
FlatD: Protecting Deep Neural Network Program
from Reversing Attacks

Jinquan Zhang
The Pennsylvania State University

University Park, USA

jxz372@psu.edu

Zihao Wang
The Pennsylvania State University

University Park, USA

zihao@psu.edu

Dinghao Wu
The Pennsylvania State University

University Park, USA

dinghao@psu.edu

Pei Wang
Individual Researcher

San Jose, USA

uraj@apache.org

Rui Zhong
Palo Alto Network

Santa Clara, USA

reversezr33@gmail.com

Abstract—The emergence of Deep Learning compilers provides
automated optimization and compilation across Deep Learning
frameworks and hardware platforms, which enhances the perfor-
mance of AI service and benefits the deployment to edge devices
and low-power processors. However, deep neural network (DNN)
programs generated by Deep Learning compilers introduce a
new attack interface. They are targeted by new model extraction
attacks that can fully or partially rebuild the DNN model
by reversing the DNN programs. Unfortunately, no defense
countermeasure is designed to hinder this kind of attack.

To address the issue, we investigate all of the state-of-the-
art reversing-based model extraction attacks and identify an
essential component shared across the frameworks. Based on this
observation, we propose FlatD, the first defense framework for
DNN programs toward reversing-based model extraction attacks.
FlatD manipulates and conceals the original Control Flow Graphs
of DNN programs based on Control Flow Flattening. Unlike
traditional Control Flow Flattening, FlatD ensures the DNN
programs are challenging for attackers to recover their Control
Flow Graphs and gain necessary information statically. Our
evaluation shows that, compared to the traditional Control Flow
Flattening (O-LLVM), FlatD provides more effective and stealthy
protection to DNN programs with similar performance and lower
scale.

Index Terms—Software Engineering, Protection mechanisms,
Artificial Intelligence

I. INTRODUCTION

Due to the widespread success [1]–[4] of Deep Learning

(DL) across various domains, the demand for DL-based ser-

vices has surged in recent years. This has led service providers

to deploy the Deep Neural Network (DNN) models across

a wide range of hardware devices, from cloud servers to

embedded devices [5], to meet diverse requirements. However,

deployment across multiple platforms presents challenges due

to the differences in on-chip memory architecture and compute

primitives across CPU, GPU, and TPU-like accelerators [6].

Additionally, the rapid growth of DL frameworks [7]–[10]

further complicates the situation.

The DL compilers [11]–[14] ease this process by automat-

ically compiling the models into standalone DNN programs

with decent optimization using multiple intermediate represen-

tations (IR) during compilation. Generally, a DL compiler can

support various frameworks as input and generate programs

for different hardware devices. Some also [11], [13] allow

third-party toolchains such as LLVM [15] and CUDA [16] for

further code generation. The powerful automated optimization

provided by DL compilers suddenly attracted the attention

of both academia and industry. Gaint AI providers such as

Google, Amazon, and Facebook are all considering embedding

the DL compilers into their AI infrastructure to enhance the

performance of their AI services. [17]–[21].

While the DL compilers significantly impact the AI industry,

they also introduce a new attack interface from the binary

analysis side. Due to the lack of defense applied at the binary

level, the DNN programs are vulnerable to reversing-based

model extraction attacks. The targets of traditional model

extraction attacks [22]–[31] can mainly be classified into

three categories: side channel information, sniffing bus traffic,

and prediction pairs from black box models. These infor-

mation sources are limited and sometimes depend on strict

assumptions. Unlike these sources, DNN programs always

contain complete information that can be used to run in an

isolated environment. To date, there are four state-of-the-art

model extraction attack frameworks [32]–[35] that can fully or

partially reconstruct models by reversing the DNN programs.

However, to our knowledge, effective defense mechanisms

still need to be developed to countermeasure these reversing

attacks. Moreover, training DNN models at an industry scale

often involves processing TB-sized datasets [36], [37] with

high training costs. For example, using a v2 Tensor Processing

Unit (TPU) in a cloud environment costs approximately $4.50

per hour, and completing an entire training cycle may exceed

$400,000 [38], [39], which emphasizes the importance of

protecting DNN models.

Unlike the typical binary program, the DNN program is

generated directly from the model without any source code,

which excludes source-code-level defense frameworks like

Tigress [40]. Moreover, the DNN Program is more sensitive to

performance and scale than a typical binary program, making

the time-consuming framework unavailable. Fortunately, most

state-of-the-art DL Compilers [11], [13] support third-party

code-gen tools (e.g., LLVM [15]) for users to apply the

customized transformation, which leaves us the window to

shield DNN programs.
We carefully investigated attacking frameworks’ basic logic

and workflow to gain more insight into the reversing-based

model extraction attack. These frameworks include the same

components to rebuild the model: operator-type recovery,

topology recovery, and metadata recovery (including dimen-

sions, parameters, and attributes). Although the methodologies

vary from framework to framework, they share the idea of

using the computation pattern to recover the operator type.

Specifically, each kind of operator in the DNN model has a

formula for transforming the input data to the next operator.

For instance, the ReLU activation function uses the formula

1, and the Tanh activation function uses the formula 2. They

exhibit entirely different syntax and semantics meanings when

represented in the program. This feature helps attackers infer

the operator type by using binary similarity comparison. On

the other hand, it also guides the protection of DNN programs

because we found that the Control Flow Graph (CFG) plays

a vital role in all attack frameworks.

f(x) = x+ = max(0, x) =
x+ |x|

2
(1)

f(x) =
ex + e−x

ex − e−x
(2)

Based on our observations, this paper proposes FlatD, an

advanced defense framework based on Control Flow Flat-

tening, for DNN programs to protect them from reversing-

based model extraction attacks. Unlike the traditional Control

Flow Flattening, we leverage the opaque predicate, one-way

cryptographic hashing, and indirect jump to conceal the control

flow further so that attackers cannot quickly recover the

original CFG and apply more inference analysis. We also use

several strategies to preserve the DNN program’s performance

and reduce the overall time overhead.
We implemented FlatD on the top of O-LLVM [41] and em-

bedded it into the code generation part of TVM [11]. We used

O-LLVM as the baseline and evaluated FlatD on eight real-

world pre-trained models and one self-trained model from four

frameworks. Our experiment results show that compared to the

traditional Control Flow Flattening, FlatD can more effectively

counterwork state-of-the-art reversing-based model extraction

attacks while preserving the functionality of the original DNN

programs. Moreover, the DNN program transformed by FlatD

performs similarly to the one using traditional Control Flow

Flattening in most cases and always has a lower scale.
In summary, we make the following contributions:

• We investigate four state-of-the-art reversing-based model

extraction attacks and identify a key component shared

across the attack frameworks. This component guides the

provision of protection and contributes to future research

on DNN program safety.

Fig. 1: Compilation Flow of the Deep Learning Compiler.

The input of the DL compiler is a DNN model. The compiler

frontend transforms the model description into a computational

graph representation and further conveys it into graph IR to

apply graph- and node-level optimizations. At the compiler

backend, it does hardware-specific optimization on low-level

IR. Finally, the compiler generates the DNN Programs for the

target platform.

• We design and implement FlatD, the advanced defense

framework targeting compiled models toward reversing-

based model extraction attacks. FlatD conceals the orig-

inal Control Flow Graph of DNN programs based on

Control Flow Flattening and ensures minimal information

gained by attackers through statistical analysis.

• We successfully apply FlatD on DNN programs compiled

from large-scale models using TVM to evaluate these

DNN programs regarding functionality, performance, and

resilience. We use O-LLVM as the baseline to compare

the results. Our experiment demonstrates that DNN pro-

grams transformed by FlatD can prevent leaking informa-

tion from reversing-based model extraction attacks more

effectively than traditional Control Flow Flattening with

similar performance and lower scale.

II. BACKGROUND

A. Deep Learning Compiler

The objective of deep learning compilers, such as XLA [14],

TVM [11], Intel nGraph [42], and Tensor Comprehension [43],

is to simplify the process of deploying DNN models on differ-

ent hardware platforms, by automating the optimization and

transformation. These compilers can take models described

within popular frameworks like TensorFlow [8], PyTorch

[44], MXNet [10], Caffe2 [9], and Keras [45] as inputs and

generate standalone DNN programs or kernel libraries that can

be statically linked with executables for CPUs, GPUs, and

TPU-like accelerators. As shown in Fig.1, the DL compiler

architecture can be divided into two main phases: frontend

and backend, each manipulating one or several Intermediate

Representations (IR).

Frontend. DL compilers first transform high-level model

descriptions into computational graph representations and con-

vert them into graph IRs. These IRs, independent of the target

hardware platform, define the graph structure, including the

network topology and layer dimensions. They facilitate graph-

and node-level optimizations, such as operator fusion, static

memory planning, and layout transformation [11], [13].

Backend. From the graph IRs, hardware-specific low-level

IRs are generated. These IRs serve as an intermediary step

for tailored optimizations, incorporating knowledge of DL

models and hardware characteristics. The graph IR operators

can be converted into low-level linear algebra operators, sim-

plifying the support for high-level operators across various

hardware targets. This stage’s optimization includes hardware

intrinsic mapping, memory allocation, loop-related optimiza-

tions, and parallelization [11], [46]–[48]. The backend also

involves scheduling and tuning, where the compiler searches

for optimal parameter settings, such as loop unrolling fac-

tors. Recent advancements [11], [43], [49], [50] introduce

automated scheduling and tuning to improve optimization,

reducing manual efforts.

Code Generation. Finally, these low-level IRs are compiled

into code for different hardware targets. Before that, the DL

compilers can also integrate with existing infrastructure like

LLVM [15] and CUDA [16] to leverage third-party toolchains

and further manipulate the generated code, which also provides

the opportunity for us to apply defense mechanisms to protect

DNN programs from reversing-based model extraction attack.

We implement FlatD on the top of LLVM to protect DNN

programs from reversing-based model extraction attacks.

Thanks to the appearance of the DL compilers, the DNN

model can be deployed on edge devices and low-power pro-

cessors [51]–[53] having limited hardware resources with low

overhead, while the popular DL frameworks like Tensorflow

[8] only provide optimization for a narrow range of server-

class GPUs. Giant AI providers like Amazon and Google also

include DL compilers in their AI services to boost perfor-

mance [17]–[19], [21]. As the need for DL-based services has

increased, DL compilers play a more critical role in deploying

DNN models, and the safety of DNN programs becomes

increasingly vital.

B. Control Flow Obfuscation

Obfuscation is a technique that software developers have

used for a long time to protect their intellectual property. The

basic idea behind obfuscation is to transform a program into

a new version that retains its functionality and semantics but

hides its high-level structures [54]–[56]. Obfuscation signifi-

cantly increases the difficulty of static program analysis [57]–

[59], reversing engineering [60], [61], and also higher the bar

of dynamic program analysis [62]–[66]. As an essential branch

of obfuscation, control flow obfuscation aims to conceal the

proper control flow and make the control flow graph as

complicated as possible to raise the bar of countermeasures.

Opaque Predicates involve inserting conditional statements

that always evaluate to true or false but appear complex and

non-trivial to the analyzer, typically using mathematical or

logical expressions that seem relevant but are redundant [67].

Opaque predicates can help insert bogus control flows, which

seem viable but are never actually used, into the program,

increasing the complexity of the CFG.

Control Flow Flattening is a technique that involves restruc-

turing the Control Flow Graph of a program to make it appear

as a single loop with a switch-case construct inside. This loop

is controlled by a dispatcher, which decides which block of

code to execute next based on the program’s state [68]–[70].

Control Flow Flattening replaces the traditional hierarchical

control flow structure, such as nested if-else statements and

loops, with a single, linear structure. This significantly compli-

cates understanding the program’s execution flow, as it hides

the original control structures and decision points within a

seemingly linear flow.

III. INSPIRATION FROM ATTACKS

This section compares the methodology and design logic

between state-of-the-art reversing-based model attacks (as

shown in Table I) to determine their similarities and dif-

ferences. Specifically, NNReverse [34] is a learning-based

method that can fully recover the architecture from DNN

programs compiled from TVM across platforms. DnD [32]

implemented a cross-architecture DNN decompiler based on

symbolic execution, which can fully recover the architecture

and parameters of DNN programs compiled from TVM and

Glow. Instead, BTD [33] focuses on the decompiling DNN

Programs on x86 platforms. BTD can reconstruct models

from DNN programs compiled from three DL compilers using

the neural identifier model and dynamic analysis. LibSteal

[35] partially recovers the DNN architecture using only a

shared library. Although the target and methodology vary

from frameworks, the logic and workflow align the same.

The following characteristics must be recovered to rebuild

the original DNN model: operator types, topology, and data

(parameters and hyperparameters). We detail the review of

each part below and summarize our findings at the end.

Operator type Recovery. The critical component of each at-

tack framework is to recover operator types of DNN programs.

The idea of operator-type recovery is also the most straight-

forward due to the unique computation pattern of each DNN

operator. We take the softmax function as an example. As

shown in Fig.2, VGG16 and ResNet50 are loaded from Keras

Application Zoo and compiled by TVM with the configuration

-O0. Fig.2a is the CFG and opcode sequence of the VGG16

softmax function, and Fig.2b is the CFG and opcode sequence

of the ResNet50 softmax function. Both the CFGs and opcode

sequences are obtained from Binary Ninja [71]. We can see

that no matter which feature is compared, the VGG16 softmax

function is almost identical to the ResNet50 softmax function,

although they do not even have the exact hyperparameter. With

this insight, all reversing attacks coincidentally infer operator

type based on binary similarity. NNReverse combines the

syntax representation (opcodes and operands) and topology

representation (CFG) to train an embedding model and find

the most similar function in the dataset based on the semantic

representation. DnD uses symbolic execution to lift each

operator function to an Abstract Syntax Tree (AST) and match

it with a template AST to infer the operator type. BTD chose

to train a model with a sequence of Atomic Opcodes from

each DNN function and predict the operator type. LibSteal

trained a representation model with loop structures extracted

from each operator function and compared the victim operator

function with functions in the dataset.

(a) VGG16 softmax function (b) ResNet50 softmax function

Fig. 2: Comparison of CFG and Opcode sequence of softmax function between VGG16 (Fig.2a) and ResNet50 (Fig.2b) DNN

Programs, compiled by TVM with optimization -O0.

TABLE I: Reversing-based Model Extraction Attacks. (★ stands for fully support and fully recover /stands for partial recover.)

Tool Name
Target Compilers Platform Support Results

TVM [11] Glow [13] NNFusion [12] x86-64 ARM AArch64 Architecture Parameters
NNReverse [34] ★ ★ ★ ★ ★

DnD [32] ★ ★ ★ ★ ★ ★ ★

BTD [33] ★ ★ ★ ★ ★ ★

LibSteal [35] ★ ★ /

Topology and Data Recovery. Attack frameworks have

started to use different methodologies to recover the topology,

parameters, and hyperparameters. NNReverse directly lever-

ages the graph and parameter files generated along with the

shared library file to retrieve the topology of DNN architecture.

DnD first reconstructs the DNN topology structure by utilizing

the sequence of DNN operator executions within the inference

function and the data dependencies among the DNN operators.

Then, it recovers the attributes and parameters according to

the operator type and topology structure. BTD uses the Intel

PinTool [72] to hook every call site as the operator function’s

inputs and outputs are transmitted via memory pointers in the

function arguments. Subsequently, BTD seamlessly links the

operator function using the identical memory address. As for

data recovery, BTD applies taint analysis and symbolic execu-

tion to collected execution traces to infer the parameters and

hyperparameters. LibSteal heuristically searches for possible

topology combinations to link all the inferred operators. It also

extracts the dimensions and partially recovers hyperparameters

by analyzing the data flow of the DNN program.

Inspiration Our analysis of reverse-engineering-based extrac-

tion attacks reveals that the type of operator is a crucial ele-

ment to protect. As shown in Fig.2, the unique computational

patterns of each operator lead to specific features in the Control

Flow Graph (CFG), particularly loop structures. It is widely

acknowledged that operations within DNN models mainly

involve matrix computations, which result in a nested loop

structure. Such structures are significant features that attackers

can exploit. Therefore, concealing the original CFG structure

could be vital to defending against these attacks.

Algorithm 1 Flattening Algorithm

Input: P {DNN Program}

1: SF = getAllFunctions(P)

2: for F ∈ SF do

3: if F is necessary to be flattened then

4: SBB = getAllBasicBlocks(F)

5: breakCFG(F)

6: BBold = getOldEntry(SBB)

7: BBnew = createNewEntry(BBold)

8: T = createDispatcher(BBnew) {Return the switch

table that guides the control flow in new CFG}
9: attachBBToDispatcher(T , SBB)

10: Salt = initializeSalt()

11: Fhash = initializeHashFunc()

12: updateSwitchVar(D, Salt, Fhash)

13: createBBAddrTable(SBB)

14: encodeSwitchTable(T)

15: Fdecode = initializeDecodeFunc()

16: updateDispatcher(T , Fdecode)

17: inlineDispatcher(T)

18: end if

19: end for

Output: Program with flattened operator functions.

IV. DESIGN

A. Overview

Algorithm 1 uses pseudo code to represent the basic work-

flow of our defense framework, FlaD. First, for the given DNN

Program P , we extract and iterate all the functions (Line 1-2).

Before applying the flattening, we check the specific function’s

necessity to increase the performance (Line 3). The rules

are discussed in Section IV-E. Then, we break the original

CFG and rebuild a new one using the dispatcher and switch

table (Line 4-9), which follows the implementation steps of

traditional Control Flow Flattening [70]. However, as shown

in Section IV-B, traditional Control Flow Flattening is still

vulnerable to static analysis.

To increase the robustness of the resulting program, we

continue transforming using the following strategies. First, we

hide the visible label by introducing the hashing method and

a randomly chosen secret, Salt (Line 10-12). We provide

more details in Section IV-C. Second, to further hide the

loop structure, we create a table containing the address of

each Basic Block and encode the switch table, which are

both stored in the global variable list (Line 13-14). Then,

we create a decode function (Line 15-16) to accomplish the

indirect control flow. The function decodes the address of the

corresponding basic block from the encoded switch table and

switch variable. Finally, we inline the dispatcher to each basic

block to hide the loop structure completely. Section IV-D takes

an example of the final operator function to illustrate the whole

process.

B. Init Flatten

Fig.3 shows the original CFG of the ReLu operator function

from a simple MNIST convnet model [73] compiled from

TVM [11] with optimization configuration -O0, and Fig.4

demonstrates the CFG after flattening. We omit unnecessary

instructions for both figures and only retain the control flow-

related instructions to make the figures clear and tidy. More-

over, the code in each basic block is represented in LLVM

assembly language format (LLVM IR) because our defense

mechanism is implemented on top of LLVM, and the big

picture of the control flow structure stays the same across

the compilation. As we can see in Fig.4, after flattening, all

basic blocks in the original implementation share the same

dominator, LoopEntry, and post-dominator, LoopEnd (ex-

cept for Basic Block BB.5). Instead of the comparison result

variable like %cmp1, the dispatch variable %switchVar

takes over the functionality of manipulating the control flow.

Although the CFG is already complex at this step, attackers

can reconstruct the CFG by analyzing the operand value of

the selection instruction in BB.0 with the operand value of

the switch instruction in LoopEntry to get the successors

of each basic block. For example, as shown in Fig.4, we can

infer that either BB.1 or BB.5 can be the next execution

target after the execution of BB.0 (marked as red).

C. Hide Visible Label

The first strategy to increase the resilience of traditional

Control Flow Flattening is to hide the statically visible dis-

patch labels by introducing secret information and employing

one-way cryptographic hashing. Fig.5 shows the CFG after

hiding the visible label (marked as blue) of Fig.4. The value

Fig. 3: Original Control Flow Graph of the ReLU operator

function from MNIST compiled by TVM -O0. To simplify

the graph, the figure only shows the control flow-related

instructions in LLVM IR format.

of %salt is initialized at the Block %Entry (marked as red).

Then, each time a new basic block needs to be dispatched,

we compute the new label (%hash) with the %salt and

the old label (%switchVar) through the hashing function

(@OBF_HASH()) (marked as red). Finally, the code decides

its successor basic block according to the value of %hash. As

we can see, the value assigned in Block %Entry and %BB.0

no longer appear in the dispatcher (%LoopEntry) (marked

as blue). More specifically, we pick the hash function and

compute the value of %salt wisely.

Hash function. We want to ensure the hash function has

preimage resistance, which means finding any input that maps

to a given output hash is computationally infeasible. In other

words, given a hash value h, it should be tough to find

any original input x such that hash(x) = h. This property

is crucial for security, as it prevents attackers from reverse-

engineering the hash to discover the original data. Preimage

resistance keeps the original data secure and practically impos-

sible to deduce even if the hash value is exposed. This feature

perfectly fits our requirements since the hash values are used

in the switch table to determine the following control flow,

and we do not want the attackers to match it with the original

data in each basic block. Moreover, the overhead of the hash

Fig. 4: CFG after initially apply Control Flow Flattening to

Fig.3. The figure only shows part of the resulting CFG because

the modifications of all basic blocks are similar except for

basic blocks with label BB.5 and Default, where BB.5

is the exit block of this function, and Default is added by

switch instruction to avoid assertion. Although we only include

flows to BB.0, BB.5 and Default, flows to other basic

blocks still exist.

function is relatively low and does not affect the performance

of DNN programs.

Salt computation. Although preimage resistance prevents

attackers from inferring the original data from the hash value,

they can directly compute the hash value from the original

data because regardless of which hash function we choose, its

body is included in the DNN program file. Therefore, we must

introduce a secret value, %salt, and keep it unknown from

attackers. The %salt is computed at run time and should

not be easily statically revealed to make attackers unable

to recover the original CFG statically. To achieve the goal,

we leverage the concept of opaque predicate [67], [74]. An

adequate opaque predicate should be resilient to static analysis.

Therefore, for the computation of %salt, the compiler first

randomly generates for each function. At run time, each bit of

the %salt is computed by a ”query,” which can be an opaque

predicate, making %salt computation statically obscure and

dynamically confidential. Since the computation of %salt is

a one-time job for each function, it also does not affect the

time overhead of the DNN programs.

D. Hide Loop Structure

After hiding the statically visible dispatcher label, attack-

ers have already struggled to recover the original CFG or

Fig. 5: CFG after hiding the visible label of Fig.4. To achieve

the goal, we introduce a 32-bit secret number, %salt and

initialize it (red) at the Basic Block Entry. Then we compute

%hash using a one-way cryptographic hashing function (red)

based on the old %switchVar value and %salt. Finally,

we use the value of %hash to determine the control flow. In

this case, the value assigned to %switchVar does not show

in the switch table anymore (blue).

gain important information from CFG. However, as the loop

structure is retained in each function, the control flow still

explicitly goes to each basic block and comes back to the

dispatcher (%LoopEntry in Fig.5), which leaves a window

for attackers to leak essential information of DNN programs.

For example, attackers at least know all the original basic

blocks contained inside a function. To conceal the CFG further,

we aim to hide the loop structure by turning all the explicit

flow into the implicit flow (i.e., indirect jump). The first thing

we need to do is to remove the switch table. Thus, we encoded

and embedded the original switch table in the global variable

list. Besides, we create a table for each function to store the

addresses of basic blocks. Then, we create a decode function

that uses the hashed dispatcher label %hash to get the address

of the following basic block. This way, the flows from the

dispatcher (%LoopEntry) to each basic block are removed.

For the last step, we remove the flows from basic blocks to

the dispatcher (%LoopEntry) by inlining the dispatching part

(mark as blue) into every flattened basic block. Fig.6 shows

the part of the final result transformed from the original CFG

from Fig.3. Attackers do not see a loop-like structure (or even

part of it) in such a CFG because all basic blocks are floated

in the DNN programs.

Additional Effort. While creating the table for basic block

Fig. 6: CFG after hiding the loop structure of Fig.5. Instead

of directly using hashed dispatcher label %hash to determine

the subsequent control flow, we use it to decode the switch

table and get %idx to retrieve the address of the target basic

block in the basic block address table so that we can implicitly

go to the following basic block. The potential candidate can

be all the original basic blocks. Moreover, the main body of

the dispatcher is inlined into each basic block, and the loop

structure is completely removed.

TABLE II: A classification of the number of Basic Blocks in

each operator function. Here BB refers to Basic Block.

of BBs Operators

less than 3 BatchFlatten
3 ReLu; BiasAdd

4
ReLu; BiasAdd; Add; Divide;

Sqrt; Multiply; Negative;
more than 4 Dense; Pooling; Conv; ...

addresses, we added a mask to each address to prevent im-

mediate disclosure of block addresses. The mask is a random

noise randomly generated for each function. It will be deduced

from the retrieved entry before it is used as the target address

of the indirect jump.

E. Optimization

After transforming the original CFG from Fig.3 to the one

shown in Fig.6, the time overhead definitely increases due to

the increasing of instructions, indirect jump, and the function

calls. Especially for the inner loop of a nested loop, one added

instruction may be executed tens of hundreds of times during

the execution, which leads to extreme additional overhead.

To weaken the overhead introduced by the transformation,

we propose two optimization methods: reduce the flattened

functions and inline added function calls.

Reduce the Transformed Functions. Apparently, function

transformation introduces additional time overhead. Reducing

the number of transformed functions can improve perfor-

mance. Applying the transformation to all functions is unnec-

essary because some lack helpful information. To determine

the necessity of transformation of the functions, we provide a

set of rules based on the knowledge of DNN programs:

• We only consider transforming the function with the

computation. For example, the DNN programs that TVM

generates contain functions that check the input and out-

put data layout constraint before starting the computation.

These functions typically have more basic blocks than the

actual computation function. Applying transformation to

such a function increases not only the time overhead but

also the scale of the DNN program.

• We want to ignore the functions with few blocks be-

cause the transformation would be trivial in this case.

However, if we refer to the number of such blocks as

N , determining the value of N is tricky since we do

not want to exclude the vital operator functions. Thus,

we collect information about the number of basic blocks

in each operator function as shown in Table II. We

find that only activation functions like ReLU, element-

wise arithmetic operators like Add, and operator function

BatchFlatten have less than five basic blocks. Since

these operators are unimportant, we ignore the functions

with less than five basic blocks. Note that the DNN

program with a high optimization level rarely contains

such a function because operators can be fused into one

operator function.

Inline Function Call. As described in Section IV-C and Sec-

tion IV-D, our algorithm integrates two specialized function

calls within the dispatch segment of the program. Recognizing

that additional function calls may incur a notable runtime

overhead is essential. This overhead primarily stems from the

potential for extensive jumps between function calls, alongside

the requisite establishment of stack frames, each of which

demands considerable processing time and can impede overall

system performance.

One effective strategy we employed to mitigate this over-

head is inlining these function calls. However, while beneficial

in reducing function call overhead, excessive inlining can

also substantially increase the size of the function body. This

expansion can negatively impact the time overhead, as larger

function bodies may lead to increased compilation times and

potentially hinder execution efficiency due to factors such

as cache misses. Therefore, we want to inline function calls

selectively. In our case, inlining is particularly beneficial in

scenarios where the function calls are situated within a block

that was the inner loop of a nested looping construct before

optimization because they can invoked repeatedly during the

runtime. To locate these function calls, we analyzed the loop

structure of CFG during the compilation phase. This analysis

enabled us to identify all the inner loops within the CFG

accurately and inline them.

TABLE III: Statistics of DNN models. ResNet18 is loaded

from three different frameworks: PyTorch (P), ONNX (O),

and MXNet (M). All other models are loaded from Keras

Application Zoo.

Model # of Parameters # of Operators
MNIST [73] 34,826 12
VGG16 [75] 138,357,544 23

VGG19 143,667,240 26
Xception [76] 22,910,480 134
ResNet50 [2] 25,636,712 177

ResNet101 44,707,176 347
ResNet152 60,419,944 517

MobileNet [77] 4,253,864 91

ResNet18
P 11,689,512 51
O 11,699,112 69
M 11,699,112 171

V. EVALUATION

In this section, we evaluate FlatD by answering the follow-

ing research questions (RQs) through empirical evaluation.

• RQ1: (Correctness) After applying FlatD to the DNN

programs from different DL frameworks, can they still

apply the inference functionality properly?

• RQ2: (Resilience) Does FlatD effectively counterwork

against the state-of-the-art reversing-based extraction at-

tack?

• RQ3: (Performance and Scale) How does FlatD affect

the performance and scale of the DNN programs?

To explore the above RQs and provide a comprehensive

evaluation, we evaluate FlatD with eight real-world pre-trained

models and one self-trained model from four different frame-

works and use the well-known obfuscator, O-LLVM [41] as

the baseline. We only use the control flow flattening (-fla)

obfuscation of O-LLVM to transform the program. All models

are optimized and compiled by TVM [11] to generate DNN

programs. FlatD and O-LLVM are both applied during the

compilation and optimization.

A. Experimental Setup

We implement FlatD on the top of O-LLVM [15], [41]

(version 8.0), primarily written in C++ with about 5K LOC.

The current implementation obfuscates and evaluates DNN

Programs in the ELF format on x86 platforms.

In the evaluation, we use TVM [11] as the state-of-the-art

DL compiler to compile the models into DNN programs. For

most of our evaluation, we used TVM v0.13.0 with the highest

optimization level (O3) to compile the model. However, for

the resilience evaluation, since the TVM version’s iteration

is relatively fast, in order to align the attack environment,

we chose TVM v0.9.0 to generate the victim DNN programs

with both the lowest optimization level (O0) and the highest

optimization level (O3).

Table III shows all DNN models used for evaluation. All

these models, except MNIST-convnet, are pre-trained models

loaded from different frameworks. Among them, MNIST-

convnet is a self-construct and self-trained model following

the guide from [73], and ResNet18 is used to evaluate the

effect of FlatD across the frameworks, so we loaded it from

PyTorch [44], ONNX [78], and MXNet [10] respectively. The

rest of the models are all loaded from the Keras application

zoo [7], [79].

We perform all the evaluations on an Ubuntu 22.04 system

on a machine with an Intel(R) Xeon(R) Silver 4114 CPU (2.20

GHz), 40 cores, and 219GB RAM.

B. (RQ1) Correctness

To evaluate the impact of FlatD on preserving the inference

accuracy of DNN programs, we compare the inference out-

comes of the original DNN programs with the counterparts

transformed from FlatD and O-LLVM. The primary metric

for this comparison is to check if the prediction results of

the two models are identical. We assumed the original DNN

program results were the ground truth and computed the

identical percentage for the programs generated from FlatD

and O-LLVM. To ensure a diverse and representative sample

of test inputs, we sourced the test dataset from the ImageNet

obtained from TorchVision [80]. We randomly select 10, 000
test inputs from this dataset as our evaluation set. Moreover, to

illustrate the adaptability of FlatD, we evaluated ten versions.

Within this set, three versions of ResNet18 were sourced

from three distinct frameworks: PyTorch, ONNX, and MXNet.

The remaining seven models were obtained from the Keras

Application Zoo.

The summarized results are presented in Table IV. The

findings from this table indicate that the inference results

of the transformed DNN programs generated by FlatD align

perfectly with those of the original programs across all the

sampled inputs, which is under the expectation. However, we

surprisingly found that after being obfuscated by O-LLVM,

the MobileNet Program lost functionality. This outcome un-

derscores the effectiveness of FlatD in preserving the original

functionality and prediction accuracy of the DNN models.

C. (RQ2) Resilience

In this section, we evaluate the resilience of our defense

framework. We first describe our evaluation setup (Section

V-C1). Then, we show how FlatD influences the operator-type

inference to the reversing-based extraction attacks (Section

V-C2) by comparing the result between FlatD and O-LLVM.

1) Evaluation Setup: To align with the attack environment

of prior reversing-based model extraction attacks [33], [35],

we choose the TVM with released version v0.9.0 and use

MNIST [81] and VGG16 [75] as two of our test models.

We acquire MNIST by following the guide from [73] and

VGG16 from Keras Application Zoo [79]. To test the effect

of our defense mechanism on a more diverse set of DNN

programs, we compile the two models above with two different

optimizations (O0 and O3).

2) Operator Type Inference: As mentioned in Section III,

all the reversing-based model extraction attacks fully or par-

tially include four parts: Operator-type recovery, Topology

recovery, Parameter recovery, and Dimensions (Attributes) Re-

covery. Since FlatD mainly focuses on manipulating the CFG

TABLE IV: Comparison of the inference results of the obfuscated DNN programs from O-LLVM and FlatD to the original

DNN programs. Here P refers to PyTorch, O refers to ONNX, M refers to MXNet

VGG16 VGG19 Xecption ResNet50 ResNet101 ResNet152 MobileNet
ResNet18

P O M

FlatD 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
O-LLVM 100% 100% 100% 100% 100% 100% 0% 100% 100% 100%

TABLE V: The accuracy change in DNN operator inference before and after applying FlatD and O-LLVM. “N/A” means the

attack framework does not support the DNN programs with the settings.

Attack Framework
MNIST VGG16

TVM -O0 TVM -O3 TVM -O0 TVM -O3
Orig O-LLVM FlatD Orig O-LLVM FlatD Orig O-LLVM FlatD orig O-LLVM FlatD

BTD [33] 100% 91.67% 50% 100% 92.31% 38.46% 100% 96.88 % 40.63% 100% 91.23% 64.91%
LibSteal [35] 100% 58.34% 25.00% N/A 100% 40.63% 9.38% N/A

TABLE VI: Comparison between the performance of the transformed DNN programs generated by FlatD and O-LLVM and the

original DNN programs. We use the time overhead of the original program as the baseline (100%). This table reports the time

overhead of each DNN program running the inference to one specific picture from ImageNet and compares it to the original

version to indicate the increasing time overhead. Here, P refers to PyTorch, O refers to ONNX, and M refers to MXNet.

VGG16 VGG19 Xecption ResNet50 ResNet101 ResNet152 MobileNet
ResNet18

P O M

O-LLVM 162% 166% 181% 170% 176% 176% 228% 147% 149% 146%
FlatD 188% 183% 280% 169% 163% 161% 231% 138% 138% 134%

TABLE VII: Comparison between the scale of the transformed DNN programs generated by FlatD and O-LLVM and the

original DNN programs. We use the original DNN program size as the baseline (100%). This table shows the increased

percentage between transformed DNN programs and original DNN programs. Here, P refers to PyTorch, O refers to ONNX,

and M refers to MXNet.

Diff (%) VGG16 VGG19 Xecption ResNet50 ResNet101 ResNet152 MobileNet
ResNet18

P O M

O-LLVM 27.90 27.57 34.71 28.59 28.44 28.88 34.24 36.73 35.53 35.72
FlatD 17.43 17.48 18.76 12.91 12.91 12.90 17.04 22/45 21.93 21.94

of Operator functions, which is only related to the Operator

Type recovery, we only evaluate our defense mechanism on

how it can affect the inference of Operator Type of each

reversing-based model extraction attack. Moreover, Operator-

type recovery is the most essential and fundamental step in

reconstructing the final models because, in some attacks [32],

[34], [35], the recovery of other parts highly depends on the

recovery of Operator-type.

We report the difference in the accuracy of DNN operator

inference between the original version and the transformed

version generated from O-LLVM and FlatD in Table V. We

apply the same metrics to compute the accuracy of each

attack used, where the prediction of operator type is regarded

as correct only when the predicted result describes precisely

the same operation as the ground truth. Since LibSteal [35]

cannot deal with the situation when multiply operators are

fused into one operator function, we only evaluate the DNN

programs compiled with configuration -O3 on BTD [33]. As

we can see, compared to the O-LLVM, FlatD can effectively

reduce accuracy in DNN operator inference for each attack

framework. Notably, while BTD can still achieve over 90%

accuracy decompiling the program transformed by O-LLVM,

FlatD decreases the accuracy to around 60% and even lower.

Specifically, for MNIST with TVM -O0, the accuracy of

BTD reduces to 50.00%; for VGG16 with TVM -O0, the

accuracy of BTD reduces to 40.63%; for the optimization

level -O3, BTD only gets 38.46% accuracy when targeting

the transformed MNIST program compared to 92.31% tar-

geting the MNIST program obfuscated by O-LLVM. BTD

can achieve 61.54% accuracy when targeting the VGG16

program transformed by FlatD. When facing the LibSteal

Attack, although O-LLVM has already significantly reduced

the accuracy, FlatD can still outperform it (58.34% compared

to 25.00% for MNIST TVM -O0 and 40.63% compared to

9.38% for VGG TVM -O0).

LibSteal and BTD rely heavily on the complete CFG infor-

mation to infer the operator type. However, FlatD completely

conceals the CFG by breaking the visible control flow between

basic blocks. Even IDA Pro cannot extract the complete CFG

without manual effort. On the other hand, although O-LLVM

changes the control flow structure, the basic blocks are still

visibly connected in the same chunk, which is still risky for

the operator type to be inferred. We did not evaluate all the

attacks mentioned in Section III due to the failure of setting

up the attack, which is discussed in Section VI.

D. (RQ3) Performance and Scale

Runtime performance and scale are critical to a DNN

program, especially when deploying the model on devices with

limited resources, like edge devices or low-power processors.

Therefore, in this section, we compare the scale change

between the original DNN programs and transformed versions

(Section V-D2), as well as their performance of inference

tasks (Section V-D1). Compared to O-LLVM, the programs

generated by FlatD have a lower scale while maintaining a

similar performance.

1) Inference Time Overhead: Since the time overhead is

sensitive to the runtime environment and can fluctuate wildly

due to unexpected reasons, we run each DNN program,

including the programs generated by O-LLVM and FlatD and

the original program, in an isolated environment to mitigate

the influence of the runtime environment and reduce such

fluctuation. Moreover, we randomly chose one picture from

ImageNet and used it as input for all the inference tasks. For

each DNN program, we run the inference 100 times and record

the mean value as the evaluation result. As shown in Table VI,

the results demonstrate that the time overhead introduced by

FlatD is similar to O-LLVM for most DNN models except the

Xecption model.

2) Program Scale: Table VII shows the scale change be-

tween the transformed DNN programs generated by FlatD

and O-LLVM and the original DNN programs. Since the

transformation process does not affect the parameter part of

the DNN program, we only compare the scale change of the

shared library files, which only contain the operator functions.

To note, Diff = (St

So

−1)∗100(%) where St refers to the scale

of a transformed DNN program and So refers to the scale of its

original version. As we can see, the final percentages increased

by FlatD to the DNN programs are much less than O-LLVM.

While the size increased by FlatD can range less than 20%,

the program generated from O-LLVM may increase over 30%.

VI. RELATED WORK AND DISCUSSION

Existing defense framework. Besides the reversing-based

model extraction attack, DNN models also need to face the

threat from different interfaces. [23], [24], [26], [30], [82].

For example, attackers who target the model on the cloud

usually use the input data sequence and prediction output pairs

to infer the model information. In this case, Juuti et al. [83]

propose PRADA, the first generic and effective tool to detect

such a DNN model extraction attack. PRADA analyzes the

sequence of API queries and raises the alarm if it deviates from

benign behavior. Besides, Li et al. [84] propose a protection

scheme against black-box model extraction attacks that uses

a physical unclonable function(PUF) obfuscation technique.

The scheme involves building a PUF on the user side and

a corresponding PUF model on the service provider side.

The proposed scheme allows legitimate users to accurately

restore the model predictions while preventing attackers from

extracting helpful information. Karchmer [85] discusses the

possibility of providing provable security against model ex-

traction attacks. To detect such an attack, the author proposes

a theoretical framework for analyzing observational model

extraction defenses (OMEDs) that examine the distribution of

queries made by adversaries. They introduce the concepts of

complete and sound OMEDs and show that achieving provable

security against model extraction through these defenses is

possible using average-case hardness assumptions for PAC

learning. The framework provides a way to abstract current

techniques used in the literature to achieve provable security.

Protect other characteristics. The primary purpose of FlatD

is to protect the Control Flow Graph of the operator function

so that attackers cannot infer the operator types accordingly.

However, we do not protect other model characteristics, such

as graph topology, operator attributes, and parameters, which

should be protected from different views. For example, the

data flow of DNN programs is also an essential feature

attackers use to extract model information, like graph topology.

Attackers [32], [33] utilize the data dependency between

operator functions to determine the graph topology structure

because the input data of the successor operator function and

the output data of the predecessor operator function share the

same memory address.

DNN program integrity and dynamic analysis In section

IV-C, we introduce the secret information, salt, and one-way

cryptographic hashing to secure the dispatcher label. We also

consider the probability of such a strategy to secure the DNN

program integrity (i.e., tamper-proof) to prevent the DNN

program from program analysis with dynamic instrumentation

(e.g., PinTool [72]). Theoretically, we can make another secret

value related to each basic block’s code, like the code chunk’s

hash value, and make it relevant to the indirect jump. This

value can be calculated after executing each basic block. Thus,

If the code is compromised, the value will not match the

original one, and the execution sequence of the basic block

will not follow the original control flow. Most likely, the code

crashes.

Other attacks Although we failed to evaluate NNreverse [34]

and DnD [32], the defense effect of FlatD towards these two

attacks should be more significant than the result from BTD

because they both highly rely on accurate CFG. The advantage

of NNReverse compared to other binary mapping tools [86] is

that it combines syntax and topology structure representation.

However, after the transformation, the loop structure of CFG

will be hidden, and all the CFG structures will look similar.

In other words, the proposed advantage is cut off. DnD im-

plemented its framework on the top of anger [61] and utilized

symbolic execution to recover all the essential information for

reconstructing the model. Nevertheless, after FlatD turns all

branch instructions into indirect jumps, each operator function

is transformed into a state-machine-like format, which is fatal

to symbolic execution-based tools. Overall, FlatD can also

effectively hinder these attacks.

VII. CONCLUSION

In this paper, we design and implement FlatD, an ad-

vanced defense framework for protecting DNN programs from

reversing-based model extraction attacks based on control flow

flattening. FlatD makes it challenging for attackers to re-

cover the CFG statically and gain necessary information from

DNN programs. Compared to the traditional Control Flow

Flattening, our evaluation shows that FlatD is an effective,

adequate, and practical defense framework that prevents DNN

programs from leaking essential information while ensuring

their performance and program scale.

REFERENCES

[1] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference

on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.
[3] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and

T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[5] Google. Google ai and machine learning products. [Online]. Available:
https://cloud.google.com/products/ai

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,
2017, pp. 1–12.

[7] F. Chollet et al. (2015) Keras. [Online]. Available: https://keras.io
[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.
[9] A. Markham and Y. Jia, “Caffe2: Portable high-performance deep

learning framework from facebook,” NVIDIA Corporation, 2017.
[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.
[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,

L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), 2018, pp.
578–594.

[12] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,
L. Zhang, and L. Zhou, “Rammer: Enabling holistic deep learning
compiler optimizations with rtasks,” in 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20). USENIX
Association, Nov. 2020, pp. 881–897.

[13] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein et al., “Glow: Graph
lowering compiler techniques for neural networks,” arXiv preprint

arXiv:1805.00907, 2018.
[14] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow Dev

Summit, 2017.
[15] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on

Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[16] N. Wilt, The cuda handbook: A comprehensive guide to gpu program-

ming. Pearson Education, 2013.
[17] Amazon. (2021) Amazon sagemaker neo uses apache tvm for

performance improvement on hardware target. [Online]. Available:
https://aws.amazon.com/sagemaker/neo/

[18] A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, and Y. Wang, “Efficient
execution of quantized deep learning models: A compiler approach,”
arXiv preprint arXiv:2006.10226, 2020.

[19] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing
{CNN} model inference on {CPUs},” in 2019 USENIX Annual Tech-

nical Conference (USENIX ATC 19), 2019, pp. 1025–1040.
[20] T. P. Morgan. Inside facebook’s future rack and microserver iron.

[Online]. Available: https://www.nextplatform.com/2020/05/14/inside-
facebooks-future-rack-andmicroserver-iron/

[21] S. Ward-Foxton. (2021) Google and nvidia tie in mlperf; graphcore and
habana debut. [Online]. Available: https://www.eetimes.com/google-
and-nvidia-tie-inmlperf-graphcore-and-habana-debut

[22] T. Orekondy, B. Schiele, and M. Fritz, “Prediction poisoning: To-
wards defenses against dnn model stealing attacks,” arXiv preprint

arXiv:1906.10908, 2019.

[23] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels,” arXiv preprint arXiv:1812.11720,
2018.

[24] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see:
Power side-channel attack on convolutional neural network accelerators,”
in Proceedings of the 34th Annual Computer Security Applications

Conference, 2018, pp. 393–406.

[25] Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu,
Q. Xuan, and X. Yang, “Open dnn box by power side-channel attack,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 11, pp. 2717–2721, 2020.

[26] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in 29th USENIX

Security Symposium (USENIX Security 20), 2020, pp. 2003–2020.

[27] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal DNN
models with lossless inference accuracy,” in 30th USENIX Security

Symposium (USENIX Security 21), 2021.

[28] X. Hu, L. Liang, L. Deng, S. Li, X. Xie, Y. Ji, Y. Ding, C. Liu, T. Sher-
wood, and Y. Xie, “Neural network model extraction attacks in edge
devices by hearing architectural hints,” arXiv preprint arXiv:1903.03916,
2019.

[29] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing function-
ality of black-box models,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 4954–4963.

[30] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[31] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-
box neural networks,” in Explainable AI: Interpreting, Explaining and

Visualizing Deep Learning. Springer, 2019, pp. 121–144.

[32] R. Wu, T. Kim, D. J. Tian, A. Bianchi, and D. Xu, “DnD: A cross-
architecture deep neural network decompiler,” in 31st USENIX Security

Symposium (USENIX Security 22), 2022, pp. 2135–2152.

[33] Z. Liu, Y. Yuan, S. Wang, X. Xie, and L. Ma, “Decompiling x86
deep neural network executables,” in 32nd USENIX Security Symposium

(USENIX Security 23), 2023, pp. 7357–7374.

[34] S. Chen, H. Khanpour, C. Liu, and W. Yang, “Learning to reverse
dnns from ai programs automatically,” arXiv preprint arXiv:2205.10364,
2022.

[35] J. Zhang, P. Wang, and D. Wu, “Libsteal: Model extraction attack
towards deep learning compilers by reversing dnn binary library,” in
Proceedings of the 18th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), 2023.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. IEEE, 2009, pp. 248–255.

[37] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in 2010

IEEE computer society conference on computer vision and pattern

recognition. IEEE, 2010, pp. 3485–3492.

[38] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings

of naacL-HLT, vol. 1. Minneapolis, Minnesota, 2019, p. 2.

[39] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning

research, vol. 21, no. 140, pp. 1–67, 2020.

[40] C. Collberg. (2014) Tigress. [Online]. Available: https://tigress.wtf/

[41] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–
software protection for the masses,” in 2015 IEEE/ACM 1st International

Workshop on Software Protection. IEEE, 2015, pp. 3–9.

[42] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[43] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” arXiv preprint arXiv:1802.04730, 2018.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[45] N. Ketkar, “Introduction to keras,” in Deep learning with Python.
Springer, 2017, pp. 97–111.

[46] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A
polyhedral compiler for expressing fast and portable code,” in 2019

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE, 2019, pp. 193–205.

[47] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” Acm Sigplan

Notices, vol. 48, no. 6, pp. 519–530, 2013.

[48] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “Alphaz:
A system for design space exploration in the polyhedral model,” in
Languages and Compilers for Parallel Computing: 25th International

Workshop, LCPC 2012, Tokyo, Japan, September 11-13, 2012, Revised

Selected Papers 25. Springer, 2013, pp. 17–31.

[49] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating {High-Performance} tensor
programs for deep learning,” in 14th USENIX symposium on operating

systems design and implementation (OSDI 20), 2020, pp. 863–879.

[50] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in Proceedings of the

Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2020, pp. 859–873.

[51] NXP. (2020) Nxp uses glow to optimize models for low-power
nxp mcus. [Online]. Available: https://www.nxp.com/company/blog/
glow-compiler-optimizesneural-networks-for-low-power-nxp-mcus:BL-
OPTIMIZES-NEURAL-NETWORKS

[52] OctoML. (2021) Octoml leverages tvm to optimize and deploy models.
[Online]. Available: https://octoml.ai/features/maximize-performance/

[53] Qualcomm. (2020) Qualcomm contributes hexagon dsp im-
provements to the apache tvm community. [Online]. Avail-
able: https://developer.qualcomm.com/blog/tvm-open-source-compiler-
now-includesinitial-support-qualcomm-hexagon-dsp

[54] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of compilers, vol. 19, 2005.

[55] J. Cappaert, “Code obfuscation techniques for software protection,”
Katholieke Universiteit Leuven, pp. 1–112, 2012.

[56] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, “On secure and usable program
obfuscation: A survey,” arXiv preprint arXiv:1710.01139, 2017.

[57] Z. Wang, P. Wang, Q. Bao, and D. Wu, “Source code implied language
structure abstraction through backward taint analysis,” in Proceedings of

the 18th International Conference on Software Technologies (ICSOFT).
SCITEPRESS-Science and Technology Publications, 2023.

[58] P. Wang, J. Zhang, S. Wang, and D. Wu, “Quantitative assessment on
the limitations of code randomization for legacy binaries,” in 2020 IEEE

European Symposium on Security and Privacy (EuroS&P). IEEE, 2020,
pp. 1–16.

[59] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected data
dependency creation and chaining: A new attack to sdn,” in 2020 IEEE

symposium on security and privacy (SP). IEEE, 2020, pp. 1512–1526.

[60] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in 24th

USENIX Security Symposium (USENIX Security 15), 2015, pp. 627–642.

[61] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[62] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “Squirrel:
Testing database management systems with language validity and cov-
erage feedback,” in Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security, 2020, pp. 955–970.

[63] Y. Chen, R. Zhong, Y. Yang, H. Hu, D. Wu, and W. Lee, “µfuzz: Re-
design of parallel fuzzing using microservice architecture,” in Proceed-

ings of the 32nd USENIX Security Symposium (USENIX Security’23),
2023.

[64] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee,
“One engine to fuzz’em all: Generic language processor testing with
semantic validation,” in 2021 IEEE Symposium on Security and Privacy

(SP). IEEE, 2021, pp. 642–658.

[65] Q. Bao, Z. Wang, X. Li, J. R. Larus, and D. Wu, “Abacus: Precise side-
channel analysis,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE). IEEE, 2021, pp. 797–809.
[66] Q. Bao, Z. Wang, J. R. Larus, and D. Wu, “Abacus: a tool for

precise side-channel analysis,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Companion Proceedings (ICSE-

Companion). IEEE, 2021, pp. 238–239.
[67] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[68] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper resis-
tance: Obstructing static analysis of programs,” Technical Report CS-
2000-12, University of Virginia, 12 2000, Tech. Rep., 2000.

[69] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM

conference on Computer and communications security. ACM, 2003,
pp. 290–299.

[70] T. László and Á. Kiss, “Obfuscating c++ programs via control flow flat-
tening,” Annales Universitatis Scientarum Budapestinensis de Rolando

Eötvös Nominatae, Sectio Computatorica, vol. 30, no. 1, pp. 3–19, 2009.
[71] V. . Inc. Binary ninja. [Online]. Available: https://binary.ninja/
[72] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan

notices, vol. 40, no. 6, pp. 190–200, 2005.
[73] F. Chollet. Simple mnist convnet. [Online]. Available:

https://keras.io/examples/vision/mnist convnet/
[74] D. Dolz and G. Parra, “Using exception handling to build opaque

predicates in intermediate code obfuscation techniques,” Journal of

Computer Science & Technology, vol. 8, 2008.
[75] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[76] F. Chollet, “Xception: Deep learning with depthwise separable convolu-

tions,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 1251–1258.
[77] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.
[78] J. Bai, F. Lu, K. Zhang et al. (2019) Onnx: Open neural network

exchange. [Online]. Available: https://github.com/onnx/onnx
[79] Keras. Keras applications. [Online]. Available:

https://keras.io/api/applications/
[80] Meat. Torchvision datasets. [Online]. Available:

http://pytorch.org/vision/main/datasets.html
[81] L. Deng, “The mnist database of handwritten digit images for machine

learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[82] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engi-
neering of neural network architectures through electromagnetic side
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 515–532.

[83] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: protecting
against dnn model stealing attacks,” in 2019 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 2019, pp. 512–527.
[84] D. Li, D. Liu, Y. Guo, Y. Ren, J. Su, and J. Liu, “Defending against

model extraction attacks with physical unclonable function,” Information

Sciences, vol. 628, pp. 196–207, 2023.
[85] A. Karchmer, “Theoretical limits of provable security against model

extraction by efficient observational defenses,” in 2023 IEEE Conference

on Secure and Trustworthy Machine Learning (SaTML). IEEE, 2023,
pp. 605–621.

[86] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfusca-
tion and compiler optimization,” in 2019 IEEE Symposium on Security

and Privacy (SP). IEEE, 2019, pp. 472–489.

