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Abstract
We construct for every integer 𝑢 𝑐 3 and every real𝑚 ∅ (0, 𝑢𝐿1𝑢 ) a set of integers 𝜈 = 𝜈(𝑢,𝑚) which,
when coloured with finitely many colours, contains a
monochromatic 𝑢-term arithmetic progression, whilst
every finite ℝ ( 𝜈 has a subset ) ( ℝ of size |)| 𝑐 𝑚|ℝ|
that is free of arithmetic progressions of length 𝑢. This
answers a question of Erdős, Ne,et-il and the second
author. Moreover, we obtain an analogous multidi-
mensional statement and a Hales–Jewett version of
this result.

MSC 2 02 0
05D10, 11B#5 (primary)

1 INTRODUCTION

1.1 Arithmetic progressions

For every natural number 𝑥, we set [𝑥] = {1, … ,𝑥}. Given a set 𝜈 and a non-negative integer 𝑢,
we write 𝜈(𝑢) = {+ ( 𝜈, |+| = 𝑢} for the collection of all 𝑢-subsets of 𝜈. The theorem of van der
Waerden is one of the earliest results in Ramsey theory. It asserts that every finite colouring of
the integers yields monochromatic arithmetic progressions of arbitrary length. More precisely,
for positive integers 𝑢 and 𝑦, we say that a set of integers 𝜈 ( ⟼ has the van der Waerden prop-
erty vdW(𝑢, 𝑦) if every 𝑦-colouring of 𝜈 contains a monochromatic AP𝑢, that is, an arithmetic
progression of length 𝑢. Now van der Waerden’s theorem [34] can be briefly stated as follows.

Theorem 1.1 (van derWaerden).For all integers 𝑢 𝑐 3 and 𝑦 𝑐 2, there exists an integer𝜖 = 𝜖(𝑢, 𝑦)
such that for every 𝑥 𝑐 𝜖 the set [𝑥] has the property vdW(𝑢, 𝑦).
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Solving a long-standing conjecture of Erdős and Turán [10], Szemerédi proved the following
celebrated result in [3#].

Theorem 1.2 (Szemerédi). For every integer 𝑢 𝑐 3 and every real 0 ∅ (0, 1], there exists an integer𝑥0 = 𝑥0(𝑢, 0) such that for every 𝑥 𝑐 𝑥0 the following holds: Every subset 1 ( [𝑥] of size |1| 𝑐 0𝑥
contains an AP𝑢 .
In other words, Szemerédi’s theorem states that every subset of ⟼ with positive upper den-

sity contains arbitrarily long arithmetic progressions. This result stimulated a lot of research and
today there are many proofs using tools from a diverse spectrum of mathematical areas, including
ergodic theory and higher order Fourier analysis (see, e.g. [13, 14, 1), 17, #0, 31, 33]).
Similar to the van der Waerden property vdW(𝑢, 𝑦), one can define a property related to The-

orem 1.#. For an integer 𝑢 𝑐 3 and a real 0 > 0, we say that a finite set of integers 𝜈 ( ⟼ has
the Szemerédi property Sz(𝑢, 0) if every subset ℝ ( 𝜈 of size |ℝ| 𝑐 0|𝜈| contains an AP𝑢. So
Szemerédi’s theorem states that [𝑥] has the property Sz(𝑢, 0) whenever 𝑥 𝑐 𝑥0(𝑢, 0).
By looking at the densest colour class, one sees that for 0 2 13𝑦 the property Sz(𝑢, 0)

yields vdW(𝑢, 𝑦). In this sense, Szemerédi’s theorem implies van der Waerden’s theorem. One
could argue that Szemerédi’s original proof shows that, conversely, van der Waerden’s theorem
implies his theorem, but it is safe to say that this direction is a lot deeper. Motivated by a famous
problem of Pisier [#3], the following question was considered in [1, 9].

Question 1.3. Is it true that for every 𝑢 𝑐 3 there are 0 > 0 and a set of integers 𝜈 such that

(i) 𝜈 has the property vdW(𝑢, 𝑦) for every 𝑦 𝑐 1;
(ii) every finite ℝ ( 𝜈 fails to have property Sz(𝑢, 0)?
The question did also appear in a list of open problems in additive combinatorics compiled by

Croot and Lev (see [#, Problem 3.10]). Notice that a negative answer would show that the proper-
ties vdW(𝑢, 𝑦) and Sz(𝑢, 0) are equivalent. This would, in particular, provide a surprising newway
of deducing Szemerédi’s theorem from van der Waerden’s theorem. For this reason, the authors
of [9] conjectured that Question 1.3 has a positive answer. This work confirms this.

Theorem 1.4. For every integer 𝑢 𝑐 3 and real 𝑚 ∅ (0, 𝑢𝐿1𝑢 ), there is a set of natural numbers 𝜈 =𝜈(𝑢,𝑚) ( ⟼ such that
(i) for every 𝑦 𝑐 1, every 𝑦-colouring of 𝜈 contains a monochromatic AP𝑢 ,
(ii) but every finite subset ℝ ( 𝜈 contains a subset ) ( ℝ of size |)| 𝑐 𝑚|ℝ| without an AP𝑢 .
We remark that Theorem 1.4 does not hold for 𝑚 > 𝑢𝐿1𝑢 . Indeed, every set𝜈 ( ⟼ satisfying con-

dition (i) must contain an AP𝑢. By taking ℝ ( 𝜈 to be an AP𝑢, we have |ℝ| = 𝑢. Therefore, the
only subset ) ( ℝ with |)| 𝑐 𝑚|ℝ| is ℝ itself. So ℝ has the property Sz(𝑢,𝑚).
1.2 Multidimensional version

Gallai and Witt discovered independently that van der Waerden’s theorem generalises as follows
to higher dimensions. If 4 ( 𝜌𝜎 is a finite configuration of 𝜎-dimensional lattice points and 𝑦
denotes a number of colours, then there is some integer 𝑥 = 𝑥(4, 𝑦) such that for every 𝑦-colouring
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of [𝑥]𝜎 there is a monochromatic homothetic copy of 4. This means that there is a vector 𝑞 ∅ 𝜌𝜎
and a positive integral scaling factor 𝑉 such that the set 𝑞 + 𝑉4 = {𝑞 + 𝑉𝑠, 𝑠 ∅ 4} is contained
in [𝑥]𝜎 and all of its points have the same colour. There is also a multidimensional version of
Szemerédi’s theorem, first proved by Fürstenberg andKatznelson [14], which asserts that for every
finite configuration 4 ( 𝜌𝜎 and every positive real 0 there exists some 𝑥 = 𝑥(4, 0) such that every
set 1 ( [𝑥]𝜎 of size |1| 𝑐 0𝑥𝜎 contains a homothetic copy of 4.
When formulating amultidimensional version of Theorem 1.4, one canmake the second clause

stronger by forbidding the large subsets ) to contain ‘copies of 4’ in a sense more general than
‘homothetic copies’. Given a finite configuration 4 ( 𝜌𝜎 and a set ) ( 𝜌𝜎, we shall say that ) is4-free if there is no non-zero real scaling factor 𝑉 such that ) contains a congruent copy of 𝑉4.
Illustrating the difference between these concepts, we consider the sets

4 = {(0, 0), (0, 1), (1, 0), (1, 1)} and 4𝑇 = {(1, 0), (𝐿1, 0), (0, 1), (0,𝐿1)} ,
both of which are squares in 𝜌2. They fail to be homothetic copies of each other, but 4𝑇 is a
congruent copy of

√24.
Theorem 1.5. For every finite configuration 4 ( 𝜌𝜎 of |4| = 𝑢 𝑐 3 points and every real 𝑚 ∅(0, 𝑢𝐿1𝑢 ) there is a set of lattice points 𝜈 = 𝜈(4,𝑚) ( ⟼𝜎 such that
(i) for every 𝑦 𝑐 1, every 𝑦-colouring of 𝜈 contains a monochromatic homothetic copy of 4,
(ii) but every finite subset ℝ ( 𝜈 has an 4-free subset ) ( ℝ of size |)| 𝑐 𝑚|ℝ|.
1.3 Combinatorial lines

Let us now briefly explain another classical result of Ramsey theory, the Hales–Jewett theorem.
Given integers 𝑢 𝑐 2 and 𝑥 𝑐 1, we refer to [𝑢]𝑥 as the 𝑥-dimensional Hales–Jewett cube over [𝑢].
Identifying [𝑢]1 with [𝑢], we can regard [𝑢] itself as a one-dimensional cube. A map ≫, [𝑢]𝜑[𝑢]𝑥 is called a combinatorial embedding if there exists a partition of of the coordinate
set [𝑥] into a set of constant coordinates = and a non-empty set ofmoving coordinates> such that,
writing ≫(𝑎) = (.𝑎1, … ,.𝑎𝑥) for each 𝑎 ∅ [𝑢], we have .1A = ⋯ = .𝑢A for every A ∅ = and .𝑎𝛾 =𝑎 whenever 𝑎 ∅ [𝑢] and 𝛾 ∅ >. The condition > ≠ 𝑗 ensures that combinatorial embeddings
are injective.
A combinatorial line is the image of such a combinatorial embedding. For instance,{111, 121, 131} is a combinatorial line in [3]3, while {113, 122, 131} is not. Now the result of Hales

and Jewett [1(] asserts that given 𝑢 𝑐 2 and 𝑦 𝑐 1, there exists a dimension 𝑥 = HJ(𝑢, 𝑦) such that
for every colouring 𝑠, [𝑢]𝑥 𝜑 [𝑦], there exists a monochromatic combinatorial line. An even
more profound result, first obtained by Fürstenberg and Katznelson [15] bymethods from ergodic
theory, asserts that the corresponding density statement holds as well. That is, for every integer𝑢 𝑐 2 and every real 0 > 0, there exists a dimension 𝑥 = DHJ(𝑢, 0) such that every set1 ( [𝑢]𝑥 of
size |1| 𝑐 0𝑢𝑥 contains a combinatorial line. Nowadays some elementary combinatorial proofs of
this so-called density Hales–Jewett theorem are known, see [4, #4].
Our next result relates to the Hales–Jewett theorem in a similar way as Theorem 1.4 relates to

van der Waerden’s theorem. In order to render its second clause on the existence of dense subsets
without lines sufficiently strong for our intended application, we will work with the following
relaxed line concept.
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Definition 1.6. Let D be a 𝑢-element subset of the Hales–Jewett cube [𝑢]𝑥. If for every coordinate
direction 𝐷 ∅ [𝑥] the 𝐷th entries of the points in D are either identical or mutually distinct, then D
is called a quasiline.

In general, every combinatorial line is a quasiline, but not the other way around. For instance,{124, 223, 322, 421} is a quasiline in [4]3, but not a combinatorial line. In the special case 𝑢 = 3,
it may be observed that if one identifies [3] with the three-element field and views [3]𝑥 as a
vector space over that field, then quasilines are the same as one-dimensional affine subspaces
(or arithmetic progressions of length three). However, this does not generalise to larger prime
numbers.

Theorem 1.7. For all integers 𝑢 𝑐 3, 𝑦 𝑐 1 and all reals 𝑚 ∅ (0, 𝑢𝐿1𝑢 ) there exist a dimension 𝑥 and
a set of points  = (𝑢, 𝑦,𝑚) ( [𝑢]𝑥 such that
(i) for every 𝑦-colouring of  there is a monochromatic combinatorial line,
(ii) but every  (  contains a subset (  of size || 𝑐 𝑚|| such that contains no quasiline.

In fact, the set  we construct will also have the property that every quasiline D (  is a
combinatorial line.

1.4 Organisation

We shall show in the next section that Theorem 1.7 implies our other results, so that it will only
remain to prove Theorem 1.7. The preliminary Section 3 deals with auxiliary hypergraphs and
restricted versions of the Hales–Jewett theorem. The proof of Theorem 1.7 itself is based on the
partite construction method (see [11, #1]) and will be given in Section 4. We conclude with some
further problems and results in Section 5.

2 IMPLICATIONS

In this section, we assume that Theorem 1.7 is true and show how to derive Theorem 1.5 from it.
Since Theorem 1.4 agrees with the case 𝜎 = 1 and 4 = [𝑢] of Theorem 1.5, this means that we will
only have to prove Theorem 1.7 in later sections.
We indicate the Euclidean norm in 𝑂𝜎 by ‖ ⋅ ‖ and (⋆, H)∩⋆ ⋅ H denotes the standard scalar

product in the Euclidean space 𝑂𝜎. Here is a simple statement that will later assist us in the
selection of a ‘sufficiently large’ number.

Lemma 2.1. For every finite configuration 4 ( 𝑂𝜎 there is a positive real J = J(4) such that for all
functions <, 𝝁 from 4 to 4, the following holds: If there is a real 𝐻 with

|||𝐻‖𝑠𝑇 𝐿 𝑠𝑇𝑇‖2 𝐿 (<(𝑠𝑇) 𝐿 <(𝑠𝑇𝑇)) ⋅ (𝝁(𝑠𝑇) 𝐿 𝝁(𝑠𝑇𝑇))||| 2 J for all 𝑠𝑇,𝑠𝑇𝑇 ∅ 4, (#.1)

then there actually is a real 𝐻 with
𝐻‖𝑠𝑇 𝐿 𝑠𝑇𝑇‖2 = (<(𝑠𝑇) 𝐿 <(𝑠𝑇𝑇)) ⋅ (𝝁(𝑠𝑇) 𝐿 𝝁(𝑠𝑇𝑇)) for all 𝑠𝑇,𝑠𝑇𝑇 ∅ 4. (#.#)
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Proof. We shall show first that for every fixed pair (<,𝝁), there is such a constant J<𝝁. If (#.#)
holds for some 𝐻, there is nothing to show, so we can assume that no such 𝐻 exists. This state of
affairs can be expressed in the following way in the vector space 𝑂4𝐺4 . Let 𝑞 ∅ 𝑂4𝐺4 be the vec-
tor with (𝑠𝑇,𝑠𝑇𝑇)-entry ‖𝑠𝑇 𝐿 𝑠𝑇𝑇‖2 for every pair (𝑠𝑇,𝑠𝑇𝑇) ∅ 42 and, similarly, let 𝜖 be the vector
with (𝑠𝑇,𝑠𝑇𝑇)-entry (<(𝑠𝑇) 𝐿 <(𝑠𝑇𝑇)) ⋅ (𝝁(𝑠𝑇) 𝐿 𝝁(𝑠𝑇𝑇)). The absence of 𝐻 means that 𝜖 does not
belong to the subspace 𝜓 = 𝑂𝑞 of 𝑂4𝐺4 generated by 𝑞. Hence, there is some J<𝝁 > 0 such that
the distance of𝜖 from any point in 𝜓 exceeds |4|J<𝝁. Now if (#.1) held for some 𝐻 ∅ 𝑂 and for J<𝝁
instead of J, then

‖𝐻𝑞 𝐿 𝜖‖2 = ∑

(𝑠𝑇,𝑠𝑇𝑇)∅42
|||𝐻‖𝑠𝑇 𝐿 𝑠𝑇𝑇‖2 𝐿 (<(𝑠𝑇) 𝐿 <(𝑠𝑇𝑇)) ⋅ (𝝁(𝑠𝑇) 𝐿 𝝁(𝑠𝑇𝑇))|||2 2 |4|2J2<𝝁

would contradict the choice of J<𝝁. This concludes the proof that for every pair of functions (<,𝝁),
there is an appropriate constant J<𝝁. Since there are only finitely many such pairs (<,𝝁), the
number J = min<𝝁 J<𝝁 is as desired. □

We proceed with a finitary version of Theorem 1.5.

Proposition 2.2. Given a finite configuration 4 ( 𝜌𝜎 of 𝑢 = |4| 𝑐 3 points, a number of colours𝑦 𝑐 1 and a real 𝑚 ∅ (0, 𝑢𝐿1𝑢 ), there exists a finite set 𝜈 = 𝜈(4, 𝑦,𝑚) ( ⟼𝜎 such that
(i) for every 𝑦-colouring of 𝜈 there is a monochromatic homothetic copy of 4
(ii) and every ℝ ( 𝜈 has an 4-free subset ) ( ℝ of size |)| 𝑐 𝑚|ℝ|.
Proof. By translating 4 we may assume 4 ( ⟼𝜎. Let 4 = {𝑠1, … ,𝑠𝑢} enumerate the points of 4.
Owing to Theorem 1.7, there are a natural number 𝑥 and a set  ( [𝑢]𝑥 such that
(a) for every 𝑦-colouring of  there is a monochromatic combinatorial line
(b) and every  (  possesses a subset  (  of size || 𝑐 𝑚|| not containing any quasilines.
Let J = J(4) > 0 be the constant obtained in Lemma #.1, set P = max{‖𝑠𝑎‖, 𝑎 ∅ [𝑢]}, choose𝐸 𝜒 𝑥, P, J𝐿1 sufficiently large and consider the map

S,  𝜑𝜌𝜎
(𝐼(1), … , 𝐼(𝑥))∩ 𝑥∑

𝑎=1 𝐸2𝑎 𝑠𝐼(𝑎) .
Because of 𝐸 𝜒 P this map is injective. We shall show that the image of S, that is, the set 𝜈 =S[], has the desired properties.
Beginning with (i) we look at an arbitrary 𝑦-colouring 𝜋, 𝜈 𝜑 [𝑦]. We need to exhibit a

monochromatic homothetic copy of 4. By (a) applied to the 𝑦-colouring 𝜋 ◦S of  , there is a
combinatorial embedding ≫, [𝑢]𝜑  such that 𝜋 ◦S ◦ ≫ is a constant function from [𝑢] to [𝑦].
The image of S ◦ ≫ is clearly monochromatic and one confirms easily that it is a homothetic copy
of 4.
The proof of part (ii) hinges on the fact that all copies of 4 of the kind we want to exclude

correspond to quasilines in the Hales–Jewett cube.
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Claim #.3. Let D (  be a set of 𝑢 points. If S[D] is congruent to 𝑉4 for some non-zero real scaling
factor 𝑉, then D is a quasiline.
In the special case relevant for Theorem 1.4, this has a fairly simple reason briefly sketched in

Remark #.4 below. In the general case we argue as follows.

Proof of Claim #.3. Enumerate D = {𝐼1, … ,𝐼𝑢} in such a way that the points S(𝐼𝑎) in 𝜌𝜎 satisfy
‖S(𝐼𝑎) 𝐿 S(𝐼𝔖)‖ = 𝑉‖𝑠𝑎 𝐿 𝑠𝔖‖

for all 𝑎, 𝔖 ∅ [𝑢]. Writing 𝐼𝑎 = (𝐼𝑎(1), … , 𝐼𝑎(𝑥)) for every 𝑎 ∅ [𝑢], we contend that
for all 𝐷, 𝐷𝑇 ∅ [𝑥] there is a real 𝐻𝐷,𝐷𝑇 such that(𝑠𝐼𝑎(𝐷) 𝐿 𝑠𝐼𝔖(𝐷)) ⋅ (𝑠𝐼𝑎(𝐷𝑇) 𝐿 𝑠𝐼𝔖(𝐷𝑇)) = 𝐻𝐷,𝐷𝑇‖𝑠𝑎 𝐿 𝑠𝔖‖2
holds for all 𝑎, 𝔖 ∅ [𝑢].

Assume for the sake of contradiction that this fails and fix a counterexample (𝐷, 𝐷𝑇) for which2𝐷 + 2𝐷𝑇 is maximal. It is important to note here that this condition determines the pair {𝐷, 𝐷𝑇}
uniquely, because every integer can be written in at most one way as a sum of two (identical or
distinct) powers of two. Setting W = {(𝑚,𝑚𝑇) ∅ [𝑥]2 , 2𝑚 + 2𝑚𝑇 > 2𝐷 + 2𝐷𝑇 }, our extremal choice of(𝐷, 𝐷𝑇) ensures that for every pair (𝑚,𝑚𝑇) ∅ W, there exists an appropriate constant 𝐻𝑚,𝑚𝑇 . Now for
all 𝑎, 𝔖 ∅ [𝑢], we have

𝑉2‖𝑠𝑎 𝐿 𝑠𝔖‖2 = ‖S(𝐼𝑎) 𝐿 S(𝐼𝔖)‖2 = ‖‖‖‖
∑
𝑚∅[𝑥]𝐸2𝑚 (𝑠𝐼𝑎(𝑚) 𝐿 𝑠𝐼𝔖(𝑚))‖‖‖‖2

= ∑
(𝑚,𝑚𝑇)∅W 𝐸2𝑚+2𝑚𝑇 (𝑠𝐼𝑎(𝑚) 𝐿 𝑠𝐼𝔖(𝑚)) ⋅ (𝑠𝐼𝑎(𝑚𝑇) 𝐿 𝑠𝐼𝔖(𝑚𝑇))

+ (2 𝐿 0𝐷,𝐷𝑇)𝐸2𝐷+2𝐷𝑇 (𝑠𝐼𝑎(𝐷) 𝐿 𝑠𝐼𝔖(𝐷)) ⋅ (𝑠𝐼𝑎(𝐷𝑇) 𝐿 𝑠𝐼𝔖(𝐷𝑇)) + 𝐾(𝐸2𝐷+2𝐷𝑇𝐿1) ,
where 0 denotes Kronecker’s delta and the implied constant depends only on 𝑥 and P. Simplifying
the sum over W on the right side with the help of (→), we see that the number

𝐻 = 𝑉2 𝐿∑(𝑚,𝑚𝑇)∅W 𝐸2𝑚+2𝑚𝑇 𝐻𝑚,𝑚𝑇(2 𝐿 0𝐷,𝐷𝑇)𝐸2𝐷+2𝐷𝑇
satisfies

𝐻‖𝑠𝑎 𝐿 𝑠𝔖‖2 = (𝑠𝐼𝑎(𝐷) 𝐿 𝑠𝐼𝔖(𝐷)) ⋅ (𝑠𝐼𝑎(𝐷𝑇) 𝐿 𝑠𝐼𝔖(𝐷𝑇)) + 𝐾(𝐸𝐿1)
for all 𝑎, 𝔖 ∅ [𝑢]. In terms of the functions < and 𝝁 from4 to4 defined by <(𝑠𝑎) = 𝑠𝐼𝑎(𝐷) and 𝝁(𝑠𝑎) =𝑠𝐼𝑎(𝐷𝑇) for all 𝑎 ∅ [𝑢], this means

𝐻‖𝑠𝑎 𝐿 𝑠𝔖‖2 = (<(𝑠𝑎) 𝐿 <(𝑠𝔖)) ⋅ (𝝁(𝑠𝑎) 𝐿 𝝁(𝑠𝔖)) + 𝐾(𝐸𝐿1) .
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 7 of 24

But due to 𝐸 𝜒 𝑥, P, J𝐿1 and our choice of J, this implies that there is a constant 𝐻𝐷,𝐷𝑇 such that𝐻𝐷,𝐷𝑇‖𝑠𝑎 𝐿 𝑠𝔖‖2 = (<(𝑠𝑎) 𝐿 <(𝑠𝔖)) ⋅ (𝝁(𝑠𝑎) 𝐿 𝝁(𝑠𝔖))
holds for all 𝑎, 𝔖 ∅ [𝑢]. That is, 𝐻𝐷,𝐷𝑇 has the property demanded by (→) and, thereby, the proof
of (→) is complete.
In the special case 𝐷𝑇 = 𝐷, we obtain

𝐻𝐷,𝐷‖𝑠𝑎 𝐿 𝑠𝔖‖2 = ‖𝑠𝐼𝑎(𝐷) 𝐿 𝑠𝐼𝔖(𝐷)‖2
for all 𝑎, 𝔖 ∅ [𝑢]. Hence, for every fixed 𝐷, the map 𝑠𝑎 ∩ 𝑠𝐼𝑎(𝐷) sends 4 to a congruent copy of√𝐻𝐷,𝐷4. In the special case 𝐻𝐷,𝐷 = 0, this means 𝐼1(𝐷) = ⋯ = 𝐼𝑢(𝐷), and if 𝐻𝐷,𝐷 ≠ 0, we have, in
particular, {𝐼𝑎(𝐷), 𝑎 ∅ [𝑢]} = [𝑢]. For these reasons, D is indeed a quasiline. □

After this preparation, part (ii) of the theorem is straightforward. Let an arbitrary set ℝ ( 𝜈 be
given. Due to (b) the set  = S𝐿1[ℝ] (  has a subset  (  of size || 𝑐 𝑚|| containing no
quasilines. By Claim #.3, the set ) = S() is 4-free and, since S is injective, it is also sufficiently
dense. □

Remark #.4. Here is a simpler proof for the special case 𝜎 = 1 and 4 = [𝑢] of Claim #.3. Again we
write D = {𝐼1, … ,𝐼𝑢} and 𝐼𝑎 = (𝐼𝑎(1), … , 𝐼𝑎(𝑥)) for every 𝑎 ∅ [𝑢]. Since S(𝐼1), … ,S(𝐼𝑢) is an AP𝑢,
we have

𝑥∑
𝐷=1𝐸2𝐷(𝐼𝑎+1(𝐷) 𝐿 2𝐼𝑎(𝐷) + 𝐼𝑎𝐿1(𝐷)) = S(𝐼𝑎+1) 𝐿 2S(𝐼𝑎) + S(𝐼𝑎𝐿1) = 0

for every 𝑎 ∅ [2, 𝑢 𝐿 1]. Thus, a sufficiently large choice of 𝐸 guarantees that for every 𝐷 ∅ [𝑥] the𝑢-tuple 1𝐷 = (𝐼1(𝐷), … , 𝐼𝑢(𝐷)) ∅ [𝑢]𝑢 is a (possibly degenerate) arithmetic progression of length𝑢. So 1𝐷 either consists of 𝑢 equal numbers, or it is one of the two 𝑢-tuples (1, 2, … , 𝑢) or (𝑢, 𝑢 𝐿1, … , 1). In particular, D is indeed a quasiline.
It remains to deduce Theorem 1.5 from the finitary version we have just obtained.

Proof of Theorem 1.5. For every 𝑦 𝑐 1 let 𝜈𝑦 = 𝜈(4, 𝑦,𝑚) be the set generated by Proposition #.#.
Take a sequence (𝑞𝑦)𝑦𝑐1 of vectors in⟼𝜎 such that ‖𝑞𝑦‖ tends to infinity sufficiently fast and define

Provided that this set satisfies the conclusion of the following claim, we shall show later that it
has the properties demanded by Theorem 1.5.

Claim #.5. An appropriate choice of (𝑞𝑦)𝑦𝑐1 ensures that if a configuration 4𝑇 ( 𝜈 is congruent to𝑉4 for some non-zero real 𝑉, then 4𝑇 ( 𝑞𝑦 + 𝜈𝑦 holds for some 𝑦 𝑐 1.
Proof. Let 𝑦 be maximal such that 4𝑇 ⧵ (𝑞𝑦 + 𝜈𝑦) ≠ 𝑗. The main point is that when choosing 𝑞𝑦
the set has already been determined. Moreover, the maximality of 𝑦 yields
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8 of 24 REIHER ./ al.

. Because of |4𝑇| = 𝑢 𝑐 3, this means that at least one of the sets 𝜈<𝑦 and𝑞𝑦 + 𝜈𝑦 needs to contain at least two points of 4𝑇.
As we can force 𝑞𝑦 + 𝜈𝑦 to be as far apart from𝜈<𝑦 as we want, we can thus guarantee that 4𝑇 is

a subset of either𝜈<𝑦 or 𝑞𝑦 + 𝜈𝑦. Together with4𝑇 ⧵ (𝑞𝑦 + 𝜈𝑦) ≠ 𝑗, this implies4𝑇 ( 𝑞𝑦 + 𝜈𝑦. □

Since the set𝜈 contains for every 𝑦 𝑐 1 a translated copy of𝜈𝑦, it has the first property promised
by Theorem 1.5. In order to establish the second property, we consider an arbitrary finite setℝ ( 𝜈
and setℝ𝑦 = ℝ ⧵ (𝑞𝑦 + 𝜈𝑦) for every 𝑦 𝑐 1. Since part (ii) of Proposition #.# is translation-invariant,
there are 4-free subsets )𝑦 ( ℝ𝑦 of size |)𝑦| 𝑐 𝑚|ℝ𝑦|. The subset ) = ⋃𝑦𝑐1 )𝑦 of ℝ clearly satisfies
|)| 𝑐 𝑚|ℝ| and Claim #.5 implies that it is 4-free as well. □

3 PRELIMINARIES

3.1 The [-fractional property
The combinatorial lines in the set(𝑢, 𝑦,𝑚)we need to construct will certainly form a hypergraph𝑧 with the special property that every subset of𝜓(𝑧) contains a large independent set (consisting
of a 𝑚-proportion of its elements). Later it turns out to be helpful to work with a weighted version
of this property.

Definition 3.1. A 𝑢-uniform hypergraph𝑧 has the 𝑚-fractional property for a real 𝑚 ∅ (0, 1] if for
every family (𝜖𝑎)𝑎∅𝜓(𝑧) of non-negative real numbers, there exists an independent set ) ( 𝜓(𝑧)
such that∑𝑎∅) 𝜖𝑎 𝑐 𝑚∑𝑎∅𝜓(𝑧)𝜖𝑎 .
Let us observe that if a hypergraph𝑧 has this property, then for every set ℝ ( 𝜓(𝑧), we obtain

an independent subset ) ( ℝ of size |)| 𝑐 𝑚|ℝ| by considering the characteristic function of ℝ.
When we want to check whether a given hypergraph 𝑧 has the 𝑚-fractional property, we can
always assume that the given family (𝜖𝑎)𝑎∅𝜓(𝑧) satisfies∑𝑎∅𝜓(𝑧)𝜖𝑎 = 1. This is because the case
that this sum vanishes is trivial, and otherwise we can divide all weights 𝜖𝑎 by their sum without
changing the situation.
The advantage of allowing arbitrary weights𝜖𝑎 𝑐 0 as opposed to just working with 𝜖𝑎 ∅ {0, 1}

is that thereby the property is not only preserved under taking subhypergraphs, but also under
taking blow-ups. We express this fact as follows.

Lemma 3.2. Suppose 𝑚 ∅ (0, 1] and that],𝑧 are two 𝑢-uniform hypergraphs for which there exists
a homomorphism ∞ from ] to 𝑧. If 𝑧 has the 𝑚-fractional property, then so does ]. In particular,
the 𝑚-fractional property is hereditary, that is, if some hypergraph has the property, then so do all of
its subhypergraphs.

Proof. Let a family (𝜖𝑎)𝑎∅𝜓(]) of non-negative real numbers summing up to 1 be given and set .𝔖 =∑𝑎∅∞𝐿1(𝔖)𝜖𝑎 for every 𝔖 ∅ 𝜓(𝑧). Since∑𝔖∅𝜓(𝑧) .𝔖 = 1 and 𝑧 has the 𝑚-fractional property, there
is an independent set )𝑧 ( 𝜓(𝑧) such that∑𝔖∅)𝑧 .𝔖 𝑐 𝑚. Now )] = ∞𝐿1[)𝑧] is independent in] (because ∞ is a homomorphism), and we have ∑𝑎∅)] 𝜖𝑎 = ∑𝔖∅)𝑧 .𝔖 𝑐 𝑚. This shows that ]
has indeed the 𝑚-fractional property.
It remains to remark that if ] is a subhypergraph of𝑧, then the inclusion map 𝜓(])𝜑𝜓(𝑧)

is a hypergraph homomorphism. □
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 9 of 24

3.2 Auxiliary hypergraphs

Let us recall that for positive integers 𝑥,% 𝑐 𝑢 𝑐 2, the 𝑢-uniform shift hypergraph𝑧 = Sh(𝑢)(𝑥,%)
on the %-subsets of [𝑥] is defined to have the vertex set 𝜓(𝑧) = [𝑥](%) and the following ( 𝑥𝑢+%𝐿1)
edges: For every increasing sequence 𝐼1 < ⋯ < 𝐼𝑢+%𝐿1 of integers from [𝑥] there is an edge{⋆1, … ,⋆𝑢} ∅ 𝛼(𝑧) obtained by setting ⋆𝑎 = {𝐼𝑎 , … ,𝐼𝑎+%𝐿1} for every 𝑎 ∅ [𝑢].
The key property of these shift hypergraphs we exploit in this work extends an idea from

[(]. Roughly speaking, the result says that if we take % large enough, then Sh(𝑢)(𝑥,%) has the𝑚-fractional property for some 𝑚 as close to 𝑢𝐿1𝑢 as we want.
More precisely, given an integer 𝑢 𝑐 2 and a real 𝑚 ∅ (0, 𝑢𝐿1𝑢 ), we first set

% = ⌈ 2(𝑢 𝐿 1)2(𝑢 𝐿 1) 𝐿 𝑢𝑚⌉
and then we consider 𝑧(𝑢)(𝑥,𝑚) = Sh(𝑢)(𝑥,%) for every 𝑥 𝑐 𝑢. A proof of the following result,
which was suggested by Paul Erdős, can be found in [##, section 5]. For the reader’s convenience,
we include a brief sketch of a simplified version of the argument below.

Theorem 3.3 (Ne,et-il, Rödl and Sales). For all integers 𝑢 𝑐 2, 𝑦 𝑐 1 and every real 𝑚 ∅ (0, 𝑢𝐿1𝑢 ),
there exists an integer 𝑥 = 𝑥(𝑢, 𝑦,𝑚) such that the 𝑢-uniform hypergraph 𝑧 = 𝑧(𝑢)(𝑥,𝑚) satisfiesΩ(𝑧) > 𝑦 and has the 𝑚-fractional property.
Proof. The claim on the chromatic number follows easily from Ramsey’s theorem [#)]. Next, our
choice of % guarantees that the set

a = {𝑎 ∅ [𝑢,% 𝐿 𝑢 + 1], 𝑎 ≢ 𝐿1 (mod 𝑢)}
satisfies |a| 𝑐 𝑚%. Given a permutation 𝑆 ∅ ⊇𝑥 and a vertex ⋆ = {𝐼1, … ,𝐼%} ∅ 𝜓(𝑧), where𝐼1 < ⋯ < 𝐼% , we denote the unique index 𝔖 ∅ [%] such that 𝑆(𝐼𝔖) = max{𝑆(𝐼𝑎), 𝑎 ∅ [%]}
by 𝐷(⋆,𝑆). It is not difficult to check that for every permutation 𝑆, the set

ℝ𝑆 = {⋆ ∅ 𝜓(𝑧), 𝐷(⋆,𝑆) ∅ a}
is independent in𝜓(𝑧). Moreover, if (𝜖⋆)⋆∅𝜓(𝑧) is a family of nonnegative real weights summing
up to 1 and 𝑆 gets chosen uniformly at random, then the expectation of∑⋆∅ℝ𝑆 𝜖⋆ is |a|3%. Hence,
there exists some 𝑆 ∅ ⊇𝑥 such that∑⋆∅ℝ𝑆 𝜖⋆ 𝑐 |a|3% 𝑐 𝑚. □

In the special case 𝑢 = 3, we shall also need another property of shift hypergraphs. Let d(3)𝐿4
denote the 3-uniform hypergraph with four vertices and three edges.

Lemma 3.4. For all 𝑥,% 𝑐 3, the shift hypergraph Sh(3)(𝑥,%) is d(3)𝐿4 -free.

Proof. Given a tournament𝐸, Erdős andHajnal introduced the 3-uniform tournament hypergraph𝑧(𝐸) which has the same vertices as 𝐸 and whose edges correspond to the cyclically oriented
triangles in 𝐸. It is well known that these tournament hypergraphs are d(3)𝐿4 -free (see, e.g. [7]).
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10 of 24 REIHER ./ al.

Thus, it suffices to orient the pairs of vertices of 𝑧 = Sh(3)(𝑥,%) in such a way that all edges
of 𝑧 induce cyclically oriented triangles. Consider any such pair {⋆, H} ∅ 𝜓(𝑧)(2). If min(⋆) =min(H), the orientation of ⋆H is immaterial (because no edge of 𝑧 contains both ⋆ and H). Ifmin(⋆) < min(H), we choose the orientation ⋆ ∪ H or H ∪ ⋆ depending on whether |H 𝐵 ⋆| is
even or odd. Now for every edge {⋆, H, g} ∅ 𝛼(𝑧) with min(⋆) < min(H) < min(g), we have the
oriented triangle g ∪ H ∪ ⋆ ∪ g. □

Remark 3.5. More generally it could be shown that for 𝑥,% 𝑐 𝑢 𝑐 2 the 𝑢-uniform shift hypergraphSh(𝑢)(𝑥,%) is 4(𝑢)-free, where 4(𝑢) denotes the 𝑢-uniform hypergraph on 𝑢 + 1 vertices with three
edges. One way to see this involves higher order tournaments (described, e.g. in [#9, section 1.3]),
which are known to be 4(𝑢)-free (see [#9, Fact 1.5]).
3.3 Triangles and tripods in Hales–Jewett cubes

Given an arbitrary finite set 1, one can form Hales–Jewett cubes 1𝑥 and define combinatorial
lines as in Section 1.3. In this context, one often calls 1 the ‘alphabet’ and the points in 1𝑥 are
then viewed as ‘words of length 𝑥’. We shall write ℒ(1𝑥) for the collection of all combinatorial
lines in 1𝑥. For simplicity we identify any subsetℒ ( ℒ(1𝑥) with the |1|-uniform hypergraph
on 1𝑥 whose set of edges isℒ. We may thus write Ω(ℒ) for the chromatic number of this hyper-
graph.With this notation theHales–Jewett theorem states that for every fixed alphabet1, we havelim𝑥∪h Ω(ℒ(1𝑥)) =h.
In our construction, we need the existence of certain ‘sparse’ subhypergraphs ℒ ( ℒ(1𝑥) of

large chromatic number. Let us note first thatℒ(1𝑥) itself is linear, that is, any two of its edges
intersect in at most one vertex. This follows from the obvious fact that through any two distinct
points of a Hales–Jewett cube, there can pass at most one combinatorial line. Three distinct lines
inℒ(1𝑥) are said to form a triangle if they do not pass through a common point, but any two of
them intersect.
As proved by the second author [30], given1 and 𝑦 there is for some dimension 𝑥, a triangle-free

line system ℒ ( ℒ(1𝑥) such that Ω(ℒ) > 𝑦. In fact, he even showed that hypergraphs of large
chromatic number and large girth, first obtained by Erdős, Hajnal and Lovász using different
methods [5, ), 19], can be found inside the Hales–Jewett hypergraphs ℒ(1𝑥). For the present
purposes, excluding triangles is important, but longer cycles are irrelevant.
There is, however, one further configuration of lines that we need to forbid. In the definition

that follows, for every combinatorial line D ( 1𝑥, its set of moving coordinates is denoted by>D.
Definition 3.6. Three distinct combinatorial lines D,D𝑇,D𝑇𝑇 ( 1𝑥 passing through a common
point are said to form a tripod if>D is the disjoint union of>D𝑇 and>D𝑇𝑇 .
For instance, for every 𝐼 ∅ 1, the diagonal {⋆⋆, ⋆ ∅ 1} forms together with the two lines{𝐼⋆, ⋆ ∅ 1} and {⋆𝐼, ⋆ ∅ 1} a tripod in 12. It turns out that the argument in [30] allows to

exclude tripods and short cycles at the same time.Wewill only state and prove the case of triangles
here.

Theorem 3.7. Given an alphabet 1 with at least two letters and 𝑦 𝑐 1, there is for every sufficiently
large dimension 𝑥 a collection ℒ ( ℒ(1𝑥) of combinatorial lines containing neither tripods nor
triangles such that Ω(ℒ) > 𝑦.
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 11 of 24

Proof. For transparency, we can assume1 = [𝑢], where 𝑢 𝑐 2. Depending on 𝑢 and 𝑦, we fix a reali > 0 and natural numbers 𝜎,𝛾, 𝑥 fitting into the hierarchy
𝑥 𝜒 𝜎 𝜒 i𝐿1 𝜒 𝛾 𝜒 𝑢, 𝑦 .

For every 𝑎 ∅ [𝛾], let ℒ𝑎 be the collection of all combinatorial lines D ( [𝑢]𝑥 with |>D| = 𝑎.
Since there are

(𝑥𝑎) possibilities for the set>D and 𝑢𝑥𝐿𝑎 possibilities for the behaviour of D on the
constant coordinates, we have |ℒ𝑎| = (𝑥𝑎)𝑢𝑥𝐿𝑎 .
Claim 3.(. For every colouring 𝜋, [𝑢]𝑥 𝜑 [𝑦], there is some 𝑎 ∅ [𝛾] such that at least i|ℒ𝑎| of
the lines inℒ𝑎 are monochromatic with respect to 𝜋.
Proof. We can regard [𝑢]𝑥 as the set of all functions from [𝑥] to [𝑢]. Lete be the set of all

(𝑥𝛾)𝑢𝑥𝐿𝛾
functions from an (𝑥 𝐿 𝛾)-element subset of [𝑥] to [𝑢]. For each of these functions 𝑠, the setΠ𝑠 = {g ∅ [𝑢]𝑥 , g l 𝑠} of all points extending it is an isomorphic copy of the Hales–Jewett cube[𝑢]𝛾. So by the Hales–Jewett theorem, there is some monochromatic combinatorial line D𝑠 ( Π𝑠 .
This line belongs to one of the sets ℒ1, … ,ℒ𝛾 and the box principle (Schubfachprinzip) yields
some sete𝑇 ( e of size |e𝑇| 𝑐 1𝛾 |e| together with an integer 𝑎 ∅ [𝛾] such that D𝑠 ∅ ℒ𝑎 holds for
every 𝑠 ∅ e𝑇. Conversely, every line D ∅ ℒ𝑎 appears in (𝑥𝐿𝑎𝛾𝐿𝑎) of the spaces Π𝑠 with 𝑠 ∅ e. For
these reasons, the number of monochromatic lines inℒ𝑎 is at least

|e𝑇|(𝑥𝐿𝑎𝛾𝐿𝑎) 𝑐 1𝛾( 𝑥𝛾)𝑎𝑢𝑥𝐿𝛾 𝑐 𝑢𝑎𝐿𝛾𝛾𝑎+1 |ℒ𝑎| 𝑐 i|ℒ𝑎| .
□

Let us call a collection of lines suitable if

(1) through every point ⋆ ∅ [𝑢]𝑥, there pass at most 𝜎 lines fromℒ;
(#) no three lines inℒ form a tripod or a triangle.

For instance,𝑗 is a suitable collection of lines. The idea for constructing the desired system of
lines is that starting with𝑗, we keep adding lines one by one while maintaining at every step that
the set of lines we have already chosen remains suitable. It can be shown that as long as we have
selected at most

𝐻 = 2𝛾 log(𝑦)i 𝑢𝑥
lines, we can still choose ‘almost every’ line in the next step. This will in turn imply that in every
step we can reduce the number of ‘bad’ colourings, which have no monochromatic line in our
system yet, by a constant proportion. At most 𝐻 such steps will push the number of bad colourings
below one.

Claim 3.9. If ℒ is a suitable system of at most 𝐻 lines, then for every 𝑎 ∅ [𝛾], all but at mosti|ℒ𝑎|32 lines D ∅ ℒ𝑎 have the property thatℒ m {D} is again suitable.
Proof. Fix 𝑎 ∅ [𝛾]. We shall first bound the number P1 of lines inℒ𝑎 whose addition toℒ would
cause a violation of (1). Let 1 ( [𝑢]𝑥 be the set of all points lying on exactly 𝜎 lines fromℒ. Since
every line contains 𝑢 points, double counting yields |1|𝜎 2 𝑢|ℒ| 2 𝑢𝐻. Together with the fact that
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12 of 24 REIHER ./ al.

through every point of [𝑢]𝑥 there pass at most (𝑥𝑎) lines fromℒ𝑎 , this shows
P1 2 (𝑥𝑎)|1| 2 𝑢𝐻𝜎𝑢𝑥𝐿𝑎 |ℒ𝑎| = 2𝑢𝑎+1𝛾 log(𝑦)𝜎i |ℒ𝑎| 2 i4 |ℒ𝑎| . (3.1)

Next, the number P2 of lines whose addition toℒ would create a tripod can be bounded by

P2 2 𝜎2𝑢𝑥 . (3.#)

This is because there are 𝑢𝑥 possibilities for a point ⋆ ∅ [𝑢]𝑥, where the three lines of such a tripod
could meet, and due to (1) there are at most 𝜎2 pairs of lines {D𝑇,D𝑇𝑇} ∅ ℒ(2) passing through ⋆.
Moreover, given D𝑇 and D𝑇𝑇 there is at most one line D completing a tripod.
Utilising that through any two points there is at most one line, one shows similarly that the

number P3 of lines D for whichℒ m {D} contains a triangle can be bounded by
P3 2 (𝑢𝜎)2𝑢𝑥 .

Together with (3.#) this shows

P2 + P3 2 2𝜎2𝑢𝑥+2 = 2𝑢𝑎+2𝜎2(𝑥𝑎) |ℒ𝑎| 2 2𝑢3𝜎2𝑥 |ℒ𝑎| 2 i4 |ℒ𝑎| .
In view of (3.1), the desired estimate P1 + P2 + P3 2 i|ℒ𝑎|32 follows. □

Now for every system of lines ℒ ( ℒ([𝑢]𝑥), we denote the set of all ‘bad’ colourings𝜋, [𝑢]𝑥 𝜑 [𝑦] such that no line in ℒ is monochromatic with respect to 𝜋 by n(ℒ). Take a
maximal suitable line systemℒ with the property

|n(ℒ)| 2 (1 𝐿 i32𝛾)|ℒ|𝑦𝑢𝑥 .
The existence of such a system is guaranteed by the fact that |n(𝑗)| 2 𝑦𝑢𝑥 . If |ℒ| > 𝐻, then

|n(ℒ)| < exp(𝐿𝐻i32𝛾 + 𝑢𝑥 log(𝑦)) = 1
proves that all colourings are good forℒ, which in turnmeans thatℒ has all properties promised
by the theorem. So we can assume |ℒ| 2 𝐻 in the sequel. By Claim 3.( and the box principle, there
are a set n ( n(ℒ) of size |n| 𝑐 1𝛾 |n(ℒ)| and an integer 𝑎 ∅ [𝛾] such that for every colouring inn at least i|ℒ𝑎| lines in ℒ𝑎 are monochromatic. Now Claim 3.9 reveals that for every colouring
in n there are at least i|ℒ𝑎|32monochromatic lines D ∅ ℒ𝑎 for whichℒ m {D} is suitable. Conse-
quently, there is a fixed line D ∅ ℒ𝑎 which is monochromatic for at least i|n|32 colourings in n
such thatℒ→ = ℒ m {D} is suitable. But now

|n(ℒ→)| 2 |n(ℒ)| 𝐿 i|n|32 2 (1 𝐿 i32𝛾)|n(ℒ)| 2 (1 𝐿 i32𝛾)|ℒ→|𝑦𝑢𝑥
shows thatℒ→ contradicts the maximality ofℒ. □
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 13 of 24

Remark 3.10. If we just wanted to produce a line system of large chromatic number without tri-
angles (or short cycles), we could also use the partite construction method. However, one of us is
bamboozled by the fact that he cannot exclude tripods in this way.

3.4 More on embeddings

Preparing a concise description of the partite construction we shall perform in the next section,
we would like to offer some (mostly standard) remarks on combinatorial embeddings. For a fixed
alphabet1 andnatural numbers𝑥 𝑐 𝛾, amap ≫, 1𝛾 𝜑 1𝑥 is called a combinatorial embedding
if there are a partition and a function g , = 𝜑 1 such that>1, … ,>𝛾 ≠𝑗 and for every 𝐼 = (𝐼1, … ,𝐼𝛾) ∅ 1𝛾 and every 𝑎 ∅ [𝑥], the 𝑎th coordinate of ≫(𝐼) is

{
g(𝑎) if 𝑎 ∅ =,𝐼𝔖 if 𝑎 ∅ >𝔖 .

In the special case 𝛾 = 1, this reduces to the notion of combinatorial embeddings 1𝜑1𝑥
introduced in Section 1.3. It is well known and easy to verify that every composition of com-
binatorial embeddings 1% 𝜑1𝛾 𝜑1𝑥 is again a combinatorial embedding. This implies,
for instance, that combinatorial embeddings map combinatorial lines to combinatorial lines.
Similarly, quasilines are mapped to quasilines.
For |1| 𝑐 2, the partition and the function g , = 𝜑 1 are uniquely

determined by the corresponding embedding ≫. Thus, for every superset n l 1, there is a unique
extension of ≫ to a combinatorial embedding ≫+ , n𝛾 𝜑 n𝑥.
We will only encounter such extensions in the following context. For some set o⋆ ( [𝑢]𝛾,

we have a combinatorial embedding ≫, o⋆ 𝜑 o𝑥⋆. Identifying ([𝑢]𝛾)𝑥 in the obvious manner
with [𝑢]𝛾𝑥, we then get an extension ≫+ , [𝑢]𝛾 𝜑 [𝑢]𝛾𝑥. By construction, ≫+ is a combinato-
rial embedding from the one-dimensional space over [𝑢]𝛾 to the 𝑥-dimensional space over [𝑢]𝛾.
It is readily verified that we can also view ≫+ over the smaller alphabet [𝑢] as a combinatorial
embedding from 𝛾-dimensional space into (𝛾𝑥)-dimensional space. Consequently, and this is
something we shall exploit later, compositions of such extensions are combinatorial embeddings
over [𝑢] as well.
4 THE PARTITE CONSTRUCTION

The proof of Theorem 1.7 is based on the partite construction method (see [11, #1]). This means
that we will recursively construct a sequence of ‘pictures’ o0, … ,o𝐻, the last one of which corre-
sponds to the desired set (𝑢, 𝑦,𝑚). The entire construction will take place ‘over’ a hypergraph ]
obtained in Theorem 3.3. The pictures o𝑎 themselves will consist of subsets p𝑎 of some Hales–
Jewett cubes [𝑢]𝛾𝑎 and maps ∞𝑎 , p𝑎 𝜑 𝜓(]) telling us in which way the points ⋆ ∅ p𝑎 are
associated to vertices ∞𝑎(⋆) of ].
Throughout the construction, we need to pay attention to the combinatorial lines in these setsp𝑎 . In picture zero o0 they are mutually disjoint and there will be one line for every edge of ].

While constructing o0, … ,o𝐻, one of our aims is to transfer the property Ω(]) > 𝑦 of ] grad-
ually onto the pictures in our sequence. Moreover, clause (ii) of Theorem 1.7 forces us to protect
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14 of 24 REIHER ./ al.

F IGURE 4 . 1 A visual representation of o0.

ourselves asmuch as possible against unwanted quasilines in our pictures. In general, partite con-
structions (when executed carefully) tend to produce Ramsey objects that are locally quite sparse
and we will benefit from this phenomenon as well.

4.1 Pictures

In the context of this work, pictures are defined as follows.

Definition 4.1. Let ] be a 𝑢-uniform hypergraph, where 𝑢 𝑐 3. A picture over ] is a pair o =(p,∞) consisting of a subset p ( [𝑢]𝛾 of a Hales–Jewett cube and amap ∞, p𝜑 𝜓(]) such that
every quasiline D ( p is a combinatorial line satisfying ∞[D] ∅ 𝛼(]).
If o = (p,∞) is a picture over ] and ⋆ is a vertex of ], the set o⋆ = ∞𝐿1(⋆) is called the music

line over ⋆. Clearly, p is the disjoint union of all music lines. In our figures, we will always draw
the hypergraph ] vertically to the left side of p, and p itself will be drawn in such a way that every
vertex ⋆ ∅ 𝜓(]) is together with its music line o⋆ on a common horizontal line. Thus, ∞ can be
thought of as a projection to the left side (see, e.g. Figure 4.1). We prepare the construction of
picture zero by showing that there are arbitrarily many lines ‘in general position’.

Lemma 4.2. For all integers 𝑢 𝑐 3 and 𝛾 𝑐 1, there are mutually disjoint combinatorial linesD1, … ,D𝛾 ( [𝑢]2𝛾 such that the only quasilines are D1, … ,D𝛾 themselves.

Proof. For every 𝑎 ∅ [𝛾], we define D𝑎 to be a line whose only moving coordinate is 𝑎. We further
require that all points of D𝑎 have the entry # in the (𝛾 + 𝑎)th coordinate and the entry 1 in all other
constant coordinates. So, for example, if 𝛾 = 3, we take the three lines D1 = {⋆11211, ⋆ ∅ [𝑢]},D2 = {1⋆1121, ⋆ ∅ [𝑢]} and D3 = {11⋆112, ⋆ ∅ [𝑢]}.
It is plain that these 𝛾 lines are mutually disjoint. Now let be a quasiline.

Clearly there is some 𝔖 ∅ [𝛾] such that D ⧵ D𝔖 ≠ 𝑗 and it suffices to show D = D𝔖 . To this end, we
observe that for every 𝑎 ∅ [𝛾] the points of D can only have the entries 1 or # in their (𝛾 + 𝑎)th
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 15 of 24

F IGURE 4 . 2 The hypergraph amalgamation , where blue shapes indicate copies of o.
coordinates. Therefore, all points of D need to agree in these coordinates (cf. Definition 1.)) and
together with D ⧵ D𝔖 ≠ 𝑗, it follows that the 𝛾 last coordinates of the points in D and D𝔖 are the
same. Combined with , this leads to D = D𝔖 . □

Lemma 4.3 (Picture zero). If 𝑢 𝑐 3 and ] denotes a 𝑢-uniform hypergraph, then there is a pictureo0 = (p0,∞0) over ] such that there is a family (D+)+∅𝛼(]) of mutually disjoint combinatorial lines
satisfying and ∞0[D+] = + for every + ∅ 𝛼(]).
Proof. Set 𝛾 = |𝛼(])|, fix an arbitrary enumeration 𝛼(]) = {+1, … , +𝛾} and consider the combi-
natorial lines D1, … ,D𝛾 ( [𝑢]2𝛾 obtained in Lemma 4.#. Define D+𝑎 = D𝑎 for every 𝑎 ∅ [𝛾] and set

. Since these lines aremutually disjoint, there is amap∞0 , p0 𝜑𝜓(]) such that∞0[D+] = + holds for every + ∅ 𝛼(]). Now (p0,∞0) is the desired picture. □

Graphically, the picture o0 can be represented as in Figure 4.1. On the vertical projection we
have our 𝑢-uniform hypergraph ] with labelled edges {+1, … , +𝛾}. For each edge +𝔖 , there is a
corresponding combinatorial line D𝔖 drawn in the same colour. The music lines o0,⋆ = ∞𝐿10 (⋆)
are visualised as dashed horizontal lines.

4.2 Partite amalgamation

In an attempt to aid the reader’s orientation, wewould briefly like tomention how partite amalga-
mations were used in [#1] for proving the existence of hypergraphs with large chromatic number
and large girth (see also the recent survey [#7, section 3.3] for more context and additional
figures).
In that argument, one works with 𝑥-partite 𝑢-uniform hypergraphs instead of the present pic-

tures. Suppose that we just have constructed some such hypergraph o, and that for some index𝑎 ∅ [𝑥], there are 𝛾𝑎 vertices in the 𝑎th vertex class of o. When we have a further 𝛾𝑎-uniform
hypergraphℒ in mind, we define the amalgamation as follows: The 𝑎th vertex class
of 𝑃 is 𝜓(ℒ), each edge ofℒ gets extended to its own copy of o, distinct copies of this form are
only allowed to intersect in the 𝑎th vertex class and the union of all these copies is the desired 𝑥-
partite hypergraph 𝑃 (see Figure 4.#). Starting with a hypergraph that looks like our picture zero
and performing such amalgamation steps iteratively for all 𝑎 ∅ [𝑥], we end up getting hypergraphs
of large girth and chromatic number.
Now with every picture o = (p,∞) in the sense of the present work, we can associate the par-

tite hypergraph with vertex set p whose edges correspond to the combinatorial lines in p. It is
our intention that on the level of these associated hypergraphs, the amalgamation of pictures
introduced next should resemble the above construction.
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16 of 24 REIHER ./ al.

F IGURE 4 . 3 The partite amalgamation .

Here are the precise details. Suppose that we have a picture o = (p,∞o) over some 𝑢-uniform
hypergraph], where p ( [𝑢]𝛾. Let ⋆ be a vertex of] and suppose further that, viewing themusic
lineo⋆ as an alphabet in its own right,we are given a collectionℒ ( ℒ(o𝑥⋆) of combinatorial lines
in the 𝑥-dimensional Hales–Jewett cube overo⋆. We shall now describe the construction of a pair𝑃 = (Σ,∞𝑃) consisting of a set Σ ( [𝑢]𝛾𝑥 and a map ∞𝑃 , Σ𝜑 𝜓(]). This pair 𝑃, which is not
necessarily a picture again, only depends on o andℒ and will be denoted by .
Let us fix for every line 𝑄 ∅ ℒ the combinatorial embedding ≫𝑄 , o⋆ 𝜑 (o⋆)𝑥 whose

image is 𝑄. Recalling o⋆ ( [𝑢]𝛾 we can naturally extend ≫𝑄 to a combinatorial embed-
ding ≫+𝑄 , [𝑢]𝛾 𝜑 [𝑢]𝛾𝑥. Now we set p𝑄 = ≫+𝑄(p) and define ∞𝑄 , p𝑄 𝜑 𝜓(]) to be the
composition ∞𝑄 = ∞o ◦ (≫+𝑄|p𝑄 )𝐿1.
Fact 4.4.

(i) For every combinatorial line𝑄 ∅ ℒ, the pairo𝑄 = (p𝑄 ,∞𝑄) is a picture over ] witho𝑄⋆ = 𝑄.
(ii) If𝑄,𝜓 ∅ ℒ are distinct, then p𝑄 ⧵ p𝜓 = 𝑄 ⧵ 𝜓.
Proof. Beginning with (i) we consider an arbitrary quasiline D ( p𝑄 . Now D𝑇 = (≫+𝑄)𝐿1[D] is a
quasiline inp. Sinceo is a picture, this implies that D𝑇 is actually a combinatorial line and∞𝑄[D] =∞o[D𝑇] is an edge of ]. The first statement entails that D is a combinatorial line as well. Finally,
we have o𝑄⋆ = ∞𝐿1𝑄 (⋆) = (≫+𝑄 ◦∞𝐿1o )(⋆) = ≫+𝑄[o⋆] = 𝑄.
Proceeding with (ii) we consider an arbitrary point g = (g(1), … , g(𝑥)) ∅ p𝑄 ⧵ p𝜓 , whereg(1), … , g(𝑥) ∅ p. If one of the points g(𝑎) was not in o⋆, then there could be at most one linet ( (o⋆)𝑥 with g ∅ ≫+t(p), whence 𝑄 = 𝜓. This argument shows g(1), … , g(𝑥) ∅ o⋆, which

in turn implies g ∅ ≫+𝑄[o⋆] ⧵ ≫+𝜓[o⋆] = 𝑄 ⧵ 𝜓. Thus, we have p𝑄 ⧵ p𝜓 ( 𝑄 ⧵ 𝜓 and owing to𝑄 ( p𝑄 , 𝜓 ( p𝜓 , the reverse inclusion is clear. □

Now the desired pair is defined by

Σ = ⋃
𝑄∅ℒ p𝑄 and ∞𝑃 = ⋃

𝑄∅ℒ ∞𝑄 .
The pictureso𝑄 occurring in Fact 4.4(i) are called the standard copies ofo in𝑃. Part (ii) of Fact 4.4
tells us that any two standard copies can intersect only on the music line 𝑃⋆. Therefore, ∞𝑃 is
indeed a function from Σ to 𝜓(]).
Summarising the discussion so far, one can interpret the construction of 𝑃 as follows (see

Figure 4.3). First, we construct the music line 𝑃⋆ = ⋃
ℒ and then for each combinatorial
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 17 of 24

line 𝑄 ∅ ℒ, we construct a standard copy o𝑄 of o. The union of all these standard copies is
exactly 𝑃.
In general, the partite amalgamation does not necessarily create a new picture,

because there could be ‘unintended’ quasilines in Σ whose points belong to several distinct stan-
dard copies ofo. The main result of this subsection shows how we will avoid this situation in the
future.

Proposition 4.5. Let o = (p,∞o) be a picture over a 𝑢-uniform hypergraph ], where 𝑢 𝑐 3 and if𝑢 = 3, then] isd(3)𝐿4 -free. If ⋆ denotes a vertex of] andℒ ( ℒ(o𝑥⋆) is a collection of combinatorial
lines containing neither tripods nor triangles, then is again a picture over ].
Proof. Continuing our earlier notation, we again suppose p ( [𝑢]𝛾 and we write 𝑃 = (Σ,∞𝑃) for
the pair . The main task is to establish the following statement.

For every quasiline D ( Σ, there is some𝑄 ∅ ℒ such that D ( p𝑄 . (4.1)

In other words, the only quasilines in Σ are those contained in standard copies ofo. Assuming
for the moment that this holds, it follows as in the proof of Fact 4.4(i) that all quasilines D ( Σ are
combinatorial lines projecting onto edges of ], that is, that 𝑃 is indeed a picture. Thus, it remains
to show (4.1).
To this end, we write D = {%1, … ,%𝑢} and %𝑎 = (

%𝑎(1), … ,%𝑎(𝑥)) for every 𝑎 ∅ [𝑢], where
%𝑎(1), … ,%𝑎(𝑥) ∅ p. Since D is a quasiline, for every P ∅ [𝑥], the set

DP = {
%1(P), … ,%𝑢(P)}

either consists of a single element, or it is a quasiline contained in p. In the latter case, DP is
actually a combinatorial line, because o is a picture. Owing to the construction of 𝑃, there exist
lines 𝑄1, … ,𝑄𝑢 ∅ ℒ such that %𝑎 ∅ o𝑄𝑎 for every 𝑎 ∅ [𝑢] and there are points A1, … , A𝑢 ∅ p such
that %𝑎 = ≫+𝑄𝑎 (A𝑎). For clarity we point out that for %𝑎 𝑈 𝑃⋆ the pair (𝑄𝑎 , A𝑎) is uniquely determined
by%𝑎 . On the other hand, if%𝑎 ∅ 𝑃⋆, then there can be several legitimate choices for𝑄𝑎 , but A𝑎 ∅ o⋆
will then necessarily be true.
In general, we have

%𝑎(P) ∅ o⋆ m {A𝑎} for all 𝑎 ∅ [𝑢] and P ∅ [𝑥], (4.#)

whence DP ( o⋆ m {A1, … , A𝑢}. The remainder of the proof exploits heavily that the set o⋆ m{A1, … , A𝑢} can contain only very few combinatorial lines.

Claim 4.). Every combinatorial line d ( o⋆ m {A1, … , A𝑢} contains at most one point fromo⋆ and
at least 𝑢 𝐿 1 points from {A1, … , A𝑢} 𝐵 o⋆.
Proof. Since ∞o projects d onto an edge of ] while all points in o⋆ are projected to the same
vertex ⋆, we have |d ⧵ o⋆| 2 1. Due to |d| = 𝑢, the second assertion follows. □

Let = = {P ∅ [𝑥], |DP| = 1} be the set of coordinates where the points of our quasiline D agree.
So for every A ∅ =, there is some point %(A) such that %(A) = %1(A) = ⋯ = %𝑢(A). Because of
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F IGURE 4 . 4 The line DP→ ( p.
|D| = 𝑢, we have = ≠ [𝑥] . (4.3)

Assume for the sake of contradiction that %(A→) 𝑈 o⋆ holds for some A→ ∅ =. In view of (4.#),
this implies A1 = ⋯ = A𝑢 = %(A→). Now Claim 4.) shows that the set o⋆ m {A1, … , A𝑢} contains no
combinatorial lines, which in turn leads to = = [𝑥]. This contradiction to (4.3) establishes

%(A) ∅ o⋆ for all A ∅ =. (4.4)

Let us now pick an arbitrary coordinate P→ ∅ [𝑥] 𝐵 =. Due to (4.#) and Claim 4.), we may
assume, without loss of generality, that %P→(𝑎) = A𝑎 𝑈 o⋆ holds for every 𝑎 ∅ [𝑢 𝐿 1]. Concerning
the point 𝐼 = %P→(𝑢), however, we know nothing more than that it is in o⋆ m {A𝑢}. We shall show
later that the set Π = {P ∅ [𝑥] 𝐵 =, %P(𝑎) = %P→(𝑎) for every 𝑎 ∅ [𝑢]}
is equal to [𝑥] 𝐵 =. Assuming for the moment that this is true, the proof of (4.1) can be completed
as follows. Let𝑄 ( o𝑥⋆ be the combinatorial line whose set of moving coordinates is Π and which
takes the values %(A) on its constant coordinates A ∅ =. The definition of Π discloses D = ≫+𝑄[DP→].
Furthermore (4.4) and A1 𝑈 o⋆ imply 𝑄 = 𝑄1 and thus we have 𝑄 ∅ ℒ. So altogether 𝑄 is the
line required by (4.1).
In the remainder of the argument, we shall show that the assumption Π ≠ [𝑥] 𝐵 = leads to

the contradiction that eitherℒ contains a tripod or a triangle, or 𝑢 = 3 and ] contains a d(3)𝐿4 .
Considering the non-empty set we distinguish two cases.
First Case. We have Dv = DP→ for every v ∅ 𝐸.
Pick an arbitrary coordinate v→ ∅ 𝐸. Roughly speaking, the equality Dv→ = DP→ means that the

lines DP→ and Dv→ contain the same points, but not ‘in the same order’. By the definition of Π, there
needs to exist some 𝑎 ∅ [𝑢 𝐿 1] such that %P→(𝑎) ≠ %v→(𝑎) and without loss of generality we can
assume that this happens for 𝑎 = 1. So %v→(1) ≠ %P→(1) = A1.
Due to %v→(1) ∅ (o⋆ m {A1}) ⧵ {A2, … , A𝑢𝐿1,𝐼}, we have %v→(1) = 𝐼 ∅ o⋆. Now (4.#) tells us

%v→(𝑎) = A𝑎 for every 𝑎 ∅ [2, 𝑢 𝐿 1] and together with Dv→ = DP→ we obtain %v→(𝑢) = A1. In view
of (4.#) and A1 𝑈 o⋆, this shows A1 = A𝑢 (see Figure 4.4).
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES–JEWETT CUBES 19 of 24

F IGURE 4 . 5 The lines DP→ ,Dv→ ( p.
We contend that

%v(𝑎) = %v→(𝑎) (4.5)

holds for all v ∅ 𝐸 and all 𝑎 ∅ [𝑢]. To see this, we fix any v ∅ 𝐸 and recall that Dv = DP→ . For every𝑎 ∅ [2, 𝑢 𝐿 1], the point A𝑎 needs to appear somewhere in Dv, but due to (4.#) only %v(𝑎) = A𝑎 is
possible. This leaves us with {%v(1),%v(𝑢)} = {𝐼, A1} and in view of v 𝑈 Π, we obtain %v(1) = 𝐼 and
%v(𝑢) = A1, which proves (4.5).
Thereby we have determined the points %1, … ,%𝑢 completely and we arrive at the following

description of the lines 𝑄1, 𝑄2, 𝑄𝑢.
𝑊 x ∉𝑄1 constant %(A) moving constant 𝐼𝑄2 constant %(A) moving moving𝑄𝑢 constant %(A) constant 𝐼 moving

All three lines pass through ≫+𝑄1 (𝐼) = ≫+𝑄2 (𝐼) = ≫+𝑄𝑢 (𝐼). Thus, they form a tripod inℒ, contrary
to our hypothesis.
Second Case. Some v→ ∅ 𝐸 satisfies Dv→ ≠ DP→ .
The distinct combinatorial lines DP→ and Dv→ can intersect in at most one point. On the other

hand, Claim 4.) tells us that both of them contain at least 𝑢 𝐿 1 points from {A1, … , A𝑢} 𝐵 o⋆. For
these reasons, we have 𝑢 = 3,o⋆ ⧵ {A1, A2, A3} = 𝑗 and, without loss of generality, DP→ = {𝐼, A1, A2},Dv→ = {z, A1, A3}, where 𝐼, z ∅ o⋆ are distinct (see Figure 4.5).
If there existed a third line , it had to be of the form D{ = {𝜎, A2, A3} for

some 𝜎 ∅ o⋆, but then the projections ∞o[DP→], ∞o[Dv→], ∞o[D{] formed a d(3)𝐿4 in ], contrary
to our assumptions.
This proves that DP→ and Dv→ are the only lines in . It is now easy to see that everyv ∅ 𝐸 satisfies %v(1) = A1, %v(2) = z, and %v(3) = A3, which in turn yields the following description

of the lines 𝑄1, 𝑄2 and 𝑄3.
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F IGURE 4 . 6 A triangle inℒ.

𝑊 x ∉𝑄1 constant %(A) moving moving𝑄2 constant %(A) moving constant z𝑄3 constant %(A) constant 𝐼 moving

Therefore, any two of the three lines 𝑄1, 𝑄2, 𝑄3 intersect but due to 𝐼 ≠ z they do not pass
through a common point (see Figure 4.)). This contradicts the assumption that ℒ contains
no triangle. □

4.3 The construction of (𝑡, },[)
This subsection is devoted to the proof of Theorem 1.7. Recall that we are given two integers 𝑢 𝑐3, 𝑦 𝑐 1, and a real 𝑚 ∅ (0, 𝑢𝐿1𝑢 ). Theorem 3.3 delivers a 𝑢-uniform hypergraph ] with Ω(]) > 𝑦
which has the 𝑚-fractional property. In the special case 𝑢 = 3, Lemma 3.4 allows us to assume,
additionally, that ] is d(3)𝐿4 -free. For notational simplicity, we can suppose 𝜓(]) = [𝐻] for some
natural number 𝐻.
Let o0 = (p0,∞0) denote the picture zero over ] provided by Lemma 4.3. Starting with o0, we

shall define recursively a sequence (o𝑎)𝑎2𝐻 of pictures over]. These pictures will be written in the
formo𝑎 = (p𝑎 ,∞𝑎), where p𝑎 ( [𝑢]𝛾𝑎 for some dimension𝛾𝑎 , and their music lines will be denoted
byo𝑎,𝔖 = ∞𝐿1𝑎 (𝔖) for all 𝔖 ∅ [𝐻]. As the proof of Lemma 4.3 shows, picture zero can be assumed to
have the dimension𝛾0 = 2|𝛼(])|, but this fact is of no importance towhat follows. The remaining
terms of the sequence (𝛾𝑎)𝑎2𝐻 will be defined together with the corresponding pictures.
Suppose now that for some 𝑎 ∅ [𝐻], we have just constructed the picture o𝑎𝐿1. Theorem 3.7

applied to the music line o𝑎𝐿1,𝑎 here in place of 1 there yields for some dimension 𝑥𝑎 a collection
ℒ𝑎 ( ℒ(o𝑥𝑎𝑎𝐿1,𝑎) of combinatorial lines containing neither tripods nor triangles such that Ω(ℒ𝑎) >𝑦. Owing to Proposition 4.5, the structure is again a picture over]. For definiteness
we point out that p𝑎 ( [𝑢]𝛾𝑎 holds for𝛾𝑎 = 𝛾𝑎𝐿1𝑥𝑎 . This concludes the explanation howwemove
from one picture o𝑎𝐿1 of our sequence to the subsequent one.
It will turn out that the final picture, ormore precisely the set = (𝑢, 𝑦,𝑚) = p𝐻, has the prop-

erties described in Theorem 1.7. As usual in arguments by partite construction, our stipulations
unfold as follows.
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Claim 4.7. If 𝜋 denotes an 𝑦-colouring of p𝐻, then for every non-negative 𝑎 2 𝐻, there exist a com-
binatorial embedding ≫, [𝑢]𝛾𝑎 𝜑 [𝑢]𝛾𝐻 with ≫[p𝑎] ( p𝐻 and colours <𝑎+1, … , <𝐻 ∅ [𝑦] such that(𝜋 ◦ ≫)(⋆) = <𝔖 holds whenever ⋆ ∅ o𝑎,𝔖 and 𝔖 ∅ (𝑎, 𝐻].
Proof. Weproceed by backwards induction on 𝑎. The statement is vacuously true for 𝑎 = 𝐻. Suppose
now that Claim 4.7 holds for some positive 𝑎 2 𝐻 and that a colouring 𝜋, p𝐻 𝜑 [𝑦] is given. The
induction hypothesis shows that there are a combinatorial embedding ≫, [𝑢]𝛾𝑎 𝜑 [𝑢]𝛾𝐻 with≫[p𝑎] ( p𝐻 and colours<𝑎+1, … , <𝐻 ∅ [𝑦] such that (𝜋 ◦ ≫)(⋆) = <𝔖 whenever⋆ ∅ o𝑎,𝔖 and 𝔖 ∅ (𝑎, 𝐻].
Notice that 𝜋 = 𝜋 ◦ ≫ is an 𝑦-colouring of p𝑎 and, hence, ofo𝑎,𝑎 = ⋃

ℒ𝑎 . By our choice of the line
systemℒ𝑎 , some combinatorial line 𝑄 ∅ ℒ𝑎 is monochromatic with respect to 𝜋, say with colour<𝑎 . Due to the construction of , the picture o𝑎 contains a standard copy o𝑄𝑎𝐿1 ofo𝑎𝐿1 whose underlying set p𝑄𝑎𝐿1 is given by p𝑄𝑎𝐿1 = ≫+𝑄[p𝑎𝐿1], where ≫+𝑄 , [𝑢]𝛾𝑎𝐿1 𝜑 [𝑢]𝛾𝑎 is a
combinatorial embedding such that ≫+𝑄[o𝑎𝐿1,𝑎] = 𝑄.
We contend that the combinatorial embedding ≫ = ≫ ◦ ≫+𝑄 from [𝑢]𝛾𝑎𝐿1 to [𝑢]𝛾𝐻 and the colours<𝑎 , … , <𝐻 have the desired properties. To confirm this, we consider any point ⋆ ∅ o𝑎𝐿1,𝔖 , where𝔖 ∅ [𝑎, 𝐻]. Due to 𝜋 ◦ ≫ = 𝜋 ◦ ≫ ◦ ≫+𝑄 = 𝜋 ◦ ≫+𝑄 we need to show (𝜋 ◦ ≫+𝑄)(⋆) = <𝔖 . In the special case𝔖 = 𝑎 this follows from ≫+𝑄(⋆) ∅ 𝑄 and for 𝔖 ∅ (𝑎, 𝐻]we can appeal to ≫+𝑄(⋆) ∅ o𝑎,𝔖 combined with

the choice of <𝔖 . □

We are now ready to prove that  = p𝐻 satisfies clause (i) of Theorem 1.7. Given a colouring𝜋, p𝐻 𝜑 [𝑦] the case 𝑎 = 0 of Claim 4.7 delivers a combinatorial embedding ≫, [𝑢]𝛾0 𝜑 [𝑢]𝛾𝐻
with ≫[p0] ( p𝐻 and colours <1, … , <𝐻 ∅ [𝑦] such that (𝜋 ◦ ≫)(⋆) = <𝔖 whenever 𝔖 ∅ [𝐻] and ⋆ ∅o0,𝔖 . Due toΩ(]) > 𝑦, there is an edge + of] that ismonochromaticwith respect to the 𝑦-colouring𝑎 ∩ <𝑎 of𝜓(]) = [𝐻]. Next, by Lemma 4.3, there is a combinatorial line D+ ( p0 with ∞0[D+] = +.
Now ≫[D+] is a combinatorial line in p𝐻 all of whose points have the same colour as +.
It remains to address part (ii) of Theorem 1.7. For this purpose, we consider the 𝑢-uniform

hypergraph𝑧 with vertex set 𝜓(𝑧) =  = p𝐻 whose edges correspond to the combinatorial linesD ( p𝐻. Since o𝐻 = (p𝐻,∞𝐻) is a picture, we could equivalently say that the edges of 𝑧 are the
quasilines in p𝐻. Moreover, ∞𝐻 is a hypergraph homomorphism from 𝑧 to ]. As ] has the 𝑚-
fractional property, Lemma 3.# implies that𝑧 has this property, too. In particular, every set ( 
has a subset  (  of size || 𝑐 𝑚|| which is independent in 𝑧 and, therefore, contains no
quasilines. This completes the proof of Theorem 1.7.

5 CONCLUDING REMARKS

A 𝑢-tuple (⋆1, … ,⋆𝑢) of natural numbers forms a (possibly degenerate) arithmetic progression of
length 𝑢 if and only if it solves the homogeneous system of linear equations

⋆𝑎 𝐿 2⋆𝑎+1 + ⋆𝑎+2 = 0, where 𝑎 = 1,… , 𝑢 𝐿 2. (5.1)

Thus, van der Waerden’s theorem and Szemerédi’s theorem can be regarded as Ramsey theoretic
statements on the solutions of (5.1). Similar results have also been studied formore general systems
of equations, and one may wonder for which systems the natural analogue of Theorem 1.4 holds.
Given a matrix 1 ∅ 𝜌𝛾𝐺𝑥 with integer coefficients, the system of homogeneous linear

equations 1𝑪 = 0 is called partition regular if for every finite colouring of ⟼, there exists a
monochromatic solution 𝑪 = (⋆1, … ,⋆𝑥)𝐸 of the system. Examples of partition regular systems
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include the single equation ⋆1 + ⋆2 = ⋆3 (Schur’s theorem) and arithmetic progressions (van der
Waerden’s theorem). A full characterisation of partition regularity was obtained by Rado [3, #5].
Similarly, a homogeneous linear system 1𝑪 = 0 is said to be density regular if for every subset𝜈 ( ⟼ of positive upper density, there is a solution 𝑪 ∅ 𝜈𝑥 which consists of 𝑥 distinct integers.

Density regularity implies partition regularity (by focusing on the densest colour class), but not
the other way around. For instance, Schur’s equation ⋆1 + ⋆2 = ⋆3 is partition regular but not
density regular (as it has no solution with three odd numbers). Frankl, Graham and the second
author [1#] gave an explicit characterisation of density regular systems.
It would be interesting to determine for which systems of linear equations there exists a version

of Theorem 1.4.

Question 5.1. Given a system of linear equations 1𝑪 = 0 with 1 ∅ 𝜌𝛾𝐺𝑥, do there exist a set of
natural numbers 𝜈 ( ⟼ and a real number J > 0 such that
(i) for every finite colouring of 𝜈 there is a monochromatic solution of 1𝑪 = 0
(ii) and every finite set ℝ ( 𝜈 has a subset ) ( ℝ with |)| 𝑐 J|ℝ| not containing a non-trivial

solution of 1𝑪 = 0?
We conjecture that for density regular systems the answer is affirmative. An interesting spe-

cial case is offered by the single equation ⋆1 +⋯ + ⋆𝑺 = H1 +⋯ + H𝑺. Sets without non-trivial
solutions to this equation, called n𝑺-sets, have been studied intensively in the literature. Guided
by Paul Erdős, the last two authors proved together with Ne,et-il that Question 5.1 has a positive
answer for n𝑺-sets (see [##, Theorem 1.#]). As 𝑺 tends to infinity, their value of J converges to zero
very rapidly. The girth Ramsey theorem [#(] implies that one can take J = 134 uniformly in 𝑺, as
we shall explain in forthcoming work.
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