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ABSTRACT

Underwater mooring systems are essential for marine infrastructure safety but face stiffness reduction and po-
tential failure due to long-term environmental loads like waves and currents, requiring timely and accurate
health monitoring. Data-driven deep learning techniques, which identify mooring system health from dynamic
responses, offer more efficient and cost-effective solutions compared to traditional methods. However, the high
complexity and uncertainty of the sea state pose challenges for effective monitoring tasks utilizing general deep
learning models. While ocean wave spectra are often considered invariant over relatively short time scales,
the exact time series of free sea surface elevation remains inherently unpredictable, which interferes with the
health-related features to degrade the monitoring reliability and accuracy. To address this challenge, this study
integrates domain adaptation techniques into deep learning models to mitigate distribution discrepancies and
enhance the generalization of these models. Case studies demonstrate that the model exhibits significantly
improved generalization ability, showing great potential for managing mooring system monitoring in practical
applications.
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1. INTRODUCTION

1.1 Background

Mooring systems are essential for ensuring the stability and safety of offshore floating structures such as floating
wind turbines and offshore oil platforms. Exposed to harsh marine conditions, these systems face dynamic loads
from waves and currents, leading to stiffness degradation, structural fatigue, and potential failure.1 Such failures
threaten operational safety, environmental sustainability, and the economic viability of offshore projects.2As
demand for renewable energy grows, floating wind turbines are increasingly deployed in deeper waters to access
stronger and more consistent winds. The operational efficiency of these structures heavily depends on the
reliability of their mooring systems. Traditional monitoring of marine structures relies on labor-intensive visual
inspections and physical measurements. While these methods are effective in controlled environments, they
are time-consuming, costly, and impractical for large-scale offshore infrastructure operating in harsh marine
conditions.

In recent years, advancements in data-driven technologies, particularly deep learning, have provided new
directions for structural monitoring. These methods, which combine dynamic response data such as six degrees
of freedom (6-DOF) platform motions with advanced machine learning algorithms, show significant potential in
identifying structural damage.3,4 Statistical wave spectrum parameters, such as significant wave height and peak
period, are commonly used to model the impact of ocean waves on platform motions. While these parameters
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provide a useful statistical description of wave energy distribution, they are insufficient to fully describe the
temporal evolution of ocean surface elevations.5 Most existing response-based structural monitoring methods
simplify wave conditions as deterministic and consistent under a given spectrum, neglecting the inherent random-
ness of ocean waves. Consequently, these methods often struggle to generalize effectively in real-world marine
environments.

1.2 Previous Work and Limitations

In our prior study,6 we focused on monitoring stiffness reduction in mooring systems of OC4 semi-submersible
floating platform under single sea state conditions. This approach utilized a high-fidelity finite element model to
simulate platform dynamic responses for various combinations of mooring line stiffness. By using convolutional
neural networks (CNNs), the study demonstrated the feasibility of applying data-driven techniques to structural
health monitoring. The results showed that CNNs could effectively identify stiffness reduction patterns, providing
a data-driven approach to damage detection in marine environments.

However, the study assumed that sea states were deterministic and consistent for given spectral parame-
ters, neglecting the inherent randomness of ocean waves. This limitation becomes evident when extending the
method to scenarios with stochastic variability wave, as the models struggled to generalize to real-world marine
environments. Addressing these challenges requires datasets that explicitly capture wave randomness and ad-
vanced learning frameworks capable of handling such variability. This study designs unique datasets and models
that explicitly capture wave randomness, aiming to improve generalization and robustness in structural health
monitoring.

2. DATASET AND BASELINE MODEL

2.1 Dataset Preparation

To address the limitations identified in previous work, two datasets were designed to capture wave-induced
randomness and stiffness reduction in platform dynamics. These datasets form the foundation for developing
models capable of handling stochastic variability in real-world sea states. The OC4 semi-submersible platform
was simulated to generate dynamic response data under varying sea states, following the approach in our previous
work.6 Typical South China Sea wave conditions7,8 were selected as environmental excitation, with only wave
effects considered for simplicity. As shown in Figure 1.

Figure 1. Illustration of the OC4 semi-submersible platform under JONSWAP wave spectrum conditions. The platform
responses include six degrees of freedom (6-DOF): surge, sway, heave, roll, pitch, and yaw. Random wave states with
significant wave height of 5.49 m and peak period of 11.30 s were used for simulation.

Two datasets, Dataset 1 and Dataset 2, were generated to evaluate mooring system health under varying
sea state conditions. Dataset 1 was created using uniform sampling, including 1,000 stiffness combinations to
capture diverse damage scenarios. To incorporate wave randomness, 10 random seeds were applied per stiffness
combination, resulting in 10,000 samples for training. Dataset 2, generated using Latin Hypercube Sampling



(LHS), included 100 stiffness combinations paired with 100 random sea states. This smaller dataset, with 100
samples, was designed to evaluate the ability of the model to generalize to unseen real-world environments.

Each dataset sample included time-series data of six degrees of freedom (6-DOF) dynamic responses, reflecting
key mechanical behaviors under varying wave conditions and stiffness scenarios. The responses were generated
for 3600 seconds at a sampling rate of 1 Hz, with the first 1100 seconds removed to eliminate the influence of
transient responses on the results. Power Spectral Density (PSD) was computed to capture frequency-domain
characteristics, complementing the time-domain features. Welch’s method was employed, averaging overlapping
signal segments to provide a robust, noise-resistant estimate of energy distribution across frequencies.9

2.2 Baseline Model: ResNet-18

ResNet-18, a residual convolutional neural network introduced by He et al.,10 was selected as the baseline model
for evaluating mooring system health monitoring under varying wave conditions. Residual networks address the
vanishing gradient problem using shortcut connections or ”residual blocks,” allowing efficient learning of complex
transformations. As a lightweight architecture with 18 layers, ResNet-18 is well-suited for extracting patterns
from high-dimensional time-series data.

In this study, ResNet-18 was adapted to process one-dimensional sequential features, treating six degrees of
freedom (6-DOF) dynamic responses as multi-channel inputs. Both time-domain and frequency-domain data
were fed into the network to capture features associated with stiffness reduction labels. The model was trained
on Dataset 1 (10,000 samples) and tested on Dataset 2 (100 samples). A validation set drawn from Dataset 1
revealed near-perfect R2 scores across the three mooring lines, as depicted in Figure 2. Each output corresponds
to the stiffness reduction of a specific mooring line, with the second output representing the mooring line facing
incoming waves. These results demonstrate the model’s ability to predict stiffness reductions under controlled
conditions.

Figure 2. Predicted versus true stiffness levels for mooring lines across three mooring lines. Each subfigure represents the
stiffness level of a specific mooring line: (a) Mooring Line 1, (b) Mooring Line 2, and (c) Mooring Line 3. The stiffness
level ranges from 1 (no damage) to 0 (fully damaged).

Despite its strong performance on Dataset 1, ResNet-18 struggles to generalize to the stochastic sea conditions
represented in Dataset 2. As shown in Figure 3 (Left), training and validation loss curves indicate effective
convergence, showing that ResNet-18 successfully captures patterns in the training data. Figure 3 (Right)
illustrates significant variability in R2 scores across the three mooring lines under the stochastic conditions of
Dataset 2. While the predictions for two mooring lines (Outputs 1 and 3) achieve acceptable exhibit negative
R2 values. This contrast highlights the model’s difficulty in adapting to the inherent randomness and variability
of real-world marine environments. Addressing this limitation is essential for improving the robustness of health
monitoring models under real-world conditions.



Figure 3. (Left) Training and validation loss curves for ResNet-18, showing effective convergence on Dataset 1. (Right)
R2 scores from 10-fold cross-validation models tested on Dataset 2, with significant variability across the three mooring
lines.

3. ADVANCED MODELS

3.1 Domain-Adversarial Neural Network (DANN)

To address the poor generalization ability observed in ResNet-18 due to the significant differences in wave
conditions between datasets, a Domain-Adversarial Neural Network (DANN) was introduced. Unlike traditional
regression models that assume consistent feature distributions between training and testing data, DANN employs
domain adaptation techniques to bridge the gap between the source domain (Dataset 1) and the target domain
(Dataset 2).11

The feature extractor uses ResNet-18 layers to process six degrees of freedom (6-DOF) dynamic responses
from both the time and frequency domains, extracting features relevant to stiffness prediction. The domain
classifier distinguishes between the source and target domains, while the label predictor predicts stiffness reduc-
tions for each mooring line. To ensure domain-invariant feature extraction, a Gradient Reversal Layer (GRL)
is integrated into the domain classifier, reversing the gradient direction during backpropagation. This align-
ment mechanism enables the feature extractor to generate consistent representations across domains, improving
model generalization. The total loss function for the Domain-Adversarial Neural Network (DANN) combines the
prediction loss and the domain classification loss, expressed as:

Ltotal = LPredictor + λLdomain (1)

Here, LPredictor represents the supervised loss for stiffness prediction, while Ldomain encourages alignment between
the source and target domain feature distributions, and λ controls the balance between these two objectives.

In the implementation, Dataset 1 provides labeled data for supervised training, while Dataset 2, used as an
unlabeled target domain, guides the model to align features across domains. As shown in Figure 4, the DANN
Model demonstrates significant improvements over ResNet-18 on Dataset 2, with average R2 increasing from
negative values to approximately 0.83 for Output 2 (representing the mooring line facing the incoming waves).
This indicates DANN’s ability to adapt to more variable sea state conditions. However, some errors remain
for Outputs 1 and 2, with R2 values occasionally dropping to 0.5, reflecting challenges in capturing complex
wave-induced dynamics.

Although DANN significantly improves prediction performance, certain challenges remain under highly un-
even data distributions or more extreme sea state variations. The variability observed in the results suggests
that the model, while improving domain alignment, may still struggle with balancing alignment and accuracy
in specific conditions. This motivates the introduction of PAC-Regularized DANN, which further enhances the
model by incorporating robustness measures against overfitting and excessive alignment.



Figure 4. Performance of DANN on Dataset 2. Compared to ResNet-18, DANN achieves higher R2 scores across all three
mooring lines, demonstrating improved generalization to stochastic sea state conditions.

3.2 PAC-Regularized DANN

PAC-Regularized DANN builds on the DANN framework to further improve generalization under diverse sea
state conditions. By incorporating PAC-Bayesian regularization,12 this approach effectively balances domain
alignment and model complexity, mitigating overfitting even under highly variable wave patterns.

In PAC-Regularized DANN, the feature extractor, domain classifier, and label predictor remain consistent
with the DANN architecture. The key enhancement is the inclusion of a PAC-Bayesian term in the loss function,
specifically the Kullback-Leibler (KL) divergence. This term ensures that the learned parameter distribution Q(θ)
stays close to a prior distribution P (θ) (normally a Gaussian distribution), reducing overfitting and enhancing
robustness against data imbalance and noise. The updated total loss function for PAC-Regularized DANN is
expressed as:

Ltotal = LPredictor + λLdomain +KL(Q(θ)∥P (θ)) (2)

Here, KL(Q(θ)∥P (θ)) penalizes deviations of the learned parameters from the prior distribution, ensuring that
the model maintains a balance between complexity and generalization. The KL divergence is mathematically
defined as:

KL(Q(θ)∥P (θ)) =

∫
Q(θ) log

Q(θ)

P (θ)
dθ (3)

This additional term encourages the model to avoid overfitting to specific training conditions by regularizing the
parameter space, making it more robust when handling unseen wave-induced stochastic variations.

PAC-Regularized DANN was trained using Dataset 1 as the labeled source domain and Dataset 2 as the
unlabeled target domain. Compared to DANN, this enhanced model demonstrates clear improvements, achieving
higher and more consistent R2 scores across all mooring lines (Figure 5). For he damage identification of the
second mooring line, which performed the worst in the previous model, PAC-Regularized DANN significantly
reduces prediction variability, minimizing extreme errors.

3.3 Performance Evaluation and Discussion

To evaluate the effectiveness of the proposed models, a comprehensive comparison of ResNet-18, DANN, and
PAC-Regularized DANN was conducted. The evaluation focused on the models’ ability to generalize under
stochastic sea state conditions in Dataset 2. Key performance metrics included the average R2 scores and their
standard deviations across the three mooring lines are summarized in Figure 6 and Table 1.

ResNet-18, as the baseline model, displayed limited generalization, with inconsistent R2 scores, especially for
the second mooring line (Output 2). Negative R2 values observed for Output 2 indicate its poor adaptability to
variable sea conditions. High standard deviations further underline its lack of robustness.



Figure 5. Performance of PAC-Regularized DANN on Dataset 2. Compared to DANN, this approach achieves consistently
higher R2 scores across all mooring lines, demonstrating improved robustness and generalization under diverse wave
conditions.

Figure 6. Model performance comparison for ResNet-18, DANN, and PAC-Regularized DANN. Violin plots show the R2

score distributions across the three outputs (mooring lines) for each model. PAC-Regularized DANN demonstrates the
best overall performance with reduced variability.

DANN showed clear improvements over ResNet-18 by integrating domain adaptation, and aligning feature
distributions across training and testing datasets. R2 scores improved across all outputs, with Output 2 achieving
an average score of 0.83. However, relatively high standard deviations indicate lingering instability under complex
wave conditions.

PAC-Regularized DANN overcame these challenges by incorporating the PAC-Bayesian regularization term,
which constrained model complexity and improved prediction stability. It achieved the highest average R2

scores, particularly excelling for Output 2, where the standard deviation was significantly reduced to 0.0638.



Table 1. Performance Metrics for ResNet-18, DANN, and PAC-Regularized DANN

Run Baseline (ResNet18) DANN PAC-Bayesian DANN
Output 1 2 3 1 2 3 1 2 3

1 0.6047 -1.5138 0.7681 0.9057 0.8759 0.8245 0.8485 0.8140 0.8232
2 0.9296 0.6144 0.8661 0.9250 0.8455 0.8927 0.9472 0.8710 0.8667
3 0.7094 0.7463 0.7846 0.4905 0.7722 0.7769 0.8131 0.7829 0.7960
4 0.8877 -1.1134 0.8293 0.8565 0.8742 0.8453 0.9141 0.7908 0.9302
5 0.8523 0.5072 0.8308 0.8913 0.8218 0.7914 0.8626 0.8433 0.8357
6 0.6956 0.6222 0.6120 0.9185 0.8669 0.8992 0.8819 0.7106 0.8820
7 0.5926 -0.1256 0.1127 0.8893 0.5797 0.7991 0.9521 0.8960 0.9224
8 0.6549 0.6939 0.7189 0.9008 0.8733 0.8170 0.8845 0.9308 0.9436
9 0.7430 -0.1972 0.7687 0.8871 0.8347 0.8303 0.9310 0.8438 0.8829
10 0.8275 -2.3597 0.4715 0.8998 0.9288 0.8895 0.9405 0.8767 0.9323

Average 0.7497 -0.2126 0.6763 0.8565 0.8273 0.8366 0.8976 0.8360 0.8815
STD 0.1189 1.0935 0.2303 0.1300 0.0962 0.0441 0.0470 0.0638 0.0511

This highlights the effectiveness of combining domain adaptation with regularization to enhance generalization
and robustness.

In summary, the results demonstrate a clear progression from ResNet-18 to DANN and PAC-Regularized
DANN, highlighting the benefits of domain adaptation and regularization. While DANN reduces domain gaps,
PAC-Regularized DANN ensures greater robustness and consistency, providing a dependable approach for mon-
itoring mooring system health under random and variable sea conditions.

4. CONCLUSION AND FUTURE WORK

This study presents a robust framework for predicting stiffness reduction in mooring systems under stochastic sea
state conditions. Through intergrating? domain adaptation techniques, including DANN and PAC-Regularized
DANN, the models demonstrated significant improvements over the baseline ResNet-18, effectively addressing
the challenges posed by wave-induced randomness. Despite these achievements, the current models are limited
to offline data analysis, as they are not yet capable of real-time monitoring. This limitation highlights the
need for further development of computationally efficient algorithms and real-time data integration techniques.
Furthermore, ongoing laboratory experiments are expected to validate the proposed framework using real-world
data, moving beyond fully reliance on simulation models.
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