp = 42 cm). Subplot (b) shows the solutions under the same initial condition
(x5¢(0) = 0.02 m and x5.(0) = 0.1 m/s) but different model parameters (0 < @ < 27 rad/s,
0 <A <100 cm, and 30 < zp < 55 cm). In all cases except for the trivial initial condition

X5¢(0), X5¢(0) = 0, the solutions grow towards infinity as time ¢ increases, confirming that
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the DRS-LIP model is unstable under the considered operating condition.

Remark 3. (Effects of DRS-LIP model stability on robot walking stability) Despite the
instability of the DRS-LIP model during continuous stance phases, the model is useful
for the planning and control of a full-order robot to ensure robot walking stability. This
is essentially because as long as the desired CoM motion is feasible during continuous
phases, there exists a wide class of nonlinear control approaches (e.g., our prior input-output
linearizing controller [20, 167]) that can provably guarantee the walking stability for the
overall hybrid full-order robot model. In this chapter, we implement such a controller to

indirectly validate the feasibility of the proposed planner (see Section 3.6.5).

3.5 DRS-LIP Model based Walking Pattern Generation

To demonstrate the practical uses of the DRS-LIP model and its analytical solution, this
section presents a hierarchical walking pattern generator that exploits these theoretical
results to enable efficient and feasible planning for quadrupedal walking on a vertically
oscillating DRS.

The planner is designed for quadrupedal walking [20, 24] whose gait cycle comprises
four continuous foot-swinging phases and four discrete foot-landing events (see Fig. 3-
3). The planner has two layers as illustrated in Fig. 3-4: (i) the higher layer generates
kinematically and dynamically feasible CoM position trajectories, by using the proposed
analytical solution of the DRS-LIP model and incorporating necessary feasibility constraints,
and (i1) the lower layer utilizes trajectory interpolation to efficiently translate the CoM
trajectories into the desired motion for all degrees of freedom of the full-order robot model.

Since the time profiles of the DRS motion are commonly sensed or estimated by real-
time motion monitoring systems (e.g., shipboard sensors [158]), the planner design assumes
that the nominal profile of the surface motion is known with bounded inaccuracy. Hardware
experiment results that demonstrate the inherent robustness of the proposed framework

under inaccurate surface motion knowledge is provided in Section 3.6.



62

@ Current stance foot location ~ ONext swing foot landing location

Continuous phase 1 Continuous phase 2 Continuous phase 3 | Continuous phase 4

RL - . | _\ e\

@ ks ) @ ks ) \@ R O\ DRS )\
FR@®. .\ ® AV e

Switching 1% 2 Switching 2% 3 Switching 3% 4

Switching 4% 1

Figure 3-3: A complete quadrupedal walking cycle, with the four feet marked as Front Left
(FL), Front Right (FR), Rear Left (RL), and Rear Right (RR).

3.5.1 Higher-Layer CoM Trajectory Planner

The higher-layer planner uses the DRS-LIP as a basis to efficiently generate feasible refer-
ence trajectories of the CoM position rg.(¢) through nonlinear optimization.

As the planner is introduced primarily for highlighting the usefulness of the analytical
results, we construct a simple higher-layer planner that is computationally efficient for
real-world implementations, by reducing the number of optimization variables through the
pre-specification of common gait parameters (which characterize the desired gait features).
While a simple CoM trajectory planner is developed in this chapter based on the proposed
model and analytical solution, the model and solution could be incorporated in a more
complex planner (e.g., [168]) that demands fewer user-defined gait parameters and is more

versatile for generating complex locomotion tasks.

(1) User-defined gait parameters

Similar to [169], the pre-specified gait parameters in this research are chosen as: (i) average
walking velocity (i.e., horizontal CoM velocity), (ii) foot contact sequence (see Fig. 3-3),
(ii1) stance foot positions, (iv) constant CoM height zo above the surface (for respecting
assumption (A1)), and (v) gait period. The values of parameters (i)-(iv) are typically set to
help ensure a kinematically feasible gait. The value of the parameter (v) is selected such

that the quotient of the DRS’ nominal motion period and the desired gait period is an integer
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(i.e., the desired CoM motion complies with the DRS motion).

(2) Optimization variables

We choose the optimization variables @ of the planner as the initial CoM position (xy,
vse) and velocity (X, Ys¢) Within each continuous phase. The rationale for this choice is
that these variables, along with the DRS-LIP model parameters, completely determine the
horizontal CoM position trajectories. The vertical CoM position z. is not included as an

optimization variable because it can be readily obtained from the user-defined CoM height

20-
Input to planners Higher-layer planner Lawer-layer planmer
DES pos Ul Ve (4) Runes TS Tl Base pose traj. planner ref base pose trag
solution | T (El ¥plt)
User-specified gait par kot C-'”'ll‘r-"""""l' L5c(t). Isclt} | yef Cod
(i.e,, CoM height siance foot b CaM trajectory posnay Swing fool pos. traj. ref mving foo! pos.fra).
FON,, COREGC f.lL'{(JJL'fN':’ sord ' ﬂpﬁnliﬂllﬂn r\f'Lr ] . p]nnncr rr’ Lr:l
period and walling speed) / ! | =
] ==m e Rern dref, cned por
* ¥ —= Refl oy
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Figure 3-4: Overview of the proposed hierarchical walking pattern generator. The higher
layer exploits the proposed analytical solution of the DRS-LIP model to ensure efficient and
physically feasible planning of the desired CoM position trajectories rs(z). The lower layer
converts the reference CoM trajectories rs.(¢) into full-body reference motions (ry(t), ¥, (7),
and rz(t)) through trajectory interpolation.

(3) Constraints

We design the constraints to enforce physical feasibility [170] and desired gait features. Note
that these constraints are formed based on the proposed analytical approximate solution X;..
The equality constraints include: (i) continuity of the CoM trajectories at the foot-landing
events and (ii) the desired walking velocity. The inequality constraints are: (i) friction
cone constraint for avoiding foot slipping, (i1) confinement of CoM trajectories within the
polygon of support for approximately respecting the CoP constraint, and (iii) upper and

lower bounds on «.
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To meet the constraints, & is obtained by solving the following optimization problem:

min  h(a)
a (3.32)
subject to  foq(0) =0, Zineg(@) <0,

where h(@t) is a scalar cost function (e.g., energy cost of transport), and the vector-valued
functions f,, and g;., are the sets of all aforementioned equality and inequality constraints,

respectively. The expressions of f., and g;,., are omitted for space consideration.

3.5.2 Lower-Layer Full-Body Trajectory Generator

The lower-layer planner is essentially trajectory interpolation that translates the reference
CoM trajectory ry(f) (supplied by the higher-layer planner) into the robot’s full-body
trajectories. To impose a steady trunk/base pose and to avoid swing foot scuffing on the
surface, we choose these full-order trajectories to be the absolute base pose (position rj, and
orientation 7,,) and the swing foot position r relative to the base.

The input to the lower-layer planner (see Fig. 3-4) are: the nominal DRS motion that is
vertical and sinusoidal, the CoM position trajectories provided by the higher-layer planner,
and the user-defined parameters (e.g., CoM height, stance foot locations, and maximum

swing foot height).

(1) Base pose trajectories

The CoM of the robot is approximated as the base (i.e., the geometric center of the trunk)
because a quadruped’s trunk typically has a symmetric mass distribution and is substantially
heavier than the legs. Thus, we set the desired base position trajectories r,(¢) same as
the desired CoM position trajectories ry.(¢). As real-world locomotion tasks are typically
encoded by a robot’s absolute global/base position, we choose to transform these relative
position trajectories into the absolute ones.

With the DRS position r,,() at the support point S, we obtain the absolute base position

trajectories rp(t) as:

rp(t) =rge(t) +1y5(2). (3.33)
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To avoid overly stretched leg joints for ensuring kinematic feasibility, the desired base

orientation trajectories ¥,,(¢) are designed to comply with the DRS orientation.

(2) Swing foot position trajectories

The desired swing foot trajectories ry(¢) (relative to the support point S) are designed to
agree with the desired stance foot locations and to respect the kinematic limits of the robot’s
leg joints. Specifically, we plan the desired swing foot trajectory during a continuous phase
by using Bézier polynomials [20] to connect the adjacent desired stance foot positions.

We use s to denote the scalar normalized phase variable that represents how far a walking
step has progressed. Let ry; and ry . respectively denote the desired swing foot locations at
the initial and end instants of a continuous phase. We assign the values of ry; and ry, to
match the desired stance foot locations for the given continuous phase.

Then, we use the following Bézier curve to express the desired swing foot position r

within the given phase:

l‘f(S) =Ty +P(S) (l‘ﬁe - l'f,i), (3.34)

where P(s) is a 3 x 3 diagonal matrix function with each diagonal term an n'"-order Bézier
polynomial interpolation.

For walking along a straight line, we can design the lateral swing foot position as
constant for simplicity. We design the forward and vertical trajectories to have a relatively
fast initial velocity within Continuous Phases 1 and 3, as illustrated in Fig. 3-5 (a). This
relatively fast initial velocity allows the robot’s full body to have sufficient momentum to
leave the previous support polygon and enter the planned current polygon, thereby indirectly
meeting the CoP constraints under the desired contact sequence.

Also, as inspired by previous quadrupedal robot planning [24], a brief four-leg-in-support
phase is inserted upon a foot-landing event when the two consecutive polygons of support
only share a common edge (i.e., “Switching 1 — 2” and “Switching 3 — 4” in Fig 3-3), so
as to ensure smooth and feasible transitions during these events. This transitional phase is

highlighted with a grey background in Fig. 3-5. Thanks to this transitional phase, the initial
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forward and vertical swing foot velocities within Phases 2 and 4 do not need to be as fast as

Phases 1 and 3 (see Fig. 3-5 (b)).
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Figure 3-5: Normalized swing foot position trajectories in x- and z-directions during (a)
Continuous Phases 1 and 3 and (b) Continuous Phases 2 and 4. The grey background
highlights the transitional four-leg-in-support phase.

Remark 4. (Effects of LIP model accuracy on trajectory generation feasibility) The
dynamic feasibility of the planned trajectories partly depends on the closeness between the
DRS-LIP model and the actual robot dynamics. The DRS-LIP model is a relatively faithful
representation of an actual DRS-robot system when the robot and DRS behaviors meet the
assumptions (Al)-(A3) and (A10) that underlie the proposed model and its solution. Indeed,
assumption (A10) holds when the surface motion is vertical and sinusoidal, and the planner
explicitly imposes assumption (Al). Moreover, as the planner enforces the desired base
orientation to comply with the surface orientation for kinematic feasibility, the planned
motion will reasonably respect assumption (A2) for surfaces that translate without rotary

motions. Even for real-world DRS that rotate (e.g., vessels), the rate of the robot’s centroidal
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angular momentum will be negligible under the typical angular movement range of those

DRS [153], thus still respecting assumption (A2).
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Figure 3-6: Mean percentage error of the proposed analytical approximate solution compared
with the high-accuracy numerical solution under model parameters A =7 cm, ® = 7
rad/s, and zg = 42 cm for 100 random initial conditions satisfying |x(0)| < 0.2 m and
|%5¢(0)] < 0.2 m/s.

Table 3.1: Average computation time of analytical and numerical solutions for 1000 trials in
MATLAB (mean 4 SD)

Solution method Computation time (ms)
Numerical 2.61+0.43
Analytical (proposed) 0.16£0.02

3.6 Simulation and Experiment Validation

This section presents the simulation results that validate the proposed approximate analytical

solution and the walking pattern generator.

3.6.1 Validation of Solution Accuracy and Efficiency

The accuracy and computational efficiency of the proposed analytical approximate solution
in Eq. (3.25) is assessed through comparison with a highly accurate numerical solution. For
fairness of comparison, both solutions are computed in MATLAB on 7 € [0, 0.5] sec. The

approximate solution has ten terms kept (i.e., N = 10) for a reasonable trade-off between
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accuracy and computational efficiency. The comparative numerical solution is computed
using MATLAB’s ODE45 solver with an error tolerance of 10~ and at a time interval of 0.5
ms.

To validate the proposed solution under different initial conditions, 1000 sets of ini-
tial conditions are randomly chosen within a common movement range of quadrupedal
walking [24]: |x5(0)] < 0.2 m and |%,(0)| < 0.2 m/s. The DRS-LIP model parameters
are chosen to be within realistic ranges of DRS motions [160, 153] and quadrupedal robot
dimensions [20]: A =7 cm, @ = 7 rad/s, and zg = 42 cm.

Figure 3-6 shows the accuracy of the approximate analytical solution (with ten terms
kept) compared with the numerical solution for 100 out of the 1000 trials. Within those
100 trials, the maximum value of the absolute percentage error is lower than 0.02% in
magnitude, indicating the reasonable accuracy of the proposed approximate solution. For
all 1000 trials, the absolute percentage error, measured by mean 4 one standard deviation
(SD), is (0.0012 £ 0.005)%.

Table 3.1 displays the comparison of the average computational time cost (measured
by mean+SD) for the aforementioned 1000 trials. The proposed approximate analytical

solution is about 15 times faster to compute than the numerical one.

3.6.2 Simulation and Experimental Setup for Planner Validation

The setup of simulations and hardware experiments is shown in Fig. 3-7. The experiment

video is available at https://youtu.be/FILH8mdhedg.

(1) Robot

The validation of the planner utilizes a Laikago quadruped (see Fig. 3-7) developed by
Unitree Robotics. The dimension of the robot is 55 cm x 35 cm x 60 cm. The robot’s
total mass is 25 Kg and a power density of 0.8 kW/kg. The robot is powered by a 650 Wh
lithium-ion battery weighing 4.4 kg. It has twelve independently actuated joints that can
produce up to 18 kW of instantaneous power. Each leg weighs 2.9 kg and has three brushless

DC motors located close to the trunk. The torque limits of the three hip-roll, hip-pitch, and
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Figure 3-7: Setup of (a) experiments and (b) PyBullet simulations for testing the planner
effectiveness using a pitching Motek treadmill ((I)) and a Laikago quadruped (). The
treadmill has a split belt (@) that moves at a constant speed while the treadmill rocks about
the horizontal axis ().

knee-pitch motors are 20 Nm, 55 Nm, and 55 Nm, respectively. The robot is equipped with

an IMU at the trunk, 12 joint encoders, and a contact sensor at each foot.
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Table 3.2: User-defined gait parameters in walking pattern generation.

Gait parameter | (G]) (G2)
Friction coefficient 0.5 0.5
Robot’s base height zg (cm) 42 42
Gait duration (s) 2 2
Average walking velocity (cm/s) | 5 6
Step length (cm) 10 12
Max. step height (cm) 5 5

Figure 3-8: Image tiles of quadrupedal walking on a pitching treadmill under the proposed
walking pattern generator synthesized based on the DRS-LIP model and its analytical
solution. The top and bottom rows respectively show PyBullet simulations and hardware
experiments.

(2) Nominal and uncertain DRS motion

Three DRS motions are tested to assess the efficiency, feasibility, and robustness of the
planner under different surface motions that emulate vessel movements in regular sea
waves [160].

Due to our limited equipment access to programmable, actuated DRS that exclusively
exhibits vertical motion, we focus on PyBullet simulations for the planner validation on a
vertically moving surface with the following nominal profile without movement uncertain-

ties:
(DRS1) The DRS motion is vertical and sinusoidal with A = 10 cm and @ = 7 rad/s.

Meanwhile, we use a Motek M-Gait treadmill that performs a pitching motion (see Fig. 3-
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7) to approximate a vertically moving DRS both in hardware experiments and PyBullet
simulations. The Motek treadmill can be pre-programmed to perform user-defined pitching
(but not vertical) motions and belt translation. The treadmill weighs 750 kg with a dimension
of 23 m x 1.82m x 0.5 m. A 4.5 kW servo motor powers each of the treadmill’s two belts.
During the hardware experiments, the robot is placed approximately 1 m away from the
treadmill’s axis of rotation, and the belt speed is set to be the same as the desired walking
speed. Figure 3-8 shows images of the Laikago robot walking on the rocking treadmill in
simulations and experiments.

The actual movement of the pitching treadmill at the foot-surface contact points is
different from the nominal, vertical DRS motion used in planning and control, since the
pitching treadmill naturally possesses non-negligible horizontal motion and the robot’s
actual location on the treadmill directly affects the actual surface motion at the support feet.

Both the nominal and actual surface motions are listed below for two surface profiles tested:

(DRS2) The nominal, vertical surface motion used in planning and control is sinusoidal
with A =7 cm and @ = 7 rad/s. The actual, pitching DRS motion is a sinusoidal

function with an amplitude of 5° and frequency of 0.5 Hz.

(DRS3) The nominal, vertical surface motion used in planning and control is sinusoidal
with A = 11 cm and @ = & rad/s. The actual, pitching DRS motion is a sinusoidal

function with an amplitude of 7° and frequency of 0.5 Hz.

For all surface motions (DRS1)-(DRS3), the surface accelerations in the vertical direc-
tion are relatively significant for planner validation, with peak contact-point accelerations
approximately at 100 cm/s?, 70 cm/s?, and 110 cm/s? in magnitude, respectively, when
the robot stands about 1 m away from the treadmill’s axis of pitching. The corresponding
contact-point displacements are 10 cm, 7 cm, and 11 cm, respectively.

For the uncertain surface motions (DRS2) and (DRS3), the upper bounds of the uncer-
tainty in the absolute acceleration of the surface-robot contact points are approximately
20 cm/s? and 10 cm/s? in vertical and horizontal directions, respectively. Thus, the maxi-
mum absolute uncertainties are about 10-20% of the peak vertical acceleration at the contact

points.
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(3) Validation cases

We validate the efficiency, feasibility, and robustness of the proposed planner under four
different combinations of surface motions and desired gait features, both through hardware
experiments and simulations. The gait features are sampled from the two parameter sets
(G1) and (G2) as specified in Table 3.2.

To assess the planning efficiency, computations in MATLAB and C++ are conducted

under:
(Case 1) Combination of surface motion (DRS2) and gait parameters (G1).

To validate the planner feasibility under no surface motion uncertainty, we perform

PyBullet simulations under:
(Case 2) Combinations of vertical surface motion (DRS1) and gait (G1).

Finally, both hardware experiments and Pybullet simulations are used to evaluate the

planner robustness in the presence of uncertain surface motions:
(Case 3) Combination of uncertain surface motion (DRS2) and gait parameters (G1) and

(Case 4 Combination of uncertain surface motion (DRS3) and gait pameters (G2).

3.6.3 Planner Efficiency Validation

To demonstrate that utilizing the proposed analytical solution improves the planner efficiency
compared with the numerical solution, the higher-layer CoM trajectory planning problem is
solved based on both solutions under Case 1.

For simplicity, the cost function % in Eq. (3.32) is chosen as trivial. A 6/-order Bézier
curve is used to design the desired swing foot trajectory for allowing adequate freedom in
trajectory design. Also, we choose to lower the load of computing the proposed analytical
solution by pre-computing its solution parameters ( and C,,, as discussed in Remark 2.

To assess the planner efficiency under different common solvers, both MATLAB and
C++ are used to solve the optimization-based planning problem in Eq. (3.32) for 1000 runs

with the same initial guess of the optimization variable ¢. For fairness of comparison, the



73

Table 3.3: Average time cost of 1000 runs of higher-layer planning (mean£SD) under Case
1.

Solution method MATLAB C++
(fmincon) (Ipopt)
Numerical (ms) | 1320.74+13.8 72.3+6.7
Analytical (ms) | 269.1+12.9 8.6t2.2

optimality and constraint tolerances are set as 10~ in all runs. In MATLAB, fmincon is
used with an interior-point solver. For the C++ optimization, the nonlinear optimization
solver of the Ipopt package [171] is utilized. We solve the optimization problem on a
Windows 10 PC with 32 GB DDR4 RAM and an Intel Xeon W-10855M processor running
at a base speed of 2.8 GHz.

For those 1000 runs, Table 3.3 shows that the mean time costs of the analytical solution
based higher-layer planning is approximately 7 and 4 times shorter than the numerical
solution based one in MATLAB and C++, respectively.

Furthermore, Table 3.3 indicates that the higher-layer planner takes 8.6 2.2 ms to
generate the desired CoM trajectory when it is solved by C++ using the approximate
analytical solution. The median time cost of those 1000 runs of computations is 8.4 ms.
Also, solving the lower-layer planner is typically fast (e.g., MATLAB can solve it within 2
ms) since the planning is essentially trajectory interpolation. Therefore, the mean time cost
for solving both higher and lower layers will be less than 11 ms. Since such a time cost is
much smaller than the typical quadrupedal walking gait period (i.e., about 2 sec [24]) and
real-world DRS motion periods (e.g., 1-100 sec for vessels [153]), the proposed planner
would be adequately fast to timely regenerate the desired full-order trajectories in case of

any significant changes in the DRS motion.

3.6.4 Comparing Planner Efficiency

To highlight the significant reduction in planning time of the proposed walking pattern
generator thanks to the use of our proposed time-varying LIP model, we compare the

time cost of the proposed generator for planning 2 s of walking motion with the existing



74

planning method that utilizes a full-order robot model [52, 20]. This comparative planner is
formulated as an optimization problem similar to the proposed pattern generator.

The optimization variables of the full-order model based planner is the vector of Bézier
coefficients B associated with the base pose and swing foot trajectories.

The equality constraints include: (i) continuity of the desired base pose trajectories
across walking phases and (ii) the desired walking velocity. The inequality constraints are:
(1) bounds on the joint configuration, (ii) bounds on the CoM position trajectories, and (iii)
upper and lower bounds on B. The cost function is set as a scalar cost function with the
same physical meaning as the proposed walking pattern generator.

Under the same settings for the optimization problem, computing unit, and user-defined
parameters as in Section 3.6.3, the MATLAB planning time for 2 s of walking pattern
based on the full-order robot model, among 10 trials, is 162.4 £+ 13.7 s while the time
cost is 0.27 £0.01 s for the proposed planner based on the time-varying LIP model. This
comparative simulation demonstrates a substantial improvement in planning efficiency based

on the proposed model simplification, enabling real-time walking pattern generation.

3.6.5 Planner Feasibility Validation

Besides efficiency, the proposed DRS-LIP and its solution can also be used to guarantee
planning feasibility, which is validated in PyBullet simulations under Case 2.

To test the feasibility of the planned motion, we choose to implement our previous
nonlinear feedback controller [20] that does not explicitly ensure the feasibility of ground
contact forces during hardware experiments (Remark 3). If the controller turns out to be
effective in sustaining stable walking on DRS, we can infer that the planned trajectory is at
least approximately physically feasible.

This controller is derived based on the hybrid full-order robot model and proportional
derivative (PD) control. Given feasible desired trajectories, it provably guarantees the
walking stability. To help ensure a reasonable tracking performance, the PD gains are tuned
as 0.7 and 1.0 in simulations, and 5.5 and 0.15 on hardware.

As shown in Fig. 3-9, the robot sustains stable walking for the entire testing period of 50
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gait cycles. The base and joint trajectories closely track their reference values, as shown in
subplots (a) and (b). Also, subplot (c¢) indicates that the actual robot motion indeed respects

the torque limits.
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Figure 3-9: PyBullet simulation results for the robot’s base and front-right leg under Case 2.

3.6.6 Robustness Validation under Surface Motion Uncertainty

To evaluate the inherent robustness of the proposed planner in the presence of moderate
levels of uncertain DRS motions as specified in Section 3.6.2, we test the planner under
Cases 3 and 4, with results respectively presented in Figs. 3-10 and 3-11.

In both simulations and experiments, the robot walking is stable, as indicated by the
trajectory tracking accuracy in subplots (a) and (b) of Figs. 3-10 and 3-11 as well as the
experiment video. Moreover, subplots (c) of Figs. 3-10 and 3-11 confirm that the joint

torque limits are met in both simulations and experiments.
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Figure 3-10: Hardware experiment and PyBullet simulation results for the robot’s base and
front-right leg under Case 3.

Yet, the torque profiles of the front-right leg’s three joints display notable discrepancies
between PyBullet and experiment results, possibly due to the differences between the
simulated and actual robot dynamics as well as the different inherent meanings of their
effective PD gains.

Also, the experiment video shows that the robot experiences relatively notable rebound-
ing and slipping at contact-switching events when a rear leg lands on the surface. This
violation of the planned contact sequence is directly due to the temporary loss of contact
force feasibility, and could be mitigated through improved controller design as discussed in
Section 3.7.

The robot controller utilized in this chapter is similar to Chapter 2, which is highly
model-dependent and performs poorly under overly large uncertainty. We observed failure

for levels of uncertainties exceeding those in Cases 3 or 4.
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Figure 3-11: Hardware experiment and PyBullet simulation results for the robot’s base and
front-right leg under Case 4.

3.7 Discussion

This chapter has introduced a reduced-order dynamic model of a legged robot that walks
on DRS, by analytically extending the classical LIP model from stationary surfaces [21]
to DRS (e.g., ships). The resulting DRS-LIP model in Eq. (3.8) is a linear, second-order
differential equation, similar to the classical LIP. However, the DRS-LIP is explicitly time-
varying whereas the classical LIP is time-invariant. This fundamental difference is due to
the time-varying movement of the surface at the surface-foot contact points. This chapter
also investigates the stability of the DRS-LIP based on the Floquet theory. Similar to the
classical LIP that describes stationary-surface locomotion [21], the DRS-LIP is unstable
under the usual movement range of real-world DRS such as vessels [153].

The DRS-LIP is valid under the assumption (A1) that the actual robot’s rate of whole-

body angular momentum about the CoM is negligible. To relax this assumption, the point
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mass of the proposed DRS-LIP could be augmented with a flywheel [25, 45] to account for
the nonzero rate of angular momentum. Moreover, the DRS-LIP can be generalized from a
constant CoM height (as enforced by assumption (A2)) to a varying height by integrating
with the variable-height LIP for stationary surfaces [91].

In this chapter, we also derive the approximate analytical solution of the DRS-LIP for
vertical, sinusoidal surface motions. Its sufficient accuracy and improved computational
efficiency compared with numerical solutions are confirmed through MATLAB simulations
(Fig. 3-6 and Table 3.1). Although the proposed reduced-order model in Eq. (3.7) does not
assume a specific form of surface motion, the proposed analytical solution is derived for
vertical and sinusoidal surface motions, which are typical for real-world ship motions in
regular sea waves [159, 153]. To address surface motions that are vertical and nonperiodic
with their time profiles pieced together by periods of different sinusoidal waves, which cover
a wide range of DRS motions [153], the proposed analytical solution could be extended
by: (1) forming the individual analytical solutions for those different periods based on the
proposed solution derivation method and then (ii) piecing them together to form the needed
overall solution. Moreover, if the vertical nonperiodic surface motion comprises periods of
general periodic functions instead of sinusoidal waves, we could potentially use the Floquet
theory [166] to derive the analytical solution by numerically precomputing the fundamental
matrix of the reduced-order model and then constructing the analytical solution using the
fundamental matrix. Our future work will also tackle the modeling and planning problem for
legged locomotion under general surface motions that contain horizontal movements [172].

To highlight the practical usefulness of the analytical results, the DRS-LIP model and its
solution have been used as a basis to synthesize a two-layer walking pattern generator that
efficiently produces desired, physically feasible motions for quadrupedal DRS walking. The
feasibility of the planned motion is validated by using our previous tracking controller [20]
to command a quadrupedal robot to follow the planned motion during DRS walking. As dis-
cussed in Section 3.6.1, simulation and experiment results indicate the reasonable feasibility
and robustness of the proposed planner under different gait parameters and surface motions
(Figs. 3-9-3-11). Furthermore, validations through hardware experiments demonstrated

its robustness to uncertainties in DRS motions. To mitigate the temporary violation of the



79

planned gait sequence observed in experiments, which is partly induced by the discrepancies
between the DRS-LIP and the actual robot dynamics, the planned motion could be tracked
by an optimization-based controller [1] that explicitly ensures physical feasibility.

With the peak absolute acceleration of the surface-foot contact points at around 1 m/s?,
the quadrupedal walking speed relative to the rocking treadmill is about 5 cm/s in the
hardware experiments, which, to our best knowledge, is the fastest quadruped walking
speed on a vigorously rotating surface for hardware experiments [20]. To achieve faster
walking despite the inevitably higher inaccuracy of the reduced-order model induced by
the higher nonlinearity of actual robot dynamics, we can augment the controller described
in Section 3.6.1, which does not reason about the feasibility of necessary constraints (e.g.,
ground contact forces), with an optimization-based controller [173, 24] that explicitly
guarantee the feasibility for actual walking. Furthermore, while we consider a constant
average walking speed (relative to the dynamic surface) in the validation of the proposed
walking pattern generator, the proposed planner can be readily extended from constant
to variable speed walking, because the proposed reduced-order model and its analytical
solution are valid in describing the robot dynamics within any walking cycle of constant or

variable speed walking.

3.8 Conclusion

This chapter has presented an analytically tractable and computationally efficient reduced-
order robot dynamics model, the approximate analytical solution of the model, and a
real-time motion generator for legged locomotion on a dynamic rigid surface (DRS). The
proposed model was derived by theoretically extending the classical linear inverted pendulum
(LIP) model from a stationary surface to DRS, and describes the essential time-varying
robot dynamics associated with DRS walking, which is fundamentally different from the
classical time-invariant LIP model. The analytical solution of the extended LIP model was
obtained based on the conversion of the model into the well-studied Mathieu’s equation.
Exploiting these analytical results, a real-time walking pattern generator was developed to

efficiently plan feasible robot motions for quadrupedal walking on a vertically oscillating
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surface. Simulation results revealed the continuous-phase stability property of the proposed
time-varying LIP model, and demonstrated the efficiency and accuracy of the analytical
solution under a common range of real-world DRS movement. Finally, both 3-D realistic
PyBullet simulations and hardware experiments on a physical Laikago quadrupedal robot
confirmed the computational efficiency, physical feasibility, and inherent robustness of the

proposed framework under various gait parameters and surface motions.
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Chapter 4

HT-LIP Model based Robust Control of
Quadrupedal Robot Locomotion under

Unknown Vertical Ground Motion

Our studies on quadruped control reported in Chapters 2 and 3 have primarily focused
on provable stabilization [20] and real-time planning [34, 174, 175, 176] for locomotion
on a vertically moving DRS with rigid actuation or large inertia, such as vessels in sea
waves that exhibit periodic vertical motion. Yet, those studies assume an accurately known
surface motion profile, and the controller design presented in Chapter 3 also assumes that
the surface motion profile is sinusoidal. Thus, it remains an open question to stabilize
legged locomotion on rigidly actuated or heavyweight dynamic surfaces with general or
uncertain vertical motions. Building on the success of employing reduced-order models in
real-time planning as demonstrated in Chapter 3, this chapter focuses on creating a reduced-
order model-based control framework to ensure stability and robustness for quadrupedal
locomotion on DRS with unknown vertical motions.

This chapter introduces a hybrid time-varying linear inverted pendulum (termed as
“HT-LIP”) model that describes the essential robot dynamics during locomotion on DRS
with general vertical motion, derives the stability conditions for the model, and develops a
quadratic programming (QP)-based robust footstep planning method. The HT-LIP model-

based footstep planner is utilized to design a robust control framework for underactuated
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quadrupedal robot locomotion on DRS with unknown vertical motion. The proposed control
framework is thoroughly validated through hardware experiments on a quadruped robot
under various uncertainties.

The contents of this chapter are from a published peer-reviewed conference paper and a

journal article in preparation.

* Igbal, A., Veer, S. and Gu, Y., 2023. Asymptotic stabilization of aperiodic trajectories
of a hybrid-linear inverted pendulum walking on a vertically moving surface. In Proc.

of American Control Conference, pp. 3030-3035.

* Igbal, A., Veer, S., Niezrecki, C. and Gu, Y., 2023. HT-LIP Model based Robust
Control of Quadrupedal Robot Locomotion under Unknown Vertical Ground Motion.

In preparation.

4.1 Introduction

4.1.1 Related Work
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Figure 4-1: Snapshots of experiments. All experiments are under an unknown and aperiodic
vertical surface motion zs(¢) as shown in (a) and (b). The robot also experiences additional
unknown disturbances, which include: (c) sudden pushes that result in (d) an irregular robot
posture just after a push; (e) rocky surface with a peak height of 10 cm; (f) smooth glass
surface; (g) solid load (36% of the robot’s mass); and (h) liquid load (32% of the robot’s
mass).

Due to the prevalence of uncertainties in real-world environments, robustness is a crucial

performance measure of legged robot control. Various control approaches [1, 177, 178, 103]
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have achieved remarkably robust locomotion in a wide variety of unstructured, static
environments (e.g., sand, grass, hiking trails, and creeks). Yet, since the previous approaches
typically assume a static ground, they may not be effective for DRS, which is a rigid
surface moving in the inertial frame and can persistently and continuously perturb the robot
dynamics.

To enable robust locomotion, reduced-order models can be used to serve as the basis
of motion generators to efficiently plan desired trajectories, enabling quick reactions to
disturbances and uncertainties. To achieve real-time generation of the desired footsteps
for robust locomotion, the classical LIP model has been expanded to capture the hybrid
dynamical behaviors of legged locomotion on a stationary surface [179, 27, 180, 155],
which include continuous leg-swinging dynamics and discrete foot-switching behaviors.
Using the stability theory of hybrid linear time-invariant systems, the asymptotic stability
conditions for the hybrid LIP (H-LIP) model under a discrete-time footstep controller have
been constructed to enable robust locomotion under external pushes [179, 27]. However,
the H-LIP model may not be accurate under a significant DRS motion because it does not
explicitly consider the time-varying movement of the foot-surface contact region. Although
our studies on quadrupedal locomotion reported in Chapter 3 have analytically extended
the classical continuous-time LIP model [21] from static to dynamic surfaces [174, 181, 34]
under accurately known, periodic DRS motions, they do not explicitly consider the hybrid

robot dynamics and cannot directly address unknown and general surface motions.

4.1.2 Contributions

This chapter presents a reduced-order model based control approach that achieves provably
robust stabilization of quadrupedal locomotion on a DRS with aperiodic and unknown

vertical motions. This chapter makes the following new, substantial contributions:

(a) Derivation of the HT-LIP model that explicitly considers the time-varying surface

motion and the hybrid robot behaviors.

(b) Development of generalized stability conditions to stabilize the HT-LIP model loco-

motion on DRS under unknown vertical DRS motions.
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(c) Formulation of a robust footstep controller as a computationally efficient quadratic

program (QP) that enforces stability conditions.
(d) Derivation of a hierarchical control approach that incorporates the proposed QP.
(e) Stability analysis of the full-order model under the proposed controller.

(f) Experimental validation under various uncertainties (Fig. 4-1).

4.2 Stabilization of a Hybrid Time-Varying LIP

This section introduces a reduced-order model that captures the essential hybrid robot
dynamics associated with quadrupedal trotting on a DRS with a general vertical motion,

along with its stabilizing control law.

4.2.1 Open-Loop Reduced-Order Model

To derive the proposed reduced-order model, we extend the classical H-LIP model [179]
from static to DRS by combining it with our previous continuous-phase LIP model derived
for moving surfaces. Due to the surface movement, the resulting model, as illustrated in
Fig. 4-2, is a hybrid, time-varying LIP model, which we call “HT-LIP” and is fundamentally
different from the time-invariant H-LIP model.

This section introduces the derivation of reduced-order model based on the standard
hybrid, linear inverted pendulum model (H-LIP) [179]. We use the H-LIP model as the
basis of our model derivation because it is computationally efficient, analytically tractable,
and relatively accurately captures the essential hybrid dynamics of legged locomotion
that include continuous leg-swinging behaviors and discrete foot-switching events. The
resulting model, as illustrated in Fig. 4-2, is explicitly time-varying, due to the surface
movement, which is fundamentally different from the time-invariant H-LIP model. We term

the proposed hybrid, time-varying LIP model as HT-LIP.
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(1) Model assumption

The proposed model derivation considers the following simplifying assumptions in addition

to the assumption (A1):

(A11) The absolute vertical acceleration of DRS is bounded by the magnitude of gravita-

tional acceleration and is locally Lipschitz in time.

(A12) The desired duration of the continuous phase for the HT-LIP stepping is bounded for
all walking steps.

(A13) The foot switching events occur at fixed time instants.

The assumption (A1) helps avoid an overly stretched knee joint that can induce kinematic
singularity and also ensures the linearity of the inverted pendulum model [21]. The accelera-
tion bounds in the assumption (A11) hold for common real-world dynamic platforms such
as moving vessels and aircraft, thanks to the large magnitude of the bounds. The Lipschitz
continuity in time arises from the fact that the acceleration of real-world DRS is continuous,
has finite magnitude, and does not change abruptly for all time [153, 182]. The assumption
(A12) is reasonable as it ensures a finite duration for each continuous phase during HT-LIP
walking and prevents Zeno behavior [183]. Additionally, the assumption (A13) simplifies
the stability analysis [184, 179].

(2) Continuous phases

Under the assumption (A1), the continuous-phase dynamics of a 3-D inverted pendulum
model along the x- and y-axes of the world frame are linear and share the same form, as
explained in our previous work on continuous-time LIP modeling for DRS [109]. Without
loss of generality and for brevity, the subsequent analysis considers the HT-LIP model in
the x-direction (see Fig. 4-2).

We use (1), g, and zj to respectively denote the vertical acceleration of the support point
S, the magnitude of gravitational acceleration, and the CoM height above S. Here, the time
argument of the surface acceleration is kept in its notation (i.e., Z,(¢)) to highlight its explicit

time dependence.
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Denoting the horizontal CoM position relative to point S as x, we express the continuous-
phase equation of motion for the HT-LIP in the x-direction as the following continuous-time,

time-varying, linear, homogeneous system:
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Figure 4-2: An illustration of the proposed HT-LIP model in the sagittal plane. The model
describes the time-varying dynamics of the point mass (located at the CoM) under the
vertical DRS displacement z,(¢). It also captures the hybrid nature of legged locomotion,
including both the continuous foot-swinging phase and the discrete foot-switching behavior.

(3) Discrete foot switching

Besides continuous dynamics, the proposed HT-LIP also considers the discrete foot-landing
event when the stance and support feet switch roles. We use 1, to denote the n™ switching
instant with n € N. Further, we denote the time instant just before and after the n' switching
instant as 7, and 7, respectively. For notational brevity, we introduce |, := *(t, ) and
sl = #(5).

At the switching timing, the location of the support point S on DRS is reset, resulting in
a sudden jump in the relative CoM position x. As illustrated in Fig. 4-2, the relative CoM

position just after the switching, x|, is given by:
xly = xly —uea, (4.2)

where u, 4 is the new support-foot position relative to the previous one in the x-direction.



87

The CoM velocity stays continuous at the switching instant, that is, |7 = x|, , because
the angular momentum of the CoM about the contact point S is conserved and the CoM
height remains constant above S within continuous phases (i.e., assumption (Al)) [27].
Combining the continuous-phase dynamics in (4.1) and the discrete-time jump in (4.2), we
obtain the state-space representation of the proposed HT-LIP model as:

X =a()X ift #1,;
(4.3)

X(t,)=X(t,)+Bura  ift=r1,,

n

f(t) 0

ft):= % Similar to z,(), we keep the time argument ¢ in the notation of f(¢) to highlight

0 1
where X := [x, %|7 and B :=[—1, 0]”. The matrix a(z) is defined as a(t) := { ] with

its explicit time dependence.

(4) Open-loop step-to-step (S2S) model

The S2S model of the HT-LIP compactly describes the hybrid evolution of the HT-LIP
during a gait cycle, which is used to construct the proposed stability conditions of the
HT-LIP later.

Integrating the continuous dynamics and iterating the discrete jump map based on (4.3)

yields the S2S model as:

X[, =207, (X, + Buuxa), (4.4)

where ®(f(1);1_

T . .. . .
wits T ) o= [ " e¥(t)dt is the state-transition matrix of the n'" continuous

+ —
phase from 7, to 7, ;.

4.2.2 Discrete Footstep Control for HT-LIP

While the continuous-time portion of the HT-LIP model is unstable [34] and uncontrolled,
the discrete-time footstep behavior is directly commanded by the foot displacement u, 4.
Thus, we design a discrete-time footstep control law based on the HT-LIP model that aims
to asymptotically stabilize the desired state trajectory, denoted as X, (¢), i.e., to drive the state

trajectory X(¢) to track the desired trajectory X,(¢) as time goes to infinity.
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The tracking error is defined as e := X — X, =: [, ¢]7, and x, and i, represent the elements
of X,, i.e., X, = [x,,%,]7. By incorporating the error e, the discrete HT-LIP stepping controller

uy 4 at the switching instant 7, is designed as:
Uxa =ty + Kel, . (4.5)

Here u,, := x|, —x,|; is the desired foot-landing position of the desired trajectory X, (t),
and K := [k;, k] is the feedback gain to be designed later for asymptotic stabilization.
From the feedback control law (4.5) and the open-loop S2S dynamics in (4.4), the

closed-loop S2S error dynamics become:
e|;+1 = Ad,ne|;a (4.6)

where Ay, is the S28 error state-transition matrix and is defined as Ay, := ®(f(2): 7, |, 7, ) (I+

BK) with I an identity matrix with an appropriate dimension.

4.3 HT-LIP Based Control Framework

This section presents the overall structure of the proposed hierarchical control framework.
The framework aims to achieve robust quadrupedal trotting on DRS with unknown vertical
motions.

Ensuring robust quadrupedal trotting during vertical DRS motions poses a challenge
due to the complex robot dynamics. One effective way to realize locomotion robustness is
to plan the desired, physically feasible footstep locations in real-time [179, 27]. Yet, the
computational cost of employing the full-order robot model can be excessive for online
planning, given the hybrid, nonlinear, time-varying, and high-dimensional nature of the
actual robot dynamics.

Further, underactuation in quadrupedal trotting complicates the control framework
design. With 13 DoFs and 12 independently actuated joints, a typical quadrupedal robot
(e.g., Unitree’s Gol) has one degree of underactuation during trotting. This leads to two-
dimensional unactuated dynamics, which can be approximated by the proposed HT-LIP
model in (4.3). Underactuation is challenging because (a) while the directly actuated portion

of the actual robot dynamics can be well regulated, the unactuated subsystem may not be
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directly altered by joint torque commands [27] and (b) the HT-LIP model is unstable during
continuous phases under real-world DRS motions (e.g., ship motions in sea waves) [174].
To achieve robust locomotion, the proposed framework adopts the classical hierarchical
structure of legged robot control approaches and contains three layers. The key novelty of
the framework lies in its higher-layer footstep planner.
The subsequent part of this section describes the proposed control framework structure

and presents essential details of each layer of the framework.

4.3.1 Framework Structure

This section presents the overall structure of the proposed hierarchical control framework.
The proposed hierarchical control approach ensures robust trotting motions of the actual
robot through real-time footstep planning and full-body control, even in the presence of
uncertain conditions such as unknown DRS motions. The hierarchical control framework

comprises three essential layers as illustrated in Fig. 4-3.
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Figure 4-3: Illustration of the proposed hierarchical control framework. The higher layer
generates the desired footstep locations. The middle layer employs a full-order model to
plan kinematically feasible desired trajectories. The lower-layer controller tracks the desired
full-body trajectories.

(1) Higher-layer footstep planning

To effectively reject uncertainties for ensuring robust locomotion, the objective of the higher
layer is to efficiently generate the desired, physically feasible footstep positions in real-time

that provably stabilize the proposed HT-LIP model. The key to realizing this objective is



90

the utilization of the proposed HT-LIP model as well as its provably stabilizing footstep
controller formulated as an efficient quadratic program (QP).

Representing robot dynamics with the HT-LIP is reasonably accurate for guaranteeing the
planner’s feasibility since today’s legged robots typically have heavy trunks and lightweight
limbs [174]. Meanwhile, the linearity and low dimension of the HT-LIP contribute to the
computational efficiency of the planner for real-time planning.

Further, to guarantee the stability of the hybrid, time-varying, nonlinear, and under-
actuated robot dynamics, we use the proposed HT-LIP footstep controller to indirectly
stabilize the unactuated dynamics by provably stabilizing the HT-LIP model. We introduce
the stability condition for the footstep controller in Section 4.3.2. To enhance planning

efficiency, we construct the controller as a QP as presented in Section 4.3.2.

(2) Middle-layer full-body trajectory generation

Based on the robot’s full-order kinematics model, the middle layer translates the output from
the higher layer (i.e., the desired footstep location and CoM trajectories) into the desired
full-body trajectories while agreeing with assumptions (A1) and (A11)-(A13) underlying the
HT-LIP model. This helps ensure the feasibility and efficiency of the trajectory generation
and reduces the discrepancy between the actual robot dynamics and the HT-LIP. The details

of the middle-layer planner are presented in Section 4.3.3.

(3) Lower-layer full-body control

Considering its high performance in ensuring gait feasibility and tracking performance, the
lower layer adopts the existing quadruped controller [1] that outputs the joint torque to track
the desired full-body trajectories based on a single rigid body model. The details of the

lower-layer full-body control are presented in Section 4.3.4.

4.3.2 Higher Layer: HT-LIP Based Footstep Planning

This section introduces the formulation of the foot-stepping controller design that, even in

the presence of uncertain DRS motions, stabilizes a trotting robot’s unactuated dynamics
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based on the HT-LIP model.

(1) Stability Conditions under Unknown DRS Motions

The design of the proposed higher-layer footstep planner begins with the construction of the
asymptotic stability condition of the HT-LIP model under unknown DRS motions.
(a) Supreme model of HT-LIP

The proposed asymptotic stability condition is built on a supreme model of the S2S error
dynamics in (4.6), which is derived next.

By definition, the function f(¢) is both positive and bounded for € R* and locally
Lipschitz under the assumption (A1). We use £, to represent any positive constant parameter
no less than the supremum of f(¢) over t € (7, T,+1] (i.e., f,, should satisfy f,, > supf(z) on
1€ (Ty, Tug1]-

Since the continuous-phase error system is ¢ = f,e, we define its supreme model as
e=f,e, 4.7)

where e is the solution of this model. Because the supremum model is linear and time-
invariant, its state-transition matrix, denoted as ®, satisfies ®(f,:7,, |, %) = ®(f,;ATus1,0),
where At,. := 1, — 7, denotes the duration of the n' continuous phase. Accordingly, the
S2S state-transition matrix of the supreme model is defined as A4, := ®(f,,; ATy+1,0) (I+ BK).
(b) Asymptotic stability condition on S2S dynamics

We first introduce the sufficient condition for the asymptotic stability of the closed-loop
S2S error model in (4.6).
(i) Lyapunov function candidate V: We consider a Lyapunov function candidate defined
asV(e):= %||e||2. According to the existing stability theory [185] of general discrete-time
systems that include the S2S error dynamics, the error dynamics are asymptotically stable if:
(i) V (e) satisfies the positive definiteness and boundedness conditions mentioned in [185]
and (i1) V strictly decreases as n increases. It can be readily proven that condition (i) is met

for the selected Lyapunov function candidate V. The rest of this section shows that V meets

condition (ii) if the stability condition in Theorem 3 holds.
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(ii) Boundedness of error state norm: To prove the sufficient stability condition in Theorem
3, we first establish the boundedness of the norm of the error state at the (n -+ 1)™ switching

instant, i.e., , as summarized in Lemma 1.

€,

, in terms of He|;

Lemma 1 (Boundedness of error state norm). Consider the assumptions (All) and
(A12) of this dissertation and the S2§ error dynamics in (4.6). Recall ay , := ||X017,1Hoo =
|®(f,,; ATy, 0)(1+ BK)||co. Then, for all n € N, the following inequality holds

(4.8)

He|;+1H < agnlel, |-

Proof: We prove Lemma 1 by first establishing the bounds on the error state for the
continuous phase on 7 € [7,7, 7, ,]. Since the continuous-phase error model is & = f(r)e,
which is time-varying, we establish the bounds on the continuous-phase error evolution by
considering a supremum time-invariant system.

Recall that f(r) := % and that the positive variable £, is no less than the supremum
of f(t) overt € (Ty, Tyr1] (i.e., f,, should satisfy f, > supf(t) ont € (T, Tys1].

As introduced in (4.7) of the previous section, the supreme model of the continuous-
phase error system is given as:

e=f,e, 4.9)

where e is the solution of (4.9).
Then, according to the results of the Strong Comparison Theorem in Sec. 2 of [186], the

solutions e and e satisfy the following inequality for all ¢ € (7, T4 1]
le(t)] < [e(r)], (4.10)

when they share identical initial conditions, i.e, e(7,") = e(t,"). Note that the absolute value
inequality in (4.10) holds because f(¢) is positive for all r € R
Recall that ®(f,,; Toits T,7) represents the state-transition matrix of the supremum time-

invariant model in (4.9) on 7 € (7,7, 7, ] and that ®(f,: T, ;. 7,") = ®(f,;ATu11,0).
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+

141 1s bounded by:

By using (4.10), the error state e|

< (BT T el

_ (4.11)

‘e|r7+l‘

Next, we apply the discrete switching map in (4.2) to the equation above and obtain:

‘ey,;ﬂ‘ < (6(7,,;Arn+1,0)(1+ﬁ1<)e|; . 4.12)
Recalling
Ay i=9(f,;A1,41,0)(I+ BK) (4.13)
and rewriting the right-hand side of the inequality in (4.12) yield:
‘e\iﬂ‘ < |Agnel |- (4.14)
With the sub-multiplicative property of [A, e, |, (4.14) becomes:
el | < [ el | (4.15)

Adding an induced matrix norm ||.|| to both sides of (4.15)and using the properties of

]|, we get:

Jelwi ]| < | (Faalels D]| < |[Fan]_[lel

(4.16)
el

=dqn >

which completes the proof. [
Next, we introduce the sufficient stability condition on S2S dynamics and present the

proof based on Lemma 1

Theorem 3 (Sufficient stability condition on S2S dynamics). Consider the assumptions
(Al1) and (A12). Define ay, := ||Augnll< The closed-loop S2S error dynamics in (4.6) is
globally asymptotically stable if ay, < 1 holds for all n € N.

Proof: We analyze an upper bound of the change in the Lyapunov function AV (e|,) across
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two adjacent foot landings as:

AV(e\;)::V(e|;+1>—V<eln 2H n+1H 2H"‘n

4.17)
I, 12
< Ead,n e’n 2 He‘n =i —0p e‘n ’
where o, is defined as ¢, := 5 (1 —ay n) If the positive variable a4, satisfies a4, < 1 for

all n € N, then —0, < 0 holds on n € N. Accordingly, the Lyapunov function V meets the
sufficient stability conditions for the discrete-time model.This completes the proof. [
(3) Stability condition on footstep control

Based on Theorem 3, the following theorem provides the sufficient condition under

which the footstep controller in (4.5) asymptotically stabilizes the HT-LIP model in (4.3).

Theorem 4 (Sufficient stability condition on footstep control gain). Consider the assump-
tions (All) and (A12). The feedback footstep controller gain K (i.e., k| and k) guarantees
the closed-loop asymptotic stability of the desired trajectory X, (t) for the HI-LIP model if

(1 —ky)cosh(&,)| + < 1and

(1—ki)y/7, sinh (&) |+

hold for any n™ gait cycle (n € N). Here, &, := A1, \/i

% —kpcosh (&)

n

4.18)
cosh (&) — ka7, sinh (&,)| < 1

Proof: The rationale of the proof is to show if (4.18) is valid for all » € N then the stability
condition in Theorem 3 holds.
By definition, the state-transition matrix ®(f,;At,,0) for the state-space representation

of the time-invariant supremum model ¢ = f, e is given as:

0 1
o AT,
Y

_ 5. B
PD(f,;AT,,0) =€l 1 P

621 622

4.19)
cosh (&,) S”it}g )

7
\/Tasinh (&) cosh (&)
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Using the expressions of the state-transition matrix in (4.19) and those of B and K, we

can express Ay, as:

R — (1_k1)§11 ?12-162?11 ' 420)
(1 —k)®y1 Pro— kP

From (4.20) and the definition of the infinity norm of a matrix, we obtain:

ain = |Adnlle = max(|®11 (1 —ki)| 4 |®12 — rikal,
- - o “4.21)

[ @21 (1 —k1)| + P22 — Parka|).
If the footstep controller satisfies (4.18), then |®(1 — k)| + |®12 — ®y1k2| < 1 and
|@51 (1 —k1)| + |@22 — P21k2| < 1 hold for any n € N. Accordingly, ag, = ||Agnll« < 1 holds

on n € N, meeting the stability condition in Theorem 3. [

Remark 5 (Applicability of Theorems 3 and 4). The stability conditions in Theorems
3 and 4 are valid for a variable continuous-phase duration and a general (periodic and
aperiodic) vertical DRS motion. Also, applying these conditions does not require an accurate

knowledge of the DRS motion but an upper bound of its acceleration.

(2) Formulation of QP-based Footstep Control

To ensure online footstep planning, we formulate a computationally efficient QP that
calculates the controller gain K in real-time, maximizes the error convergence rate, and
enforces feasibility and stability conditions of the HT-LIP.
(a) Ensuring real-time update of control gain

Because the stability condition in Theorem 4 relies on the values of the system parameter
&, that can vary across different gait cycles, it is necessary to update the control gain K at
least once per gait cycle in order to meet the stability condition. The variance of &, across
different gait cycles is due to changes in the gait cycle duration Az, and the parameter f,,.
The varying value of A7, across gait cycles can be induced by users or a high-level path
planner, while that of £, can be caused by the constantly changing DRS motion.

For timely mitigation of uncertainties in real-world applications, updating the planned
footstep position every time step is necessary [27]. Although Theorem 4 ensures the system

stability under the once-per-gait-cycle update of K and &, instead of an update every time
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step, Theorem 4 can be readily extended to guarantee the stability even when K and &, are
updated every time step. This is essentially because the supremum system used to construct
the stability conditions is time-invariant and accordingly its S2S state-ttransition matrix A, ,
enjoys the associative property in terms of time ¢ within each continuous phase.

(b) Ensuring fast convergence rate

el,

Lemma 1 shows that for all » € N we have He\;H H <ag, . Thus, minimizing a4 ,

ensures a fast convergence rate of the error e. Based on (4.21), this can be achieved by
minimizing the sum of the squares of [®;(1 —k;)|+ [@12 — P11k2| and [@r; (1 — k)| + [P —

@,k |), which is used as the cost function J(K):
1
J(K) = 5KSKT +Ke. (4.22)

Here S and c are respectively the Hessian matrix and gradient vector of the cost function
J(K) and are defined as:
=2 =2
2(®), +9,) 0
S= _» _, | and
0 2(®), +93) (4.23)
c=[-2(®); + D), —2(P11P12+P2Pn)]".
(c) Enforcing stability conditions
The asymptotic stability condition of the HT-LIP model under the proposed footstep

control law, given in (4.18), can be rewritten as:

—611 —611 1 —611 _612

) I 1+4®,,+®

711 711 K < 711 712 ‘ @.24)
—®;; —Py 1 - — Dy
i @, D, ] _1 +®,, —i—azz_

(d) Satisfying kinematic limits and ground-contact constraints

The physical feasibility of a planned footstep is guaranteed by respecting (i) the kinematic
bounds on the trotting step length and (i1) the friction cone and unilateral ground-contact
constraint. The kinematic limit of the step length u, ; can be expressed as i, 4 € [tmin, Umax]s
where u,,,,; and u,,;, are the maximum and minimum step lengths of the HT-LIP, respectively.
Meanwhile, the step length should be set to respect the following friction cone and unilateral
constraint at the foot-surface contact point: u,, € [-2uzo,21z0], Where u is the friction

coefficient.
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In summary, the stability condition and the feasibility constraints can be compactly

expressed as:

EK” <d (4.25)
with i i i i
e é Imax — Urp
—e —é _lmin + Urn
) 1-®,,—®
E=| " "|ada=| " ", (4.26)
P, P 14+ @+ @,
—621 —621 1 —621 _622
| @ Dy | |1+ @) + D), |

where the scalar, real constants /,,,, and I,,;, are defined as 1,4, := max(upay, U20) and Ly, :=
min(Umin, — K20)-
With the cost function and constraints designed, the proposed QP that produces the

footstep controller gain K is given in the following theorem.

Theorem 5 (QP-based control gain optimization). The control gain K that maximizes the
convergence rate, guarantees stability, and ensures feasibility for an HT-LIP model is given

as a solution to the following QP problem:

min J(K)
K (4.27)
subject o EK! < d.

Proof: Minimizing the cost function J(K) leads to the minimization of variable a, , while
the physical feasibility and asymptotic stability of the closed-loop HT-LIP system are
guaranteed by enforcing the constraint EK” < d. Hence, the optimal solution to the QP

problem corresponds to the optimal convergence rate, feasibility, and stability. |

Remark 6 (Solution feasibility and optimality of the proposed QP). Note that the cost
function in (4.22) is convex. Meanwhile, the feasibility and stability constraints of the QP
in (4.27) are non-conflicting if the feasible region for the constraints EK! < d remains
non-empty. Accordingly, the solution feasibility and optimality for the QP problem in (4.27)
is guaranteed. In practice, the non-emptiness of the feasible region can be numerically

evaluated under the admissible range of system parameters f and At,.
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Remark 7 (Solving the QP in real-time). Solving the proposed QP requires the knowledge

th

of the upper bound of f(t) during any n™ gait cycle, as indicated by the stability condition
in Theorem 4. Since the needed upper bound can be any upper bound of f(t) during any n™
gait cycle, we can solve the proposed QP, in principle, by using a sufficiently large value of
the upper bound f,, that is valid across any n™ gait cycles. Yet, using such a bound might be
overly conservative, reducing locomotion robustness. Thus, we choose to estimate the upper
bound of the surface acceleration in real-time and update f, at every time step.

To estimate the surface acceleration, one feasible way is to use forward kinematics to
transform the acceleration reading of an on-board inertial measurement unit (IMU) from
the IMU/robot frame to the world frame. Using the roughly estimated surface acceleration,

we can then approximate an upper bound of the surface acceleration and update the values

of fr Gdp and ®.

(4) Higher-layer output

The output from the higher layer is: (i) desired footstep location u, 4 in the forward direction
and its lateral counterpart, denoted as u,, 4, and (ii) desired CoM position trajectories.

To obtain the reference step length u, , and uy, of the HT-LIP model, we utilize the
HT-LIP model itself, its desired average velocity in the x- and y-directions provided by the
user (denoted as v, 4 and v, 4), and the desired step duration A7,. Specifically, we compute
uy r and uy , as:

Uy, i= Vi ATy and uy,, 1= vy 4JAT,. (4.28)

When the HT-LIP model evolves exactly along its state trajectory x,(¢), the model’s
footstep location along the x-direction is u, .. As explained in Section 4.2.2, to stabilize the
HT-LIP model (for indirectly stabilizing the robot’s unactuated dynamics), the proposed
discrete footstep controller of the HT-LIP produces the actual footstep locations for the
HT-LIP (i.e., u, 4 and uy 4), which serves as the desired footstep locations for the actual
robot.

To account for the actual robot movement in the computation of the footstep lengths u, 4
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and u, 4, we compute them based on the following modification of (4.5):
g =t +KXpl, — X, |,) and uy g = uy, +K(Yp|, =Y [,), (4.29)

where K is obtained based on (4.27). The vectors X,| and Y|, are respectively the
estimated pre-impact state of the robot’s base (e.g., trunk) along the x- and y-directions.
We use the HT-LIP model and the current actual values of the base state at time ¢, i.e.,
(Y, (), Xp()), to compute the horizontal pre-impact state of the robot as: X |7 = ®(f,,; T, —
t,0)X,(¢) and Y, |7 = ®(f,: T, —1,0)Y,(¢). Here @ is given in (4.19).

Since X, |, is the exact solution to the hybrid model in (4.3), its value can be accurately
computed. To reduce the computational load, we propose an approximate computation of
X;|, by enforcing the positional symmetry of the HT-LIP model. The reference pre-impact
position x|, is designed as x,|,, := 0.5v, 4AT, and reference pre-impact velocity X,|, is
approximated as X,|,, = vy 4. This is valid for real-world implementation because: (a) the
step duration is small (typically 0.2 s to 0.3 s), resulting in minimal variation in X, |, , and
(b) any sufficiently small errors caused by the approximation of X, |, can be handled by the
robust full-body controller.

The desired CoM position trajectories with respect to the CoP (i.e., x4(¢) and y,4(7)) can
then be computed based on the desired pre-impact state, the desired step length, and the

HT-LIP model in (4.3).

4.3.3 Middle Layer: Full-Order Trajectory Generation

This section presents the full-order desired trajectory generation in real-time by combining
the higher layer’s footstep location data with the robot’s kinematic model. This approach
effectively connects the actual robot model with the HT-LIP model, which acts as a template
for stabilizing the unactuated dynamics of the robot. Reliable tracking of desired trajectories
generated by the middle layer ensures the stability of the underactuated robot dynamics.
The full-order desired trajectories h,; are chosen as the desired trajectories of the robot’s

base pose (i.e., position and orientation), denoted as h, 5, and swing feet position, denoted
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as hy g,; that is:

h, = [h},, hf 1" (4.30)

The full-order current trajectories h. of the robot are defined as:

h.:=[h], hl ", 4.31)

C,sW

where h,. ; denotes the current base pose and h y,, denotes the current swing feet position

trajectories.

Base trajectories

The vector of the robot’s desired base trajectories is given as:

hy g := [Xa.b,Ydbs Zd.b» Db O s Wan) (4.32)

where (X4 p, Yd.p» 2a,p) and (@4 p, 64 5, Wy 1) are the base position and orientation with respect
to the world frame, respectively. In the middle layer, the base is represented by the CoM of
the robot.

We express the desired horizontal base trajectories x4 5, and yg 5, as the sum of the nominal

CoP location (x5, ys) and the HT-LIP CoM desired trajectories x4(¢) and y,(7):

Xqp=Xs+xg(t) and ygp = ys+ya(t). (4.33)

To respect assumption (A1), The base z-trajectory is designed to maintain a constant
height relative to the support point of the HT-LIP. Further, the base yaw trajectory is planned
based on the user-specified yaw rate @y 4. Finally, for simplicity and without loss of
generality, the base roll and pitch angles are set to zero to maintain a steady trunk posture.

In summary, these desired trajectories are defined as:

Zbd = 205 Pp.a =0, 64 =0, and Y}, 4 = Yo + @, 4AL,

where Y is the base yaw at the beginning of a continuous phase and Az is the time spent in
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a continuous phase.

Swing feet trajectories

To generate the swing feet x- and y-trajectories, we utilize the higher-layer desired footstep
length output in (4.29), post-switching swing foot initial position (i.e., xz|,}", y£|;}), and
desired continuous-phase duration. The swing feet’s z-height is set to be a user-specified
kinematically feasible value for generating swing feet z-trajectories.

Without loss of generality, we use the quadrupedal trotting gait as an example to illustrate
the design of the desired swing feet trajectories. Using x,, yy;, and zy, to denote the x-, y-,
and z-trajectories of the swing foot i (i € {1, 2}) with respect to S expressed in the world

frame

. T T T T
ha s 2= [Xa.f,Yd.502d.f15%d f0Vd fr Zd o] = B sy Mg g, ] (4.34)

where. The swing foot trajectories are generated based on the real-time computation of

desired step lengths in (4.29)) as:

X, £,(8) i = Xp |y + Pe(s) (e —x715),
Ya f;(8) = ¥pila +P(8) 1y =yl ), (4.35)
2d.,(5) = Pa(8)2gln + Pe(5) Ay

where xz, |, y4|;f, and zg || are the x-, y-, and z-coordinates of the initial position of the

swing foot trajectory, Ay, is the maximum swing foot height, and P, P,, P, and P, are

normalized Bézier interpolation functions of parameter s := 1= € [0, 1].

4.3.4 Lower Layer: Full-Body Torque Control

In quadrupedal trotting, underactuated dynamics exist when the number of degrees of
freedom (DoF) exceeds the number of independently actuated joints. In our specific case, we
have 13 DoF and 12 independently actuated joints, resulting in one degree of underactuation.

The objective of controller design is to reliably track desired full-order trajectories
generated by the proposed underactuated HT-LIP based planner. Running the controller in

real-time (500 Hz) requires a sufficiently accurate and relatively simple model.
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For real-time control of quadrupeds, we utilize a single rigid body dynamic (SRBD)
model, drawing inspiration from [51, 1]. Unlike the HT-LIP model, which considers the
single point of the center of pressure, the SRBD model incorporates the influence of feet-
ground interaction using the full-order kinematics model of the robot’s legs on the evolution
of the base pose dynamics. Despite being simpler than the full-order model, the SRBD
model remains suitable for real-time control of quadruped with lightweight limbs [1, 51].

In the SRBD model-based control, we compute the optimal contact forces based on the
actual contact state of the robot limbs and the desired base motion of the robot by solving
a least square minimization problem. To ensure feasibility, we convert the least square
minimization problem into a standard QP, where the feasibility of the contact forces is
explicitly set as a constraint.

The computed desired contact forces are mapped to the actuated joints of the robot by
utilizing the Jacobian of the contact points between the quadruped feet and walking surface
based on the full-order kinematic model of the robot. In addition to controlling the contact
forces of the stance foot for reliable base trajectory tracking, we compute the feedforward
and feedback torque for swing foot trajectory tracking. In the following paragraph, we
provide a brief description of the SRBD model-based control approach for quadruped
locomotion on a dynamically moving surface.

The SRBD model approximating quadrupedal dynamics is expressed as [51]:

SF = b, (4.36)
where

S.— L Im Iz I ] b= { m(Py. —g) ] .
Pie, Py, Pi, Py, L@y + @y X Loy
Here, I3 is the 3 x 3 identity matrix. The matrices P;., (i € {1,2,3,4}) is the skew-
symmetric matrix corresponding to the radius vector between the CoM of the robot and
the foot i expressed in the world frame. The vector P, represents the acceleration of the

CoM with respect to the world frame. The parameter m is the lumped scalar mass of the

robot, g := [0,0, —g]” represents the acceleration due to gravity in the world frame, I is
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the centroidal inertia matrix for the lumped rigid body, @, is the vector of the rigid body’s
angular velocity in the world frame, and F € R!?*! is the vector of contact forces expressed
in the world frame.

Under the assumption (A2) of this dissertation, the nonlinear term ®,,. X I. w,,. in the
orientation dynamics can be ignored and the SRBD dynamics in (4.36) are linear.

To ensure reliable tracking of the base trajectory, we use PD feedback on base trajectory

tracking error for computing the desired inertial wrench of the base b, [51, 1] as:

mlz| .. —g
b, = (hd,b + ), 4.37)
Ic 03
where 03 is a 3 x 1 zero vector and iidjb = —K,(h.p, —hgp)— Kd(l.lqb — l'1d7b) is the desired

base acceleration. Here, h,, is the current base trajectory and K, K; € R®*6 is a positive-
definite tunable diagonal matrix representing the PD gain. The orientation error, computed as
part of (h., —h, ), is determined using the logarithmic map applied to the orientation error
on SO(3). Here, SO(3) is the special orthogonal group in three dimensions representing the
set of all rotation matrices in 3-D Euclidean space [187].

The SRBD model-based desired force is computed by solving the following QP problem.

min  (SF—b,)"Q(SF —by,)
¥ (4.38)
s.t. GF <d,
where Q € 9% is a symmetric positive definite weight matrix and GF < d encodes the force
bounds, friction cone, and unilateral constraints on the contact forces.
The joint torque for tracking the desired base trajectory is computed from the optimized

desired contact force as:

T, := —BTJTF,, (4.39)

RIZXI

where F,; € is the optimal contact force obtained by solving the QP in (4.38), the

Jacobian matrix J € R12x18

relates the velocity of the quadruped’s feet in the world frame
to the generalized velocity of the quadruped, and B is the motor selection matrix. The

computation of the feet Jacobian J is based on the robot’s full-order model.
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The control input for tracking swing foot trajectory is designed as a feedback controller
with an approximate feedforward term. The desired swing foot acceleration for tracking the

swing foot trajectory is given as:

l.id,swi = _Kpi (hc.,sw,- - hd,swi) - Kdi (Bc,swi - Bd,swi)a

where h. g, (i € {1,2,3,4}) is the current swing foot trajectory. K,, and K, € R3*3 are
the positive-definite tunable diagonal matrices representing the PD gains. The feedforward

input torque term for swing foot i is computed as:
Trr = JZwiMOSi(ﬁd,swi - sz,»('li) +C,, (4.40)

where M, := (J SW,.M_IJSTWi)_1 is the operation space inertia matrix for swing leg i, J,,

is Jacobian of the "

swing foot relating the velocity of the quadruped’s feet in the world
frame to the generalized velocity of the quadruped, C; is the vector of centripetal Coriolis
and gravitational term for the i/ swing leg, and q; € R? is the generalized position of the i*"
swing leg. In our implementation, we approximated C; by only the gravitation term. This
approximation is made based on the observation that the gravitational component accounts
for a significant portion of C;, emphasizing its dominant influence at low and moderate

walking speeds.

The feedback torque for the swing leg is given as:
bei = JsTw[M()siﬁd,swi- (441)

The overall control law for the full-order robot is given as the sum of the torque required
for base trajectory tracking 7, and torque required for swing foot trajectory tracking; that
is, T = T, + Tyr+ Tsp. This control input ensures reliable tracking with bounded errors
by combining computed input torques that (a) minimize the tracking error of the base
trajectory using a QP in (4.38), and (b) effectively track the swing foot trajectory through
the feedforward term in (4.40) and PD feedback input in (4.41).
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4.4 Full-Order Model Based Stability Analysis

This section presents the closed-loop stability analysis that validates the provable stability
for the CoM dynamics of the hybrid, time-varying, full-order model under the proposed
hierarchical control framework.

As explained in Section 4.3 the trotting quadruped of interest to this study is under-
actuated. Since its degree of underactuation is one, its underactuated dynamics are two-
dimensional, which are represented by the dynamics of the forward CoM position and
velocity (i.e., X) associated with the full-order robot model. The actuated dynamics of the
full-order model correspond to the base and swing foot trajectories that are directly driven
by the lower-layer controller.

Since the actual CoM dynamics of the full-order model are not directly actuated, we
need to explicitly analyze its stability. In this study, the actual dynamics of the CoM
forward position and velocity X are approximated by the proposed HT-LIP model given in
(4.3).Although the proposed HT-LIP footstep control law provably ensures the asymptotic
stability of the closed-loop HT-LIP model under uncertain surface motions, the stability of
the closed-loop dynamics of the CoM state X for the actual full-order model still needs to be

analyzed. This is due to the discrepancy between the HT-LIP and the actual dynamics of X.

4.4.1 S2S error system of actual CoM dynamics

Based on the closed-loop error system dynamics of the HT-LIP model given in (4.6), the

S28S error system of the actual CoM dynamics can be expressed as:

where n € Z™* and the vector d, represents the lumped discrepancy between the actual
S2S dynamics of the CoM and the reduced-order HT-LIP model, including the ignored
nonlinear term in the S2S dynamics and the difference between the desired and actual

footstep locations.
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4.4.2 Stability analysis

Similar to [179], we consider the boundedness of the model discrepancy d,, as:
|d,|| <d VneEN, (4.43)

where d is a positive constant. This boundedness assumption is reasonable for hardware
implementation when the desired step duration is designed as finite (assumption (A12)) and
the initial tracking error is relatively small. We denote the set of all possible values of d,,
satisfying (4.43) as D; thatis, d, € D.

We use £ to denote the minimum invariance set [188] such that for all e|,, € £ and
d, € D, wehavee|,, € £. Also, the asymptotic stability condition for the closed-loop error
system of the HT-LIP model is established in Theorem 4. Consequently, the S2S dynamics
in (4.42) are locally stable [188, 189] if the asymptotic stability condition for the HT-LIP

model in Theorem 4 is met and if the uncertainty boundedness condition in (4.43) holds.

4.5 Simulations and Experiments

This section presents hardware experiment results to demonstrate the proposed control
framework can stabilize quadrupedal trotting on a DRS with an aperiodic and unknown
vertical motion even in the presence of various uncertainties. The experiment video is

available at: https://youtu.be/BMPUOBJQC64.

4.5.1 Simulation Setup

This section briefly describes the setup utilized in MATLAB and PyBullet simulations.

(1) DRS motion

To simulate representative cases of DRS motion considered in the framework, we incorpo-

rated the following general vertical DRS motion as illustrated in Fig. 4-4.
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Figure 4-4: Vertical motion profile of the DRS for simulation cases.

(SC1) Simulation Case 1: general vertical motion of the DRS given as:
z(t) = 100 (sin3¢ +sin(¢+/t/2+ 1)) mm. (4.44)

(SC2) Simulation Case 2: aperiodic vertical motion of the DRS given as:
2(1) = 5¢%sin (\/IOOI n 1) -e™"/1% mm, (4.45)

(2) MATLAB setup

The robot dynamics are simulated using MATLAB’s ode45 function. The user specifies the
approximate upper bound of the DRS vertical acceleration and desired velocity or velocity
profile as high-level inputs. Foot-stepping control gains are computed by solving the QP
designed in Section 4.3.2. We use a full-order model-based QP controller [178, 34]. The
two QPs are solved using the MATLAB quadprog function.
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(3) PyBullet setup

The PyBullet simulator is based on the Bullet Physics engine. We simulated a Go1 robot
and a DRS model defined by the urdf files. The QP problems for foot-stepping control gain
in Section 4.3.2 and joint torque computations in Section 4.3.4 are solved using the 0SQP

[190] solver.

(4) Controller setup

The controller setup for PyBullet simulations is given in Table 4.1. For MATLAB simula-
tions, we use a full-order QP controller based on the formulation and setup provided in Secs.

4 and 5 of [34].

Table 4.1: Controller setup for PyBullet simulations

Controller Value
parameter
Q diag(1,1,2,2,2,1)
K, diag (1000, 1000, 500, 1000, 1000, 1000)
K, diag (200,200, 100,200, 200,200)
K, diag(200,200,200)
Ky diag(1,0.1,2)

(5) User-specified HT-LIP parameters

Table 4.2 gives the user-specified range of the HT-LIP model parameters used as the input
to the proposed framework (specifically, the higher and middle layers) in simulations and
hardware experiments. To demonstrate the real-time computation of the foot-stepping
control gain K and the versatility of the trotting gait features that the proposed framework
can realize, these gait parameters are changed by the user and fed into the framework during

simulations and experiments.
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Table 4.2: Ranges of HT-LIP parameters used in simulations and experiments

Parameter ‘ Range

CoM height above the surface zp (cm) | [22, 26]
Step duration AT, (S) [0.15, 0.4]

Walking speed (cm/s) [15, 25]

Nominal step length u, , (cm) [0, 15]

4.5.2 Hardware Experiment Setup
(1) Treadmill

Our experiments use a Motek M-Gait treadmill to emulate a vertically moving DRS (Fig. 4-
5). The treadmill can perform programmed pitching and sway movements. It weighs 750 kg,
measures 2.3 m X 1.82 m x 0.5 m, and is equipped with two belts (each powered by a 4.5
kW servo motor). The robot is positioned approximately 0.8 m from the treadmill’s pitching

axis.

Figure 4-5: Tllustration of the experimental setup. (D: Gol quadrupedal (Unitree Robotics).
@): M-Gait treadmill (Motek Medical). Q): direction of the vertical DRS/treadmill motion
zs(¢) at point S. @: world frame attached to the treadmill’s axis of pitching. The treadmill’s
pitch angle at time ¢ is 6(¢). Subplots (a) and (b) show the treadmill at its pitch angle limits.

(2) Unknown vertical DRS motions

The experiments utilize the treadmill’s pitch motions (6(z)) to generate aperiodic, vertical
DRS motions at the robot’s footholds (i.e., near the treadmill’s far end). Table 4.3 summa-
rizes the pitch motions (HC1)-(HCS), which are unknown to the proposed control framework

during experiments.



Table 4.3: DRS motions under different hardware experiment cases.

Cases ‘ DRS motion

(HC1) | 64(t) = 4°(sin3t +sin(t1/0.5¢ + 1)).

(HC2) | 6,(t) = 4°(sin6¢ +sin(0.1£2)).

(HC3) | 6,(r) = 0.2°*sin (/1007 + 1) - e~ */10.

(HC4) | 6,(t) = 4°(sin3t +sin(t+/t/2+ 1)) and
ys(t) = 50sin(7¢) mm.

(HC5) | 6,(r) =2.5°(sin3t +sin(r1/0.57 + 1)).

110

Although the pitch angle is small, it induces a significant maximum vertical acceleration

at the robot’s footholds (about 3.5 m/s?) with a minimal horizontal surface motion. Figures

4-6-4-10 display the unknown general aperiodic DRS motions (HC1)-(HCS).

Position (mm)
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=

%0
S

Xs(t) ——  Ys() ——  zg(t) - - -

30
Time (s)

60

Figure 4-6: Ground-truth DRS motion in the world frame represented by a point where the
robot performs the trotting gait during an experiment trial under DRS motion (HC1). The
ground-truth data is collected by a mocap system.

(3) Additional uncertainties

To validate the robustness of the proposed approach beyond unknown vertical DRS motions,

we test additional unmodeled uncertainties (Fig. 4-1). To assess the robustness against

unknown sway surface motions, surface motion (HC4) contains a sway displacement y;(z)
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Figure 4-7: Ground-truth DRS motion in the world frame represented by a point where the
robot performs the trotting gait during an experiment trial under DRS motion (HC2).
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Figure 4-8: Ground-truth DRS motion in the world frame represented by a point where the
robot performs the trotting gait during an experiment trial under DRS motion (HC3).

(see Table 4.3 and Fig. 4-9), causing a peak horizontal acceleration of 2.6 m/s” at the robot’s
footholds.
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Figure 4-9: Ground-truth position trajectory of the point on the treadmill/DRS around
which the robot performs the trotting gait during the unknown pitch and sway movement
(HC4) of the DRS. The shaded area highlights the period during which the unknown DRS
sway motion is active.
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Figure 4-10: Ground-truth DRS motion in the world frame represented by a point where the
robot performs the trotting gait during an experiment trial under DRS motion (HCS).

Besides surface sway, four other types of uncertainties are tested during (HCS5) with
maximum vertical and lateral accelerations respectively at 1.5 m/s> and 0.5 m/s”. These
uncertainties are: (i) uncertain friction coefficient (0.3-0.4) induced by a smooth glass surface
while the framework considers a coefficient of 0.8; (ii) unknown rigid ( 10 Ibs) and fluid (9

Ibs) loads placed on the trunk, weighing respectively 36% and 32% of the robot’s mass; (iii)
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uneven (pebbled) surface with a maximum height of 6 cm; and (iv) sudden pushes lasting

less than 0.2 s per push and inducing a robot heading error of 30° just after the push.

4.5.3 Control framework setup

The HT-LIP model parameters considered by the higher-layer footstep planner and middle-
layer trajectory generator are given in Table 4.2. These parameters are changed during
experiments so as to demonstrate the footstep control gain K can be computed in real-time
and the control framework can address different trotting gait features (e.g., step duration).
The estimation error of the vertical surface acceleration is up to 1 m/s>. Note that the
proposed framework only considers the estimated instead of the actual surface acceleration.
The middle and lower layers approximate the robot’s CoM at the base/trunk center. The

parameters of the lower-layer controller for hardware experiments are specified in Table 4.4.

Table 4.4: Controller setup for hardware experiments

Controller
Value
parameters
Q diag(l, 1,50,400,400, 100)
K,, diag(80, 60,120, 120, 120,40)
K, diag(lO7 10,5,10, 10,2)
Kp,i diag(SO, 120,40)
Kd,i dlag(?’a 3, 2)

4.5.4 Experimental Results

This section reports experiment results under unknown DRS motions and various other types

of uncertainties.

(1) Validation under unknown vertical surface motions

As shown in Figs. 4-11-4-13, the actual height and orientation of the robot’s base (i.e.,
trunk) relatively closely track the desired base trajectories during the unknown and aperiodic
vertical surface motions (HC1)-(HC3), indicating a stable trotting gait under the proposed

control framework.
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Figure 4-11: Desired and actual base trajectories under the hardware experiment case (HC1).
The small tracking errors indicate stable robot trotting.
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Figure 4-12: Desired and actual base trajectories under the hardware experiment case (HC2).
The small tracking errors indicate stable robot trotting.

Further, the joint torque profile in Figs. 4-14-4-16 demonstrate a consistent torque pattern

that respects the actuator limit of 22.5 N/m for all joints under surface motions (HC1)-(HC3).

The accurate base trajectory tracking and consistent torque profiles underline the effec-

tiveness of the proposed framework in handling various general vertical surface motions.
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Figure 4-13: Desired and actual base trajectories under the hardware experiment case (HC3).
The small tracking errors indicate stable robot trotting.
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Figure 4-14: Torque profiles under the hardware experiment case (HC1), all of which respect
the robot’s actuator limit of 22.5 Nm.

(2) Validation under various additional uncertainties

To evaluate robustness, we conduct hardware validation experiments under uncertain cases
described in Section 4.5.2.
The subplots (a) and (c) in Fig. 4-17 confirm that the robot’s base height closely follows

the desired value even under the unknown DRS sway motion and reduced surface friction.
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Figure 4-15: Torque profiles under the hardware experiment case (HC2), all of which respect
the robot’s actuator limit of 22.5 Nm.
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Figure 4-16: Torque profiles under the hardware experiment case (HC3), all of which respect
the robot’s actuator limit of 22.5 Nm.
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The subplot (b) shows a notable oscillatory deviation of the actual base height from the

desired value due to the unevenness of the pebbled surface, indicating a moderate level
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Figure 4-17: CoM height trajectories under various cases of uncertainties, all during the
unknown vertical DRS motion (HCS5). These cases include (a) unknown sway motion, (b)
pebbled surface, (c) surface with reduced friction, and (d) uncertain load on the robot’s
trunk.

of violation of the constant base height assumption (i.e. assumption (A1)). The subplot
(d) shows the significant uncertain liquid load applied to the robot’s trunk causes a nearly
constant base height tracking error of 2.5 cm. Still, both subplots (b) and (d) indicate stable
locomotion despite uncertainties. The results under the unknown solid load are similar to
subplot (d) and thus are omitted for brevity.

Figure 4-18 displays the push recovery results during the unknown vertical and lateral
DRS motion (HC4).

The intermittent spikes in the robot’s base height and orientation trajectories are induced
by external pushes. As highlighted by the shaded areas in Fig. 4-18, the robot is able to
recover within two seconds after each significant push, demonstrating the robustness of the
proposed framework against external pushes during unknown DRS motions.

It is worth underlining that the robot sustained stable waking during robustness validation
experiments while subject to the maximum possible DRS motion uncertainty in our lab

setting, which uses a Motek M-Gait treadmill [191] as a DRS.

4.5.5 Comparative Experiments

To show the improved robustness of our proposed framework compared to existing con-
trollers, we experimentally test the Gol robot’s proprietary controller and a state-of-the-art

baseline controller [1] during unknown vertical surface motion (HCS5). The baseline con-
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Figure 4-18: Robustness to sudden pushes under the uncertain DRS motion (HC4). The
purple dashed lines highlight the push instants, while the shaded regions show the transient
push recovery phases. The proposed control framework effectively stabilizes the perturbed
trajectories to their desired values within 2 seconds.

troller shares the same low-layer torque controller as the proposed framework while its

higher and lower layers assume a static ground.
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Figure 4-19: Lateral-position drift comparison with the robot’s proprietary controller and a
state-of-the-art controller [1] during the DRS motion (HCS): (a) lateral CoM position drift
during a representative hardware experiment of 30 s and (b) average lateral drift (mean £
one standard deviation) during five experiment trials of 15 s. The proposed control approach
achieves the least amount of lateral drift among the three approaches compared.
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As illustrated by the lateral CoM position trajectories in Fig. 4-19, the robot exhibits a
notably lower lateral drift under our proposed framework compared to the existing controllers.
The relatively smaller drift of our proposed framework is partly due to the explicit treatment
of the unknown DRS motion in the higher-layer planner, which is missing in the baseline
controller. Also, both our framework and the baseline control approach correct the robot’s
heading direction based on the estimated absolute base position and yaw angle provided by
the robot’s default state estimator. In contrast, based on the fast lateral position drift under
the proprietary controller, it is possible that the proprietary controller does not compensate
for the position error.

Still, due to the drift in estimated absolute base position and yaw angle [148], the
proposed approach exhibits a notable lateral position drift of approximately 10 cm between
15 s and 30 s. To improve path tracking accuracy, a more accurate state estimator is being

developed and will be used in future work.

4.6 Discussion

One novel contribution of this study is the introduction of the HT-LIP model for locomotion
during general (periodic or aperiodic) and vertical DRS motions. Similar to existing LIP
models for static surfaces [179, 27, 21, 192], the HT-LIP model retains linearity. Yet, the
model is also explicitly time-varying due to the surface motion, distinguishing it from the
time invariance of existing models. Meanwhile, the model is homogeneous and is thus
fundamentally different from the LIP model for horizontally moving surfaces [193].
Another key contribution is the construction of a discrete-time footstep control law
that provably robustly stabilizes the HT-LIP system under variable footstep durations and
unknown DRS accelerations. While the structure of the footstep controller is inspired by
the previous H-LIP based framework [179], the proposed stability condition underlying
the controller explicitly treats the the time dependence of the HT-LIP model. Further, the
stability condition does not consider any accurate knowledge of the surface motion as in
our previous work [20, 193]. Instead, the condition and the footstep controller only assume

a finite bound of the surface acceleration at the robot-surface contact region (assumption
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(A11)). Finally, the HT-LIP footstep controller is cast as a QP that not only exactly enforces
the stability conditions but also enables real-time, reactive foot placement.

By incorporating the proposed HT-LIP footstep controller as a higher-layer planner for
the full-order robot system, the proposed hierarchical control framework achieves robust
locomotion under a broad range of unknown vertical surface accelerations and various
additional types of uncertainties (Section 4.5.2). Moreover, the framework realizes notably
less lateral global-position drift during comparative validation experiments under unknown
vertical DRS motions and external pushes (Fig. 4-19).

Our future work will extend the proposed theoretical results and control framework
design from linear DRS motions to simultaneous surface translation and rotation. Further, to
improve the path tracking accuracy of the control framework, a more accurate state estimator
that does not assume accurate knowledge of the DRS motion will be developed based on

existing advanced estimation methods [194, 195, 196].

4.7 Conclusion

This chapter has introduced a hierarchical control framework for robust quadrupedal loco-
motion with variable footstep duration during unknown and general (periodic or aperiodic)
vertical ground motions. A reduced-order model was derived by analytically extending the
existing linear, time-invariant H-LIP model to explicitly consider the ground surface motion,
resulting in a hybrid, time-varying LIP model (i.e., HT-LIP). Taking the HT-LIP model as
a basis, a discrete-time footstep controller was constructed with a provable guarantee for
robust stability, and was further cast as a quadratic program to enable real-time, reactive
foot placement planning for the full-order robot system. The proposed control framework
incorporated the HT-LIP footstep controller as a higher-layer planner, and its middle- and
lower-layers were developed to plan and control the robot’s full-body motions that agree with
the desired robot behaviors supplied by the higher planner. Experiment results confirmed
the robustness of the proposed framework in sustaining stable quadrupedal trotting under
various unknown, aperiodic surface motions, external pushes and (solid and liquid) loads,

and slippery and rocky surfaces.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation research aims to overcome the challenges of legged locomotion on dynamic
rigid surfaces (DRS) and facilitate the deployment of legged robots on real-world DRS such

as ships. Towards this end, this dissertation has presented the following contributions:

* Dynamic modeling of legged locomotion. A sufficiently accurate and computation-
ally efficient dynamic model can be used to enable real-time planning and control. A
high-dimensional full-order model is more accurate but computationally expensive,
whereas low-dimensional reduce-order models may provide a reasonable trade-off
between model accuracy and computational efficiency. This dissertation has modeled
the full-order robot dynamics associated with quadrupedal walking on DRS as a
nonlinear, hybrid, time-varying system, which can be used for the stability analysis
of the complete robot dynamical system. To facilitate real-time planning and control
of underactuated legged locomotion on DRS, we have developed time-varying linear

inverted pendulum models that are computationally efficient and adequately accurate.

* Desired trajectory planning. The desired trajectory plan provides a reference for
a tracking controller. Controller performance depends on the underlying model
accuracy, physical feasibility of the desired trajectory, and computational latency.

With the limited onboard computational capacity, a trade-off is necessary to ensure
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real-time planning capability in dynamically changing environments. This dissertation
has proposed an analytical approximate solution of a time-varying LIP model on a
periodically moving DRS for real-time trajectory planning. It has also developed a
robustly stable footstep planning framework based on stability analysis of the hybrid
time-varying LIP (HT-LIP) model for robust legged locomotion on dynamic surfaces
with unknown vertical motion. The footstep planner in this dissertation was formulated
as a quadratic programming problem that ensures the robust stability and physical

feasibility of the footsteps.

Control framework for locomotion on DRS. This dissertation has developed a
full-order model-based, provably stable, continuous-phase control law that stabilizes
the overall nonlinear, hybrid, time-varying model. Furthermore, it has also proposed
an HT-LIP model-based robust control framework for quadrupedal locomotion on
unknown vertical ground motion under various real-world uncertainties such as uneven

surface, external load, and sudden pushes.

Stability analysis. Stability analysis is essential for controller design and verification.
Chapter 2 has presented the stability analysis of the nonlinear, hybrid, time-varying,
full-order control system and derived conditions on controller gains that provably
stabilize the closed-loop system under known periodic DRS motion. We have also
derived stability conditions for robust foot placement under unknown vertical motion
and analyzed the robust stability of the overall underactuated full-order model under

the proposed control framework.

Validation in simulations and hardware experiments. To assess the effectiveness
of the proposed control frameworks, we have performed MATLAB and Pybullet
simulations as well as hardware experiments. Results from thorough validations
have been presented and analyzed using a Laikago and a Gol quadruped developed
by Unitree Robotics. The evaluation results in Chapter 2 have demonstrated the
effectiveness of the proposed approach on a DRS with a known sinusoidal motion
and under a moderate level of uncertainty. Validation in Chapter 3 has indicated the

real-time replanning capability of the proposed analytical solution based planning



123

framework. Hardware validation in Chapter 4 has confirmed the robustness of the
proposed framework in sustaining stable quadrupedal trotting under various unknown,
aperiodic surface motions, external pushes and (solid and liquid) loads, and slippery

and rocky surfaces.

5.2 Future Work

While this dissertation research has tackled several key challenges in DRS locomotion
planning and control, there remain many open directions of future work for further improving

the performance of legged locomotion on DRS.

* Robust state estimation on DRS. To enhance the path tracking performance of DRS
locomotion, reliable state estimation is needed to accurately estimate the movement
state of both the robot and the DRS. While existing advanced state estimation tech-
niques work effectively on static surfaces [144, 197], they may not be effective for
DRS locomotion because they typically assume the ground is static in the inertial
frame. Recent research from our lab that focuses on state estimation for DRS loco-
motion [148, 198, 199] may potentially lead to a robust state estimator on DRS with

unknown surface motion.

* Stability analysis for locomotion under composite DRS motion. This dissertation
has established stability conditions for unknown, general, vertical DRS motion and
experimentally verified the performance of the proposed control approach in the
presence of lateral and vertical motion uncertainties. However, a comprehensive
stability analysis of the locomotion model under general composite DRS motion
is essential to inform the design of a control framework that can reliably ensure
locomotion performance under such conditions. The recent work from our lab that
addresses humanoid locomotion control under periodic ground sway [193] could
potentially be integrated with the outcomes of this dissertation to derive the stability

conditions for composite DRS motion.

* Embedding learning in model-based methods. Learning-based approaches have



124

achieved remarkably robust locomotion performance in the presence of a broad spec-
trum of real-world uncertainties when an adequate amount of reliable data is available
for training and optimizing the learning algorithms [200]. Such a performance is
due to their inherent stochastic optimization, which explores numerous locomotion
scenarios that model-based methods may not handle well [200, 106]. However, pure
learning-based methods lack provable performance guarantees [103]. It would be
meaningful to integrate learning and model-based approaches to achieve both prov-

ability and enhanced performance.

Loco-manipulation on DRS This dissertation has tackled some of the substantial
challenges in DRS locomotion control to facilitate the deployment of legged robots
in maritime applications, including ship inspection and maintenance. Since many
of these real-world tasks naturally demand manipulation, a logical extension of this

research is the exploration of loco-manipulation control on DRS.
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Appendix A

Appendix: Supplementary Materials of
Chapter 2 *“Full-Order Modeling and
Provably Stabilizing Control Under

Periodic Surface Motions”’

A.1 Introduction

This document contains supplementary materials for Chapter 2.

A.2 Description of Figures

A.2.1 Additional Validation Results with a Periodically Pitching Rigid
Platform

Figures A-1 and A-2 display the validation results obtained from MATLAB, Pybullet, and
experiments with the reference gaits (G2) and (G3), respectively, for robot walking on a
periodically pitching rigid platform (i.e., the platform (P1)). These figures demonstrate the
effectiveness of the proposed control approach similar to Fig. 6 in Section VI-C of the main

manuscript.
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The PD gains for gait (G2) are chosen as K, = diag(100,36,121,100,36, 121,36,64,121)
and K, = diag(20,12,22,20,12,22,12,16,22). The PD gains for gait (G3) are chosen as
K, =diag(100,49,121,100,49,121,36,64,121) and K; = diag(20, 14,22,20, 14,22,12,16,22).
Specifically, Figures A-1 (a) and A-2 (a) show the joint trajectory tracking results,
which demonstrate that reliable trajectory tracking is achieved through both simulations and
experiments. Figures A-1 (b) and A-2 (b) show the base roll and pitch trajectories, which
both indicate that the robot keeps a relatively steady base pose while walking on the pitching
platform. Figures A-1 (c) and A-2 (c) show that simulations and experiments share relatively

consistent trends in the joint torque profiles.

A.2.2 Additional Validation Results on Robustness

Figure A-3 displays the controller validation results obtained from MATLAB, Pybullet, and
experiments with the reference gait (G2) under the uncertainties (U2). The PD gains are
chosen the same as the gait (G2).

Interpretation of the results is given in Chapter 2.6.4 of the main manuscript, which is
quoted next:

“With the uncertainties (U2), up to 20 % uncertainties, which approximately corre-
spond to a variation of 8 cm in the stance-foot height over 10 gait cycles, are added to
the belt speed of the treadmill. The robot’s motion was shaky during experiments, but the
robot was able to sustain motion for over twenty steps, which indicates that the inherent
robustness of the proposed control approach is able to tackle the implemented uncertainties

in the treadmill belt speed.”

A.2.3 Reference Trajectories for Gait (G1)-G(3)

Reference trajectories used for controller validation are shown in Figs. A-4-A-6. As ex-
plained in Section VI-A of the main manuscript, these trajectories are generated using the

optimization-based planning method introduced in Section V of the main manuscript.
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Figure A-1: Trajectory tracking results with gait (G2): (a) joint position trajectories, (b)
base roll and pitch trajectories, and (c) joint torque profiles of the rear-left leg.
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(a) Joint trajectories tracking
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Figure A-2: Trajectory tracking results with gait (G3): (a) joint position trajectories, (b)
base roll and pitch trajectories, and (c) joint torque profiles of the rear-left leg.
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(a) Joint trajectories tracking
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Figure A-3: Trajectory tracking results with gait (G2) under uncertainties (U2): (a) joint
position trajectories, (b) base roll and pitch trajectories, and (c) joint torque profiles of the
rear-left leg.
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(a) Joint reference trajectories
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Figure A-4: Reference trajectory for the gait (G1): (a) joint reference trajectories and (b)
base roll and pitch reference trajectories.
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(b) Base roll and pitch reference trajectories
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Figure A-5: Reference trajectory for the gait (G2): (a) joint reference trajectories and (b)

base roll and pitch reference trajectories.
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(a) Joint reference trajectories

Front right leg - knee pit::h Front left leg - knee pitch_
: :?aq.._..ri '!"‘-._,...- ' h._'..1 T, .: %!II '._..4-! '_‘I ,_,..-F P
A - []
1ap W ] Aad Y a
4] 2 4 B 0 2 4 B
Front right leg - hip pitch -— Front left leg - hip pitch
=i - P 8
08V A Nl X . el Y
0.4 ! b= L L¥ o TR, T L
(§] 2 4 ] 1] 2 ] B
ﬁ Front right leg - hip roll Front left leg - hip roll
0 r - - . i " - ”
SodN_ SN SN A
B ol =t Pelr S B
E o 2 4 & 4] 2 4 G
e Raa:_right Ieg_hknna p‘i_t:h s Rear left leg - knee pitch
L - e i — B S o - — N
oF g Rl T o
dalw oy M el g v v
l.'.l ] 4 i) 0 2 4 B
Rear right leg - hip pih:h Rear left leg - hip pitch
r.f“ ’ ' .nr" g? I ,“IJ“. f-\ "‘ - y
. - =
D sf - ."" I"1-_.“'“" ‘5-1' 06" k7 I\"', ‘\
0 2 4 & 4] F 4 i)
Rear riq{!t leg - hip roll Rear left leg - hip roll
0 _'"-.‘ 3 ‘f"\‘ -~ 01 !"'vfII Pt 'r"*\l ,-"'
5 L
-e-ﬂﬂl‘-l, [ \ md --.', ﬂﬂg [ II"'-..:--III S
F. 4 & 0 2 4 G
time ()

(b) Base roll and pitch reference trajectories
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Figure A-6: Reference trajectory for the gait (G3): (a) joint reference trajectories and (b)
base roll and pitch reference trajectories.
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