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Abstract: We study the number of degree = number fields with discriminant bounded by - .
In this article, we improve an upper bound due to Schmidt on the number of such fields that
was previously the best known upper bound for 6 f = f 94.

1 Introduction and outline of paper

Let #= (-) := #{ /Q : [ : Q] = =, |Disc( ) | f -} count the number of degree = number fields over Q
with bounded discriminant of size - . We consider all extensions as being inside a fixed algebraic closure
Q of Q. A classical theorem of Hermite shows that #= (-) is finite, and an optimized and modern version
of Hermite’s argument due to Schmidt [Sch95] shows that #= (-) may be bounded by $= (-

Ĥ+2
4 ). It is
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conjectured that the actual sharp upper bound is $= (-); thus improvements to the Schmidt bound, and
the classical work of Hermite, have attracted a lot of attention.

For = f 5, precise asymptotic formulas for #= (-) are known [DH69, CDyDO02, Bha05, Bha10].
For large =, there are substantial improvements over the Schmidt bound, beginning with work of Ellenberg
and Venkatesh [EV06], which was subsequently improved in work of Couveignes [Cou20] and Lemke
Oliver and Thorne [LOT22]. For = g 95, the best bound is that of [LOT22], namely #= (-) j= -

2 (log=)2
,

where 2 f 1.564 is an explicitly computable constant. While this improvement is substantial as =→∞, in
the complementary regime 6 f = f 94, the Schmidt bound has remained the best available for 25 years.

Our main theorem gives a general improvement over the Schmidt bound.

Theorem 1.1. For each = g 6 and every n > 0, we have #= (-) j=,n -
Ĥ+2

4 − 1
4Ĥ−4+n .

We do not expect that the saving 1
4=−4

is optimal for our method, but to extract a further saving
from the work below would take significant care. In fact, our work is inspired by work of Bhargava,
Shankar, and Wang [BSW22b] in a different context, and simultaneously with our work, an improvement
of (essentially) 1

2=−2
over Schmidt’s bound was independently obtained by the same authors in [BSW22a].

Their independent work bears some similarity with our approach, but remarkably the two approaches
differ greatly in multiple ways. Therefore, we expedite some pieces of our approach, while focusing on
other pieces where our techniques are different and which we expect to have other applications in different
settings.

In §2, we summarize Schmidt’s approach of estimating #= (-) by counting monic polynomials
5 (G) = G= + 21G

=−1 + · · · + 2= where each 28 is bounded by $ (- ğ
2Ĥ−2 ). We slightly restructure Schmidt’s

method in order to not restrict to polynomials of trace 0. To improve upon Schmidt’s bound, we separately
count polynomials with “particularly small” discriminants and polynomials with “particularly squarefull”
discriminants in comparison to the discriminants of the fields they cut out. Our method is easier to
describe in the context of Schmidt’s method; thus, we defer further description until §2.1. Roughly
speaking, we study polynomials with “particularly small” discriminant in §4 and polynomials with
“particularly squarefull” discriminant in §6 and §7. Inspired by [ST23], we bound both the archimedean
and nonarchimedean local density of polynomials of small discriminant in Proposition 4.1; these densities
are important in §6 and §7. These densities bear some resemblance to the ‘Main Heuristic assumption’ in
[ST23], but Proposition 4.1, though natural, appears to be novel. Due to the significant blend of analytic
techniques developed to work with polynomials in different contexts, we devote an early section, Section
3, to their exposition.

It is in §5 and §6 that our approach differs most substantially from [BSW22b] and [BSW22a]. In
§5, which we regard as our most novel, we study the nonarchimedean Fourier transform of the set of
polynomials whose discriminant is divisible by a large power of a prime. The main results of this section
are somewhat technical statements about the support and size of this Fourier transform, but their proofs
rely on a beautiful and substantial structure of the discriminant that is revealed upon taking its Fourier
transform. We expect that such Fourier transforms, and the underlying structure of the discriminant so
revealed, may play a role in other problems beyond that considered in Theorem 1.1, for example perhaps in
generalizing the ideas from [ST23]. We use the considerations of §5 to show in §6 bounds for polynomials
whose discriminants are “powerful": that is, they admit prime factors to large powers. Section 3 describes
the various techniques, such as change of variables, that permeate the next three sections. We hope this
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reference section facilitates the reading of the rest of the paper. Finally, in §7, we study polynomials
whose discriminants have a large factor that is not powerful, incorporating the framework of [BSW22b].
The specific prime factorization of the large factor dividing the polynomial discriminant determines which
polynomials are treated using §6 or §7, and is described in the next section.

2 Outline of approach

Let F= (-) denote the set of fields  /Q with degree = and discriminant satisfying |Disc( ) | f - . Note
that #= (-) = #F= (-), our desired count. The Schmidt bound [Sch95] asserts that #F= (-) j= -

Ĥ+2
4 . The

key to Schmidt’s approach is the following.

Lemma 2.1. Let  ∈ F= (-) and assume  is primitive, i.e. that it has no proper nontrivial subfields.

Then there is a monic polynomial 5 (G) ∈ Z[G] with trace 0, i.e. 5 (G) = G= + 22G
=−2 + · · · + 2=, for which

 ≃ Q[G]/ï 5 (G)ð and where each 28 satisfies |28 | j= -
ğ

2Ĥ−2 .

Proof. In the Minkowski embedding, the trace 0 elements of O form a rank =−1 lattice with covolume
≍= |Disc( ) |1/2. The =− 1 Minkowski minima for this lattice satisfy _1 · · ·_=−1 ≍ |Disc( ) |1/2, so
_1 j= |Disc( ) |1/2(=−1) . In particular, there is a non-zero element U ∈ O with trace 0 whose height

is $= ( |Disc( ) | 1
2Ĥ−2 ). Since U has trace 0 and U ≠ 0, it follows that U ∉ Q. By our assumption that  

admits no interesting subfields, it follows that Q(U) =  . The minimal polynomial of U then satisfies the
conclusion of the lemma. □

There are $= (-
Ĥ+2

4 ) polynomials of the type produced in Lemma 2.1. It thus follows that the number
of primitive fields contained in F= (-) is also $= (-

Ĥ+2
4 ).

Remark 2.2. To get a bound on non-primitive fields too, Schmidt (essentially) uses this argument, but
over a moving subfield. His bound actually improves for the number of imprimitive fields: if 3max is the

largest proper divisor of =, his bound on imprimitive fields in F= (-) is -
Ěmax+2

4 . This is smaller than the
bound claimed in Theorem 1.1, so it suffices to prove the claimed bound holds for the set Fprim

= (-) of
primitive field extensions.

It is possible to rework Schmidt’s argument slightly to make it marginally more convenient to invoke
the results of the earlier work of Bhargava, Shankar, and Wang [BSW22b]. First, we consider polynomials
without trace 0.

Define the height � of a polynomial 5 (G) = G= +21G
=−1+ . . . 2= by � = max|28 |1/8 . We will frequently

abuse notation by using the phrase ‘polynomials of height �’ to mean polynomials with height bounded
by �.

Lemma 2.3. Let = g 2. There is a constant�= > 0 such that each field ∈ Fprim
= (-) is cut out by k= -

1
2Ĥ−2

polynomials 5 (G) ∈ Z[G] of the form 5 (G) = G= + 21G
=−1 + . . . 2=, where each 28 satisfies |28 | f �8=-

ğ
2Ĥ−2 .

Proof. By the proof of Lemma 2.1, each  ∈ F
prim
= (-) has an element U ∈ O with trace 0 and height

bounded by �0 := �=-
1

2Ĥ−2 , for a positive constant �=. Then there are at least �0 elements in O of
height at most 2�0, corresponding to the translates U+ : for |: | f �0, : ∈ Z. The minimal polynomial
<(G) = G= + 21G

=−1 + · · · + 2= of such an element satisfies |28 | j= �
8
0
, and the result follows. □
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For an admissible choice of �= in Lemma 2.3, set � := �=-
1

2Ĥ−2 . There are $= (�
Ĥ2+Ĥ

2 ) polynomials
of height �, with each primitive field cut out by at least k= � different polynomials. Dividing by this

minimum multiplicity, we find that there must be no more than $= (�
Ĥ2+Ĥ−2

2 ) =$= (-
Ĥ+2

4 ) different fields
produced, again recovering Schmidt’s bound.

Remark 2.4. The argument of Lemma 2.3 is a bit ad hoc, but its conclusion is likely close to optimal, apart
from constants depending on =. For “typical” fields  ∈ F= (-), we should expect the multiplicity with

which  is cut out to be ≍= �=/
√
|Disc( ) |. If � = -

1
2Ĥ−2 ≈ |Disc( ) | 1

2Ĥ−2 , this expected multiplicity is
about �. The proof of Lemma 2.3 thus doesn’t lose much, and its proof will be convenient in the next
section.

2.1 Strategy and Proof of Main Theorem

While Lemmas 2.1 and 2.3 guarantee that each field  ∈ F
prim
= (-) is cut out by a polynomial of height

� j= -
1

2Ĥ−2 , it is not the case that every such polynomial cuts out a field of discriminant at most - .
In particular, for “typical” 5 (G) of height �, we have disc( 5 ) ≈ �=2−= = -

Ĥ
2 , and this is typically also

the order of the discriminant of the field cut out by 5 . We should thus expect the relevant polynomials
attached to  ∈ F

prim
= (-) to be exceptional in one of two ways: either the discriminant of 5 is unusually

small, or the discriminant of the field cut out by 5 is much smaller than the discriminant of 5 . In the latter
case, the ratio of the two discriminants is the square of the index [O : Z[U]] where U is a root of 5 ; we
call this integer the index of the polynomial 5 , denoted index( 5 ).

The condition that the discriminant is small is global, while the condition that the index is large is
local. However, since both conditions are preserved under translation, it follows from the proof of Lemma
2.3 that each  ∈ F

prim
= (-) will still be cut out by k= � of these exceptional polynomials. Thus, our

main task is to bound the number of exceptional polynomials.

Proof of Theorem 1.1

We now describe the proof of our main theorem more concretely.
By Lemma 2.3, to bound  ∈ F

prim
= (-) it suffices to bound the number of polynomials 5 with height

up to � ≍= -
1

2Ĥ−2 that cut out a field with discriminant - ≍= �2=−2, where each field is counted with
multiplicity of order at least �.

In Section 4, we prove the following corollary, bounding the the number of polynomials with small
discriminant.

Corollary 2.5. Let = g 3 and let � be sufficiently large in terms of =. The number of polynomials 5 (G) ∈
Z[G] of the form 5 (G) = G= + 21G

=−1 + · · · + 2= with |28 | f �8 and |disc( 5 ) | f �=2−=−2 is $= (�
Ĥ2+Ĥ

2 −1).

If 5 (G) is irreducible and cuts out the field  , then the discriminants of 5 and  are related through
the equation disc( 5 ) = Disc( ) [O : Z[U]]2, where U is a root of 5 over  . As indicated above, we refer
to the index [O : Z[U]] as the index of 5 , which we denote by index( 5 ). Corollary 2.5 implies that with

at most $= (�
Ĥ2+Ĥ

2 −1) exceptions,

index( 5 )2 ·Disc( ) = disc( 5 ) > �=2−=−2.

DISCRETE ANALYSIS, 2024:19, 24pp. 4



IMPROVED BOUNDS ON NUMBER FIELDS OF SMALL DEGREE

As Disc( ) f - ≍= �2(=−1) , each of these polynomials has large index bounded from below by

index( 5 ) k= �
Ĥ2−Ĥ−2

2 −(=−1)
= �

Ĥ(Ĥ−3)
2 . (2.1)

Thus each of these polynomials has discriminant divisible by a large square. To bound the number of
such polynomials, we consider two subcases: when the radical of index( 5 ) is small or large. (Recall that
the radical of an integer is the product of its prime divisors.) In Section 6, we prove the following bound
on the number of polynomials with large index, but small index radical.

Theorem 2.6. Let = g 6 and fix any n > 0. Then for any � g 1, the number of polynomials 5 (G) ∈ Z[G] of

degree = and height � for which rad(index( 5 )) < �1−n but index( 5 ) > �
Ĥ(Ĥ−3)

2 is $=,n (�
Ĥ2+Ĥ

2 − 4
3 −

4
Ĥ
+n +

�
Ĥ2+Ĥ

2 − 2Ĥ
3 +3+n ).

Note that for all = g 8, the first term above is larger, and therefore governs our overall bound. However,
for = = 6,7 the second term dominates.

In Section 7, we bound the number of polynomials with large index radical.

Theorem 2.7. For any = g 3, any � g 1, any n > 0, and any " g 1, the number of polynomials 5 of

degree =, height �, and where <2 | disc 5 for some squarefree < g " is

$=,n

(� Ĥ2+Ĥ
2

√
"

+� Ĥ2+Ĥ
2 − 1

2+n
)
.

Theorem 2.6 implies that the number of polynomials of height �, index bounded below by (2.1),

and with rad(index( 5 )) < �1−n is $=,n (�
Ĥ2+Ĥ

2 −1+n ). All remaining uncounted polynomials have
rad(index( 5 )) g �1−n , and thus have a squarefree divisor < of size at least �1−n such that <2 | disc( 5 ).
Taking " = �1−n in Theorem 2.7 shows that there are at most �

Ĥ2+Ĥ
2 − 1

2+n such polynomials. Combining
these bounds, we find that

� ·#Fprim
= (-) j=,n �

Ĥ2+Ĥ
2 − 1

2+n ,

which completes the proof of Theorem 1.1 using � ≍= -
1

2Ĥ−2 . □

3 Local fields, étale algebras and mass formulas

Changes of variables between etale algebras, polynomial roots and polynomial coefficients will be used
throughout this paper, so we introduce this section as a useful reference. As such, the terminology here is
self-contained.

Let E be a place of Q. Throughout most of this paper, we will be concerned with the properties of the
set of monic, degree = polynomials 5 ∈ Z[G] for which |disc( 5 ) |E is small in some suitable sense. We
approach these questions locally, viewing our polynomials (perhaps after a suitable change of variables) as
lying inside OQĬ [G], where OQĬ = ZE if E is finite and OQĬ = [−1,1] if E =∞ (note that this selection of
[−1,1] instead of R may be nonstandard, but is useful in our context). Rather than study the discriminant
of 5 as a polynomial in its coefficients c ∈ O=

QĬ
, we prefer to study the discriminant by means of its simpler
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expression in terms of the roots of 5 . These roots may be thought of as an =-tuple ___ ∈ QE
=

for a fixed
choice of algebraic closure QE , but the locus of points inside QE

=
actually arising as roots of polynomials

in OQĬ [G] appears difficult to access directly. Thus, we pass through an intermediate space, the étale
algebra associated with 5 .

Let P= (OQĬ ) be the space of monic, degree = polynomials with coefficients in OQĬ . Given a separable
polynomial 5 ∈ P= (OQĬ ), the quotient QE [G]/ 5 is a degree = étale algebra  E over QE . This étale algebra
is equipped with a natural element (namely, the image of G), and, conversely, given an element U ∈  E,
the polynomial Nm(G −U) will be associated with U under this map. Now, for any E, there are only
finitely many degree = étale algebras  E over QE . Thus, the image of the map 5 ↦→ G ∈ QE [G]/ 5 naturally
decomposes as a disjoint union over the different étale algebras. Moreover, if E is finite, then the image of
5 in fact lands in O Ĭ , the ring of integers of  E . If E =∞, then we define O Ĭ to be the compact closure
of the image.

Given U ∈ O Ĭ , the roots of the associated polynomial 5U = Nm(G − U) are easily determined.
Explicitly, if we write  E = ·A

8=1
�8 with each �8 a (field) extension of QE, then any U ∈ O Ĭ may be

expressed as U = (U1, . . . , UA ) with each U8 ∈ �8. The roots of 5U are then the images of each U8 under
the [�8 : QE] embeddings of �8 into our fixed choice QE. Thus, while we are in principle interested in
performing computations in the space of roots___ ∈ QE

=
, in practice, we instead perform these computations

inside étale algebras.
In carrying out the computations to follow, we find it convenient to fix a coordinatization of O Ĭ when

E is finite. In particular, if  E = ·A
8=1
�8 as above, then by choosing an integral basis l8,1, . . . ,l8,[�ğ :QĬ ]

for each �8, the collection l1,1, . . . ,lA , [�Ĩ :QĬ ] is an integral basis for  E. This identifies O Ĭ with O=
QĬ

,
whose generic element we denote a. The transformation from the coordinates a to the roots ___ is linear,
with block diagonal matrix " Ĭ = ·A

8=1
"�ğ , where

"�ğ =
©­­«

]1(l8,1) . . . ]1(l8, [�ğ :QĬ ])
...

...

][�ğ :QĬ ] (l8,1) . . . ][�ğ :QĬ ] (l8, [�ğ :QĬ ])

ª®®
¬
,

with ]1, . . . , ][�ğ :QĬ ] denoting the embeddings of �8 into QE. Notice that |det"�ğ |E = |disc(�8) |1/2E by

definition of the discriminant, hence |det" Ĭ |E = |disc( E) |1/2E .
Closing the loop, the roots ___ of a polynomial 5 ∈ P= (OQĬ ) naturally determine its coefficients c by

means of the elementary symmetric polynomials. Namely, given the roots ___ = (_1, . . . ,_=) ∈ QE of a
monic polynomial 5 , define the change of variable ___ to fff = (f1, · · · ,f=) ∈ QE via

f8 (___) =
∑

(¢{1, · · · ,=}
|( |=8

∏
9∈(
_ 9

for 8 = 1, . . . , =. This change of variable yields the polynomial 5 (G) = G= −f1G
=−1 + · · · (−1):f:G=−: +

· · · + (−1)=f=. Each f8 is the 8-th elementary symmetric polynomial in _8 .
Figure 1 summarizes the different spaces, maps between them, and variable naming conventions we

adopt.
At this stage, it only remains to discuss the change of measure between the various spaces, in

particular between polynomials and étale algebras. First, the space P= (OQĬ ) is equipped with a natural
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Étale algebras∐
 Ĭ/QĬ deg =

O Ĭ ∋ U
Coordinates (E = ?)∐
 Ĭ/QĬ deg =

O
=
QĬ

∋ a

Polynomials
P= (OQĬ ) ∋ 5

Roots

QE
= ∋ ___

Coefficients
O=
QĬ

∋ c

q : U ↦→Nm(G−U)=: 5Ă

∼

∐
"ćĬ

5 ↦→G∈QĬ [G ]/ 5

___ ↦→∏(G−_ğ )=
∑(−1)ğfğ (___)GĤ−ğ

c ↦→ 5c

Figure 1: Maps between spaces of polynomials, étale algebras, and roots. The dashed arrow indicates
this map is defined for separable polynomials.

Haar/Lebesgue measure a by means of the coefficient isomorphism O=
QĬ

→ P= (OQĬ ); if E is finite, we
normalize the measure a so that a(P= (OQĬ )) = 1. Each étale algebra  E is also equipped with a natural
Haar/Lebesgue measure that we denote `, normalized if E is finite so that `(O Ĭ ) = 1. The fundamental
result we use is due to Serre [Ser08, Lemma 3] and Shankar–Tsimerman [ST23, Lemma 2.2].

Lemma 3.1. With notation as above, we have q∗a = |disc( E) |1/2E |disc( 5U) |1/2E `. In particular, for any

a-integrable function k on P= (OQĬ ), we have

∫
PĤ (OQĬ )

k( 5 ) 3a =
∑

 Ĭ/QĬ deg. n

|disc( E) |1/2E
|Aut( E) |

∫
OćĬ

|disc( 5U) |1/2E k( 5U) 3`.

4 The density of polynomials with small discriminant

We begin by proving the following proposition on the density of polynomials over some completion QE
of Q with small discriminant. This result in the case that QE = R will be the key ingredient in the proof
of Corollary 2.5, and the ideas behind the proof in the case that QE is non-archimedean will be the key
ingredient in the proof of Theorem 2.6.

Proposition 4.1. Let = g 2 and let QE be a completion of Q. Let |·|E be the associated absolute value

and let `E be the associated Haar measure on QE , normalized in the case that E is finite so that the total

measure of ZE is 1 and so that `E agrees with usual Lebesgue measure in the case that E is infinite. For

c ∈ Q=E , let 5c(G) := G= + 21G
=−1 + · · · + 2=.

Then for any X ∈ (0,1), there holds

a({c ∈ Q=E : |28 |E f 1 for all 8 and |disc( 5c(G)) |E f X}) j= X
1
2+

1
Ĥ , (4.1)

DISCRETE ANALYSIS, 2024:19, 24pp. 7
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where a denotes the product measure on Q=E .

Proof. Let 1X ( 5 ) be the characteristic function for the set of polynomials where |Disc( 5 ) |E f X.
Then applying the change of variables discussed in Section 3, we find

a({c ∈ Q=E :|28 |E f 1 for all 8 and |disc( 5c(G)) |E f X})

=

∑
[ Ĭ :QĬ ]==

|Disc( E) |1/2E
|Aut( E) |

∫
OćĬ

|Disc( 5U) |1/2E 1X ( 5U) d`(U)

f X1/2
∑

[ Ĭ :QĬ ]==

|Disc( E) |1/2E
|Aut( E) |

∫
OćĬ

1X ( 5U) d`(U),

where 5U denotes the characteristic polynomial of U, and where, in the inequality in the second line, we
used the bound |Disc( 5U) |E = |Disc(U) |E f X, valid for any U for which 1X ( 5U) ≠ 0. Note in particular
that any polynomial with a repeated root has discriminant 0, but that the set of such polynomials has
measure 0 and thus does not affect the integral.

We now estimate the integral, beginning with the case where  E ≃ Q=E is the totally split algebra. In
this case, |Disc(U) |E =

∏
8< 9 |U8 −U 9 |2E, where U8 , U 9 are the roots of 5U. Consequently, for any point in

the support of 1X , we have
=∏
8=1

∏
9≠8

|U8 −U 9 |E f X.

The pigeonhole principle then implies that there must be some 8 for which∏
9≠8

|U8 −U 9 |E f X1/=.

If we let U′9 = U8 −U 9 for each 9 ≠ 8, it thus follows that
∏
9≠8 |U′9 |E f X1/=. Since O Ĭ is compact, the

measure of points satisfying this condition is $= (X1/=), independent of U8 . We therefore conclude in this
case that ∫

OćĬ

1X ( 5U) d`(U) j= X
1
Ĥ .

We now turn to the case that  E is not the totally split algebra. The idea in this case is substantially
the same, but requires the notation from Section 3. The discriminant Disc(U) satisfies

|Disc(U) |E =
=∏
8=1

∏
9≠8

|_8 −_ 9 |E .

Proceeding as in the totally split case, we conclude that for U in the support of 1X , there must be some 8
for which ∏

9≠8

|_8 −_ 9 |E f X
1
Ĥ . (4.2)

DISCRETE ANALYSIS, 2024:19, 24pp. 8
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Accounting for the determinant of the matrix " Ĭ sending the coordinates a to the roots ___ = (_1, . . . ,_=),
we conclude that ∫

OćĬ

1X ( 5U) d`(U) j= |Disc( E) |−1/2
E X

1
Ĥ .

We therefore find that

X1/2
∑

[ Ĭ :QĬ ]==

|Disc( E) |1/2E
|Aut( E) |

∫
OćĬ

1X ( 5U) d`(U) j= X
1
2+

1
Ĥ

∑
[ Ĭ :QĬ ]==

1

|Aut( E) |
j= X

1
2+

1
Ĥ ,

since the summation may be bounded in terms of the number of étale algebras of degree =, which in turn
may be bounded solely in terms of =. □

Remark 4.2. The bound (4.1) is sharp for an infinite sequence of X tending to 0. In particular, one can

realize a lower bound of magnitude k X
1
2+

1
Ĥ for all X when E is an archimedean valuation. One can also

realize this lower bound for the nonarchimedean totally split étale algebras  E ≃ Q=E and X = ?−: when
: = <=(=−1) for some : and < g 1 since the product in (4.2) has =(=−1) factors in these cases, and
therefore can be realized in these cases. For many other X, the bound can be improved using the discrete
nature of the valuation group. In our optimization process below, we have no freedom in choosing X and
cannot exploit such improvements. Therefore, we rely on the upper bound (4.1).

We now use Proposition 4.1 to bound the number of integral polynomials with small archimedean
discriminant.

Lemma 4.3. Let = g 3,. g 1, and� sufficiently large in terms of =. Then the number of polynomials 5 (G) ∈
Z[G] of the form 5 (G) = G=+21G

=−1+ · · ·+2= with |28 | f �8 and disc( 5 ) f �=2−=/. is$= (�
Ĥ2+Ĥ

2 /. 1
2+

1
Ĥ +

�
Ĥ2+Ĥ

2 −1).

The key idea behind Lemma 4.3 is that the coefficients of the polynomials 5 (G) with small discriminant
must lie in a compact region in R= with small volume, and thus we should expect there to be relatively
few polynomials whose coefficients lie in this region. This is made rigorous by means of the Lipschitz
principle from [Dav51]:

Lemma 4.4 (Davenport). If ¬ ¦ R= is a compact semialgebraic region (i.e., cut out by algebraic

inequalities), then the number of lattice points in the intersection satisfies the bound

Z=∩¬ = vol(¬) +$ (max
c

vol
(
c(¬))

)
, (4.3)

where the maximum runs over the projections c of R= onto its various coordinate hyperplanes (i.e., the

regions in R3 for 3 < = obtained by “forgetting” =− 3 of the coordinates). The implicit constants depend

only on the dimension = and the degrees of the equations defining ¬.

Proof of Lemma 4.3. Define ¬�,. ¦ R= to be

¬�,. := {(21, . . . , 2=) ∈ R= : |28 | f �8 ,disc(G= + 21G
=−1 + · · · + 2=) f �=

2−=/. }.
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The maximum volume of the coordinate projections of ¬�,. is trivially $= (�
Ĥ2+Ĥ

2 −1), coming from
forgetting the discriminant condition and using the coordinate projection (21, . . . , 2=) ↦→ (22, . . . , 2=). By

Lemma 4.4, the statement thus reduces to showing that vol(¬�,. ) j= �
Ĥ2+Ĥ

2 /. 1
2+

1
Ĥ . Since the region

¬�,. is obtained by an anisotropic dilation we find vol(¬�,. ) = �
Ĥ2+Ĥ

2 vol(¬1,. ). Thus it suffices to
bound vol(¬1,. ). Taking X = .−1 and QE = R in Proposition 4.1, we immediately deduce that

vol(¬1,. ) j= .
− 1

2 −
1
Ĥ . (4.4)

This completes the proof. □

This lemma implies Corollary 2.5, used in §2.1 to prove our main theorem.

Proof of Corollary 2.5. Take . = �2 in Lemma 4.3. □

5 Nonarchimedean Fourier transforms

Recall that if 5 (G) is irreducible and cuts out the field  , then its discriminant satisfies disc( 5 ) =
Disc( ) [O : Z[U]]2, where U is a root of 5 over  , and where [O : Z[U]] =: index( 5 ). In this section,
we assemble the main technical ingredients that will be used in the proof of Theorem 2.6. This theorem
bounds the number of integral polynomials 5 whose index is large, but for which rad(index( 5 )) is small.
This condition implies that such polynomials will have discriminants divisible by large powers of primes.
We therefore begin with the following simple lemma.

Lemma 5.1. Let = g 2 and : g 1, and let ? be prime. The set of monic polynomials 5 ∈ Z[G] for which

?2: divides the discriminant of 5 is determined by congruence conditions (mod ?2:) with relative

density j ?−:−
2ġ
Ĥ .

Proof. The fact that this condition is determined from congruence conditions follows from the fact that
the discriminant of a polynomial is a polynomial in its coefficients. The density of these congruence
conditions may be determined by computing the Haar measure of the set of monic polynomials in Z? [G]
satisfying this condition. Therefore, the claim about the density follows from Proposition 4.1 by taking
QE = Q? and X = ?−2: . □

We now introduce the main object of study in this section. Let P= (Z/?2:Z) be the set of monic degree
= polynomials over Z/?2:Z, and let k?2ġ be the characteristic function of the subset of polynomials whose

discriminant is congruent to 0 (mod ?2:). For any u ∈ Z=, we define the Fourier transform k̂?2ġ (u) of
k?2ġ by

k̂?2ġ (u) :=
1

?2:=

∑
c∈ (Z/?2ġZ)Ĥ

k?2ġ ( 5c) exp

(
2c8ïc,uð
?2:

)
, (5.1)

where 5c(G) = G= + 21G
=−1 + · · · + 2= and ï·, ·ð denotes the standard inner product.

We begin with a series of lemmas that will be used to determine the support of k̂?2ġ .
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Lemma 5.2. Write the monic polynomial 5 as 5 (G) = G=−f1G
=−1+ · · · (−1):f:G=−: + · · ·+ (−1)=f=. For

each 1 f 8 f =, define �8 :=
mdisc 5

mfğ
∈ Z[f1, . . . ,f=]. Then the discriminant disc( 5 ) and partial derivatives

�8 satisfy

1. For any 1 f A f A + : f = and 1 f B− : f B f =, we have disc( 5 ) | (�A�B −�A+:�B−:).

2.
∑

1f8f=�8 · (=+1− 8) ·f8−1 = 0 where we define f0 = 1.

The second part of the above lemma can be derived from equation (1.27) in Chapter 12 of [GKZ08],
but we were unaware of this reference until recently, so we provide a proof.

Proof. Our first goal is to give an expression for �8 (fff(___)) ∈ C[___]. Recall the change of variables to go
from roots ___ to coefficients fff(___) of a polynomial described in Section 3. The Jacobian matrix for this
change of variables is �(___) where �8 9 =

m2ğ
m_ Ġ

. A quick computation verifies that

m28

m_ 9
= 28−1(_1, . . . , _̂ 9 , . . . ,_=),

where we write _̂ 9 to indicate that the 9-th coordinate should be omitted. Below, we use the shorthand
_̂__ 9 = (_1, . . . , _̂ 9 , . . . ,_=). When _8 ≠ _ 9 for all 8 ≠ 9 , we define the matrix �(___) = (�8 9) by

�8 9 = _
=− 9
8

(−1) 9+1/
∏
:≠8

(_8 −_:).

Then one can verify that

(��)8 9
∏
:≠8

(_8 −_:) =
(
_=−1
8 f0(_̂__ 9) −_=−2

8 f1(_̂__ 9) + · · · + (−1)=−1f=−1(_̂__ 9)
)
=

∏
:≠ 9

(_8 −_:).

To see the last equality, we used the identity

=−1∏
8=1

(G− 08) =
=−1∑
:=0

(−1):f8 (000)G=−1−: (5.2)

for expressing a polynomial with roots000 = (01, . . . , 0=−1) in terms of the elementary symmetric polynomials
in these roots. This shows that (��)8 9 is 0 if 8 ≠ 9 and is equal to 1 if 8 = 9 , hence �� = �.

By the inverse function theorem and chain rule, we obtain the inverse function _8 = _8 (fff) with
m_ğ
mf Ġ

= �8 9 , and m�
mfğ

=
∑
9
m�
m_ Ġ

m_ Ġ
mfğ

=
∑
9
m�
m_ Ġ

� 98 .

By an abuse of notation, we write disc(c) := � (c) := disc( 5c), and with 5 = G=−f1G
=−1+ · · · (−1)=f=

as in the lemma statement, we write � = disc( 5 ). For fff = (f1, . . . ,f=) = fff(___), we note that (5.2)
also shows that the roots of 5 are precisely the _8. Thus � (fff(___)) = ∏

8< 9 (_8 −_ 9)2, and we have
m�
m_ Ġ

= 2�
∑
:≠ 9 (_ 9 −_:)−1. This implies that

�8 :=
m�

mf8
= 2�

∑
9

_=−89 (−1)8+1 ·
∏
:≠ 9

(_ 9 −_:)−1 ·
(∑
:≠ 9

(_ 9 −_:)−1
)
= 2�

∑
9

_=−89 (−1)8+1 ·, 9 ,
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where we denote
, 9 =

∏
:≠ 9

(_ 9 −_:)−1 ·
∑
:≠ 9

(_ 9 −_:)−1.

Observe that

�, 9 =

∏
8<:,8≠ 9 ,:≠ 9

(_8 −_:)2 ·
∏
:≠ 9

(_ 9 −_:) ·
∑
:≠ 9

(_ 9 −_:)−1

is a polynomial in C[___]. We thus obtain �8 (___) as a polynomial in the Zariski open set � (___) ≠ 0 in the
affine space of ___. As �8 (fff(___)) agrees with �8 (___) in that open set, they agree everywhere in ___ affine
space (and not merely when _8 ≠ _ 9 for all 8 ≠ 9).

We now evaluate �8. Notice that �, 9 is zero if _ 9 is a triple root of 5 , or if there exists a double
root _8 = _: with 8, : ≠ 9 . If there is a unique double root _ 9 = _:0

, then �, 9 =
∏
8<:,8≠ 9 ,:≠ 9 (_8 −

_:)2
∏
:≠ 9 ,:0

(_ 9 −_:) = �,:0
. Stated differently — if 5 has two distinct pairs of double roots or a triple

root, then �8 = 0 for all 8. If there is a unique double root _ 9 , then for any 8 we compute

�8 = (−1)8+1_=−89 ·4�, 9 .

Therefore as a polynomial in C[fff], it follows that

�A�B −�A+:�B−: ≡ (4�, 9)2(−1)A+B · (_2=−A−B
9 −_2=−A−B

9 ) = 0

on the variety cut out by � (fff) = 0. Since � (fff) is irreducible, it follows from Hilbert’s Nullstellensatz
that � | �A�B −�A+:�B−: .

In order to prove the second statement, notice that discriminant is translation invariant. That
is, disc(_1 + C,_2 + C, . . . ,_= + C) = disc(_1,_2, . . . ,_=). Now we can consider the function f8 (C) :=

f8 (_1 + C,_2 + C, . . . ,_= + C). It is clear that 3fğ (C )
3C

= f8−1(_1 + C, . . . ,_= + C) (=− 8 +1). Therefore

3� (fff(C))
3C

����
C=0

=

∑
8

m�

mf8

3f8

3C

�����
C=0

=

∑
8

�8 ·f8−1 · (=− 8 +1) = 0,

completing the proof. □

This lemma is general. We exploit the relationship � | �A�B −�A+:�B−: below, but we note that
there are many other algebraic relationships on the discriminant and its derivatives that might yield further
refinements on the structure of the support of k?2ġ . In practice, we use the following more specific lemma.

Lemma 5.3. Given c ∈ Z= corresponding to a polynomial 5c(G) with disc( 5c) ≡ 0 mod ?2: , let Dc :=

( mdisc( 5 )
m21

, . . . ,
mdisc( 5 )
m2Ĥ

) denote the gradient vector of the discriminant function, and let E8 (c) denote the

valuation at ? of
mdisc( 5 )
m2ğ

(c) = �8 (c).
Then there either exists 0 ∈ Zg0 such that

min{E8 (c), :} = min{E= (c) + (=− 8)0, :} (5.3)

or 1 ∈ Z with 0 f 1 f min(val? (=), :) such that

min{E8 (c), :} = min{E1(c) + (8−1)1, :}. (5.4)
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Intuitively, min{E8 (c), :} almost forms an arithmetic progression, except that when a term is greater
than : we change it to : . Thus this lemma shows that the support of k?2ġ is constrained to these “near
arithmetic progressions”.

Proof. By Lemma 5.2 (1), we see that when ?2: | disc( 5c), ?2: | �A (c)�B (c) −�A+ℓ (c)�B−ℓ (c) for all
relevant A, B, ℓ. This implies the valuation relations min{EA (c) + EB (c),2:} = min{EA+ℓ (c) + EB−ℓ (c),2:}.
Specializing to A = B = 8 and ℓ = 1 gives that min{2E8 (c),2:} = min{E8−1(c) + E8+1(c),2:}. Thus(
E8−1(c), E8 (c), E8+1(c)

)
is an arithmetic progression when E8 (c) < : and “nearly” an arithmetic progression

otherwise.
It is not possible for the sequence min{E8 (2), :} to initially decrease and later decrease. For otherwise,

there would exist A and B, with A < B− 1, such that min{EA (2), :} and min{EB (2), :} are smaller than
min{E8 (2), :} for each A < 8 < B. But this would contradict the valuation relation above with ℓ = 1.

Hence the sequence min{E8 (c), :} is either non-increasing (giving (5.3)) or non-decreasing (giv-
ing (5.4)). Note that Lemma 5.2(2) implies that =�1(c) is in the ideal generated by (�2(c), . . . , �= (c)),
which restricts 1 f min{val? (=), :} f = in (5.4). □

Lemma 5.3 implies that the support of k̂?2ġ is also on “near arithmetic progressions.”

Lemma 5.4 (Support on near arithmetic progressions). For u = (D1, . . . , D=) ∈ (Z/?2:Z)=, we have that

k̂?2ġ (u) = 0

unless u satisfies one of the two “near arithmetic progression” properties that

min{E? (D8), :} = min{E? (D=) + (=− 8)0, :} (5.5)

for some 0 ∈ Zg0, or

min{E? (D8), :} = min{E? (D1) + (8−1)1, :} (5.6)

for some 1 ∈ Z with 0 f 1 f min{E? (=), :}.

Proof. For each 222 ∈ (Z/?2:Z)= such that ?2: | disc( 5222), we associate the locus

%c := {v ∈ (Z/?2:Z)= : ?2: | disc( 5v),v− c ∈ ?: · (Z/?2:Z)=}.

Two such %c and %c′ are equal if and only if c− c
′ ≡ 0 mod ?: . Thus we can decompose the set of

congruence classes of polynomials whose discriminant is divisible by ?2: into a disjoint union of %c over
a set � of representatives c from ?: (Z/?2:Z)= satisfying ?2: | disc( 5c), giving

k̂?2ġ =

∑
c∈�

1̂%c
.

This leads us to study 1̂%c
. Below, we use the notation Dc for the gradient vector of the discriminant

function and the notation E8 for the ?-valuation for the 8-th coordinate of Dc as in Lemma 5.3. From the
Taylor expansion

disc( 5v) ≡ disc( 5c) +Dc · (v− c) mod ?2:
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and the fact that ?2: | disc( 5c), we see that %c can be written as

%c =

{
v ∈ (Z/?2:Z)= : Dc ·

v− c

?:
≡ 0 mod ?:

}
. (5.7)

Direct computation on the definition shows

1̂%c
(bbb) = 1

?2:=
exp

(
2c8

ïbbb,cð
?2:

) ∑
v∈%c

exp
(
2c8

ïbbb,v− cð
?2:

)
. (5.8)

Let F := min(E8 (c), :) denote the minimum valuation among the coordinates of Dc. We will now show
that

1̂%c
(bbb) =

{
exp(2c8 bbb ·c

?2ġ ) · ?
ĭ−ġ

?ġĤ
, bbb ≡ UDc(mod ?:) for some U ∈ Z/?:Z

0 otherwise.
(5.9)

To see this, first note that by (5.7), the set %c − c forms an additive group. This implies that∑
v∈%c

exp
(
2c8

ïbbb,v− cð
?2:

)
= exp

(
2c8

ïbbb,u− cð
?2:

) ∑
v∈%c

exp
(
2c8

ïbbb,v− cð
?2:

)
(5.10)

for any u ∈ %c.
When bbb ≡ UDc mod ?: for some U ∈ Z/?:Z, all summands in (5.8) are equal to 1 by the definition

of %c in (5.7). The first case of (5.9) follows from the fact that |%c | = ?: (=−1)+F . If bbb cannot be written
as UDc, then there must be some u ∈ %c such that ïbbb,u− cð . 0 mod ?2: . Inserting this choice of u

into (5.10) shows that 1̂%c
(bbb) = 0. Thus (5.9) is shown.

It follows that for all u in the support of k̂?2ġ , u ≡ UDc for some c. The near arithmetic progression
conditions (5.5) and (5.6) are then implied by Lemma 5.3. □

For the phases u = (D1, . . . , D=) for which the Fourier transform k̂?2ġ (u) does not vanish, we will

need an improvement over the trivial bound |k̂?2ġ (u) | f |k̂?2ġ (0) | j= ?
−:− 2ġ

Ĥ given by Lemma 5.1. In
fact, for our purposes, it will suffice to restrict our attention to those phases for which only D1 and D2

are possibly non-zero. For the phases u = (D1, . . . , D=) in which only D1 is non-zero, we observe that the
Fourier transform is typically 0.

Lemma 5.5. Let ? be prime, = g 6, and : g 3. Suppose that D1 ∈ Z, and define u ∈ Z= by u= (D1,0,0, . . . ,0).
Then k̂?2ġ (u) = 0 if ?2:/gcd(?2: , =) does not divide D1.

Proof. Since only D1 ≠ 0, by definition, we have

k̂?2ġ (u) = 1

?2=:

∑
c∈ (Z/?2ġZ)Ĥ

k?2ġ ( 5c) exp

(
2c821D1

?2:

)
.

As the map G ↦→ G+1 induces a bĳection from the support of k?2ġ to itself (that is, on the set of polynomials
whose discriminant is divisible by ?2:), sending 21 = 21( 5 ) to 21 += for each 5 , we also have

k̂?2ġ (u) = 1

?2=:

∑
c∈ (Z/?2ġZ)Ĥ

k?2ġ ( 5c) exp

(
2c8(21 +=)D1

?2:

)
.

This implies that either k̂?2ġ (u) = 0 or ?2: | =D1. □
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To study phases u = (D1, . . . , D=) with both D1 and D2 non-zero, we’ll use the following additional
result.

Lemma 5.6. Let ? be prime, = g 6, and : g 3. Suppose that D1, D2 ∈ Z, and define u ∈ Z= by

u = (D1, D2,0, . . . ,0). Then

k̂?2ġ (u) j= ?
− 2Ĥġ

3 gcd(D2, ?
2:) Ĥ3 .

Proof. Let 4?2ġ : Z? → C be the continuous extension of the map defined on integers G by 4?2ġ (G) :=

exp( 2c8G
?2ġ ). By definition, it follows that we may rewrite the Fourier transform as

k̂?2ġ (u) =
∫
PĤ (ZĦ )

k?2ġ ( 5 )4?2ġ (D121( 5 ) +D222( 5 )) 3a( 5 ),

where 21( 5 ) and 22( 5 ) respectively denote the coefficients of G=−1 and G=−2 in 5 . Applying the change
of variables from Section 3, we find this integral is equal to

∑
[ Ħ :QĦ ]==

|Disc( ?) |1/2?
|Aut( ?) |

∫
OćĦ

|Disc( 5U) |1/2? k?2ġ ( 5U)4?2ġ (−D1f1(___) +D2f2(___))3`(U), (5.11)

where 5U is the characteristic polynomial of U and f8 (___) denotes the 8-th elementary symmetric function
in the roots ___. Fixing the étale algebra  ? = �1 × · · · ×�A (with =8 := deg(�8)), we note that f1 is linear as
a polynomial in ___, and is therefore also linear in the choice of coordinates a ∈ Z=? from Section 3 and the
proof of Proposition 4.1 (which we use in this proof as well). Additionally, f2 is a quadratic form in ___
with Gram matrix

& =

©­­­­«

0 1 1 . . . 1

1 0 1 . . . 1
...

. . .
...

1 1 1 . . . 0

ª®®®®¬
,

that is, f2(___) = 1
2
___)&___, where we regard ___ as a column vector. As ___ = " Ħa, we therefore find that f2,

as a polynomial in a, has Gram matrix ")
 Ħ
&" Ħ . For convenience in what is to come, we note now

that det& = (−1)=−1(=−1). Thus |det")
 Ħ
&" Ħ |? j= |Disc( ?) |?, where " Ħ is as in Section 3.

Similarly, using the formula in Section 3, if one considers f2 (as a polynomial in a) as a quadratic form
modulo ?, this computation shows that we have |Disc( ?) |? j ?−corankFĦ (f2 ) , as the corank represents
the number of column vectors that are linearly dependent ?-adically.

For each a = (01, . . . , 0=) ∈ Z=? associated to a point U ∈ O Ħ in the support of k?2ġ , we introduce the
following quantities:

• We set ℓ = : − EĦ (D2 )
2

, and in the following we will write 0 ≡ 1 mod ?ℓ to mean that E? (0− 1) g ℓ,
including the case when ℓ is a half integer.

• We write ( for the set of 8 (or, by abuse of notation, the set of 08) with the following property: one
of the roots for which 08 is a coefficient is subject to a congruence _ ≡ _′ (mod ?ℓ), where _′ is
some other root, and where the congruence is as polynomials in the appropriate integral bases.
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• We write < := |( |.

If 08 ∈ (, then using the Galois action we see that every root for which 08 is a coefficient will be
subject to such a congruence, and thus we may regard this congruence as being of the form U ≡ W(U′)
(mod ?ℓ) for some nontrivial W ∈ Gal(Q?/Q?).

We distinguish two cases:

1. If U 9 ≡ W(U 9) (mod ?ℓ) for some nontrivial W ∈ Gal(�̃9/Q?), let |W | denote the order of W. Taking
traces shows that |W |U 9 must be congruent (mod ?ℓ) to an element of the subfield �W

9
of �9 fixed

by W. Since W acts nontrivially on the conjugates of �9 , this subfield has degree at most = 9/2, from
which it follows that at least = 9/2 values A 9 are greater than ℓ. This will be satisfied for a proportion
of $ (?−ℓ= Ġ/2) of the possible U 9 .

2. We divide the set of remaining U into equivalence classes where U 91 ≡ W2(U 92) ≡ · · · ≡ WC (U 9Ī )
(mod ?ℓ) for some C g 2. Once the W are fixed, any one of the U 9 determines all the rest (mod ?ℓ).
Assuming without loss of generality that U 91 is of minimal degree, these congruences will be
satisfied for a proportion of $ (min(?−ℓ (= Ġ2+···+= ĠĪ ) )) of the possible tuples (U 91 , . . . , U 9Ī ).

There are $= (1) ways of partitioning the set of U into equivalence classes as above and choosing the
W. Altogether we obtain a density j= ?

−ℓ#/2, where # is the total of the degrees = 9 over those U 9
corresponding to at least one coordinate in (. As # g < = |( |, this density is j= ?

−ℓ</2. Moreover, the
above procedure identifies g </2 pairs of roots, distinct but not necessarily disjoint, which are congruent
(mod ?ℓ), so we have

|Disc( 5U) |1/2? f ?−
ģℓ
2 |Disc( ?) |1/2? (5.12)

for any such U. So far we obtain a bound

j ?−<ℓ |Disc( ?) |1/2? (5.13)

for the integral in (5.11).
For the =−< remaining coordinates 08 ∉ (, we may change 08 by an arbitrary multiple of ? +ℓ , while

preserving the discriminant. Motivated by the method of (non)stationary phase, by Taylor expanding, we
then observe that

D2f2(a+18? +ℓ ,)−D1f1(a+18? +ℓ ,) ≡ D2f2(a)−D1f1(a)+18? +ℓ , ·
(
D2
mf2

m08
(a)−D1

mf1

m08
(a)

)
(mod ?2:),

where we use 18 to indicate a vector whose only nonzero component is 18 in the 8-th coordinate. We have
used that f1(a) is linear in 08 and the relationship between ℓ and D2 in omitting higher derivatives. This
implies that the integral∫

1ğ∈ZĦ
|Disc( 5U) |1/2? k?2ġ ( 5U)4?2ġ (−D1f1(a+ 18? +ℓ ,) +D2f2(a+ 18? +ℓ ,)) 318

will vanish unless the congruence D2
mf2

m0ğ
(a) −D1

mf1

m0ğ
(a) ≡ 0 (mod ?2:−+ℓ ,) is satisfied. Consequently,

we may restrict the integral∫
OćĦ

|Disc( 5U) |1/2? k?2ġ ( 5U)4?2ġ (−D1f1(___) +D2f2(___))3`(U) (5.14)
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to those points satisfying the congruence D2
mf2

m0ğ
(a) −D1

mf1

m0ğ
(a) ≡ 0 (mod ?2:−+ℓ ,) for each 08 ∉ (. Since

f2 is quadratic, these are linear constraints, and they will be independent over Z? since the coefficients of
mf2

m0ğ
are precisely the entries of the 8-th column of the Gram matrix ")

 Ħ
&" Ħ , which is nonsingular

by our earlier computation. In fact, the same computation reveals that the density of points a ∈ Z=?
satisfying these conditions will be at most ?−(=−<) +ℓ , |Disc( ?) |−1

? . This bound, multiplied by (5.12), is

$ (?−(=−ģ2 )ℓ |Disc( ?) |−1/2).
To obtain the same bound if ℓ is a half-integer (so that +ℓ, = ℓ− 1

2
), we begin by recasting the previous

argument slightly. We have seen that, if U meets the conditions described by (, then the integrand in (5.14)
is constant in the box a+ ? +ℓ ,Z=−<? , and that the total measure of these boxes is ?−(=−<) +ℓ , |Disc( ?) |−1

? .

We now slightly enlarge the boxes, dividing Z=−<? into boxes of the form a+ ? +ℓ ,Z=−<? . Here a choice
of the coordinates in ( will be fixed, and each a will be chosen to meet the conditions described by ( and
satisfy k?2ġ ( 5ÿ) = 1. The following will hold for all a

′ = a+ ? +ℓ ,b ∈ a+ ? +ℓ ,Z=−<? :

1. We will have |Disc( 5a′) |? f |Disc( 5a) |?, with strict inequality if and only if b satisfies any of a
nonempty finite set of Z?-linear constraints (mod ?).

2. k?2ġ ( 5a) will be identically 1.

3. The quantity −D1f1(___) +D2f2(___) (mod ?2:) will be constant on boxes of side length ? +ℓ , , and
hence may be written as the sum of a constant depending only on a, and a quadratic polynomial
@(b) depending only on b (mod ?).

4. After an invertible Z?-linear change of variables, we may write @(b) = 211
2
1
+ · · · + 2C12

C + (terms
involving only 1C+1, . . . , 1=−<), where we have =−<− C f corankFĦ (f2).

Ignoring the condition (1) for now, the integral over a+ ? +ℓ ,b reduces to |Disc( 5a) |1/2? ?−(=−<) +ℓ ,

times a sum over b (mod ?) ∈ F=−<? , which factors as a product of C Gauss sums, bounded above by ?C/2,

and a sum of the other =−<− C variables, which is f ?=−<−C f ?corankFĦ (f2 ) j |Disc( ?) |−1
? . Altogether

we obtain a bound

j |Disc( 5a) |1/2? ?−(=−<) +ℓ , ?C/2 |Disc( ?) |−1

j |Disc( 5a) |1/2? ?−(=−<)ℓ |Disc( ?) |−1

j ?−(=−ģ2 )ℓ |Disc( ?) |−1/2. (5.15)

We handle the condition (1) by an inductive argument. Passing to the set of b satisfying any one of the
linear constraints, and choosing a Z?-basis for this set, (1)-(4) will remain true, with the rank C of the
Gauss sum either remaining the same, or decreasing by 1. Since |Disc( 5 ) |? decreases by a factor of ?, as
does the measure of the set being integrated over, while C may decrease by 1, we obtain a bound a factor of
$ (?−1) smaller than (5.15). Continuing to pass to such subsets, and using inclusion-exclusion as needed,
we obtain the same bound (5.15) incorporating (1).

Our density bounds for 08 ∈ ( and 08 ∉ ( have not been proved independent, so adding the minimum
of (5.13) and (5.15) over the 2= choices for (, and noting that |Disc( ?) |? f 1, we obtain

|Disc( ?) |1/2?
|Aut( ?) |

∫
OćĦ

|Disc( 5U) |1/2? k?2ġ ( 5U)4?2ġ (−D1f1(___) +D2f2(___))3`(U) j= ?
− 2Ĥℓ

3 .
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Adding this across the $= (1) étale algebras, and recalling that ℓ = : − EĦ (D2 )
2

, we deduce the result. □

6 Polynomials with a large and powerful index

The main goal of this section is to prove Theorem 2.6, which states that the number of polynomials for

which index( 5 ) k= �
Ĥ(Ĥ−3)

2 but rad(index( 5 )) < �1−n is $=,n (�
Ĥ2+Ĥ

2 − 4
3 −

4
Ĥ
+n +� Ĥ2+Ĥ

2 − 2Ĥ
3 +3+n ).

We begin with the following elementary lemma that, in the context of Theorem 2.6, will allow us to
choose a convenient divisor of the index.

Lemma 6.1. Let < g 2 be an integer, and let � = rad(<) be the product of the primes dividing <. Let

: g 2. If < g �2:−2, then for every G ∈ R such that �:−1 f G f </�:−1, < has a :-powerful divisor 3 in

the interval [G,�G].

(Recall that an integer 3 is :-powerful if every prime ? | 3 divides 3 to order at least : .)

Proof. We begin by proving a slightly stronger statement in the case that < is itself :-powerful, in
particular producing a :-powerful divisor in every interval of the form [G,�G] with �:−1 f G f </�. If
G f �: , then we simply take the divisor 3 to be �: . If G > �: , then we consider divisors of the form �:0

with 0 a divisor of </�: , and we claim there must be such a divisor 0 in the interval [G/�: , G/�:−1].
If this interval includes </�: , then we take the divisor 0 to be </�: itself. Otherwise, let 0 be the
minimal divisor of </�: greater than G/�:−1. Then every prime divisor ? of 0 is at most �, and thus
0/? g G/�: . On the other hand, by the minimality assumption on 0, 0/? f G/�:−1, and thus 0/? is the
claimed divisor. This completes the proof in the case < is :-powerful.

If < is not :-powerful, let <′ denote the maximal :-powerful divisor of < and let �′ = rad(<′),
and notice that �′ f �. Additionally, we have </�:−1 f <′/�′ (:−1) . It then follows from the previous
paragraph that <′ has a :-powerful divisor in the interval [G,�′G] ¦ [G,�G] for G as in the statement of
the lemma, and thus < must too. □

We now turn to the proof of Theorem 2.6.

Proof of Theorem 2.6. We wish to show that the number of monic polynomials 5 (G) ∈ Z[G] of degree = and

height� for which rad(index( 5 )) < �1−n but index( 5 ) > �
Ĥ(Ĥ−3)

2 is$=,n (�
Ĥ2+Ĥ

2 − 4
3 −

4
Ĥ
+n +� Ĥ2+Ĥ

2 − 2Ĥ
3 +3+n ).

Suppose we are considering such a polynomial 5 . By Lemma 6.1 applied with : = 3, there is some
cubefull divisor 3 of the index of 5 satisfying �2−2n < 3 f �3−3n . By the remainder theorem, given
such a divisor 3, the polynomial 5 will lie in the support of the function k32 =

∏
?ġ | |3 k?2ġ . Moreover,

the support of this function is determined by congruence conditions (mod 32). Since 32 > �, we may
not simply estimate the number of such polynomials by naïvely counting the number in each residue
class. Instead, we identify the space of monic, degree = polynomials with Z= and we let q : R= → R be a
non-negative Schwartz function, chosen so that it is greater than 1 on the unit box [−1,1]= and so that its
Fourier transform q̂ has compact support contained in [− 1

2=5 ,
1

2=5 ]=.
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Then by Poisson summation,∑
c∈ZĤ

q
( 21

�
, . . . ,

2=

�=

)
k32 ( 5c) = �

Ĥ2+Ĥ
2

∑
u∈ZĤ

q̂
(D1�

32
, . . . ,

D=�
=

32

)
k̂32 (u)

= �
Ĥ2+Ĥ

2 k̂32 (0)q̂(0) +�
Ĥ2+Ĥ

2

∑
0≠u∈ZĤ

q̂
(D1�

32
, . . . ,

D=�
=

32

)
k̂32 (u) (6.1)

where k̂32 (u) is defined by

k̂32 (u) = 1

32=

∑
5 ∈ (Z/32Z)Ĥ

k3 ( 5 )4
2ÿğï Ĝ ,uð
Ě2 .

By the remainder theorem, k̂32 (u) may be decomposed as k̂32 (u) =
∏
?ġ | |3 k̂?2ġ (W?u) for some W?

coprime to ?. Thus, k̂32 (u) may be bounded by the results of the previous section, in particular
Lemma 5.1, Lemma 5.4, and Lemma 5.6. Using Lemma 5.1, the first term on the right-hand side of (6.1)

is $=,q,n (�
Ĥ2+Ĥ

2 3−1− 2
Ĥ
+n ). Added over cubefull integers 3 > �2−2n , this yields a total contribution that

is $=,q,n (�
Ĥ2+Ĥ

2 − 4
3 −

4
Ĥ
+n ), which matches the bound claimed in Theorem 2.6.

For the contribution from the sum of the non-trivial Fourier coefficients, we first note that by the
compact support of q̂, the summation is supported on those u for which each |D8 | f 32/2�8. Since we
have assumed that 3 f �3−3n , this implies that D8 = 0 for 8 g 6. In particular, since D6 = 0, it follows
from the arithmetic progression property of the support (Lemma 5.4) of k̂32 that each D8 for 8 f 5 must
be divisible by 3/gcd(=6−8 , 3). (In the worst case, when (5.6) holds for every prime ? dividing 3, we
bound 1 f E? (=)). Thus, writing D8 = (3/gcd(=6−8 , 3))D′8, we find that D′8 satisfies |D′8 | f 3/�8, which
in particular also implies that D8 = 0 for 8 g 3. If D2 = 0, then the sum is only over integers |D1 | f 32/�.
However, by Lemma 5.5, k̂32 (u) will vanish unless D1 is divisible by 32/gcd(32, =), which forces D1 = 0

in this range as well. As we have already considered the contribution from the trivial Fourier coefficient,
we may therefore assume that D2 ≠ 0.

If D2 ≠ 0, then by Lemma 5.6, k̂32 (u) j=,n 3
−2=/3+n gcd(32, D2)=/3 j= 3

−=/3+n gcd(3,D′
2
)=/3. This

case thus yields a contribution that is

j=,n

�
Ĥ2+Ĥ

2 +n

3=/3

∑
|D′

1
|jĤ3/�

∑
0≠ |D′

2
|jĤ3/�2

gcd(3,D′2)
=/3 j=,n 3�

Ĥ2+Ĥ
2 − 2Ĥ

3 −1+n , (6.2)

by noting that the summation over D′
2

is dominated by the $ (3 n ) values D′
2

for which gcd(3,D′
2
) is

largest possible, but that this gcd is $= (3/�2) from the bound on D′
2
. After summing over cubefull

integers �2−2n < 3 < �3−3n , we find a total contribution from the non-trivial Fourier coefficients that is

$=,n (�
Ĥ2+Ĥ

2 − 2Ĥ
3 +3+n ), which completes the proof of the theorem. □

7 Strong and weak multiples

In this section, we prove Theorem 2.7, which bounds the number of polynomials of height � whose
discriminants have large squarefree divisors. To do this, we build on the work of Bhargava, Shankar, and
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Wang [BSW22b]. As before, to any c = (21, . . . , 2=) ∈ Z= we associate the monic degree = polynomial
5c(G) = G= + 21G

=−1 + · · · + 2=.
Theorem 2.7 should be compared with [BSW22b, Theorem 4.4], where a similar statement is proven

but where the second term is �
Ĥ2+Ĥ

2 − 1
5
+n instead of �

Ĥ2+Ĥ
2 − 1

2+n . It should also be compared with [BSW22a,
Theorem 4], where a strictly stronger statement is proven. Additionally, as sketched in [BSW22b], it is

possible to prove that the first term on the right-hand side is �
Ĥ2+Ĥ

2 /" , but we do not pursue this as it is
not necessary in the proof of our main theorem.

To prove Theorem 2.7, we follow the same strategy as [BSW22b], offering improvements to each
of the two key steps. For a squarefree integer <, let W< be the underlying set of polynomials whose
discriminant is divisible by <2, that is

W< := {c ∈ Z= : |28 | f �8 ,<2 | disc( 5c)}.

We decompose this set as follows. For a prime ?, we say that disc( 5 ) is a strong multiple of ?2 if disc(6)
is a multiple of ?2 for every polynomial 6 congruent to 5 (mod ?), and we say that disc( 5 ) is a weak

multiple of ?2 otherwise. Let W(1)
< ¦ W< be the subset consisting of polynomials for which disc( 5 ) is a

strong multiple of ?2 for every prime ? | <, and let W(2)
< ¦ W< be the subset of those for which disc( 5 )

is a weak multiple of ?2 for every prime ? | <. By considering the factorization of <, Bhargava, Shankar,
and Wang [BSW22b] make the simple observation that for any " > 1,⋃

<g"
< squarefree

W< ¦
⋃

<g
√
"

< squarefree

W
(1)
< ∪

⋃
<g

√
"

< squarefree

W
(2)
< .

Thus, to prove Theorem 2.7, it is sufficient to prove the following pair of propositions that refine [BSW22b,
Theorem 1.5(a)] and [BSW22b, Theorem 1.5(b)], respectively.

Proposition 7.1. For any . > 1, � > 0, and n > 0,

⋃
<g.

< squarefree

W
(1)
< j=,n

�
Ĥ2+Ĥ

2 +n

.
+� Ĥ2+Ĥ

2 −=+1+n .

Proposition 7.2. For any . > 1 and any n > 0, we have

⋃
<g.

< squarefree

W
(2)
< j=

�
Ĥ2+Ĥ

2

.
+� Ĥ2+Ĥ

2 − 1
2+n .

We now turn to the proofs of these propositions.

7.1 Strong multiples and Proposition 7.1

To prove Proposition 7.1, we apply a line of reasoning similar to the geometric sieve (c.f. Theorem 3.3
of [Bha14]).
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Recall that each c ∈ Z= corresponds to a degree = polynomial 5c = G= + 21G
=−1 + · · · + 2=. The

discriminant disc( 5c) is a polynomial in the coefficients 28 . More generally, to any c ∈ R= we can associate
the gradient vector Dc := ( mdisc( 5 )

m21
, . . . ,

mdisc( 5 )
m2Ĥ

). Then we see that disc( 5c) is a strong multiple of ?2 if
and only if both disc( 5c) ≡ 0 mod ? and Dc ≡ 0 mod ?. Thus it suffices to bound the number of c with
|28 | f �8 (1 f 8 f =) such that disc( 5c) ≡ 0 mod @ and mdisc( 5 )

m2Ĥ
≡ 0 mod @ for some squarefree integer

@ g . . To simplify, we replace mdisc( 5 )
m2Ĥ

(c) by the resultant of mdisc( 5 )
m2Ĥ

(c) and disc( 5c) with respect to

2=−1. Denote the two polynomials disc( 5c) and Res(disc( 5c), mdisc( 5 )
m2Ĥ

) by 61(c) and 62(c), respectively,
where we notate 62(c) even though 62 doesn’t depend on 2=−1 so that it suffices to count common roots c

of 61 and 62.
We first show that 61(c), as a polynomial in (Z[21, . . . , 2=−2, 2=]) [2=−1], has degree = and nonzero

constant leading coefficient, or equivalently that 61(c) =
∑
8f=U82

8
=−1

with U= ≠ 0. To see this, we compute
61(c) = disc( 5c) via the resultant matrix � of the monic polynomial 5c(G) and its derivative 5 ′c (G). In this
matrix, we observe that 2=−1 occurs exactly 0 times in the first =−1 rows, twice in rows = to (2=−2), and
once in the (2=−1)st row. Thus the degree is at most =. We explicitly compute that the coefficient U= is

U= =
∑

0f:f=−1

(−=): ·
(
=−1

:

)
= (1−=)=−1

≠ 0.

Next, from the weighted homogeneity property of resultants, we observe that 62(c) may be expressed as
a homogeneous polynomial of degree =2(=−2) in the roots of 5 , and is therefore a weighted homogeneous
polynomial in c of the same degree, where each 28 has weight 8. It therefore has degree at most =(=−2) as
a polynomial in 2=, and we observe that there is a unique permutation giving rise to a term of such degree
in the determinant representation of the resultant, corresponding to choosing the top entry of the columns
associated to disc( 5c) and the bottom entry of the columns associated to mdisc( 5 )

m2Ĥ
. We conclude that 62(c),

as a polynomial in 2=, has degree =(=−2) and that its leading coefficient is a non-zero constant depending
only on =. In particular, 62(c) will be a non-zero polynomial in 2= for any choice of the coordinates
(21, . . . , 2=−2).

The total number of tuples among the first =−2 coordinates (21, . . . , 2=−2) satisfying |28 | f �8 is of
the order �=(=+1)/2−(2=−1) . For each such tuple, the number of 2= such that 62(21, . . . , 2=−2, 2=) = 0 is
absolutely bounded by the degree in 2=, and thus bounded by $= (1); the number of 2=−1 is trivially
bounded by �=−1. These contribute at most $= (�=(=+1)/2−=) many c.

If 62(21, . . . , 2=−2, 2=) ≠ 0, then we take @ g . to be any squarefree divisor of 62(21, . . . , 2=−2, 2=);
there are at most $=,n (� n ) many such choices @. The number of 2=−1 with |2=−1 | f �=−1 such
that 61(21, . . . , 2=) ≡ 0 mod @ is at most $= (max{1, �=−1/. }). In total, these contribute at most
$= (�=(=+1)/2+n /. ) +$= (�=(=+1)/2+n −(=−1) ).

Combining these two bounds completes the proof of Proposition 7.1. □

7.2 Weak multiples and Proposition 7.2

We now turn to Proposition 7.2, which is an improvement of the second error term in [BSW22b, Theorem
1.5(b)]. Our input consists simply of the application of a sharper sieve result at the heart of their argument.
In particular, the error term in question originates in Propositions 2.6 and 3.5 of [BSW22b], depending
on whether = is odd or even. The proofs of both propositions rely on an application of the Selberg sieve
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to bound the number of “distinguished orbits” of an appropriate orthogonal group acting on the space
of symmetric =×= matrices over 1

2
Z. For each prime ?, they establish that they are able to sieve out a

proportion of congruence conditions which is uniformly bounded away from 0, and then an application of
the Selberg sieve yields their result.

It turns out that an application of the large sieve in the form of [Ser08, Theorem 10.1.1] immediately
yields the stated stronger result. We also note that further improvements might be possible, in particular
by incorporating Fourier analysis when applying the Selberg sieve as a large sieve, as done in [AGLO+23].
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