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Abstract—The emergence of Deep Learning compilers provides
automated optimization and compilation across Deep Learning
frameworks and hardware platforms, which enhances the perfor-
mance of Al service and benefits the deployment to edge devices
and low-power processors. However, deep neural network (DNN)
programs generated by Deep Learning compilers introduce a
new attack interface. They are targeted by new model extraction
attacks that can fully or partially rebuild the DNN model
by reversing the DNN programs. Unfortunately, no defense
countermeasure is designed to hinder this kind of attack.

To address the issue, we investigate all of the state-of-the-
art reversing-based model extraction attacks and identify an
essential component shared across the frameworks. Based on this
observation, we propose FlatD, the first defense framework for
DNN programs toward reversing-based model extraction attacks.
FlatD manipulates and conceals the original Control Flow Graphs
of DNN programs based on Control Flow Flattening. Unlike
traditional Control Flow Flattening, FlatD ensures the DNN
programs are challenging for attackers to recover their Control
Flow Graphs and gain necessary information statically. Our
evaluation shows that, compared to the traditional Control Flow
Flattening (O-LLVM), FlatD provides more effective and stealthy
protection to DNN programs with similar performance and lower
scale.

Index Terms—Software Engineering, Protection mechanisms,
Artificial Intelligence

I. INTRODUCTION

Due to the widespread success [1]-[4] of Deep Learning
(DL) across various domains, the demand for DL-based ser-
vices has surged in recent years. This has led service providers
to deploy the Deep Neural Network (DNN) models across
a wide range of hardware devices, from cloud servers to
embedded devices [5], to meet diverse requirements. However,
deployment across multiple platforms presents challenges due
to the differences in on-chip memory architecture and compute
primitives across CPU, GPU, and TPU-like accelerators [6].
Additionally, the rapid growth of DL frameworks [7]-[10]
further complicates the situation.

The DL compilers [11]-[14] ease this process by automat-
ically compiling the models into standalone DNN programs
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with decent optimization using multiple intermediate represen-
tations (IR) during compilation. Generally, a DL compiler can
support various frameworks as input and generate programs
for different hardware devices. Some also [11], [13] allow
third-party toolchains such as LLVM [15] and CUDA [16] for
further code generation. The powerful automated optimization
provided by DL compilers suddenly attracted the attention
of both academia and industry. Gaint Al providers such as
Google, Amazon, and Facebook are all considering embedding
the DL compilers into their Al infrastructure to enhance the
performance of their Al services. [17]-[21].

While the DL compilers significantly impact the Al industry,
they also introduce a new attack interface from the binary
analysis side. Due to the lack of defense applied at the binary
level, the DNN programs are vulnerable to reversing-based
model extraction attacks. The targets of traditional model
extraction attacks [22]-[31] can mainly be classified into
three categories: side channel information, sniffing bus traffic,
and prediction pairs from black box models. These infor-
mation sources are limited and sometimes depend on strict
assumptions. Unlike these sources, DNN programs always
contain complete information that can be used to run in an
isolated environment. To date, there are four state-of-the-art
model extraction attack frameworks [32]-[35] that can fully or
partially reconstruct models by reversing the DNN programs.
However, to our knowledge, effective defense mechanisms
still need to be developed to countermeasure these reversing
attacks. Moreover, training DNN models at an industry scale
often involves processing TB-sized datasets [36], [37] with
high training costs. For example, using a v2 Tensor Processing
Unit (TPU) in a cloud environment costs approximately $4.50
per hour, and completing an entire training cycle may exceed
$400,000 [38], [39], which emphasizes the importance of
protecting DNN models.

Unlike the typical binary program, the DNN program is
generated directly from the model without any source code,
which excludes source-code-level defense frameworks like
Tigress [40]. Moreover, the DNN Program is more sensitive to



performance and scale than a typical binary program, making
the time-consuming framework unavailable. Fortunately, most
state-of-the-art DL Compilers [11], [13] support third-party
code-gen tools (e.g., LLVM [15]) for users to apply the
customized transformation, which leaves us the window to
shield DNN programs.

We carefully investigated attacking frameworks’ basic logic
and workflow to gain more insight into the reversing-based
model extraction attack. These frameworks include the same
components to rebuild the model: operator-type recovery,
topology recovery, and metadata recovery (including dimen-
sions, parameters, and attributes). Although the methodologies
vary from framework to framework, they share the idea of
using the computation pattern to recover the operator type.
Specifically, each kind of operator in the DNN model has a
formula for transforming the input data to the next operator.
For instance, the ReLLU activation function uses the formula
1, and the Tanh activation function uses the formula 2. They
exhibit entirely different syntax and semantics meanings when
represented in the program. This feature helps attackers infer
the operator type by using binary similarity comparison. On
the other hand, it also guides the protection of DNN programs
because we found that the Control Flow Graph (CFG) plays
a vital role in all attack frameworks.
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Based on our observations, this paper proposes FlatD, an
advanced defense framework based on Control Flow Flat-
tening, for DNN programs to protect them from reversing-
based model extraction attacks. Unlike the traditional Control
Flow Flattening, we leverage the opaque predicate, one-way
cryptographic hashing, and indirect jump to conceal the control
flow further so that attackers cannot quickly recover the
original CFG and apply more inference analysis. We also use
several strategies to preserve the DNN program’s performance
and reduce the overall time overhead.

We implemented FlatD on the top of O-LLVM [41] and em-
bedded it into the code generation part of TVM [11]. We used
O-LLVM as the baseline and evaluated FlatD on eight real-
world pre-trained models and one self-trained model from four
frameworks. Our experiment results show that compared to the
traditional Control Flow Flattening, FlatD can more effectively
counterwork state-of-the-art reversing-based model extraction
attacks while preserving the functionality of the original DNN
programs. Moreover, the DNN program transformed by FlatD
performs similarly to the one using traditional Control Flow
Flattening in most cases and always has a lower scale.

In summary, we make the following contributions:

« We investigate four state-of-the-art reversing-based model
extraction attacks and identify a key component shared
across the attack frameworks. This component guides the
provision of protection and contributes to future research
on DNN program safety.
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Fig. 1: Compilation Flow of the Deep Learning Compiler.
The input of the DL compiler is a DNN model. The compiler
frontend transforms the model description into a computational
graph representation and further conveys it into graph IR to
apply graph- and node-level optimizations. At the compiler
backend, it does hardware-specific optimization on low-level
IR. Finally, the compiler generates the DNN Programs for the
target platform.

o We design and implement FlatD, the advanced defense
framework targeting compiled models toward reversing-
based model extraction attacks. FlatD conceals the orig-
inal Control Flow Graph of DNN programs based on
Control Flow Flattening and ensures minimal information
gained by attackers through statistical analysis.

o We successfully apply FlatD on DNN programs compiled
from large-scale models using TVM to evaluate these
DNN programs regarding functionality, performance, and
resilience. We use O-LLVM as the baseline to compare
the results. Our experiment demonstrates that DNN pro-
grams transformed by FlatD can prevent leaking informa-
tion from reversing-based model extraction attacks more
effectively than traditional Control Flow Flattening with
similar performance and lower scale.

II. BACKGROUND
A. Deep Learning Compiler

The objective of deep learning compilers, such as XLA [14],
TVM [11], Intel nGraph [42], and Tensor Comprehension [43],
is to simplify the process of deploying DNN models on differ-
ent hardware platforms, by automating the optimization and
transformation. These compilers can take models described
within popular frameworks like TensorFlow [8], PyTorch
[44], MXNet [10], Caffe2 [9], and Keras [45] as inputs and
generate standalone DNN programs or kernel libraries that can
be statically linked with executables for CPUs, GPUs, and
TPU-like accelerators. As shown in Fig.1, the DL compiler
architecture can be divided into two main phases: frontend
and backend, each manipulating one or several Intermediate
Representations (IR).

Frontend. DL compilers first transform high-level model
descriptions into computational graph representations and con-
vert them into graph IRs. These IRs, independent of the target
hardware platform, define the graph structure, including the
network topology and layer dimensions. They facilitate graph-
and node-level optimizations, such as operator fusion, static
memory planning, and layout transformation [11], [13].

Backend. From the graph IRs, hardware-specific low-level
IRs are generated. These IRs serve as an intermediary step



for tailored optimizations, incorporating knowledge of DL
models and hardware characteristics. The graph IR operators
can be converted into low-level linear algebra operators, sim-
plifying the support for high-level operators across various
hardware targets. This stage’s optimization includes hardware
intrinsic mapping, memory allocation, loop-related optimiza-
tions, and parallelization [11], [46]-[48]. The backend also
involves scheduling and tuning, where the compiler searches
for optimal parameter settings, such as loop unrolling fac-
tors. Recent advancements [11], [43], [49], [50] introduce
automated scheduling and tuning to improve optimization,
reducing manual efforts.
Code Generation. Finally, these low-level IRs are compiled
into code for different hardware targets. Before that, the DL
compilers can also integrate with existing infrastructure like
LLVM [15] and CUDA [16] to leverage third-party toolchains
and further manipulate the generated code, which also provides
the opportunity for us to apply defense mechanisms to protect
DNN programs from reversing-based model extraction attack.
We implement FlatD on the top of LLVM to protect DNN
programs from reversing-based model extraction attacks.
Thanks to the appearance of the DL compilers, the DNN
model can be deployed on edge devices and low-power pro-
cessors [51]-[53] having limited hardware resources with low
overhead, while the popular DL frameworks like Tensorflow
[8] only provide optimization for a narrow range of server-
class GPUs. Giant Al providers like Amazon and Google also
include DL compilers in their Al services to boost perfor-
mance [17]-[19], [21]. As the need for DL-based services has
increased, DL compilers play a more critical role in deploying
DNN models, and the safety of DNN programs becomes
increasingly vital.

B. Control Flow Obfuscation

Obfuscation is a technique that software developers have
used for a long time to protect their intellectual property. The
basic idea behind obfuscation is to transform a program into
a new version that retains its functionality and semantics but
hides its high-level structures [54]-[56]. Obfuscation signifi-
cantly increases the difficulty of static program analysis [57]-
[59], reversing engineering [60], [61], and also higher the bar
of dynamic program analysis [62]-[66]. As an essential branch
of obfuscation, control flow obfuscation aims to conceal the
proper control flow and make the control flow graph as
complicated as possible to raise the bar of countermeasures.
Opaque Predicates involve inserting conditional statements
that always evaluate to true or false but appear complex and
non-trivial to the analyzer, typically using mathematical or
logical expressions that seem relevant but are redundant [67].
Opaque predicates can help insert bogus control flows, which
seem viable but are never actually used, into the program,
increasing the complexity of the CFG.

Control Flow Flattening is a technique that involves restruc-
turing the Control Flow Graph of a program to make it appear
as a single loop with a switch-case construct inside. This loop
is controlled by a dispatcher, which decides which block of

code to execute next based on the program’s state [68]—[70].
Control Flow Flattening replaces the traditional hierarchical
control flow structure, such as nested if-else statements and
loops, with a single, linear structure. This significantly compli-
cates understanding the program’s execution flow, as it hides
the original control structures and decision points within a
seemingly linear flow.

III. INSPIRATION FROM ATTACKS

This section compares the methodology and design logic
between state-of-the-art reversing-based model attacks (as
shown in Table I) to determine their similarities and dif-
ferences. Specifically, NNReverse [34] is a learning-based
method that can fully recover the architecture from DNN
programs compiled from TVM across platforms. DnD [32]
implemented a cross-architecture DNN decompiler based on
symbolic execution, which can fully recover the architecture
and parameters of DNN programs compiled from TVM and
Glow. Instead, BTD [33] focuses on the decompiling DNN
Programs on x86 platforms. BTD can reconstruct models
from DNN programs compiled from three DL compilers using
the neural identifier model and dynamic analysis. LibSteal
[35] partially recovers the DNN architecture using only a
shared library. Although the target and methodology vary
from frameworks, the logic and workflow align the same.
The following characteristics must be recovered to rebuild
the original DNN model: operator types, topology, and data
(parameters and hyperparameters). We detail the review of
each part below and summarize our findings at the end.
Operator type Recovery. The critical component of each at-
tack framework is to recover operator types of DNN programs.
The idea of operator-type recovery is also the most straight-
forward due to the unique computation pattern of each DNN
operator. We take the softmax function as an example. As
shown in Fig.2, VGG16 and ResNet50 are loaded from Keras
Application Zoo and compiled by TVM with the configuration
-00. Fig.2a is the CFG and opcode sequence of the VGG16
softmax function, and Fig.2b is the CFG and opcode sequence
of the ResNet50 softmax function. Both the CFGs and opcode
sequences are obtained from Binary Ninja [71]. We can see
that no matter which feature is compared, the VGG16 softmax
function is almost identical to the ResNet50 softmax function,
although they do not even have the exact hyperparameter. With
this insight, all reversing attacks coincidentally infer operator
type based on binary similarity. NNReverse combines the
syntax representation (opcodes and operands) and topology
representation (CFG) to train an embedding model and find
the most similar function in the dataset based on the semantic
representation. DnD uses symbolic execution to lift each
operator function to an Abstract Syntax Tree (AST) and match
it with a template AST to infer the operator type. BTD chose
to train a model with a sequence of Atomic Opcodes from
each DNN function and predict the operator type. LibSteal
trained a representation model with loop structures extracted
from each operator function and compared the victim operator
function with functions in the dataset.
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(b) ResNet50 softmax function

Fig. 2: Comparison of CFG and Opcode sequence of softmax function between VGG16 (Fig.2a) and ResNet50 (Fig.2b) DNN

Programs, compiled by TVM with optimization -O0.

TABLE I: Reversing-based Model Extraction Attacks. (% stands for fully support and fully recover vrstands for partial recover.)

Tool N Target Compilers Platform Support Results
001 ame TVM [11] | Glow [13] | NNFusion [12] | x86-64 | ARM | AArch64 | Architecture | Parameters
NNReverse [34] * * * * *
DnD [32] * * * * * * *
BTD [33] * * * * * *
LibSteal [35] * * ™

Topology and Data Recovery. Attack frameworks have Algorithm 1 Flattening Algorithm
started to use different methodologies to recover the topology, Input: P {DNN Program}
parameters, and hyperparameters. NNReverse directly lever- 1: Sp = getAllFunctions(P)
ages the graph and parameter files generated along with the 2: for F € S do
shared library file to retrieve the topology of DNN architecture. 3 if F' is necessary to be flattened then
DnD first reconstructs the DNN topology structure by utilizing 4 Spp = getAllBasicBlocks(F)
the sequence of DNN operator executions within the inference 5 breakCFG(F')
function and the data dependencies among the DNN operators. 6 BB, = getOldEntry(Szg)
Then, it recovers the attributes and parameters according to 7 BBy, = createNewEntry(BB,;q)
the operator type and topology structure. BTD uses the Intel 3 T = createDispatcher(BB,..,) {Return the switch
PinTool [72] to hook every call site as the operator function’s table that guides the control flow in new CFG}
inputs and outputs are transmitted via memory pointers in the 9: attachBBToDispatcher(T, Sgpg)
function arguments. Subsequently, BTD seamlessly links the
operator function using the identical memory address. As for . Salt = initializeSalt()

data recovery, BTD applies taint analysis and symbolic execu-
tion to collected execution traces to infer the parameters and
hyperparameters. LibSteal heuristically searches for possible
topology combinations to link all the inferred operators. It also
extracts the dimensions and partially recovers hyperparameters
by analyzing the data flow of the DNN program.

Inspiration Our analysis of reverse-engineering-based extrac-
tion attacks reveals that the type of operator is a crucial ele-
ment to protect. As shown in Fig.2, the unique computational
patterns of each operator lead to specific features in the Control
Flow Graph (CFG), particularly loop structures. It is widely
acknowledged that operations within DNN models mainly
involve matrix computations, which result in a nested loop
structure. Such structures are significant features that attackers
can exploit. Therefore, concealing the original CFG structure
could be vital to defending against these attacks.

11: Fqsn = initializeHashFunc()

12: updateSwitchVar(D, Salt, Fyqsp)
13: createBBAddrTable(SgR)

14: encodeSwitchTable(T")

15: Fyecode = initializeDecodeFunc()
16: updateDispatcher(T', Fiyecode)

17: inlineDispatcher(7)

18:  end if

19: end for

Output: Program with flattened operator functions.

1V. DESIGN
A. Overview

Algorithm 1 uses pseudo code to represent the basic work-
flow of our defense framework, FlaD. First, for the given DNN



Program P, we extract and iterate all the functions (Line 1-2).
Before applying the flattening, we check the specific function’s
necessity to increase the performance (Line 3). The rules
are discussed in Section IV-E. Then, we break the original
CFG and rebuild a new one using the dispatcher and switch
table (Line 4-9), which follows the implementation steps of
traditional Control Flow Flattening [70]. However, as shown
in Section IV-B, traditional Control Flow Flattening is still
vulnerable to static analysis.

To increase the robustness of the resulting program, we
continue transforming using the following strategies. First, we
hide the visible label by introducing the hashing method and
a randomly chosen secret, Salt (Line 10-12). We provide
more details in Section IV-C. Second, to further hide the
loop structure, we create a table containing the address of
each Basic Block and encode the switch table, which are
both stored in the global variable list (Line 13-14). Then,
we create a decode function (Line 15-16) to accomplish the
indirect control flow. The function decodes the address of the
corresponding basic block from the encoded switch table and
switch variable. Finally, we inline the dispatcher to each basic
block to hide the loop structure completely. Section IV-D takes
an example of the final operator function to illustrate the whole
process.

B. Init Flatten

Fig.3 shows the original CFG of the ReLu operator function
from a simple MNIST convnet model [73] compiled from
TVM [11] with optimization configuration -O0, and Fig.4
demonstrates the CFG after flattening. We omit unnecessary
instructions for both figures and only retain the control flow-
related instructions to make the figures clear and tidy. More-
over, the code in each basic block is represented in LLVM
assembly language format (LLVM IR) because our defense
mechanism is implemented on top of LLVM, and the big
picture of the control flow structure stays the same across
the compilation. As we can see in Fig.4, after flattening, all
basic blocks in the original implementation share the same
dominator, LoopEntry, and post-dominator, LoopEnd (ex-
cept for Basic Block BB. 5). Instead of the comparison result
variable like %$cmpl, the dispatch variable $switchVar
takes over the functionality of manipulating the control flow.
Although the CFG is already complex at this step, attackers
can reconstruct the CFG by analyzing the operand value of
the selection instruction in BB.0 with the operand value of
the switch instruction in LoopEntry to get the successors
of each basic block. For example, as shown in Fig.4, we can
infer that either BB.1 or BB.5 can be the next execution
target after the execution of BB. 0 (marked as red).

C. Hide Visible Label

The first strategy to increase the resilience of traditional
Control Flow Flattening is to hide the statically visible dis-
patch labels by introducing secret information and employing
one-way cryptographic hashing. Fig.5 shows the CFG after
hiding the visible label (marked as blue) of Fig.4. The value

BB.O:
<other instructions>

br il %cmpl label %BB.1, label %BB.5

T F

BB.1l:
<other instructions>
br label %BB.2

A4

BB.2:
<other instructions>
br label %BB.3

BB.3:

<other instructions> <
br il %cmp2 label %BB.4, label %BB.3

T | F
BB.4:

<other instructions>
br il %cmp3 label %BB.2,

label %BB.5

E— T F

l

BB.5:
ret i32 0

Fig. 3: Original Control Flow Graph of the ReLU operator
function from MNIST compiled by TVM -00. To simplify
the graph, the figure only shows the control flow-related
instructions in LLVM IR format.

of $salt is initialized at the Block $Ent ry (marked as red).
Then, each time a new basic block needs to be dispatched,
we compute the new label ($hash) with the $salt and
the old label ($switchVar) through the hashing function
(QOBF_HASH () ) (marked as red). Finally, the code decides
its successor basic block according to the value of $hash. As
we can see, the value assigned in Block $Entry and $BB. 0
no longer appear in the dispatcher ($LoopEntry) (marked
as blue). More specifically, we pick the hash function and
compute the value of $salt wisely.

Hash function. We want to ensure the hash function has
preimage resistance, which means finding any input that maps
to a given output hash is computationally infeasible. In other
words, given a hash value h, it should be tough to find
any original input x such that hash(z) = h. This property
is crucial for security, as it prevents attackers from reverse-
engineering the hash to discover the original data. Preimage
resistance keeps the original data secure and practically impos-
sible to deduce even if the hash value is exposed. This feature
perfectly fits our requirements since the hash values are used
in the switch table to determine the following control flow,
and we do not want the attackers to match it with the original
data in each basic block. Moreover, the overhead of the hash



Entry:
<initialization works>
store i32 0, i32* varAddr
br label %LoopEntry

LoopEntry:
$switchvar = load i32* varAddr
switch i32 %switchVar, label $Default [
i32 0, label %BB.O
i32 1, label %BB.
i32 2, label %BB.
i32 3, label %BB.
4,
5,

i32 label %BB.
i32 label 3%BB.
1

def | 0 | 1 | 2 |

BB.O:

<original instructions>

gnextSwitchvar = select il %cmpl, i32, 1, i32 5
store i32 $nextSwitchvVar, i32* varAddr

br label %$LoopEnd

U W N e

3 | 4 | 5

Default:
br label $LoopEnd

LoopEnd: ‘ 4//

br label %LoopEntry [

Fig. 4: CFG after initially apply Control Flow Flattening to
Fig.3. The figure only shows part of the resulting CFG because
the modifications of all basic blocks are similar except for
basic blocks with label BB.5 and Default, where BB.5
is the exit block of this function, and Default is added by
switch instruction to avoid assertion. Although we only include
flows to BB.0O, BB.5 and Default, flows to other basic
blocks still exist.

function is relatively low and does not affect the performance
of DNN programs.

Salt computation. Although preimage resistance prevents
attackers from inferring the original data from the hash value,
they can directly compute the hash value from the original
data because regardless of which hash function we choose, its
body is included in the DNN program file. Therefore, we must
introduce a secret value, $salt, and keep it unknown from
attackers. The $salt is computed at run time and should
not be easily statically revealed to make attackers unable
to recover the original CFG statically. To achieve the goal,
we leverage the concept of opaque predicate [67], [74]. An
adequate opaque predicate should be resilient to static analysis.
Therefore, for the computation of $salt, the compiler first
randomly generates for each function. At run time, each bit of
the $salt is computed by a “query,” which can be an opaque
predicate, making $salt computation statically obscure and
dynamically confidential. Since the computation of $salt is
a one-time job for each function, it also does not affect the
time overhead of the DNN programs.

D. Hide Loop Structure

After hiding the statically visible dispatcher label, attack-
ers have already struggled to recover the original CFG or

Entry:
$salt=call i32 @SALT INIT()
<initialization works>
store i32 -1051055862, i32* varAddr
br label %LoopEntry

LoopEntry:
$switchvar = load i32* varAddr
%hash = call i64 @OBF_HASH(i32 %$switchvar, 132 %salt)
switch 164 %hash, label %Default [
164 -8544006523246440740, label $BB.O
164 -1211438434810113373, label $BB.1
164 7744719857366639162, label $BB.2
164 3170033436677531650, label $BB.3
164 -4349415460800802357, label $BB.4
164 1291272085159665688, label $%BB.5

I
Y

BB.O:
<original instructions>
%nextSwitchvar = select il %cmpl, i32, -565623816, i32 -2056297511
store i32 $nextSwitchVar, i32* varAddr
br label %$LoopEnd

LoopEnd: ‘ 4//

br label $LoopEntry ‘

Fig. 5: CFG after hiding the visible label of Fig.4. To achieve

the goal, we introduce a 32-bit secret number, $salt and

initialize it (red) at the Basic Block Ent ry. Then we compute

$hash using a one-way cryptographic hashing function (red)

based on the old $switchVar value and $salt. Finally,

we use the value of $hash to determine the control flow. In

this case, the value assigned to $switchVar does not show
in the switch table anymore (blue).

gain important information from CFG. However, as the loop
structure is retained in each function, the control flow still
explicitly goes to each basic block and comes back to the
dispatcher ($LoopEntry in Fig.5), which leaves a window
for attackers to leak essential information of DNN programs.
For example, attackers at least know all the original basic
blocks contained inside a function. To conceal the CFG further,
we aim to hide the loop structure by turning all the explicit
flow into the implicit flow (i.e., indirect jump). The first thing
we need to do is to remove the switch table. Thus, we encoded
and embedded the original switch table in the global variable
list. Besides, we create a table for each function to store the
addresses of basic blocks. Then, we create a decode function
that uses the hashed dispatcher label $hash to get the address
of the following basic block. This way, the flows from the
dispatcher ($LoopEntry) to each basic block are removed.
For the last step, we remove the flows from basic blocks to
the dispatcher ($LoopEntry) by inlining the dispatching part
(mark as blue) into every flattened basic block. Fig.6 shows
the part of the final result transformed from the original CFG
from Fig.3. Attackers do not see a loop-like structure (or even
part of it) in such a CFG because all basic blocks are floated
in the DNN programs.

Additional Effort. While creating the table for basic block



Entry:
$salt=call i32 @SALT_INIT()
<initialization works>
store i32 -1051055862, i32* varAddr
br label %LoopEntry

LoopEntry:

$switchVar = load i32* varAddr

%hash = call i64 @OBF_HASH(i32 %switchvar, i32 $salt)

<load %$encodedswitchTb>

%idx = call il6 @DECODE(i64 %$hash, il6* %$encodedSwitchTb)

<load %localAddrTb>

%blockAddrPtr = load i64, i64* %localAddrTb, ile6,

%blockAddrval = load i64, i64* %$blockAddrPtr

%blockAddr = inttoptr 164 blockAddrVal to i8%*

Indirectbr i8* $blockAddr, [label $BB.0, label $BB.1,
label $BB.2, label %BB.3,
label %BB.4, label %BB.5]

$idx

gy

BB.0:
<original instructions>
gnextSwitchvar = select il %cmpl, 132, -565623816, i32 -2056297511
$hash_0 = call i64 @OBF_HASH(i32 nextSwitchvar, i32 %salt)
<load %encodedSwitchTb_0>
%idx_0 = call i16 @DECODE(i64 %hash 0, il6* %encodedSwitchTb_0)
<load %localAddrTb_0>
%blockAddrPtr_0 = load i64, i64* %localAddrTb 0, il6, %idx 0
%blockAddrval_0 = load i64, i64* %blockAddrPtr_0
%blockAddr_0 = inttoptr i64 blockAddrval 0 to i8*
Indirectbr i8* %blockAddr_0, [label %$BB.0, label %BB.1,
label $BB.2, label %BB.3,
label %BB.4, label %BB.5]

o

Fig. 6: CFG after hiding the loop structure of Fig.5. Instead
of directly using hashed dispatcher label $hash to determine
the subsequent control flow, we use it to decode the switch
table and get $idx to retrieve the address of the target basic
block in the basic block address table so that we can implicitly
go to the following basic block. The potential candidate can
be all the original basic blocks. Moreover, the main body of
the dispatcher is inlined into each basic block, and the loop
structure is completely removed.

TABLE II: A classification of the number of Basic Blocks in
each operator function. Here BB refers to Basic Block.

# of BBs Operators
less than 3 BatchFlatten
3 ReLu; BiasAdd
4 ReLu; BiasAdd; Add; Divide;
Sqrt; Multiply; Negative;
more than 4 Dense; Pooling; Conv; ...

addresses, we added a mask to each address to prevent im-
mediate disclosure of block addresses. The mask is a random
noise randomly generated for each function. It will be deduced
from the retrieved entry before it is used as the target address
of the indirect jump.

E. Optimization

After transforming the original CFG from Fig.3 to the one
shown in Fig.6, the time overhead definitely increases due to
the increasing of instructions, indirect jump, and the function
calls. Especially for the inner loop of a nested loop, one added
instruction may be executed tens of hundreds of times during
the execution, which leads to extreme additional overhead.
To weaken the overhead introduced by the transformation,
we propose two optimization methods: reduce the flattened
functions and inline added function calls.

Reduce the Transformed Functions. Apparently, function
transformation introduces additional time overhead. Reducing
the number of transformed functions can improve perfor-
mance. Applying the transformation to all functions is unnec-
essary because some lack helpful information. To determine
the necessity of transformation of the functions, we provide a
set of rules based on the knowledge of DNN programs:

e We only consider transforming the function with the
computation. For example, the DNN programs that TVM
generates contain functions that check the input and out-
put data layout constraint before starting the computation.
These functions typically have more basic blocks than the
actual computation function. Applying transformation to
such a function increases not only the time overhead but
also the scale of the DNN program.

o« We want to ignore the functions with few blocks be-
cause the transformation would be trivial in this case.
However, if we refer to the number of such blocks as
N, determining the value of N is tricky since we do
not want to exclude the vital operator functions. Thus,
we collect information about the number of basic blocks
in each operator function as shown in Table II. We
find that only activation functions like ReLU, element-
wise arithmetic operators like Add, and operator function
BatchFlatten have less than five basic blocks. Since
these operators are unimportant, we ignore the functions
with less than five basic blocks. Note that the DNN
program with a high optimization level rarely contains
such a function because operators can be fused into one
operator function.

Inline Function Call. As described in Section I'V-C and Sec-
tion IV-D, our algorithm integrates two specialized function
calls within the dispatch segment of the program. Recognizing
that additional function calls may incur a notable runtime
overhead is essential. This overhead primarily stems from the
potential for extensive jumps between function calls, alongside
the requisite establishment of stack frames, each of which
demands considerable processing time and can impede overall
system performance.

One effective strategy we employed to mitigate this over-
head is inlining these function calls. However, while beneficial
in reducing function call overhead, excessive inlining can
also substantially increase the size of the function body. This
expansion can negatively impact the time overhead, as larger
function bodies may lead to increased compilation times and
potentially hinder execution efficiency due to factors such
as cache misses. Therefore, we want to inline function calls
selectively. In our case, inlining is particularly beneficial in
scenarios where the function calls are situated within a block
that was the inner loop of a nested looping construct before
optimization because they can invoked repeatedly during the
runtime. To locate these function calls, we analyzed the loop
structure of CFG during the compilation phase. This analysis
enabled us to identify all the inner loops within the CFG
accurately and inline them.



TABLE III: Statistics of DNN models. ResNetl8 is loaded
from three different frameworks: PyTorch (P), ONNX (O),
and MXNet (M). All other models are loaded from Keras
Application Zoo.

Model # of Parameters | # of Operators
MNIST [73] 34,826 12
VGGL16 [75] 138,357,544 23

VGG19 143,667,240 26
Xception [76] 22,910,480 134
ResNet50 [2] 25,636,712 177
ResNet101 44,707,176 347
ResNet152 60,419,944 517

MobileNet [77] 4,253,864 91
P 11,689,512 51
ResNetl18 | O 11,699,112 69
M 11,699,112 171

V. EVALUATION

In this section, we evaluate FlatD by answering the follow-
ing research questions (RQs) through empirical evaluation.

o RQI: (Correctness) After applying FlatD to the DNN
programs from different DL frameworks, can they still
apply the inference functionality properly?

e RQ2: (Resilience) Does FlatD effectively counterwork
against the state-of-the-art reversing-based extraction at-
tack?

e RQ3: (Performance and Scale) How does FlatD affect
the performance and scale of the DNN programs?

To explore the above RQs and provide a comprehensive
evaluation, we evaluate FlatD with eight real-world pre-trained
models and one self-trained model from four different frame-
works and use the well-known obfuscator, O-LLVM [41] as
the baseline. We only use the control flow flattening (-fla)
obfuscation of O-LLVM to transform the program. All models
are optimized and compiled by TVM [11] to generate DNN
programs. FlatD and O-LLVM are both applied during the
compilation and optimization.

A. Experimental Setup

We implement FlatD on the top of O-LLVM [15], [41]
(version 8.0), primarily written in C++ with about 5K LOC.
The current implementation obfuscates and evaluates DNN
Programs in the ELF format on x86 platforms.

In the evaluation, we use TVM [11] as the state-of-the-art
DL compiler to compile the models into DNN programs. For
most of our evaluation, we used TVM v0.13.0 with the highest
optimization level (O3) to compile the model. However, for
the resilience evaluation, since the TVM version’s iteration
is relatively fast, in order to align the attack environment,
we chose TVM v0.9.0 to generate the victim DNN programs
with both the lowest optimization level (O0) and the highest
optimization level (O3).

Table III shows all DNN models used for evaluation. All
these models, except MNIST-convnet, are pre-trained models
loaded from different frameworks. Among them, MNIST-
convnet is a self-construct and self-trained model following
the guide from [73], and ResNetl8 is used to evaluate the

effect of FlatD across the frameworks, so we loaded it from
PyTorch [44], ONNX [78], and MXNet [10] respectively. The
rest of the models are all loaded from the Keras application
zoo [7], [79].

We perform all the evaluations on an Ubuntu 22.04 system
on a machine with an Intel(R) Xeon(R) Silver 4114 CPU (2.20
GHz), 40 cores, and 219GB RAM.

B. (RQ1) Correctness

To evaluate the impact of FlatD on preserving the inference
accuracy of DNN programs, we compare the inference out-
comes of the original DNN programs with the counterparts
transformed from FlatD and O-LLVM. The primary metric
for this comparison is to check if the prediction results of
the two models are identical. We assumed the original DNN
program results were the ground truth and computed the
identical percentage for the programs generated from FlatD
and O-LLVM. To ensure a diverse and representative sample
of test inputs, we sourced the test dataset from the ImageNet
obtained from TorchVision [80]. We randomly select 10,000
test inputs from this dataset as our evaluation set. Moreover, to
illustrate the adaptability of FlatD, we evaluated ten versions.
Within this set, three versions of ResNetl8 were sourced
from three distinct frameworks: PyTorch, ONNX, and MXNet.
The remaining seven models were obtained from the Keras
Application Zoo.

The summarized results are presented in Table IV. The
findings from this table indicate that the inference results
of the transformed DNN programs generated by FlatD align
perfectly with those of the original programs across all the
sampled inputs, which is under the expectation. However, we
surprisingly found that after being obfuscated by O-LLVM,
the MobileNet Program lost functionality. This outcome un-
derscores the effectiveness of FlatD in preserving the original
functionality and prediction accuracy of the DNN models.

C. (RQ2) Resilience

In this section, we evaluate the resilience of our defense
framework. We first describe our evaluation setup (Section
V-C1). Then, we show how FlatD influences the operator-type
inference to the reversing-based extraction attacks (Section
V-C2) by comparing the result between FlatD and O-LLVM.

1) Evaluation Setup: To align with the attack environment
of prior reversing-based model extraction attacks [33], [35],
we choose the TVM with released version v0.9.0 and use
MNIST [81] and VGG16 [75] as two of our test models.
We acquire MNIST by following the guide from [73] and
VGGI16 from Keras Application Zoo [79]. To test the effect
of our defense mechanism on a more diverse set of DNN
programs, we compile the two models above with two different
optimizations (O0 and O3).

2) Operator Type Inference: As mentioned in Section III,
all the reversing-based model extraction attacks fully or par-
tially include four parts: Operator-type recovery, Topology
recovery, Parameter recovery, and Dimensions (Attributes) Re-
covery. Since FlatD mainly focuses on manipulating the CFG



TABLE IV: Comparison of the inference results of the obfuscated DNN programs from O-LLVM and FlatD to the original
DNN programs. Here P refers to PyTorch, O refers to ONNX, M refers to MXNet

VGGI6 | VGGI9 | Xecption | ResNetS0 | ResNetl0l | ResNetl52 | MobileNet |—p—oonctl® o
FlaD | 100% | 100% | 100% 100% T00% T00% 100% | 100% 100% 100%
O-LLVM | 100% | 100% | 100% 100% 100% 100% 0% 100%  100%  100%

TABLE V: The accuracy change in DNN operator inference before and after applying FlatD and O-LLVM. “N/A” means the
attack framework does not support the DNN programs with the settings.

MNIST VGGI16
Attack Framework TVM -00 TVM -03 TVM -00 TVM -0O3
Orig O-LLVM FlatD Orig O-LLVM FlatD Orig O-LLVM FlatD orig O-LLVM FlatD
BTD [33] 100% 91.67% 50% 100% 92.31% 38.46% | 100% 96.88 % 40.63% | 100% 91.23% 64.91%
LibSteal [35] 100% 58.34% 25.00% N/A 100% 40.63% 9.38% N/A

TABLE VI: Comparison between the performance of the transformed DNN programs generated by FlatD and O-LLVM and the
original DNN programs. We use the time overhead of the original program as the baseline (100%). This table reports the time
overhead of each DNN program running the inference to one specific picture from ImageNet and compares it to the original
version to indicate the increasing time overhead. Here, P refers to PyTorch, O refers to ONNX, and M refers to MXNet.

VGG16 | VGGI9 | Xecption | ResNet50 | ResNetl0l | ResNetl52 | MobileNet P Reslg)etl 8 M
O-LLVM 162% 166% 181% 170% 176% 176% 228% 147%  149%  146%
FlatD 188% 183% 280% 169% 163% 161% 231% 138%  138%  134%

TABLE VII: Comparison between the scale of the transformed DNN programs generated by FlatD and O-LLVM and the
original DNN programs. We use the original DNN program size as the baseline (100%). This table shows the increased
percentage between transformed DNN programs and original DNN programs. Here, P refers to PyTorch, O refers to ONNX,

and M refers to MXNet.

Diff (%) | VGGI6 | VGGI9 | Xecption | ResNetSO | ResNetl0l | ResNetl52 | MobileNet [—p~ooietls
OLLVM | 2790 | 2757 | 3471 7859 3844 7888 324 [ 3673 3553 3572
FlaD | 1743 | 1748 | 1876 12.91 12.91 12.90 17.04 | 22145 2193 2194

of Operator functions, which is only related to the Operator
Type recovery, we only evaluate our defense mechanism on
how it can affect the inference of Operator Type of each
reversing-based model extraction attack. Moreover, Operator-
type recovery is the most essential and fundamental step in
reconstructing the final models because, in some attacks [32],
[34], [35], the recovery of other parts highly depends on the
recovery of Operator-type.

We report the difference in the accuracy of DNN operator
inference between the original version and the transformed
version generated from O-LLVM and FlatD in Table V. We
apply the same metrics to compute the accuracy of each
attack used, where the prediction of operator type is regarded
as correct only when the predicted result describes precisely
the same operation as the ground truth. Since LibSteal [35]
cannot deal with the situation when multiply operators are
fused into one operator function, we only evaluate the DNN
programs compiled with configuration -O3 on BTD [33]. As
we can see, compared to the O-LLVM, FlatD can effectively
reduce accuracy in DNN operator inference for each attack
framework. Notably, while BTD can still achieve over 90%
accuracy decompiling the program transformed by O-LLVM,
FlatD decreases the accuracy to around 60% and even lower.
Specifically, for MNIST with TVM -00, the accuracy of

BTD reduces to 50.00%; for VGG16 with TVM -O0, the
accuracy of BTD reduces to 40.63%; for the optimization
level -O3, BTD only gets 38.46% accuracy when targeting
the transformed MNIST program compared to 92.31% tar-
geting the MNIST program obfuscated by O-LLVM. BTD
can achieve 61.54% accuracy when targeting the VGGI16
program transformed by FlatD. When facing the LibSteal
Attack, although O-LLVM has already significantly reduced
the accuracy, FlatD can still outperform it (58.34% compared
to 25.00% for MNIST TVM -0O0 and 40.63% compared to
9.38% for VGG TVM -00).

LibSteal and BTD rely heavily on the complete CFG infor-
mation to infer the operator type. However, FlatD completely
conceals the CFG by breaking the visible control flow between
basic blocks. Even IDA Pro cannot extract the complete CFG
without manual effort. On the other hand, although O-LLVM
changes the control flow structure, the basic blocks are still
visibly connected in the same chunk, which is still risky for
the operator type to be inferred. We did not evaluate all the
attacks mentioned in Section III due to the failure of setting
up the attack, which is discussed in Section VI.

D. (RQ3) Performance and Scale

Runtime performance and scale are critical to a DNN
program, especially when deploying the model on devices with



limited resources, like edge devices or low-power processors.
Therefore, in this section, we compare the scale change
between the original DNN programs and transformed versions
(Section V-D2), as well as their performance of inference
tasks (Section V-D1). Compared to O-LLVM, the programs
generated by FlatD have a lower scale while maintaining a
similar performance.

1) Inference Time Overhead: Since the time overhead is
sensitive to the runtime environment and can fluctuate wildly
due to unexpected reasons, we run each DNN program,
including the programs generated by O-LLVM and FlatD and
the original program, in an isolated environment to mitigate
the influence of the runtime environment and reduce such
fluctuation. Moreover, we randomly chose one picture from
ImageNet and used it as input for all the inference tasks. For
each DNN program, we run the inference 100 times and record
the mean value as the evaluation result. As shown in Table VI,
the results demonstrate that the time overhead introduced by
FlatD is similar to O-LLVM for most DNN models except the
Xecption model.

2) Program Scale: Table VII shows the scale change be-
tween the transformed DNN programs generated by FlatD
and O-LLVM and the original DNN programs. Since the
transformation process does not affect the parameter part of
the DNN program, we only compare the scale change of the
shared library files, which only contain the operator functions.
To note, Diff = (g—: —1)%100(%) where S; refers to the scale
of a transformed DNN program and S, refers to the scale of its
original version. As we can see, the final percentages increased
by FlatD to the DNN programs are much less than O-LLVM.
While the size increased by FlatD can range less than 20%,
the program generated from O-LLVM may increase over 30%.

VI. RELATED WORK AND DISCUSSION

Existing defense framework. Besides the reversing-based
model extraction attack, DNN models also need to face the
threat from different interfaces. [23], [24], [26], [30], [82].
For example, attackers who target the model on the cloud
usually use the input data sequence and prediction output pairs
to infer the model information. In this case, Juuti et al. [83]
propose PRADA, the first generic and effective tool to detect
such a DNN model extraction attack. PRADA analyzes the
sequence of API queries and raises the alarm if it deviates from
benign behavior. Besides, Li et al. [84] propose a protection
scheme against black-box model extraction attacks that uses
a physical unclonable function(PUF) obfuscation technique.
The scheme involves building a PUF on the user side and
a corresponding PUF model on the service provider side.
The proposed scheme allows legitimate users to accurately
restore the model predictions while preventing attackers from
extracting helpful information. Karchmer [85] discusses the
possibility of providing provable security against model ex-
traction attacks. To detect such an attack, the author proposes
a theoretical framework for analyzing observational model
extraction defenses (OMEDs) that examine the distribution of
queries made by adversaries. They introduce the concepts of

complete and sound OMEDs and show that achieving provable
security against model extraction through these defenses is
possible using average-case hardness assumptions for PAC
learning. The framework provides a way to abstract current
techniques used in the literature to achieve provable security.
Protect other characteristics. The primary purpose of FlatD
is to protect the Control Flow Graph of the operator function
so that attackers cannot infer the operator types accordingly.
However, we do not protect other model characteristics, such
as graph topology, operator attributes, and parameters, which
should be protected from different views. For example, the
data flow of DNN programs is also an essential feature
attackers use to extract model information, like graph topology.
Attackers [32], [33] utilize the data dependency between
operator functions to determine the graph topology structure
because the input data of the successor operator function and
the output data of the predecessor operator function share the
same memory address.

DNN program integrity and dynamic analysis In section
IV-C, we introduce the secret information, salt, and one-way
cryptographic hashing to secure the dispatcher label. We also
consider the probability of such a strategy to secure the DNN
program integrity (i.e., tamper-proof) to prevent the DNN
program from program analysis with dynamic instrumentation
(e.g., PinTool [72]). Theoretically, we can make another secret
value related to each basic block’s code, like the code chunk’s
hash value, and make it relevant to the indirect jump. This
value can be calculated after executing each basic block. Thus,
If the code is compromised, the value will not match the
original one, and the execution sequence of the basic block
will not follow the original control flow. Most likely, the code
crashes.

Other attacks Although we failed to evaluate NNreverse [34]
and DnD [32], the defense effect of FlatD towards these two
attacks should be more significant than the result from BTD
because they both highly rely on accurate CFG. The advantage
of NNReverse compared to other binary mapping tools [86] is
that it combines syntax and topology structure representation.
However, after the transformation, the loop structure of CFG
will be hidden, and all the CFG structures will look similar.
In other words, the proposed advantage is cut off. DnD im-
plemented its framework on the top of anger [61] and utilized
symbolic execution to recover all the essential information for
reconstructing the model. Nevertheless, after FlatD turns all
branch instructions into indirect jumps, each operator function
is transformed into a state-machine-like format, which is fatal
to symbolic execution-based tools. Overall, FlatD can also
effectively hinder these attacks.

VII. CONCLUSION

In this paper, we design and implement FlatD, an ad-
vanced defense framework for protecting DNN programs from
reversing-based model extraction attacks based on control flow
flattening. FlatD makes it challenging for attackers to re-
cover the CFG statically and gain necessary information from
DNN programs. Compared to the traditional Control Flow



Flattening, our evaluation shows that FlatD is an effective,
adequate, and practical defense framework that prevents DNN
programs from leaking essential information while ensuring
their performance and program scale.
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