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1 | INTRODUCTION
1.1 | Arithmetic progressions

For every natural number n, we set [n] = {1, ..., n}. Given a set X and a non-negative integer k,
we write X®) = {e C X : |e| = k} for the collection of all k-subsets of X. The theorem of van der
Waerden is one of the earliest results in Ramsey theory. It asserts that every finite colouring of
the integers yields monochromatic arithmetic progressions of arbitrary length. More precisely,
for positive integers k and r, we say that a set of integers X C N has the van der Waerden prop-
erty vdW(k, r) if every r-colouring of X contains a monochromatic AP, that is, an arithmetic
progression of length k. Now van der Waerden’s theorem [34] can be briefly stated as follows.

Theorem 1.1 (van der Waerden). For all integersk > 3 andr > 2, there exists an integer w = w(k,r)
such that for every n > w the set [n] has the property vdW(k, r).
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Solving a long-standing conjecture of Erdés and Turan [10], Szemerédi proved the following
celebrated result in [32].

Theorem 1.2 (Szemerédi). For every integer k > 3 and every real § € (0, 1], there exists an integer
n, = ny(k, 8) such that for every n > n, the following holds: Every subset A C [n] of size |A| > én
contains an AP,.

In other words, Szemerédi’s theorem states that every subset of N with positive upper den-
sity contains arbitrarily long arithmetic progressions. This result stimulated a lot of research and
today there are many proofs using tools from a diverse spectrum of mathematical areas, including
ergodic theory and higher order Fourier analysis (see, e.g. [13, 14, 16, 17, 20, 31, 33]).

Similar to the van der Waerden property vdW(k, r), one can define a property related to The-
orem 1.2. For an integer k > 3 and a real § > 0, we say that a finite set of integers X C N has
the Szemerédi property Sz(k, ) if every subset Y C X of size |Y| > §|X]| contains an AP,. So
Szemerédi’s theorem states that [n] has the property Sz(k, §) whenever n > n,(k, ).

By looking at the densest colour class, one sees that for § < 1/r the property Sz(k,d)
yields vdW(k, r). In this sense, Szemerédi’s theorem implies van der Waerden’s theorem. One
could argue that Szemerédi’s original proof shows that, conversely, van der Waerden’s theorem
implies his theorem, but it is safe to say that this direction is a lot deeper. Motivated by a famous
problem of Pisier [23], the following question was considered in [1, 9].

Question 1.3. Is it true that for every k > 3 there are § > 0 and a set of integers X such that

(i) X has the property vdW(k, r) for every r > 1;
(ii) every finite Y C X fails to have property Sz(k, §)?

The question did also appear in a list of open problems in additive combinatorics compiled by
Croot and Lev (see [2, Problem 3.10]). Notice that a negative answer would show that the proper-
tiesvdW(k, r) and Sz(k, §) are equivalent. This would, in particular, provide a surprising new way
of deducing Szemerédi’s theorem from van der Waerden’s theorem. For this reason, the authors
of [9] conjectured that Question 1.3 has a positive answer. This work confirms this.

Theorem 1.4. For every integer k > 3 and real u € (0, %), there is a set of natural numbers X =
X(k, 1) C N such that

(i) foreveryr > 1, every r-colouring of X contains a monochromatic APy,
(ii) but every finite subset Y C X contains a subset Z C'Y of size |Z| > u|Y| without an AP,.

We remark that Theorem 1.4 does not hold for u > % Indeed, every set X C N satisfying con-
dition (i) must contain an AP;. By taking Y C X to be an AP;, we have |Y| = k. Therefore, the
only subset Z C Y with |Z] > u|Y|is Y itself. So Y has the property Sz(k, ).

1.2 | Multidimensional version

Gallai and Witt discovered independently that van der Waerden’s theorem generalises as follows
to higher dimensions. If F C z¢ is a finite configuration of d-dimensional lattice points and r
denotes a number of colours, then there is some integer n = n(F, r) such that for every r-colouring
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of [n]? there is a monochromatic homothetic copy of F. This means that there is a vector v € z¢
and a positive integral scaling factor 4 such that the set v + AF = {v + Af : f € F}is contained
in [n]¢ and all of its points have the same colour. There is also a multidimensional version of
Szemerédi’s theorem, first proved by Fiirstenberg and Katznelson [14], which asserts that for every
finite configuration F C 9 and every positive real § there exists some n = n(F, §) such that every
set A C [n]? of size |A| > 6n¢ contains a homothetic copy of F.

When formulating a multidimensional version of Theorem 1.4, one can make the second clause
stronger by forbidding the large subsets Z to contain ‘copies of F’ in a sense more general than
‘homothetic copies’. Given a finite configuration F C 79 and a set Z C 79, we shall say that Z is
F-free if there is no non-zero real scaling factor A such that Z contains a congruent copy of AF.

Illustrating the difference between these concepts, we consider the sets

F ={(0,0),(0,1),(1,0),(1,1)} and F’ ={(1,0),(-1,0),(0,1),(0,—1)},

both of which are squares in Z2. They fail to be homothetic copies of each other, but F’ is a
congruent copy of \/EF

Theorem 1.5. For every finite configuration F C 7% of |F| = k > 3 points and every real u €
(0, ]%1) there is a set of lattice points X = X(F, u) C N such that

(i) foreveryr > 1, every r-colouring of X contains a monochromatic homothetic copy of F,
(ii) but every finite subset Y C X has an F-free subset Z C Y of size |Z| > u|Y|.

1.3 | Combinatorial lines

Let us now briefly explain another classical result of Ramsey theory, the Hales-Jewett theorem.
Given integers k > 2 and n > 1, we refer to [k]" as the n-dimensional Hales-Jewett cube over [k].
Identifying [k]' with [k], we can regard [k] itself as a one-dimensional cube. A map 7 : [k] —
[k]" is called a combinatorial embedding if there exists a partition of [n] = C w M of the coordinate
set [n] into a set of constant coordinates C and a non-empty set of moving coordinates M such that,
writing n(i) = (4;1, ..., u;,) for each i € [k], we have u;. = --- =y, for every c € C and u;,,, =
i whenever i € [k] and m € M. The condition M # @ ensures that combinatorial embeddings
are injective.

A combinatorial line is the image of such a combinatorial embedding. For instance,
{111,121, 131} is a combinatorial line in [3]3, while {113, 122, 131} is not. Now the result of Hales
and Jewett [18] asserts that given k > 2 and r > 1, there exists a dimension n = HI(k, r) such that
for every colouring f : [k]" — [r], there exists a monochromatic combinatorial line. An even
more profound result, first obtained by Fiirstenberg and Katznelson [15] by methods from ergodic
theory, asserts that the corresponding density statement holds as well. That is, for every integer
k > 2 and every real § > 0, there exists a dimension n = DHI(k, §) such that every set A C [k]" of
size |A| > 6k contains a combinatorial line. Nowadays some elementary combinatorial proofs of
this so-called density Hales—Jewett theorem are known, see [4, 24].

Our next result relates to the Hales-Jewett theorem in a similar way as Theorem 1.4 relates to
van der Waerden’s theorem. In order to render its second clause on the existence of dense subsets
without lines sufficiently strong for our intended application, we will work with the following
relaxed line concept.
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Definition 1.6. Let L be a k-element subset of the Hales-Jewett cube [k]". If for every coordinate
direction v € [n] the vth entries of the points in L are either identical or mutually distinct, then L
is called a quasiline.

In general, every combinatorial line is a quasiline, but not the other way around. For instance,
{124,223,322,421} is a quasiline in [4]3, but not a combinatorial line. In the special case k = 3,
it may be observed that if one identifies [3] with the three-element field and views [3]" as a
vector space over that field, then quasilines are the same as one-dimensional affine subspaces
(or arithmetic progressions of length three). However, this does not generalise to larger prime
numbers.

Theorem 1.7. For all integersk > 3,r > 1 and all reals u € (0, %) there exist a dimension n and
a set of points X = X(k,r, u) C [k]" such that

(i) for every r-colouring of X there is a monochromatic combinatorial line,
(ii) butevery Y C X contains a subset Z C Y of size |Z| > u|Y| such that Z contains no quasiline.

In fact, the set X we construct will also have the property that every quasiline L C X is a
combinatorial line.

1.4 | Organisation

We shall show in the next section that Theorem 1.7 implies our other results, so that it will only
remain to prove Theorem 1.7. The preliminary Section 3 deals with auxiliary hypergraphs and
restricted versions of the Hales-Jewett theorem. The proof of Theorem 1.7 itself is based on the
partite construction method (see [11, 21]) and will be given in Section 4. We conclude with some
further problems and results in Section 5.

2 | IMPLICATIONS

In this section, we assume that Theorem 1.7 is true and show how to derive Theorem 1.5 from it.
Since Theorem 1.4 agrees with the case d = 1 and F = [k] of Theorem 1.5, this means that we will
only have to prove Theorem 1.7 in later sections.

We indicate the Euclidean norm in R4 by || - || and (x, y) — x - y denotes the standard scalar
product in the Euclidean space R%. Here is a simple statement that will later assist us in the
selection of a ‘sufficiently large’ number.

Lemma 2.1. For every finite configuration F C R® there is a positive real ¢ = e(F) such that for all
functions p, o from F to F, the following holds: If there is a real q with

qllf’ = f"1? = (p(f) = o(f") - (o(f") — O'(f”))| <e foral f',f" €F, D
then there actually is a real q with

alf’ = "7 = (p(f") = p(f") - (o(f) = a(f")) forall ', f" €F. (22)
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Proof. 'We shall show first that for every fixed pair (p, o), there is such a constant €. If (2.2)
holds for some g, there is nothing to show, so we can assume that no such q exists. This state of
affairs can be expressed in the following way in the vector space RF™*F, Let v € RF*F be the vec-
tor with (f/, f")-entry || f' — f"'||? for every pair (f', ") € F? and, similarly, let w be the vector
with (f/, f)-entry (o(f") — p(f")) - (6(f") — o(f"")). The absence of g means that w does not
belong to the subspace V = Rv of R"*F" generated by v. Hence, there is some €, > 0 such that
the distance of w from any point in V exceeds |F|e,,. Now if (2.1) held for some g € R and for €,
instead of ¢, then

2

lgo—wi> = Y |alf = f"I? = (o) = (") - (o(f") = ()]

(f".f"MeF?

2.2
< IFPPe2,

would contradict the choice of ¢ ,;. This concludes the proof that for every pair of functions (p, o),
there is an appropriate constant €. Since there are only finitely many such pairs (p, o), the

number € = n;én €, is as desired. O

‘We proceed with a finitary version of Theorem 1.5.

Proposition 2.2. Given a finite configuration F C 7% of k = |F| > 3 points, a number of colours
r>landareal u € (0, %), there exists a finite set X = X(F,r, i) C N% such that

(i) for every r-colouring of X there is a monochromatic homothetic copy of F
(ii) andeveryY C X has an F-free subset Z C Y of size |Z| = u|Y|.

Proof. By translating F we may assume F C N¢. Let F = {f}, ..., f} enumerate the points of F.
Owing to Theorem 1.7, there are a natural number n and a set X C [k]" such that

(a) for every r-colouring of X there is a monochromatic combinatorial line
(b) and every Y C X possesses a subset Z C Y of size | Z| > u|Y| not containing any quasilines.

Let € = ¢(F) > 0 be the constant obtained in Lemma 2.1, set s = max{||f;|| : i € [k]}, choose
T > n,s, ¢! sufficiently large and consider the map

p: X — 74
@), ...a(m) — Y T f .
i=1

Because of T >> s this map is injective. We shall show that the image of ¢, that is, the set X =
@[X], has the desired properties.

Beginning with (i) we look at an arbitrary r-colouring y : X — [r]. We need to exhibit a
monochromatic homothetic copy of F. By (a) applied to the r-colouring y o ¢ of X, there is a
combinatorial embedding 5 : [k] — X such that y o p o7 is a constant function from [k] to [r].
The image of ¢ o 7 is clearly monochromatic and one confirms easily that it is a homothetic copy
of F.

The proof of part (ii) hinges on the fact that all copies of F of the kind we want to exclude
correspond to quasilines in the Hales-Jewett cube.
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Claim2.3. Let L C X be a set of k points. If p[L] is congruent to AF for some non-zero real scaling
factor 4, then L is a quasiline.

In the special case relevant for Theorem 1.4, this has a fairly simple reason briefly sketched in
Remark 2.4 below. In the general case we argue as follows.

Proof of Claim 2.3. Enumerate L = {a,, ..., @, } in such a way that the points ¢(a;) in Z¢ satisfy
lle(a) — papll = Allf; — ;I
foralli, j € [k]. Writing a; = (q;(1), ..., a;(n)) for every i € [k], we contend that
forallv,v'" € [n] thereis areal q,,,, such that
(fa) = fa,00)  Faon = Fayon) = B Ifi = £
holds for all i, j € [k].

Assume for the sake of contradiction that this fails and fix a counterexample (v, ") for which
2” 4+ 2V is maximal. It is important to note here that this condition determines the pair {v, v’}
uniquely, because every integer can be written in at most one way as a sum of two (identical or
distinct) powers of two. Setting D = {(u, i) € [n]* : 2 + 2% > 27 4+ 2"}, our extremal choice of
(v,v") ensures that for every pair (u, 1') € D, there exists an appropriate constant 4y, - Now for
alli, j € [k], we have

2
)
Ui = filP = lpa) = @I = | Y T (Fayp = fayw)
ueln]
= 2 T o = faw) o) = Fajw)

(u.p")ED

+ (2 - 5v,v’)T2V+2V (fai(v) - faj(v)) : (fal-(v’) - faj(v’)) + O(T2V+2V _1) s

where & denotes Kronecker’s delta and the implied constant depends only on n and s. Simplifying
the sum over D on the right side with the help of (x), we see that the number

!/
A% - 2 uu)ed T+ Quw

2-3,,) )12+

q =
satisfies

qnfi - fj||2 = (fai(v) - faj(v)) : (fai(v’) - faj(v’)) + O(T_l)

foralli, j € [k].In terms of the functions p and o from F to F defined by po(f;) = f¢,,) and o(f;) =
fai(v/) for alli € [k], this means

qllfi = £i17 = (p(f) = p(f ) - (o(f) = a(f)) +O(T).

QS “PTOT ‘0SLLO9VT

woiy

) suonIpuoy) pue swiaL, a1 93§ “[STOT/F0/ET] U0 ATeIqr QIO A9 “S0m0saIg-A10wg Aq L86T1 W/ [ 1°01/10p/wiod Ao Kxeaqy

 Koqim Axeaquraut

5U9DIT SUOWIIOD) FATIEI) AqEAIIdE A1 £q PAUIIACS AIE SOTOTE YO 95N JO SO 10] ATEIqIT SUIUQ AR[IAY 1O (STOT



COLOURING VERSUS DENSITY IN INTEGERS AND HALES-JEWETT CUBES | 7 of 24

But due to T >> n,s,¢™! and our choice of ¢, this implies that there is a constant g,, ,,» such that

Gy Ifi = Fi12 = (p(f) = p(f D) - ((f) = a(f))

holds for all i, j € [k]. That is, g,/ has the property demanded by (%) and, thereby, the proof
of (x) is complete.
In the special case v' = v, we obtain

qv,v”fi - fj||2 = ”fai(v) - faj(v)”2

for all i, j € [k]. Hence, for every fixed v, the map f; — f, () sends F to a congruent copy of

\/qy,F. In the special case q,,,, = 0, this means a,(v) = --- = q;(v), and if g, ,, # 0, we have, in
particular, {a;(v) : i € [k]} = [k]. For these reasons, L is indeed a quasiline. O

After this preparation, part (ii) of the theorem is straightforward. Let an arbitrary set Y C X be
given. Due to (b) the set ¥ = ¢~![Y] C X has a subset Z C Y of size |Z| > u|Y| containing no
quasilines. By Claim 2.3, the set Z = ¢(Z) is F-free and, since ¢ is injective, it is also sufficiently
dense. O

Remark 2.4. Here is a simpler proof for the special case d = 1 and F = [k] of Claim 2.3. Again we
write L = {ay, ..., a;} and q; = (q;(1), ..., a;(n)) for every i € [k]. Since p(a,), ..., p(a;) is an APy,
we have

DT (a1, ) = 20,(0) + 4, () = 9lary1) — 20(a) + p(a;;) = 0
v=1

for every i € [2,k — 1]. Thus, a sufficiently large choice of T guarantees that for every v € [n] the
k-tuple A, = (a;(¥), ..., q,(v)) € [k]¥ is a (possibly degenerate) arithmetic progression of length
k. So A, either consists of k equal numbers, or it is one of the two k-tuples (1,2, ..., k) or (k, k —
1,...,1). In particular, L is indeed a quasiline.

It remains to deduce Theorem 1.5 from the finitary version we have just obtained.

Proof of Theorem 1.5. For every r > 1 let X, = X(F,r, u) be the set generated by Proposition 2.2.
Take a sequence (v,),; of vectors in N9 such that || v, || tends to infinity sufficiently fast and define

X= U(v, +X,).

r>1

Provided that this set satisfies the conclusion of the following claim, we shall show later that it
has the properties demanded by Theorem 1.5.

Claim 2.5. An appropriate choice of (v,),, ensures that if a configuration F” C X is congruent to
AF for some non-zero real 4, then F C v, + X, holds for some r > 1.

Proof. Let r be maximal such that F’ n (v, + X,) # @. The main point is that when choosing v,
the set X, = |-J__ (v, + X,) has already been determined. Moreover, the maximality of r yields

s<r
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F' C X, v (v, +X,)- Because of |F'| = k > 3, this means that at least one of the sets X_, and
v, + X, needs to contain at least two points of F’.

As we can force v, + X, to be as far apart from X _, as we want, we can thus guarantee that F’ is
asubset of either X, or v, + X,.. Together with F’ N (v, + X,) # @, thisimpliesF’ C v, + X,. [

Since the set X contains for every r > 1 a translated copy of X, it has the first property promised
by Theorem 1.5. In order to establish the second property, we consider an arbitrary finiteset Y C X
andsetY, =Y n (v, + X,) forevery r > 1. Since part (ii) of Proposition 2.2 is translation-invariant,
there are F-free subsets Z, C Y, ofsize |Z,| > u|Y,|. The subset Z = Ur>1 Z, of Y clearly satisfies
|Z] 2 u|Y| and Claim 2.5 implies that it is F-free as well. O

3 | PRELIMINARIES
3.1 | The u-fractional property

The combinatorial lines in the set X(k, r, u) we need to construct will certainly form a hypergraph
H with the special property that every subset of V(H) contains a large independent set (consisting
of a u-proportion of its elements). Later it turns out to be helpful to work with a weighted version
of this property.

Definition 3.1. A k-uniform hypergraph H has the u-fractional property for areal u € (0,1] if for
every family (w;);ey ;) of non-negative real numbers, there exists an independent set Z C V(H)

such that ), ., w; > u ZieV(H) Wi

Let us observe that if a hypergraph H has this property, then for every set Y C V(H), we obtain
an independent subset Z C Y of size |Z| > u|Y| by considering the characteristic function of Y.
When we want to check whether a given hypergraph H has the u-fractional property, we can
always assume that the given family (w;);cy () satisfies ;e w; = 1. This is because the case
that this sum vanishes is trivial, and otherwise we can divide all weights w; by their sum without
changing the situation.

The advantage of allowing arbitrary weights w; > 0 as opposed to just working with w; € {0, 1}
is that thereby the property is not only preserved under taking subhypergraphs, but also under
taking blow-ups. We express this fact as follows.

Lemma 3.2. Suppose u € (0,1] and that G, H are two k-uniform hypergraphs for which there exists
a homomorphism v from G to H. If H has the u-fractional property, then so does G. In particular,
the u-fractional property is hereditary, that is, if some hypergraph has the property, then so do all of
its subhypergraphs.

Proof. Leta family (w;);cy () of non-negative real numbers summing up to 1 be given and setu; =
Ziezp—l( Wi for every j € V(H). Since ), jevan 4y =1 and H has the u-fractional property, there
is an independent set Z;; C V(H) such that )’ jezy Wj = p-Now Zg = ¥~1[Zy] is independent in
G (because 3 is a homomorphism), and we have ZieZG w; =Y j = M. This shows that G
has indeed the u-fractional property.

It remains to remark that if G is a subhypergraph of H, then the inclusion map V(G) — V(H)
is a hypergraph homomorphism. O

jezy U
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES-JEWETT CUBES 9of24

3.2 | Auxiliary hypergraphs

Let us recall that for positive integers n, £ > k > 2, the k-uniform shift hypergraph H = Sh®(n, ¢)
on the #-subsets of [n] is defined to have the vertex set V(H) = [n]) and the following ( k+;_ 1)
edges: For every increasing sequence a; < --- < a;,,_; of integers from [n] there is an edge
{x{, ..., x} € E(H) obtained by setting x; = {qa;, ..., a;,,_;} for every i € [k].
The key property of these shift hypergraphs we exploit in this work extends an idea from
[8]. Roughly speaking, the result says that Iif we take # large enough, then Sh®(n, #) has the
-1

u-fractional property for some u as close to . as we want.

More precisely, given an integer k > 2 and areal u € (0, %), we first set

[ 2tk—1)?
‘= [(k—l)—k#]

and then we consider H®(n, 1) = Sh®(n, ¢) for every n > k. A proof of the following result,
which was suggested by Paul Erdés, can be found in [22, section 5]. For the reader’s convenience,
we include a brief sketch of a simplified version of the argument below.

Theorem 3.3 (Nesettil, R6dl and Sales). For all integers k > 2, r > 1 and every real u € (0, %),

there exists an integer n = n(k, r, 1) such that the k-uniform hypergraph H = H®(n, u) satisfies
x(H) > r and has the u-fractional property.

Proof. The claim on the chromatic number follows easily from Ramsey’s theorem [26]. Next, our
choice of # guarantees that the set

I={ielk,f—k+1]:i# -1 (modk)}
satisfies |I| > uZ. Given a permutation 7 € &, and a vertex x ={a,,...,a,} € V(H), where

a; < -+ <ap, we denote the unique index j € [¢] such that 7(a;) = max{zn(a;): i €[/]}
by v(x, r). It is not difficult to check that for every permutation 7, the set

Y,={xeVH): v(x,7) €I}
is independent in V(H). Moreover, if (w, )y (s is a family of nonnegative real weights summing

up to 1 and 7 gets chosen uniformly at random, then the expectation of ZXEYn w, is|I|/¢. Hence,
there exists some 7 € &,, such that Exeyﬂ w, = |1/ = u. O

In the special case k = 3, we shall also need another property of shift hypergraphs. Let Kf)_
denote the 3-uniform hypergraph with four vertices and three edges.

Lemma 3.4. Foralln,? > 3, the shift hypergraph Sh®(n, £) is Kf)_—free.
Proof. Given a tournament T, Erdés and Hajnal introduced the 3-uniform tournament hypergraph

H(T) which has the same vertices as T and whose edges correspond to the cyclically oriented
triangles in T. It is well known that these tournament hypergraphs are Kf)_-free (see, e.g. [7]).
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10 of 24 | REIHER ET AL.

Thus, it suffices to orient the pairs of vertices of H = Sh®(n, #) in such a way that all edges
of H induce cyclically oriented triangles. Consider any such pair {x,y} € V(H)@. If min(x) =
min(y), the orientation of xy is immaterial (because no edge of H contains both x and y). If
min(x) < min(y), we choose the orientation x - y or y — x depending on whether |y \ x| is
even or odd. Now for every edge {x, y, z} € E(H) with min(x) < min(y) < min(z), we have the
oriented trianglez - y — x — z. 1

Remark 3.5. More generally it could be shown that for n, £ > k > 2 the k-uniform shift hypergraph
Sh®(n, £) is FX)-free, where F¥) denotes the k-uniform hypergraph on k + 1 vertices with three
edges. One way to see this involves higher order tournaments (described, e.g. in [29, section 1.3]),
which are known to be F®)-free (see [29, Fact 1.5]).

3.3 | Triangles and tripods in Hales-Jewett cubes

Given an arbitrary finite set A, one can form Hales-Jewett cubes A" and define combinatorial
lines as in Section 1.3. In this context, one often calls A the ‘alphabet’ and the points in A" are
then viewed as ‘words of length n’. We shall write £ (A") for the collection of all combinatorial
lines in A”. For simplicity we identify any subset & C £ (A") with the |A|-uniform hypergraph
on A" whose set of edges is &. We may thus write y(&) for the chromatic number of this hyper-
graph. With this notation the Hales-Jewett theorem states that for every fixed alphabet A, we have
lim,_, , x(Z(A")) = .

In our construction, we need the existence of certain ‘sparse’ subhypergraphs & C Z(A") of
large chromatic number. Let us note first that £ (A") itself is linear, that is, any two of its edges
intersect in at most one vertex. This follows from the obvious fact that through any two distinct
points of a Hales—Jewett cube, there can pass at most one combinatorial line. Three distinct lines
in L(A") are said to form a triangle if they do not pass through a common point, but any two of
them intersect.

As proved by the second author [30], given A and r there is for some dimension n, a triangle-free
line system & C Z(A") such that y(&) > r. In fact, he even showed that hypergraphs of large
chromatic number and large girth, first obtained by Erd6s, Hajnal and Lovasz using different
methods [5, 6, 19], can be found inside the Hales-Jewett hypergraphs #(A"). For the present
purposes, excluding triangles is important, but longer cycles are irrelevant.

There is, however, one further configuration of lines that we need to forbid. In the definition
that follows, for every combinatorial line L C A", its set of moving coordinates is denoted by M .

Definition 3.6. Three distinct combinatorial lines L,L’,L”" C A" passing through a common
point are said to form a tripod if M is the disjoint union of M;, and M; .

For instance, for every a € A, the diagonal {xx: x € A} forms together with the two lines
fax: x € A} and {xa: x € A} a tripod in A?. It turns out that the argument in [30] allows to
exclude tripods and short cycles at the same time. We will only state and prove the case of triangles
here.

Theorem 3.7. Given an alphabet A with at least two letters and r > 1, there is for every sufficiently
large dimension n a collection & C £ (A™) of combinatorial lines containing neither tripods nor
triangles such that y(£) > r.
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES-JEWETT CUBES | 11 of 24

Proof. For transparency, we can assume A = [k], where k > 2. Depending on k and r, we fix a real
a > 0 and natural numbers d, m, n fitting into the hierarchy

n>d>al>m>k,r.

For every i € [m], let &; be the collection of all combinatorial lines L C [k]"” with [M;| = i.
Since there are (7)) possibilities for the set M; and k"~ possibilities for the behaviour of L on the
constant coordinates, we have | ;| = (’i’)k"‘i.

Claim 3.8. For every colouring y : [k]" — [r], there is some i € [m] such that at least a|Z;| of
the lines in Z; are monochromatic with respect to y.

Proof. We can regard [k]" as the set of all functions from [n] to [k]. Let Q be the set of all (:l)k”‘m
functions from an (n — m)-element subset of [n] to [k]. For each of these functions f, the set
Sy ={g € [k]": g 2 f}ofall points extending it is an isomorphic copy of the Hales-Jewett cube
[k]™. So by the Hales-Jewett theorem, there is some monochromatic combinatorial line L, C S;.
This line belongs to one of the sets &, ..., %, and the box principle (Schubfachprinzip) yields

some set Q' C Q of size |Q| > $|Q| together with an integer i € [m] such that L, € Z; holds for

every f € Q. Conversely, every line L € #; appears in ( ::l,) of the spaces S; with f € Q. For
these reasons, the number of monochromatic lines in Z is at least

ki—m
il > a2

, .
ol L(ﬁ)lkn_m 5
(”_l‘) m\m

m—i

Let us call a collection of lines &£ C Uie[m] &, suitable if

(1) through every point x € [k]", there pass at most d lines from Z;
(2) no three lines in & form a tripod or a triangle.

For instance, @ is a suitable collection of lines. The idea for constructing the desired system of
lines is that starting with @, we keep adding lines one by one while maintaining at every step that
the set of lines we have already chosen remains suitable. It can be shown that as long as we have
selected at most

g = 2mlog(r) i
a

lines, we can still choose ‘almost every’ line in the next step. This will in turn imply that in every
step we can reduce the number of ‘bad’ colourings, which have no monochromatic line in our
system yet, by a constant proportion. At most g such steps will push the number of bad colourings
below one.

Claim 3.9. If &£ is a suitable system of at most g lines, then for every i € [m], all but at most
alZ;|/2 lines L € &, have the property that & U {L} is again suitable.

Proof. Fixi € [m]. We shall first bound the number s, of lines in &; whose addition to & would
cause a violation of (1). Let A C [k]" be the set of all points lying on exactly d lines from Z. Since
every line contains k points, double counting yields |A|d < k|| < kq. Together with the fact that
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12 of 24 | REIHER ET AL.

through every point of [k]" there pass at most (’l’) lines from Z;, this shows

n k 2ki*1mlog(r) a
sls<i>|A|<—q_.lzi|=Tg|$i|<Z|zi|. (31)

Next, the number s, of lines whose addition to & would create a tripod can be bounded by
s, < d’k". (3.2)

This is because there are k™ possibilities for a point x € [k]", where the three lines of such a tripod
could meet, and due to (1) there are at most d? pairs of lines {L’, L'} € Z passing through x.
Moreover, given L’ and L there is at most one line L completing a tripod.

Utilising that through any two points there is at most one line, one shows similarly that the
number s; of lines L for which & U {L} contains a triangle can be bounded by

s3 < (kd)*k™.

Together with (3.2) this shows

i+2 42 342
545 <2dk = 2 Lo D oy Do
(" n 4
L
In view of (3.1), the desired estimate s; + s, + 53 < a|Z;|/2 follows. O

Now for every system of lines & C Z([k]"), we denote the set of all ‘bad’ colourings
y . [k]™ — [r] such that no line in & is monochromatic with respect to y by B(&). Take a
maximal suitable line system % with the property

[B(&)| <A - oc/2m)|3|rkn .
The existence of such a system is guaranteed by the fact that |B(@)| < rk" I | Z| > g, then
|B(Z)| < exp(—qa/2m + k™ log(r)) = 1
proves that all colourings are good for &, which in turn means that # has all properties promised
by the theorem. So we can assume || < q in the sequel. By Claim 3.8 and the box principle, there
are a set B C B(Z) of size |B| > %|B($)| and an integer i € [m] such that for every colouring in
B at least a|Z;| lines in Z; are monochromatic. Now Claim 3.9 reveals that for every colouring
in B there are at least a|%;| /2 monochromatic lines L € %, for which & U {L} is suitable. Conse-

quently, there is a fixed line L € &; which is monochromatic for at least ct|B|/2 colourings in B
such that #* = & U {L} is suitable. But now

IB(Z*)| < IB(Z)] —alBl/2 < A — a/2m)|B(ZL)| < (1 — a/2m) " IFK"

shows that #* contradicts the maximality of Z. O
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COLOURING VERSUS DENSITY IN INTEGERS AND HALES-JEWETT CUBES | 13 of 24

Remark 3.10. If we just wanted to produce a line system of large chromatic number without tri-
angles (or short cycles), we could also use the partite construction method. However, one of us is
bamboozled by the fact that he cannot exclude tripods in this way.

3.4 | More on embeddings

Preparing a concise description of the partite construction we shall perform in the next section,
we would like to offer some (mostly standard) remarks on combinatorial embeddings. For a fixed
alphabet A and natural numbersn > m,amapn : A" — A"iscalled a combinatorial embedding
if there are a partition [n] = C wM; u...u M,, and a function g : C — AsuchthatM,,...,M,, #
@ and for every a = (a4, ..., a,,) € A™ and every i € [n], the ith coordinate of n(a) is

g() ifiecC,

a; ifi € M;.

In the special case m =1, this reduces to the notion of combinatorial embeddings A — A"
introduced in Section 1.3. It is well known and easy to verify that every composition of com-
binatorial embeddings A” — A™ — A" is again a combinatorial embedding. This implies,
for instance, that combinatorial embeddings map combinatorial lines to combinatorial lines.
Similarly, quasilines are mapped to quasilines.

For |A| > 2, the partition [n] = C wM; U ... u M,, and the function g : C — A are uniquely
determined by the corresponding embedding #. Thus, for every superset B D A, there is a unique
extension of 7 to a combinatorial embedding n* : B™ — B".

We will only encounter such extensions in the following context. For some set IT, C [k]™,
we have a combinatorial embedding 7 : IT,, — TI%. Identifying ([k]™)" in the obvious manner
with [k]™", we then get an extension n* : [k]™ — [k]™". By construction, % is a combinato-
rial embedding from the one-dimensional space over [k]™ to the n-dimensional space over [k]™.
It is readily verified that we can also view 7t over the smaller alphabet [k] as a combinatorial
embedding from m-dimensional space into (mn)-dimensional space. Consequently, and this is
something we shall exploit later, compositions of such extensions are combinatorial embeddings
over [k] as well.

4 | THE PARTITE CONSTRUCTION

The proof of Theorem 1.7 is based on the partite construction method (see [11, 21]). This means
that we will recursively construct a sequence of ‘pictures’ Iy, ..., II;, the last one of which corre-
sponds to the desired set X(k, r, ). The entire construction will take place ‘over’ a hypergraph G
obtained in Theorem 3.3. The pictures II; themselves will consist of subsets P; of some Hales-
Jewett cubes [k]™ and maps 3, : P; — V(G) telling us in which way the points x € P; are
associated to vertices ;(x) of G.

Throughout the construction, we need to pay attention to the combinatorial lines in these sets
P;. In picture zero II;, they are mutually disjoint and there will be one line for every edge of G.
While constructing I, ..., IT;, one of our aims is to transfer the property x(G) > r of G grad-
ually onto the pictures in our sequence. Moreover, clause (ii) of Theorem 1.7 forces us to protect
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€1

FIGURE 4.1 A visual representation of IT,.

ourselves as much as possible against unwanted quasilines in our pictures. In general, partite con-
structions (when executed carefully) tend to produce Ramsey objects that are locally quite sparse
and we will benefit from this phenomenon as well.

4.1 | Pictures
In the context of this work, pictures are defined as follows.

Definition 4.1. Let G be a k-uniform hypergraph, where k > 3. A picture over G is a pair II =
(P, ) consisting of a subset P C [k]™ of a Hales-Jewett cube and amap 3 : P — V(G) such that
every quasiline L C P is a combinatorial line satistying [L] € E(G).

If T = (P, %) is a picture over G and x is a vertex of G, the set IT,, = ~!(x) is called the music
line over x. Clearly, P is the disjoint union of all music lines. In our figures, we will always draw
the hypergraph G vertically to the left side of P, and P itself will be drawn in such a way that every
vertex x € V(G) is together with its music line IT, on a common horizontal line. Thus, ¥ can be
thought of as a projection to the left side (see, e.g. Figure 4.1). We prepare the construction of
picture zero by showing that there are arbitrarily many lines ‘in general position’.

Lemma 4.2. For all integers k > 3 and m > 1, there are mutually disjoint combinatorial lines
Ly, ..., L, C[k]*™ such that the only quasilines L. C Uie[m] L;areL,,...,L,, themselves.

Proof. For every i € [m], we define L; to be a line whose only moving coordinate is i. We further
require that all points of L; have the entry 2 in the (m + i)th coordinate and the entry 1 in all other
constant coordinates. So, for example, if m = 3, we take the three lines L; = {x11211: x € [k]},
L, ={1x1121: x € [k]}and L; = {11x112: x € [k]}.

It is plain that these m lines are mutually disjoint. Now let L C L; U ...  L,, be a quasiline.
Clearly there is some j € [m] such that L N L; # @ and it suffices to show L = L;. To this end, we
observe that for every i € [m] the points of L can only have the entries 1 or 2 in their (m + i)th
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% // \X/ \X/ \\
NN

FIGURE 4.2 The hypergraph amalgamation ¥ = IT % &, where blue shapes indicate copies of II.

coordinates. Therefore, all points of L need to agree in these coordinates (cf. Definition 1.6) and
together with L N L; # @, it follows that the m last coordinates of the points in L and L; are the
same. Combined with I, C Ui clm] L;, thisleadstoL =L i O

Lemma 4.3 (Picture zero). If k > 3 and G denotes a k-uniform hypergraph, then there is a picture
Iy = (Py, %) over G such that there is a family (L,).cg () of mutually disjoint combinatorial lines

satisfying P, = UeeE(G) L, and y[L,] = e for every e € E(G).

Proof. Set m = |E(G)|, fix an arbitrary enumeration E(G) = {e,, ..., ¢,,} and consider the combi-
natorial lines Ly, ..., L,,, C [k]*" obtained in Lemma 4.2. Define L, = L;foreveryi e [m] and set
Py =4, cr(c) Le- Since these lines are mutually disjoint, thereisa map ¢, : Py — V(G) such that
y[L,] = e holds for every e € E(G). Now (P, 3,) is the desired picture. O

Graphically, the picture I can be represented as in Figure 4.1. On the vertical projection we
have our k-uniform hypergraph G with labelled edges {e;, ..., e,,}. For each edge e, there is a
corresponding combinatorial line L; drawn in the same colour. The music lines I, , = 9 L(x)
are visualised as dashed horizontal lines.

4.2 | Partite amalgamation

In an attempt to aid the reader’s orientation, we would briefly like to mention how partite amalga-
mations were used in [21] for proving the existence of hypergraphs with large chromatic number
and large girth (see also the recent survey [27, section 3.3] for more context and additional
figures).

In that argument, one works with n-partite k-uniform hypergraphs instead of the present pic-
tures. Suppose that we just have constructed some such hypergraph II, and that for some index
i € [n], there are m; vertices in the ith vertex class of II. When we have a further m;-uniform
hypergraph < in mind, we define the amalgamation T = IT % & as follows: The ith vertex class
of ¥ is V(&), each edge of & gets extended to its own copy of I, distinct copies of this form are
only allowed to intersect in the ith vertex class and the union of all these copies is the desired n-
partite hypergraph X (see Figure 4.2). Starting with a hypergraph that looks like our picture zero
and performing such amalgamation steps iteratively for alli € [n], we end up getting hypergraphs
of large girth and chromatic number.

Now with every picture IT = (P, 1) in the sense of the present work, we can associate the par-
tite hypergraph with vertex set P whose edges correspond to the combinatorial lines in P. It is
our intention that on the level of these associated hypergraphs, the amalgamation of pictures
introduced next should resemble the above construction.
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FIGURE 4.3 The partite amalgamation X = II % <.

Here are the precise details. Suppose that we have a picture II = (P, ;) over some k-uniform
hypergraph G, where P C [k]™. Let x be a vertex of G and suppose further that, viewing the music
line IT, as an alphabet in its own right, we are given a collection & C Z(I17) of combinatorial lines
in the n-dimensional Hales-Jewett cube over IT,.. We shall now describe the construction of a pair
2 = (Q, ¢5) consisting of a set Q C [k]™" and a map ¢5, : Q —> V(G). This pair X, which is not
necessarily a picture again, only depends on IT and & and will be denoted by = = I1 % &.

Let us fix for every line U € & the combinatorial embedding 7, : II, — (II,)" whose
image is U. Recalling II, C [k]™ we can naturally extend 7; to a combinatorial embed-
ding nf; : [k]™ — [k]™". Now we set PV =7 (P) and define 3, : PY — V(G) to be the
composition ¢, = Pry o (17| pv) 7"

Fact 4.4.

(i) For every combinatorial lineU € &, the pair TIV = (PY,¢y) is a picture over G with 1V = U.
(ii) IfU,V € Z aredistinct, thenPY NPV =UNV.

Proof. Beginning with (i) we consider an arbitrary quasiline L C PY. Now L/ = (ng)‘l[L] is a
quasiline in P. Since ITis a picture, this implies that L’ is actually a combinatorial line and ¢, [L] =
Pp[L'] is an edge of G. The first statement entails that L is a combinatorial line as well. Finally,
we have TTY = 4 (x) = (77, 0 9)(6) = 7 [T, ] = U.

Proceeding with (ii) we consider an arbitrary point z = (z(1), ...,z(n)) € PY n PV, where
z(1), ...,z(n) € P. If one of the points z(i) was not in IT,, then there could be at most one line
W C (II,)" with z € n;“V(P), whence U = V. This argument shows z(1), ..., z(n) € II,, which
in turn implies z € n[I1,] N5 [I1,] = U N V. Thus, we have PY nP¥ C U NV and owing to
U C PY,V C PV, the reverse inclusion is clear. O

Now the desired pair = = (Q, 1y) = II & is defined by

Q=P and 95= ] 9y

UeZ veZ

The pictures ITY occurring in Fact 4.4(i) are called the standard copies of I1 in Z. Part (ii) of Fact 4.4
tells us that any two standard copies can intersect only on the music line X . Therefore, 5 is
indeed a function from Q to V(G).

Summarising the discussion so far, one can interpret the construction of X as follows (see
Figure 4.3). First, we construct the music line X, = % and then for each combinatorial
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line U € &, we construct a standard copy ITV of II. The union of all these standard copies is
exactly Z.

In general, the partite amalgamation ¥ = II % & does not necessarily create a new picture,
because there could be ‘unintended’ quasilines in Q whose points belong to several distinct stan-
dard copies of I1. The main result of this subsection shows how we will avoid this situation in the
future.

Proposition 4.5. Let II = (P, ;) be a picture over a k-uniform hypergraph G, where k > 3 and if
k =3,thenGis Kf)_-free. If x denotes a vertex of G and & C Z(I1}) is a collection of combinatorial
lines containing neither tripods nor triangles, then I1 ¥ & is again a picture over G.

Proof. Continuing our earlier notation, we again suppose P C [k]™ and we write £ = (Q, 95 for
the pair ¥ = IT % &£. The main task is to establish the following statement.

For every quasiline L C Q, there is some U € ¥ such that L C PY. (4.1)

In other words, the only quasilines in Q are those contained in standard copies of IT. Assuming
for the moment that this holds, it follows as in the proof of Fact 4.4(i) that all quasilines L C Q are
combinatorial lines projecting onto edges of G, that is, that ¥ is indeed a picture. Thus, it remains
to show (4.1).

To this end, we write L ={7,,...,£;} and ¢; = (£,(1),...,¢;(n)) for every i € [k], where
¢;(1),...,¢;(n) € P. Since L is a quasiline, for every s € [n], the set

Ly = {71(5), ... £(9)}

either consists of a single element, or it is a quasiline contained in P. In the latter case, L is
actually a combinatorial line, because II is a picture. Owing to the construction of %, there exist
lines Uy, ..., Uy € & such that #; € TIVi for every i € [k] and there are points ¢y, ..., ¢, € P such
that #; = 7}, (c;). For clarity we point out that for #; & ¥, the pair (U;, ¢;) is uniquely determined
by Z;.On the other hand, if #; € X, then there can be several legitimate choices for U;, but¢; € I,
will then necessarily be true.

In general, we have

¢i(s) €I, U{c}foralli € [k] and s € [n], 4.2)

whence L, C II, U{c;,...,¢;}. The remainder of the proof exploits heavily that the set IT, U
{c1, ..., i} can contain only very few combinatorial lines.

Claim 4.6. Every combinatorial line K C IT, U {c,, ..., ¢ } contains at most one point from IT, and
at least k — 1 points from {c;, ..., ¢ } \ II,.

Proof. Since t; projects K onto an edge of G while all points in IT, are projected to the same
vertex x, we have [K NIL,| < 1. Due to |K| = k, the second assertion follows. O

Let C = {s € [n] : |L;| = 1} be the set of coordinates where the points of our quasiline L agree.
So for every c € C, there is some point £(c) such that #(c) = ¢;(c) = -+ = £} (c). Because of
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FIGURE 4.4 ThelineL, CP.

|L| = k, we have
C # [n]. (4.3)

Assume for the sake of contradiction that £(c*) ¢ I1, holds for some c* € C. In view of (4.2),
this implies ¢; = -+ = ¢, = £(c*). Now Claim 4.6 shows that the set IT, U {c;, ..., ¢; } contains no
combinatorial lines, which in turn leads to C = [n]. This contradiction to (4.3) establishes

Z(c)ell, forallceC. (4.4)

Let us now pick an arbitrary coordinate s* € [n] \ C. Due to (4.2) and Claim 4.6, we may
assume, without loss of generality, that £« (i) = ¢; € I, holds for every i € [k — 1]. Concerning
the point a = £« (k), however, we know nothing more than that it is in IT, U {c; }. We shall show
later that the set

S={se[n]\C: ¢,i) = £x(i) for every i € [k]}

is equal to [n] \ C. Assuming for the moment that this is true, the proof of (4.1) can be completed
as follows. Let U C II" be the combinatorial line whose set of moving coordinates is S and which
takes the values #(c) on its constant coordinates ¢ € C. The definition of S discloses L = nzr][LS*].
Furthermore (4.4) and ¢; ¢ I1,, imply U = U, and thus we have U € &. So altogether U is the
line required by (4.1).

In the remainder of the argument, we shall show that the assumption S # [n] \ C leads to
the contradiction that either £ contains a tripod or a triangle, or k = 3 and G contains a Kf)_.
Considering the non-empty set T = [n] \ (C u S), we distinguish two cases.

First Case. We have L, = L« foreveryt € T.

Pick an arbitrary coordinate t* € T. Roughly speaking, the equality L, = L« means that the
lines Ly« and L;« contain the same points, but not ‘in the same order’. By the definition of S, there
needs to exist some i € [k — 1] such that £ (i) # ¢« (i) and without loss of generality we can
assume that this happens fori = 1. So £+ (1) # £+ (1) = ¢;.

Due to Z;«(1) € (IT, U{c;}) N{cy, ..., k1, a}, we have £;x(1) = a € I1,. Now (4.2) tells us
?«(i) = ¢; for every i € [2,k —1] and together with L, = Ly we obtain ¢« (k) = c;. In view
of (4.2) and ¢; ¢ II,, this shows ¢; = ¢, (see Figure 4.4).
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FIGURE 4.5 ThelinesL.,L,. CP.

We contend that
fr(i) = fz* (l) (4-5)

holds for all t € T and all i € [k]. To see this, we fix any ¢ € T and recall that L, = L. For every
i € [2,k — 1], the point ¢; needs to appear somewhere in L;, but due to (4.2) only #,(i) = ¢; is
possible. This leaves us with {£;(1), Z;(k)} = {a,c;} and in view of t & S, we obtain #,(1) = a and
¢,(k) = ¢, which proves (4.5).

Thereby we have determined the points ¢4, ..., ¢} completely and we arrive at the following
description of the lines U, U,, U,.

(8] S T
U, constant Z(c) moving constant a
U, constant £(c) moving moving
Uy constant £(c) constant a moving

All three lines pass through ’7:71 (a) = ngz(a) = n{]k (a). Thus, they form a tripod in Z, contrary
to our hypothesis.

Second Case. Some t* € T satisfies L« # L.

The distinct combinatorial lines L and L, can intersect in at most one point. On the other
hand, Claim 4.6 tells us that both of them contain at least k — 1 points from {c,, ..., ¢;} \ IL,. For
these reasons, we have k = 3,11, N {cy, c,, ¢3} = @ and, without loss of generality, L+ = {a, c{, ¢},
L, = {b,c;,c3}, where a, b € I1, are distinct (see Figure 4.5).

If there existed a third line L, C IT, U {c, c,, ¢;}, it had to be of the form L, = {d, c,,c3} for
some d € II,, but then the projections P[Lgx ], Pr[L;x], P[L.] formed a Kf’)_ in G, contrary
to our assumptions.

This proves that L« and L,« are the only lines in IT, U {c;, ¢,, ¢;}. It is now easy to see that every
t € T satisfies £,(1) = ¢y, £,(2) = b, and £,(3) = c3, which in turn yields the following description
of the lines U, U, and Us,.
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= ng,(b)

1, (a) = ng, (b)

FIGURE 4.6 Atrianglein &.

C S T
U, constant £(c) moving moving
U, constant £(c) moving constant b
U, constant £(c) constant a moving

Therefore, any two of the three lines U,, U,, U, intersect but due to a # b they do not pass
through a common point (see Figure 4.6). This contradicts the assumption that & contains
no triangle. 1

4.3 | The construction of X'(k,r,u)

This subsection is devoted to the proof of Theorem 1.7. Recall that we are given two integers k >
3,r>1,and a real u € (0, —) Theorem 3.3 delivers a k-uniform hypergraph G with y(G) > r
which has the u-fractional property In the special case k = 3, Lemma 3.4 allows us to assume,
additionally, that G is Kf)_—free. For notational simplicity, we can suppose V(G) = [q] for some
natural number q.

Let IT, = (Py,¥,) denote the picture zero over G provided by Lemma 4.3. Starting with I, we
shall define recursively a sequence (I1;);, of pictures over G. These pictures will be written in the
form II; = (P;,4;), where P; C [k]™: for some dimension m;, and their music lines will be denoted
byIl; ; = zpi_l( j) forall j € [q]. As the proof of Lemma 4.3 shows, picture zero can be assumed to
have the dimension m,, = 2|E(G)|, but this fact is of no importance to what follows. The remaining
terms of the sequence (m;);, will be defined together with the corresponding pictures.

Suppose now that for some i € [q], we have just constructed the picture II;_;. Theorem 3.7
applied to the music line IT;_; ; here in place of A there yields for some dimension n; a collection

Y (H ) of combinatorial lines containing neither tripods nor triangles such that y(<%;) >
r. meg to Proposulon 4.5, the structure IT; = I1,_; % &, is again a picture over G. For definiteness
we point out that P; C [k]™ holds for m; = m;_,n;. ThlS concludes the explanation how we move
from one picture IT;_; of our sequence to the subsequent one.

It will turn out that the final picture, or more precisely the set X = X(k, r, u) = P, has the prop-
erties described in Theorem 1.7. As usual in arguments by partite construction, our stipulations
unfold as follows.
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Claim 4.7. If y denotes an r-colouring of P, then for every non-negative i < g, there exist a com-
binatorial embedding 7 : [k]™ — [k]™ with n[P;] C P, and colours p; 1, ..., pq € [r] such that
(¥ om)(x) = p; holds whenever x € I1; ; and j € (i, q].

Proof. We proceed by backwards induction on i. The statement is vacuously true for i = q. Suppose
now that Claim 4.7 holds for some positive i < g and that a colouring y : P, — [r] is given. The
induction hypothesis shows that there are a combinatorial embedding 7 : [k]™ — [k]™ with
nlP;] € P, andcolours pj,q, ..., pq € [r]such that(y on)(x) = pjwheneverx €1I; jand j € (i,q].

Notice thaty = y o7 isan r-colouring of P; and, hence, of II; ; =  J Z;. By our choice of the line
system %;, some combinatorial line U € %; is monochromatic with respect to y, say with colour
;- Due to the construction of II; = II;_; % &;, the picture II; contains a standard copy Hgl of
I1,_, whose underlying set Pl.l'il is given by Pl.lil =n5[P;_1], where nf © [k]™i-1 — [k]™ is a
combinatorial embedding such that n/[IT;_; ;] = U.

We contend that the combinatorial embeddingn =7 o ;72'] from [k]™i-1 to [k]™e and the colours
pis - » Pq have the desired properties. To confirm this, we consider any point x € II;_, ;, where
Jj €li,ql.Duetoyon =yononf =7y on weneed toshow (¥ on/)(x) = p;- In the special case
Jj =i this follows from ng(x) € U and for j € (i, q] we can appeal to nzfj(x) € II; j combined with
the choice of p;. O

We are now ready to prove that X = P, satisfies clause (i) of Theorem 1.7. Given a colouring
y:P,— [r] the case i = 0 of Claim 4.7 delivers a combinatorial embedding » : [k]™0 — [k]™a
with n[P,] C P, and colours py, ..., pq € [r] such that (y o n)(x) = pj whenever j € [g] and x €
Iy ;. Due to x(G) > r, there isan edge e of G that is monochromatic with respect to the r-colouring
i — p; of V(G) = [q]. Next, by Lemma 4.3, there is a combinatorial line L, C P, with ,[L,] = e.
Now 7[L,] is a combinatorial line in P, all of whose points have the same colour as e.

It remains to address part (ii) of Theorem 1.7. For this purpose, we consider the k-uniform
hypergraph H with vertex set V(H) = X = P, whose edges correspond to the combinatorial lines
L C P,. Since I1; = (P, %,) is a picture, we could equivalently say that the edges of H are the
quasilines in P,. Moreover, ¥, is a hypergraph homomorphism from H to G. As G has the u-
fractional property, Lemma 3.2 implies that H has this property, too. In particular, every set Y C X
has a subset Z C Y of size |Z| > u|Y| which is independent in H and, therefore, contains no
quasilines. This completes the proof of Theorem 1.7.

5 | CONCLUDING REMARKS

A k-tuple (x, ..., x; ) of natural numbers forms a (possibly degenerate) arithmetic progression of
length k if and only if it solves the homogeneous system of linear equations

X;—2X;41 + %4, =0, wherei=1,..,k—2. (5.1)

Thus, van der Waerden’s theorem and Szemerédi’s theorem can be regarded as Ramsey theoretic
statements on the solutions of (5.1). Similar results have also been studied for more general systems
of equations, and one may wonder for which systems the natural analogue of Theorem 1.4 holds.

Given a matrix A € Z™" with integer coefficients, the system of homogeneous linear
equations Ax = 0 is called partition regular if for every finite colouring of N, there exists a
monochromatic solution x = (x,, ..., x,)! of the system. Examples of partition regular systems
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include the single equation x; + X, = x; (Schur’s theorem) and arithmetic progressions (van der
Waerden’s theorem). A full characterisation of partition regularity was obtained by Rado [3, 25].

Similarly, a homogeneous linear system Ax = 0 is said to be density regular if for every subset
X C N of positive upper density, there is a solution x € X" which consists of n distinct integers.
Density regularity implies partition regularity (by focusing on the densest colour class), but not
the other way around. For instance, Schur’s equation x; + x, = x; is partition regular but not
density regular (as it has no solution with three odd numbers). Frankl, Graham and the second
author [12] gave an explicit characterisation of density regular systems.

It would be interesting to determine for which systems of linear equations there exists a version
of Theorem 1.4.

Question 5.1. Given a system of linear equations Ax = 0 with A € Z"™*", do there exist a set of
natural numbers X C N and a real number € > 0 such that

(i) for every finite colouring of X there is a monochromatic solution of Ax = 0
(ii) and every finite set Y C X has a subset Z C Y with |Z| > €|Y| not containing a non-trivial
solution of Ax = 0?

We conjecture that for density regular systems the answer is affirmative. An interesting spe-
cial case is offered by the single equation x; + -+ + x,, = y; + -+ + y;,. Sets without non-trivial
solutions to this equation, called B, -sets, have been studied intensively in the literature. Guided
by Paul Erdés, the last two authors proved together with NeSettil that Question 5.1 has a positive
answer for By,-sets (see [22, Theorem 1.2]). As h tends to infinity, their value of € converges to zero
very rapidly. The girth Ramsey theorem [28] implies that one can take € = 1/4 uniformly in h, as
we shall explain in forthcoming work.
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