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Abstract:

Laser welding, characterized by its high energy density, precision, and automation compatibility, has been extensively applied in
electrical vehicle battery manufacturing. However, inline process monitoring and quality assurance in laser welding remains a challenge,
due to the brief process yet intense energy output. Upon inline Laser Welding Monitoring (LWM) sensing that encompasses plasma,
thermal, and back reflection measurement, this study presents an applicable and generalizable machine learning framework for efficient
and effective sensing data analytics and extraction of physically meaningful features, to detect system configuration and welding quality
defects. The framework first establishes a comprehensive feature pool from time and frequency domains and employs Shapley Additive
Explanations (SHAP) and Principal Component Analysis (PCA) to identify a minimal but effective feature subset for defect detection.
Subsequently, upon the identified feature set, separate Multi-Layer Perceptron (MLP) models are developed to distinguish system
configuration and quality defects. Experimental results demonstrate a 99% accuracy of this framework in defect detection. Attributed
to its high computational efficiency, this approach is suitable for real-time decision-making in practical deployment, alongside its

physical explainability and generalizability.
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1. Introduction

The growing market of Electric Vehicles (EVs), attributed to
increased environmental awareness and supportive governmental
of EV
manufacturing technologies. As a critical component in EVs, battery

policies, drives the development and breakthroughs
cell and module production and reliability are pivotal in determining
the vehicle’s range, efficiency, and overall performance. Battery
production involves a series of intricate manufacturing processes,
among which the laser welding process that joins battery cells and
modules gains the most attention, considering its high energy density,
precision, and compatibility with automation (Feng et al., 2023).
Laser welding offers several advantages over other welding
techniques, including reduced thermal stress which is crucial for
maintaining the integrity and functionality of the battery cells.
However, inline process monitoring and quality assurance in laser
welding remains a challenge, due to the brief process yet intense energy
output. Laser Welding Monitoring (LWM) has recently emerged as a
promising sensing technique that can keep pace with the rapid
dynamics and provide immediate feedback (Sadeghian et al., 2022 ).
LWMs primarily measure the attributes that can reflect the intricate

process dynamics, e.g., light emission from plasma, signal of vapor
plume, and information of molten pool (Cai et al, 2020).
Correspondingly, photodiode sensors are leveraged to independently
capture light emission of plasma, thermal, and laser reflection
(Eriksson et al., 2009). LWM data analysis contributes to various
welding quality prediction, defect detection, and process control tasks,
such as optimizing welding parameters (Angeloni et al., 2024),
predicting weld penetration depth (Li et al., 2022), and detecting weld
defects (Zhang et al., 2019).

However, because of the lack of deep understanding of laser
welding process dynamics and its correlations with LWM signal
characteristics, most prior studies adopt a data-driven Machine
Learning (ML)-based approach to analyze LWM data. She et al. (2024)
established a neural network model to correlate features from plasma
spectrum and molten pool images to prediction of penetration depth in
titanium alloy welding. Brezan et al. (2023) built a random forest
model to classify LWM signals against good or bad welds. Kim et al.
(2022) employed a deep learning model to predict laser-beam
absorptance inside the keyhole. These data-driven approaches bypass
signal characterization and feature extraction by directly feeding raw
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Fig.1 Overview of the developed explainable and generalizable ML framework for welding system defect detection in laser welding:

(A) feature extraction and classifier development; (B) model explanation and generalization. In subtask (A), step (a) represents the
extraction of physically meaningful features from LWM sensing signal, step (b) refers to correlation and PCA analysis for reducing
feature dimensionality, leading to 15 features selected in step (c¢), followed by step (d) of building a MLP classifier upon the selected
features. In subtask (B), steps (e) and (f) represent SHAP analysis for further refinement of the feature set based on features’ contributions
to model prediction results, and step (g) represents refining the MLP model based on finally selected 6 features. Step (h) indicates the

transfer learning-based generalization of the MLP model with the 6 features when defect categories increase.

data into ML models, while demonstrating good performance,

struggling with decision-making explainability and model
generalizability.

Prior studies also tried to extract physically meaningful statistical
features from sensing signals and develop feature-based ML models
for quality prediction and defect detection. Will et al. (2022)
investigated a feature set efficient for spatter detection. Stavropoulos et
al. (2022) developed two feature-based ML models to identify bad
welds. Chianese et al. (2022) extracted a set of time-frequency domain
features as inputs to ML models to detect variations in weld penetration
depth and part-to-part gap.

However, the methods of feature extraction in previous studies
which partly include both time-domain features (e.g., average, standard
deviation, maximum) and time-frequency domain features (e.g.,
approximation coefficient), often lack a systematic and rigorous
approach for selecting features that are directly and universally relevant
to quality prediction and defect detection in laser welding. Additionally,
the models designed for specific fault detection tasks have not been
demonstrated to be adaptable and generalizable, which is critical when
considering dynamic welding conditions and novel system
configuration faults, such as unforeseen gaps between workpieces,
variations in welding speed and laser power settings.

To enhance the explainability and generalizability of ML models in
laser welding defect detection, this paper presents a rigorous
framework for LWM data feature extraction and selection for ML
model development, as depicted in Fig.1. The work aims at identifying
the most valuable feature set to characterize defect-induced LWM

signal variation, and developing an ML model that is generalizable for

dynamic welding conditions and evolving defect situations. The
framework begins with the extraction of comprehensive features
(covering time, frequency, and time-frequency domains) from LWM
sensing signals, followed by correlation analysis and PCA for initial
feature selection and ML model development. Upon the initial ML
model-based defect classification, Shapley Additive Explanations
(SHAP) is leveraged to perform a post-modeling analysis to identify
features that significantly contribute to the model decision-making.
Correspondingly, the initially selected feature set is further compressed,
contributing to the complexity decrease and efficiency increase of the
ML model. Subsequently, the adaptivity and generalizability of this ML
model are enhanced through transfer learning, when the model is
initially trained on data from a few defect categories but needs to be
applied to detect more defect categories.

The rest of this paper is organized as follows: Section 2 details the
feature extraction, selection, and ML classifier model, followed by
Section 3 which presents the SHAP-based model explanation, future
feature refinement, and improvement of the model’s adaptivity
employing transfer learning. Section 4 experimentally evaluates the
performance of developed feature extraction and ML classification,

and a conclusion is drawn in Section 5.
2. Feature-based ML model development

2.1 LWM sensing signal and feature extraction

In this study, the Precitec LWM system 4.0 is employed for inline
welding process monitoring. The system’s configuration is illustrated
in Fig.2 (A), which utilizes photodiode sensors to capture three types
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Fig.2 Sensing signals in LWM. (A) Setup of the laser welding monitoring system. (B) Time series sensing signals of plasma, thermal
and back reflection, and comparison of these signals between normal welding and welding with abnormal gaps between material stackup.

of emission signals: plasma, thermal, and back reflection. The plasma
channel captures ultraviolet light and luminous radiation from the
plasma plume (450 nm to 580 nm), indicating the amount of metal
vapor ionized during the keyhole formation process. The thermal signal
samples the radiation in the near-infrared spectrum (1100 nm to 1800
nm), and the reflection captures unabsorbed laser radiation, matching
the wavelength of the original laser beam(1020 nm to 1090 nm) (Weiss
et al., 2022). Time-series sensing data have been recorded for normal
weldings and various abnormal welding conditions, such as large gaps
between material stack up, high and laser power, high and low welding
speed and contaminated surface. An example of LWM signals
collected from normal welding and welding with the abnormally large
gap between material stack-up is shown in Fig.2 (B). Then the goal of

the plasma and thermal signals considering the majority of these two
channels’ signal energy is contributed by the keyhole, weld pool and
plume(Chianese et al., 2022), it is conceivable that some features
might have considerable information overlapping. To remove
redundant features, a Pearson's correlation analysis is performed to
identify highly correlated feature groups (i.e., those with a correlation
value exceeding 0.9), simplifying the feature pool from 69 to 32.

Table 1 Comprehensive feature pool

Time Domain
Standard

Deviation

Frequency Domain  Time-Frequency Domain
Coefficient of
Variability

Root Mean Square

Mean - Approximation
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Std - Approximation
Root Mean Square

ratio Coefficient
ML model development is to distinguish specific system configuration P — . Mean - Detail Cosfficient 1
defects through the analysis of the sensing signals. Skew Mean Frequency Mean - Detail Coefficient 2
or each of the three LWM sensing channels (i.e., plasma, thermal, Kurtosis Skew Std - Detail Coefficient 1
reflection), a comprehensive set of 23 physically meaningful features Crest Factor Kurtosis Std - Detail Coefficient 2
are first extracted in time, frequency, and time-frequency domains Latitude Factor Stabilization Factor Ftropy
(Weeks, 2003), as summarized in Table 1. This leads to an initial Shape Factor
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Fig.3 (A) Visualization of the PCs feature space. The samples from different defect categories are plotted with different colors. (B) The most
important 15 features of PCs and the visualization of their contributions to each PC.
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2.2 PCA-based feature selection

To further reduce the dimensionality of the feature pool, PCA is
leveraged by identifying features that contributed to the construction of
independent Principal Components (PC). Given the feature pool with
32 features selected from correlation analysis F' = [fi, f2, ..., f32] and
normalized feature set that ensures uniformity across features F, the PC
space is constructed by solving:

Aib; = (1> FTEb; )
n
where A; represents the eigenvalue associated with the eigenvector b;
which is a column in the transformation matrix B. The matrix B
transforms the normalized feature F into principal components by:
Z;=blF, i=12,...M )
where Z; are the calculated principal components (PCs) in the new
feature space, and M is the total number of PCs derived.

Fig.3 (A) visualizes a 3-D PC space, where samples from eight
system configuration defect categories are generally clustered together,
demonstrating the effectiveness of the PCs. However, because of the
unsupervised and data-driven essence of PCA, the PCs are not
expandable to new datasets, as they would likely change with the
appearance of new data (Peres-Neto et al., 2003).

To address this limitation and improve model robustness, it is
essential to trace back the significance of the original features to the
obtained PCs. By examining the loading scores in the PCA
transformation matrix B, each feature's contribution to a PC can be
determined. For a given PC PCj, the contribution of an original

feature f; can be expressed by the magnitude of its corresponding
loading score Bji. The contribution value Cj;, can be represented by
the absolute value of the loading score, which indicates the total
variance in the original feature f; is captured by the principal
component PCj. By summing these contributions across m PCs, the
overall contribution C;(¢p¢qr) of an original feature f; is calculated by:

m
Ci(mtal) = Z Cik
k=1

Based on this analysis, 15 features with the highest total
contribution values are then selected, as presented in Fig.3 (B), and an

(3)

MLP model is then built using these features for defect detection.

2.3 MLP classifier modeling

Being the most fundamental neural network structure, MLP can
approximate the nonlinear relationship between the inputs and outputs
with the help of activation functions. Because of its structure simplicity,
with limited capacity to directly process complex raw sensing data, an
MLP's performance critically depends on the quality of the input
features. This sensitivity to feature quality makes it a helpful tool for
validating the effectiveness of the feature selection process. The
architecture of the MLP, as depicted in Fig.1 (C), begins with an input
layer feeding with the 15 physical features, which are subsequently
processed through two hidden layers, and finally outputs the
probability of a sample belonging to one of the 8 defect categories.
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Fig.4 Analytical overview of model features and transfer learning framework. (A) Top six features with high SHAP value. Color variations in

a single bar represent the contribution of a single feature to different conditions. (B) Distribution of the feature value under 5 conditions for
six selected features. (C) The transfer learning framework in this study. The pre-trained (a) model is trained using data from three of the eight
defect categories, and the fine-tuned model(b), Model 3 listed in Table 2, is trained using all eight conditions to refine the output layer.
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Experimental data including 290 weld samples in total are divided into
two subsets: 203 samples for training and 87 samples for validation.
This MLP model obtains a validation accuracy of 98.75%, as shown in
Table 2 (Model 2), higher than the model training using the entire
feature set of 69 features (Model 1), which is 96.25%.

3. Model explanation and improvement

3.1 Feature importance using SHAP analysis

While the MLP classifier using 15 extracted features has achieved
high accuracy, the mechanism contributing to the success is unclear due
to the black-box nature of the model. To improve the model’s
interpretability and further reduce the feature pool dimensionality,
SHAP is implemented. Different from correlation and PCA analysis
which mainly analyzes the inter-correlation among features, the SHAP
analysis approaches the issue by quantifying the individual feature’s
contribution to the ML model output and decision-making.

SHAP calculates the marginal contribution, i.e., Shapley value, of
each input feature to the output, inferred from the distinct output before
and after a specific input’s absence, expressed as:

SILANT = 18| = 1!
ISt ||N|'! =D o -ue) @

o =

SEN\{i}

where ¢; is the Shapley value for the feature i, N is the set of all
features, which is the 15 input features in this case, and S is a subset of
features excluding i. |S| is the number of features in the subset S. v(S)
is the prediction function evaluated at the subset of features S. The sum
is taken over all subsets S of the set N \ {i} . The standard method for
calculating Shapley values, applied to linear prediction functions v,
requires adaptations to suit nonlinear models such as the MLP used in
this study. Therefore, an improved algorithm, Deep LIFT (Shrikumar

etal.,2017), is leveraged to estimate the Shapley value by the gradients.

The SHAP value of a feature indicates its relative importance
compared to others in the feature set to model outputs, thereby
facilitating the selection of the influential features. Through SHAP
analysis, 6 valuable features that contribute most to the model are
identified, with their respective SHAP values illustrated in Fig.4 (A).
In order to respect our industrial professional property interests, the
specific names of these features have been obfuscated in this work.

A histogram describing the distribution of the feature value under
five defect conditions is shown in Fig.4 (B). These selected features are
closely correlated with specific physical characteristics of the process
parameters. For example, one feature extracted from the thermal signal
quantification effectively reveals variations in energy, reflecting the
changes in process parameters, such as welding power and speed which

influence the thermal dynamics during the welding process.

3.2 Transfer learning framework

Due to the complexities in the actual laser welding process, there
will be varying operation and defect conditions while the training
dataset is unable to cover all the system anomalies in data collection.
Consequently, the adaptivity and generalizability of the model, i.e., the

ability to adapt from conditions seen during training to detect unseen
conditions, is essential for its application in real-world welding settings.
The adaptivity of this feature-based model depends on two factors.
First, the input features must provide general insights to distinguish
between various defect conditions, and second, the model must
effectively extract the useful information from these features that can
applied to more welding scenarios.

Transfer learning facilitates the transfer of knowledge from one
data domain to another, enhancing the model's ability to maintain
performance across diverse application domains despite variances in
data (Pan and Yang, 2010). In this context, transfer learning is applied
to improve the generalizability of MLP built for defect detection, as
illustrated in Fig.4 (C). Specifically, the MLP model initially pre-
trained on a subset of the system defect categories, i.¢., 3 of 8 categories,
is expanded to recognize all 8 categories through transfer learning. To
implement transfer learning, its knowledge learning block (the first two
linear layers) is frozen, and only the last linear layer together with the
softmax layer is fine-tuned with data from all 8 categories. Successful
performance in this test, covering all conditions, would not only
confirm the generalizability of the input features but also demonstrate
the enhanced adaptability of the model.

4. Experiment and Result

The performance of the MLP models discussed in previous
sections is evaluated on a consistent validation dataset, and the result is
summarized in Table 2. Model 1, trained using all 69 features, achieves
an accuracy of 96.25%, which is lower than that of the other models
utilizing selected features. The diminished performance can be
attributed to the presence of redundant or irrelevant features in the
initial feature pool, which likely introduces confusion into the
relatively simple MLP architecture. Model 4, trained with just 6
features which are identified through SHAP analysis of Model 2,
maintains robust performance, validating the effectiveness of these
selected features.

The confusion matrix for the validation of the transferred model
(Model 3) and baseline (Model 4) is depicted in Fig.5. Model 3, which
fine-tuned from a pre-trained model classifying 3 conditions with 99%
accuracy, shows comparable prediction outcomes to Model 4, as the
only miss-classified sample belongs to the same category of abnormal
gap between material stackup, indicating that it is able to adapt from
the training on a subset of conditions to identify unseen system
configuration defects. Additionally, by reducing the number of inputs,
Model 3 has only half the parameters of Model 1, which is 9,672 in
total, significantly improving computational efficiency.

Table 2 Model performance

Input Trained Predicted Model
Model Accuracy
Feature Condition Condition Size
Model 1 69 8 8 17736 96.25%
Model 2 15 8 8 10824 98.75%
Model 3 6 8 8 9672 98.75%
Model 4 6 3 8 9672 98.75%
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Fig. 5 Confusion matrices for the validation of the transferred Model 3 (A) and the baseline Model 4 (B)

5. Conclusion

This study proposes an adaptable machine learning framework

utilizing a feature-based multi-layer perceptron for system
configuration defect detection in laser welding. Through signal and
post-modeling analysis, 6 physically meaningful features crucial for
identifying system defects are determined and their effectiveness is
demonstrated. Furthermore, transfer learning is utilized to improve the
model’s adaptability. The equivalence in the performance of the
transferred model and the baseline model underscores its capacity to
maintain model efficacy despite variations in training data and
operational scenarios. Future work will expand the model to cover
more system defects and dig deeper into the physical significance of
the identified features, aiming to provide more profound insights into

the mechanisms of laser welding.
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