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1. Introduction 
The growing market of Electric Vehicles (EVs), attributed to 

increased environmental awareness and supportive governmental 
policies, drives the development and breakthroughs of EV 
manufacturing technologies. As a critical component in EVs, battery 
cell and module production and reliability are pivotal in determining 
the vehicle’s range, efficiency, and overall performance. Battery 
production involves a series of intricate manufacturing processes, 
among which the laser welding process that joins battery cells and 
modules gains the most attention, considering its high energy density, 
precision, and compatibility with automation (Feng et al., 2023).  

Laser welding offers several advantages over other welding 
techniques, including reduced thermal stress which is crucial for 
maintaining the integrity and functionality of the battery cells. 
However, inline process monitoring and quality assurance in laser 
welding remains a challenge, due to the brief process yet intense energy 
output. Laser Welding Monitoring (LWM) has recently emerged as a 
promising sensing technique that can keep pace with the rapid 
dynamics and provide immediate feedback (Sadeghian et al., 2022 ). 
LWMs primarily measure the attributes that can reflect the intricate 

process dynamics, e.g., light emission from plasma, signal of vapor 
plume, and information of molten pool (Cai et al., 2020). 
Correspondingly, photodiode sensors are leveraged to independently 
capture light emission of plasma, thermal, and laser reflection 
(Eriksson et al., 2009). LWM data analysis contributes to various 
welding quality prediction, defect detection, and process control tasks, 
such as optimizing welding parameters (Angeloni et al., 2024), 
predicting weld penetration depth (Li et al., 2022), and detecting weld 
defects (Zhang et al., 2019). 

However, because of the lack of deep understanding of laser 
welding process dynamics and its correlations with LWM signal 
characteristics, most prior studies adopt a data-driven Machine 
Learning (ML)-based approach to analyze LWM data. She et al. (2024) 
established a neural network model to correlate features from plasma 
spectrum and molten pool images to prediction of penetration depth in 
titanium alloy welding. Brežan et al. (2023) built a random forest 
model to classify LWM signals against good or bad welds. Kim et al. 
(2022) employed a deep learning model to predict laser-beam 
absorptance inside the keyhole. These data-driven approaches bypass 
signal characterization and feature extraction by directly feeding raw 
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data into ML models, while demonstrating good performance, 
struggling with decision-making explainability and model 
generalizability. 

Prior studies also tried to extract physically meaningful statistical 
features from sensing signals and develop feature-based ML models 
for quality prediction and defect detection. Will et al. (2022) 
investigated a feature set efficient for spatter detection. Stavropoulos et 
al. (2022) developed two feature-based ML models to identify bad 
welds. Chianese et al. (2022) extracted a set of time-frequency domain 
features as inputs to ML models to detect variations in weld penetration 
depth and part-to-part gap.  

However, the methods of feature extraction in previous studies 
which partly include both time-domain features (e.g., average, standard 
deviation, maximum) and time-frequency domain features (e.g., 
approximation coefficient), often lack a systematic and rigorous 
approach for selecting features that are directly and universally relevant 
to quality prediction and defect detection in laser welding. Additionally, 
the models designed for specific fault detection tasks have not been 
demonstrated to be adaptable and generalizable, which is critical when 
considering dynamic welding conditions and novel system 
configuration faults, such as unforeseen gaps between workpieces, 
variations in welding speed and laser power settings. 

To enhance the explainability and generalizability of ML models in 
laser welding defect detection, this paper presents a rigorous 
framework for LWM data feature extraction and selection for ML 
model development,  as depicted in Fig.1. The work aims at identifying 
the most valuable feature set to characterize defect-induced LWM 
signal variation, and developing an ML model that is generalizable for 

dynamic welding conditions and evolving defect situations. The 
framework begins with the extraction of comprehensive features 
(covering time, frequency, and time-frequency domains) from LWM 
sensing signals, followed by correlation analysis and PCA for initial 
feature selection and ML model development. Upon the initial ML 
model-based defect classification, Shapley Additive Explanations 
(SHAP) is leveraged to perform a post-modeling analysis to identify 
features that significantly contribute to the model decision-making. 
Correspondingly, the initially selected feature set is further compressed, 
contributing to the complexity decrease and efficiency increase of the 
ML model. Subsequently, the adaptivity and generalizability of this ML 
model are enhanced through transfer learning, when the model is 
initially trained on data from a few defect categories but needs to be 
applied to detect more defect categories. 

The rest of this paper is organized as follows: Section 2 details the 
feature extraction, selection, and ML classifier model, followed by 
Section 3 which presents the SHAP-based model explanation, future 
feature refinement, and improvement of the model’s adaptivity 
employing transfer learning. Section 4 experimentally evaluates the 
performance of developed feature extraction and ML classification, 
and a conclusion is drawn in Section 5.   

 
2. Feature-based ML model development 
 
2.1 LWM sensing signal and feature extraction 

In this study, the Precitec LWM system 4.0 is employed for inline 
welding process monitoring. The system’s configuration is illustrated 
in Fig.2 (A), which utilizes photodiode sensors to capture three types 

Fig.1 Overview of the developed explainable and generalizable ML framework for welding system defect detection in laser welding: 
(A) feature extraction and classifier development; (B) model explanation and generalization.  In subtask (A), step (a) represents the 
extraction of physically meaningful features from LWM sensing signal, step (b) refers to correlation and PCA analysis for reducing 
feature dimensionality, leading to 15 features selected in step (c), followed by step (d) of building a MLP classifier upon the selected 
features. In subtask (B), steps (e) and (f) represent SHAP analysis for further refinement of the feature set based on features’ contributions 
to model prediction results, and step (g) represents refining the MLP model based on finally selected 6 features.  Step (h) indicates the 
transfer learning-based generalization of the MLP model with the 6 features when defect categories increase. 

 



Proceedings of ICPE2024: The 20th International Conference on Precision Engineering, 23-27 October 2024 Paper No. 000 

 

3 
 

of emission signals: plasma, thermal, and back reflection. The plasma 
channel captures ultraviolet light and luminous radiation from the 
plasma plume (450 nm to 580 nm), indicating the amount of metal 
vapor ionized during the keyhole formation process. The thermal signal 
samples the radiation in the near-infrared spectrum (1100 nm to 1800 
nm), and the reflection captures unabsorbed laser radiation, matching 
the wavelength of the original laser beam(1020 nm to 1090 nm) (Weiss 
et al., 2022). Time-series sensing data have been recorded for normal 
weldings and various abnormal welding conditions, such as large gaps 
between material stack up, high and laser power, high and low welding 
speed and contaminated surface. An example of LWM signals 
collected from normal welding and welding with the abnormally large 
gap between material stack-up is shown in Fig.2 (B). Then the goal of 
ML model development is to distinguish specific system configuration 
defects through the analysis of the sensing signals. 

or each of the three LWM sensing channels (i.e., plasma, thermal, 
reflection), a comprehensive set of 23 physically meaningful features 
are first extracted in time, frequency, and time-frequency domains 
(Weeks, 2003), as summarized in Table 1. This leads to an initial 
feature pool with 69 features. Given the observed correlation between 

the plasma and thermal signals considering the majority of these two 
channels’ signal energy is contributed by the keyhole, weld pool and 
plume(Chianese et al., 2022), it is conceivable that some features 
might have considerable information overlapping. To remove 
redundant features, a Pearson's correlation analysis is performed to 
identify highly correlated feature groups (i.e., those with a correlation  
value exceeding 0.9), simplifying the feature pool from 69 to 32.  

 

Fig.2 Sensing signals in LWM. (A) Setup of the laser welding monitoring system. (B) Time series sensing signals of plasma, thermal 
and back reflection, and comparison of these signals between normal welding and welding with abnormal gaps between material stackup.  

 
Fig.3 (A) Visualization of the PCs feature space. The samples from different defect categories are plotted with different colors. (B) The most 
important 15 features of PCs and the visualization of their contributions to each PC.    

 

Table 1 Comprehensive feature pool 
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2.2 PCA-based feature selection 
To further reduce the dimensionality of the feature pool, PCA is 
leveraged by identifying features that contributed to the construction of 
independent Principal Components (PC). Given the feature pool with 
32 features selected from correlation analysis F = [f1, f2, …, f32] and 
normalized feature set that ensures uniformity across features F̂, the PC 
space is constructed by solving:  

𝜆𝑖𝑏𝑖 = (
1
𝑛) 𝐹𝘛𝐹̂̂𝑏𝑖                                     (1) 

where λ𝑖 represents the eigenvalue associated with the eigenvector 𝑏𝑖  
which is a column in the transformation matrix 𝐵 . The matrix 𝐵 
transforms the normalized feature 𝐹̂ into principal components by: 

𝑍𝑖 = 𝑏𝑖
𝘛𝐹̂,  𝑖 = 1,2, … , 𝑀                             (2) 

where 𝑍𝑖   are the calculated principal components (PCs) in the new 
feature space, and M is the total number of PCs derived. 

 Fig.3 (A) visualizes a 3-D PC space, where samples from eight 
system configuration defect categories are generally clustered together, 
demonstrating the effectiveness of the PCs. However, because of the 
unsupervised and data-driven essence of PCA, the PCs are not 
expandable to new datasets, as they would likely change with the 
appearance of new data (Peres-Neto et al., 2003).  

To address this limitation and improve model robustness, it is 
essential to trace back the significance of the original features to the 
obtained PCs. By examining the loading scores in the PCA 
transformation matrix 𝐵, each feature's contribution to a PC can be 
determined. For a given PC 𝑃𝐶𝑘  , the contribution of an original 

feature 𝑓𝑖  can be expressed by the magnitude of its corresponding 
loading score 𝐵ik. The contribution value 𝐶𝑖𝑘 can be represented by 
the absolute value of the loading score, which indicates the total 
variance in the original feature 𝑓𝑖   is captured by the principal 
component 𝑃𝐶𝑘 . By summing these contributions across 𝑚 PCs, the 
overall contribution 𝐶𝑖(𝑡𝑜𝑡𝑎𝑙) of an original feature 𝑓𝑖  is calculated by: 

𝐶𝑖(𝑡𝑜𝑡𝑎𝑙) = ∑ 𝐶𝑖𝑘

𝑚

𝑘=1

                                         (3) 

Based on this analysis, 15 features with the highest total 
contribution values are then selected, as presented in Fig.3 (B), and an 
MLP model is then built using these features for defect detection. 

 
2.3 MLP classifier modeling 

Being the most fundamental neural network structure, MLP can 
approximate the nonlinear relationship between the inputs and outputs 
with the help of activation functions. Because of its structure simplicity, 
with limited capacity to directly process complex raw sensing data, an 
MLP's performance critically depends on the quality of the input 
features. This sensitivity to feature quality makes it a helpful tool for 
validating the effectiveness of the feature selection process. The 
architecture of the MLP, as depicted in Fig.1 (C), begins with an input 
layer feeding with the 15 physical features, which are subsequently 
processed through two hidden layers, and finally outputs the 
probability of a sample belonging to one of the 8 defect categories. 

Fig.4 Analytical overview of model features and transfer learning framework. (A) Top six features with high SHAP value. Color variations in 
a single bar represent the contribution of a single feature to different conditions. (B) Distribution of the feature value under 5 conditions for 
six selected features. (C) The transfer learning framework in this study. The pre-trained (a) model is trained using data from three of the eight 
defect categories, and the fine-tuned model(b), Model 3 listed in Table 2, is trained using all eight conditions to refine the output layer. 
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Experimental data including 290 weld samples in total are divided into 
two subsets: 203 samples for training and 87 samples for validation. 
This MLP model obtains a validation accuracy of 98.75%, as shown in 
Table 2 (Model 2), higher than the model training using the entire 
feature set of 69 features (Model 1), which is 96.25%. 
 
3.  Model explanation and improvement 
 
3.1 Feature importance using SHAP analysis 

While the MLP classifier using 15 extracted features has achieved 
high accuracy, the mechanism contributing to the success is unclear due 
to the black-box nature of the model. To improve the model’s 
interpretability and further reduce the feature pool dimensionality, 
SHAP is implemented. Different from correlation and PCA analysis 
which mainly analyzes the inter-correlation among features, the SHAP 
analysis approaches the issue by quantifying the individual feature’s 
contribution to the ML model output and decision-making.  

SHAP calculates the marginal contribution, i.e., Shapley value, of 
each input feature to the output, inferred from the distinct output before 
and after a specific input’s absence, expressed as: 

 

ϕ𝑖 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|! (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))
𝑆⊆𝑁∖{𝑖}

        (4) 

where 𝜙𝑖 is the Shapley value for the feature 𝑖 , 𝑁  is the set of all 
features, which is the 15 input features in this case, and 𝑆 is a subset of 
features excluding 𝑖. |𝑆| is the number of features in the subset 𝑆. 𝑣(𝑆) 
is the prediction function evaluated at the subset of features 𝑆. The sum 
is taken over all subsets 𝑆 of the set 𝑁 ∖ {𝑖} . The standard method for 
calculating Shapley values, applied to linear prediction functions 𝑣 , 
requires adaptations to suit nonlinear models such as the MLP used in 
this study. Therefore, an improved algorithm, Deep LIFT (Shrikumar 
et al., 2017), is leveraged to estimate the Shapley value by the gradients.  

The SHAP value of a feature indicates its relative importance 
compared to others in the feature set to model outputs, thereby 
facilitating the selection of the influential features. Through SHAP 
analysis, 6 valuable features that contribute most to the model are 
identified, with their respective SHAP values illustrated in Fig.4 (A). 
In order to respect our industrial professional property interests, the 
specific names of these features have been obfuscated in this work.   

A histogram describing the distribution of the feature value under 
five defect conditions is shown in Fig.4 (B). These selected features are 
closely correlated with specific physical characteristics of the process 
parameters. For example, one feature extracted from the thermal signal 
quantification effectively reveals variations in energy, reflecting the 
changes in process parameters, such as welding power and speed which 
influence the thermal dynamics during the welding process.  

 
3.2 Transfer learning framework 

Due to the complexities in the actual laser welding process, there 
will be varying operation and defect conditions while the training 
dataset is unable to cover all the system anomalies in data collection. 
Consequently, the adaptivity and generalizability of the model, i.e., the 

ability to adapt from conditions seen during training to detect unseen 
conditions, is essential for its application in real-world welding settings. 
The adaptivity of this feature-based model depends on two factors. 
First, the input features must provide general insights to distinguish 
between various defect conditions, and second, the model must 
effectively extract the useful information from these features that can 
applied to more welding scenarios.  

Transfer learning facilitates the transfer of knowledge from one 
data domain to another, enhancing the model's ability to maintain 
performance across diverse application domains despite variances in 
data (Pan and Yang, 2010). In this context, transfer learning is applied 
to improve the generalizability of MLP built for defect detection, as 
illustrated in Fig.4 (C). Specifically, the MLP model initially pre-
trained on a subset of the system defect categories, i.e., 3 of 8 categories, 
is expanded to recognize all 8 categories through transfer learning. To 
implement transfer learning, its knowledge learning block (the first two 
linear layers) is frozen, and only the last linear layer together with the 
softmax layer is fine-tuned with data from all 8 categories. Successful 
performance in this test, covering all conditions, would not only 
confirm the generalizability of the input features but also demonstrate 
the enhanced adaptability of the model. 

 
4. Experiment and Result 
 

 The performance of the MLP models discussed in previous 
sections is evaluated on a consistent validation dataset, and the result is 
summarized in Table 2. Model 1, trained using all 69 features, achieves 
an accuracy of 96.25%, which is lower than that of the other models 
utilizing selected features. The diminished performance can be 
attributed to the presence of redundant or irrelevant features in the 
initial feature pool, which likely introduces confusion into the 
relatively simple MLP architecture. Model 4, trained with just 6 
features which are identified through SHAP analysis of Model 2, 
maintains robust performance, validating the effectiveness of these 
selected features.  

The confusion matrix for the validation of the transferred model 
(Model 3) and baseline (Model 4) is depicted in Fig.5. Model 3, which 
fine-tuned from a pre-trained model classifying 3 conditions with 99% 
accuracy, shows comparable prediction outcomes to Model 4, as the 
only miss-classified sample belongs to the same category of abnormal 
gap between material stackup, indicating that it is able to adapt from 
the training on a subset of conditions to identify unseen system 
configuration defects.  Additionally, by reducing the number of inputs, 
Model 3 has only half the parameters of Model 1, which is 9,672 in 
total, significantly improving computational efficiency.  

Table 2 Model performance 

. 
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5. Conclusion 

This study proposes an adaptable machine learning framework 
utilizing a feature-based multi-layer perceptron for system 
configuration defect detection in laser welding. Through signal and 
post-modeling analysis, 6 physically meaningful features crucial for 
identifying system defects are determined and their effectiveness is 
demonstrated. Furthermore, transfer learning is utilized to improve the 
model’s adaptability. The equivalence in the performance of the 
transferred model and the baseline model underscores its capacity to 
maintain model efficacy despite variations in training data and 
operational scenarios. Future work will expand the model to cover 
more system defects and dig deeper into the physical significance of 
the identified features, aiming to provide more profound insights into 
the mechanisms of laser welding. 
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