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Abstract—The development of trustworthy and secure AI
applications is a fundamental step towards building AI systems
that can reliably operate in the real world, where they may face
malicious attempts to manipulate them. Deep neural networks,
despite their impressive image classification accuracy, are vul-
nerable to even small, imperceptible changes called adversarial
attacks, causing their performance to plummet. Existing defenses
often struggle when attackers have full knowledge of the model
(white-box attacks) and craft even stronger perturbations. To
address this, the Adversarial Invariant and Co-Variance Restric-
tion (AICR) loss function was recently proposed. The AICR loss
function forces clean and noisy images from the same class to
have similar activation patterns in convolutional neural networks,
essentially making them harder for attackers to differentiate.
Given the superior performance of Vision Transformers (ViTs)
in image classification, we adapted the AICR loss to train
ViTs and investigated its effectiveness against gradient-based
attacks. Our experiments show that ViTs trained with AICR
loss achieve a significant improvement in accuracy compared to
those trained with the standard cross-entropy loss, demonstrating
the effectiveness of AICR in enhancing ViT’s resilience against
adversarial attacks.

Index Terms—Vision transformers, adversarial training, ad-
versarial defense, image classification

I. INTRODUCTION

While Deep Neural Networks (DNNs) have achieved im-
pressive performance in various domains such as computer
vision [1]–[4], natural language processing [5]–[7], speech
recognition [8]–[10], and reinforcement learning [11]–[13],
their vulnerability to adversarial attacks remains a critical
concern. Adversarial attacks involve creating imperceptible
modifications to input data that can fool DNNs into making in-
correct predictions. This vulnerability raises serious questions
about the reliability and accountability of DNNs, particularly
in such applications as autonomous vehicles, security and
surveillance, and environmental monitoring. Designing AI
systems that are robust and generalizable against adversarial
attacks is therefore an urgent and crucial challenge, thus
requiring further research to ensure the safe and responsible
deployment of DNNs across various critical domains.

In recent years, numerous defense methods have been
proposed to combat adversarial attacks. These methods can

be broadly categorized into two types: reactive and proactive
defenses. Reactive defense methods focus on modifying or
transforming inputs to counter specific attack strategies. Ex-
amples of such methods include input smoothing, input clip-
ping, and adversarial training with specific noise distributions
[14]–[17]. However, these methods are often limited in their
effectiveness against unknown attack strategies and may not
generalize well to diverse adversarial perturbations. Proactive
defense methods, on the other hand, aim to inherently im-
prove the robustness of the model itself. This is achieved by
modifying model parameters, network architectures, training
objectives, or utilizing adversarial training with diverse noise
distributions. Proactive methods are generally more versatile
and provide wider protection against various attacks, making
them more widely adopted in practical applications.

A novel adversarial training framework using the so-called
Adversarial Invariant and Co-Variance Restriction (AICR)
loss function was proposed [18] that incorporates two objec-
tives to enhance robustness and generalization: maximizing
class separation and minimizing intra-class variance. The first
objective utilizes an attractive and repulsive mechanism at
different representation levels. This mechanism encourages
samples from the same class to cluster together (attractive)
and pushes samples from different classes apart (repulsive).
This promotes a model that naturally separates classes, making
it more resilient to noise and achieving better generalization.
The second objective aims to minimize the variation between
adversarial and clean images within the same class. This is
achieved by maximizing the correlation and minimizing the
redundancy in their intermediate representations. This ensures
that visually similar samples are projected to the same region
in the multidimensional space, making them difficult to fool
with adversarial attacks within a given budget. This approach
was shown (i) to achieve state-of-the-art robustness against
a wide range of strong adversarial attacks under the strongest
first-order attack and (ii) to maintain the highest robust perfor-
mance under black-box settings using the CNN6 net [19] and
the ResNet-110 [4] Convolutional Neural Networks (CNNs).

Vision Transformers (ViTs) [20] is a different DNN ap-



proach towards image classification compared to CNNs. Un-
like CNNs, which process images pixel-by-pixel, ViTs first
divide an image into patches and treat these patches as
tokens. The network then learns by examining the relationships
between these tokens, similar to how it learns relationships
between words in a sentence. This allows ViTs to capture long-
range dependencies and global context within an image. CNNs
have a strong inductive bias towards local spatial relationships
due to their convolutional structure. This helps them learn
effectively even with smaller datasets. ViTs rely on attention
mechanisms, which have a weaker inductive bias towards
spatial structure. This means they are more flexible but may
require more data or specific techniques to guide them towards
learning the important features. When training on smaller
datasets, ViTs are more likely to overfit, which increases its
reliance on model regularization or data augmentation.

While the AICR loss function has demonstrated superior
adversarial defense performance on CNNs like Resnet-110, its
effectiveness on ViTs remains unexplored. ViTs have recently
gained significant traction for their impressive image classifi-
cation capabilities. However, their vulnerability to adversarial
attacks is only beginning to be addressed. Given the recent
surge in interest and potential benefits of ViTs, we propose
incorporating them into the AICR objective function to assess
their adversarial defense performance.

The rest of this paper is organized as follows. Relevant
related work is reviewed in Section II. In Section III, we
describe our proposed method and our testing plan. We present
our experimental results in Section IV. Finally, we draw our
conclusion and suggest future work in Section V.

II. RELATED WORK

Deep learning algorithms are vulnerable to adversarial per-
turbations, which are carefully crafted inputs that can cause
the model to make incorrect predictions. Several defense
algorithms have been proposed to counter such attacks, and
these can be broadly categorized into two main approaches:
input transformation and model modification.

Input transformation methods attempt to modify the input
data in a way that makes it more difficult for the adversary
to craft effective perturbations [17], [21]. For example, one
common technique is to add noise to the input data. This can
make it more difficult for the adversary to find perturbations
that have a significant impact on the model’s output.

Model modification methods attempt to make the model
itself more robust to adversarial perturbations [22]–[24]. One
common technique is adversarial training, which involves
training the model on a dataset that includes both clean and
adversarial examples. This can help the model to learn how
to better distinguish between clean and adversarial inputs.

Given the recent competitive performance of ViTs for
image classification tasks, the robustness of these methods
against adversarial attacks has received more attention. ViT
architectures can be broadly classified as vanilla and hybrid.
Vanilla ViTs are pure attention-based and are computationally
less expensive. Hybrid ViTs combine CNNs and attention

by incorporating both convolutional layers and self-attention
modules. This leverages the strengths of both approaches, viz.
CNNs for extracting local features and attention for capturing
global relationships. The robustness of vanilla and of hybrid
ViTs against adversarial attacks were found to be different
[25]. While both vanilla and hybrid ViTs are tougher against
adversarial attacks compared to regular CNNs, it was shown
that vanilla ViTs but not the hybrids resisted defenses aimed
at high-frequency features, suggesting potential differences in
how they process information.

The adversarial robustness of ViTs has been explored by
focusing on their unique building blocks [26]. It was shown
that significant improvement in their ability to resist deception
is feasible by randomly hiding information within these blocks
during training.

A different approach to achieve adversarial robustness in
ViT is to modify the training recipe [27]. Traditionally, training
ViTs relies heavily on data augmentation. While effective for
normal training, this approach was shown to hurt performance
during adversarial training. Instead, omitting data augmenta-
tion and incorporating specific techniques like ε-warmup and
bigger weight decay significantly improves the robustness of
ViTs.

Adversarial training on the ViT architecture is computa-
tionally expensive. An attention-guided adversarial training
method was introduced to trade off computational efficiency
and adversarial robustness [28]. This method identifies and re-
moves unimportant parts of an image during training, focusing
the model’s attention on crucial areas. This significantly speeds
up training while maintaining or even improving robustness.

III. METHOD

We propose to incorporate the AICR loss function [18]
into the ViT architecture and test the performance against
white-box attacks. We summarize the characteristics of the
ViT architecture next.

A. The Vision Transformer (ViT)

Transformers, originally developed for natural language
processing, excel at image classification with their ability to
capture long-range dependencies and contextual relationships
within images [20]. The image is first divided into smaller
patches, each of which is converted into a fixed-length em-
bedding vector, capturing essential information about its color,
texture, and other features. Additional information about the
relative position of each patch within the image is incorporated
into the embedding vectors.

In the transformer encoder’s self-attention mechanism, each
patch embedding attends to all other patch embeddings, al-
lowing it to learn how relevant each patch is to itself and
other parts of the image. It does so by transforming the
patch embedding into three separate vectors: a query, a key,
and a value. Each query vector is compared to all other key
vectors using a dot product operation to generate a matrix
of attention scores, where each score represents the similarity
between a pair of patches. Each attention score is normalized



using a softmax function, turning it into a weight. This
weight indicates the relative importance of each patch to the
query patch. The values of all patches are multiplied by their
respective weights and then summed up. This results in a new
vector that represents the query patch based on the information
from all other patches, weighted by their relevance.

The multi-head attention is formed by repeating the self-
attention process multiple times in parallel, using different,
randomly initialized matrices for generating queries, keys,
and values. The attended representations from all heads are
concatenated together, which is is then transformed by a final
linear layer to produce the output of the multi-head attention
layer.

A feed-forward network further processes the information
extracted by the self-attention layers, adding non-linearity
to increase the model’s expressiveness. Residual connections
and layer normalization help stabilize the training process to
improve the overall performance of the model.

After the final transformer encoder layer, the output vector
representing the entire image is passed through a classification
head, which is typically a Multi-Layer Perceptron (MLP) that
predicts the probability of the image belonging to each class.

B. Loss Function for ViT Adversarial Training

In [18], it was shown that the AICR loss provides an
effective and robust defense against state-of-the-art white-
box attacks and black-box settings. We adapt the AICR loss
from its constituent loss functions for the ViT architecture as
follows.

Let K be the number of classes of a given data set
distribution D and N be the number of samples in the data set.
For an image classification task, we formulate a deep neural
network as Fθ(x) , where θ is the trainable parameters and x
is the input image. The DNN outputs a feature representation
hx ∈ Rd for input x which is then used for classification in a
multiclass classifier Z = [zk] ∈ Rd×K , where k = 1, · · · ,K.
To train the model we minimize an objective function to
minimize θ and Z.

By maximizing the similarity between intermediate repre-
sentations and minimizing redundancy, a so-called variance
loss function was introduced to enforce local compactness
between images and their adversarial counterparts. This ef-
fectively removes unnecessary information from the input
data by decorrelating the clean image and its adversarial
counterpart and ensuring all variables have similar variances.
Consequently, both the clean image and its adversarial counter-
part retain minimal but sufficient representations for accurate
classification.

To further enhance the local compactness of features, a
convolutional generator network GΨ is employed to map the
intermediate layer of the discriminator network into a new
feature space with reduced redundancy. The GΨ mapping is
learned in an end-to-end manner by minimizing the cross-
correlation between the clean and adversarial features while
maintaining their individual variances. A square matrix Q is

Fig. 1. The ViT architecture modified to learn jointly from LCE and Lvar .

computed between the clean and its corresponding adversarial
image in terms of GΨ:

Q =
GΨ(hx)×GΨ(h

′
x)√

GΨ(hx)
√
GΨ(h′

x)
. (1)

Here, Q ∈ Rd×d, where d is the dimension of the output of
GΨ. Intuitively, the diagonal elements of matrix Q represent
the dot-product between clean and corresponding adversarial
images while off-diagonal terms represent the covariance
between them.

Minimizing this objective correlates clean and adversary
counterparts and encourages to have non-redundant informa-
tion while being closer in intermediate layers. This allows the
centers to have contrasting representations and promotes max-
imum separation between classes. The variance loss function
is then defined as

Lvar =
∑
i

(1−Qii)
2 + λ

∑
i

∑
j ̸=i

Q2
ij (2)

where λ is the trade-off parameter of the invariant (diagonal)
and the redundancy (off-diagonal) terms of the matrix.

The overall prediction accuracy of an input-label pair (x, y)
is ensured by the commonly used softmax Cross-Entropy (CE)
loss LCE(x, y). A third loss function is the so-called attract-
repulsive loss function, which is not applicable to the ViT
architecture.

The loss function that encourages the same classes to be
mapped closer and different classes to be mapped farther from
each other by a large margin is developed as follows. The
modified AICR loss function is used in the training of a ViT
as illustrated in Figure 1. The AICR loss function is modified
for the ViT architecture by combining the cross entropy loss
function and variance loss function for an input-label pair
(x, y) and the corresponding adversarial image x′ as:

L(x, x′, y) =
n∑
i

(LCE(xi, x
′
i, yi)

+ α× Lvar(h
l
i, h

′l
i , yi)) (3)



where

hl = Gl
ϕ(F l

θ(x)) and h′l = Gl
ϕ(F l

θ(x
′)),

and α is the regularizing term for the contrastive centroid loss,
Gϕ is the auxiliary function that maps intermediate layers to a
lower dimension output, and n denotes the number of layers.

IV. EXPERIMENTAL RESULTS

We evaluated the variance loss [18] with the ViT [20]
architecture. We tested two different variants of ViT network
that incorporate variance loss in the final representations.
One of them incorporates Lvar in the final classification
head, identified as ViT-C; and the other variant uses Lvar on
representations of the final patches except the classification
head, and it is identified as ViT-All.

We illustrate attention shift due to adversarial attacks when
a network is trained solely by the CE loss and when a network
is trained by the AICR loss as follows. The Grad-CAM [29]
helps us understand why a model predicts a certain class by
using an attention map to highlight the areas in the image
that most influence its decision. In Figure 2, we show the
attention maps of some sample images that have been trained
using LCE , the cross entropy loss. In Figure 3, we show the
corresponding attention maps of the adversarial images. The
shifts due to the adversarial attack are evident by comparing
the two images.

The reason attention shifts are markers of suscpetibility
to adversarial attacks is as follows. Many adversarial attacks
work by subtly manipulating an image in a way that causes
the deep learning model to shift its attention to irrelevant or
misleading parts of the image. This attention shift can lead to
misclassifications. Deep learning networks that are robust to
adversarial attacks tend to exhibit smaller or less significant
shifts in their attention when presented with adversarial exam-
ples. This suggests that a model maintaining its focus on the
correct features is less likely to be fooled. If a deep learning
network keeps its attention on the right parts of the image even
when attacked, it has a higher chance of correctly identifying
the object despite the adversary’s attempts to mislead it.

In Figure 4, we show the attention maps of some sample
images that have been trained using LAICR, the loss function
that combines cross entropy and variance loss. In Figure 5,
we show the corresponding attention maps of the adversarial
images. The lack of shift due to the adversarial attack are
evident by comparing the two images.

In an adversarial setting, there are two main threat models.
In white-box attacks, the adverser has complete knowledge of
the target model including model architecture and objective
function used for training and parameters. Black-box attacks,
on the other hand, feed adversarial noise to the input images
during inference time, and it is crafted without any knowl-
edge of target model. Following the attack settings in [30],
we crafted adversarial examples in a non-targeted way with
respect to allowed perturbation ϵ for gradient based attacks,
i.e., FGSM, BIM, PGD, MIM. The number of iterations for
BIM, MIM, PGD were set to 10 with a step size of ϵ/10. We

Fig. 2. Attention maps by Grad-CAM of clean CIFAR-10 images; model
trained by CE loss.

compare the accuracy of ViT network with Lvar at different
settings of ViT on the CIFAR 10 data set for white box attacks.
Results in Table I show that using variance loss increased the
robustness of the model compared to the model that does not
use variance loss.

TABLE I
ACCURACY OF VISION TRANSFORMERS UNDER ADVERSARIAL ATTACKS

Attacks ϵ ViT ViT-C ViT-All
No-attack - 80.1 78.9 79.6

FGSM 0.1 15.2 15.8 16.2
0.2 2.7 1.8 3.6

PGD 0.1 8.5 9.9 9.2
0.2 0.15 0.33 0.16

BIM 0.1 8.4 9.9 9.1
0.2 0.15 0.33 0.16

MIM 0.1 8.8 10.3 9.6
0.2 0.17 0.37 0.22

Here ViT-C refers to the model trained with Lvar only on
the classification head and ViT-All refers to the model with
patch representations trained optimized with Lvar. All models
are trained jointly with adversarial samples and clean samples.



Fig. 3. Illustration of attention shift using Grad-CAM on model trained by
CE loss. Adversarial images are obtained crafted with PGD (ϵ = 0.03); see
clean images in Figure 2 for comparison.

We can see that there were performance drops by ViT-C and
ViT-All when there was no attack. At all levels of attacks,
the ViT trained with the modified AICR loss performed better
than the ViT trained with only cross entropy loss. The ViT-
All network performed better under the FGSM attack while
the ViT-C network performed better the PGD, BIM, and MIM
attacks. Under the FGSM attacks, ViT-All improved by 6.57%
to 33.33% for ϵ = 0.1 and 0.2, respectively. Under the PGD,
BIM, and MIM attacks, ViT-C improved by about 17% to
120% for ϵ = 0.1 and 0.2, respectively.

V. CONCLUSION AND FUTURE WORK

The AICR loss function has previously shown a significant
improvement in the robustness of CNNs against adversarial
attacks, particularly in such tasks as image classification.
Motivated by ViT’s superior performance in such tasks, we
adapted the AICR loss and investigated its effectiveness in
training ViTs against gradient-based attacks such as PGD
and BIM. Our experiments revealed negligible changes in the
attention distribution of ViTs trained with modified AICR loss

Fig. 4. Attention maps by Grad-CAM of clean CIFAR-10 images; model
trained by AICR loss.

compared to cross-entropy, indicating stable attention patterns.
Furthermore, ViTs trained with AICR loss achieved a 33% to
120% improvement in accuracy compared to cross-entropy,
demonstrating its effectiveness in enhancing ViT’s resilience
against adversarial attacks.

A promising direction of future work might focus on ex-
ploiting attention shift as a marker of adversarial vulnerability.
Encouraging models to maintain consistent attention patterns
between clean and adversarial examples during training is a
promising defense strategy, aimed at improving robustness
against attention-based attacks. Networks can be explicitly
trained with adversarial examples that are designed to shift
attention. This helps the model learn to recognize these tricks
and maintain stability. A longer term goal is to develop
more reliable connections between attention and adversarial
robustness.
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