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Abstract—In this paper, the causal bandit problem is inves-
tigated, with the objective of maximizing the long-term reward
by selecting an optimal sequence of interventions on nodes in
an unknown causal graph. It is assumed that both the causal
topology and the distribution of interventions are unknown.
First, based on the difference between the two types of graph
identification errors (false positives and negatives), a causal graph
learning method is proposed. Numerical results suggest that
this method has a much lower sample complexity relative to
the prior art by learning sub-graphs. However, we note that
a sample complexity analysis for the new algorithm has not
been undertaken, as of yet. Under the assumption of minimum-
mean squared error weight estimation, a new uncertainty bound
tailored to the causal bandit problem is derived. This uncertainty
bound drives an upper confidence bound-based intervention
selection to optimize the reward. Further, we consider a par-
ticular instance of non-stationary bandits wherein both the
causal topology and interventional distributions can change. Our
solution is the design of a sub-graph change detection mechanism
that requires a modest number of samples. Numerical results
compare the new methodology to existing schemes and show
a substantial performance improvement in stationary and non-
stationary settings. Averaged over 100 randomly generated causal
bandits, the proposed scheme takes significantly fewer samples
to learn the causal structure and achieves a reward gain of 85%
compared to existing approaches.

Index Terms—Causal bandit, linear structural equation model,
graph identification, upper confidence bound.

I. INTRODUCTION

Investigation of cause-effect relationships is central to an-
swering key questions in medicine, epidemiology, economics
as well as the social and behavioral sciences (see e.g. [2]–
[4]). Cause-effect relationships can be represented by Bayesian
networks, in the form of directed acyclic graphs (DAGs).
Identifying the causal structural model is essential to decision
making and answering counterfactual questions. Herein, we
will study methods for determining the underlying causal
structural model in the context of causal bandits and thus will
also optimize intervention design. We first discuss causal graph
identification and then discuss causal bandits.

A. Related Work

Current causal graph identification methods mainly fall into
two categories: constraint-based and score-based. Constraint-
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based approaches, such as [2], [5], search for conditional
independence over all possible graphs and thus computation
complexity scales exponentially. Classical score-based meth-
ods evaluate different graph structures in their ability to fit
the data (see e.g. [6]–[8]). To lower the complexity, recent
score-based methods (see e.g. [9]–[12]) formulate the structure
learning problem as a continuous optimization task. In [10],
an algorithm called GOLEM is proposed, where the likelihood
score is combined with a soft DAG constraint to evaluate
possible causal structures. The DAGMA scheme proposed in
[11] characterizes acyclicity by a log-determinant function,
with better-behaved gradients.

Decision-making or action-taking is natural within the con-
text of causal inference. Despite this natural relationship,
incorporation of causal methods within the context of multi-
armed bandits (MAB) [13], [14], has only occurred recently.
MABs provide a useful model for sequential decision-making
problems, and as such have been employed in the design of
clinical trials [15], recommendation systems [16], financial
portfolio design [17], etc. In a MAB, an agent selects an action
(arm) in each round and observes corresponding outcomes
– the goal is to maximize the long-term cumulative reward.
In the standard setting, the stochastic rewards generated by
different arms are assumed to be statistically independent.

To model realistic scenarios with dependence, structured
bandits have been considered. Within this arena, we focus on
causal bandits [14], where the causal structure is exploited
to improve decision-making. DAGs can encode the causal
relationship among factors that contribute to the reward [14].
Herein, we interpret the arms as different interventions on the
nodes of a DAG and the reward as the stochastic outcome of a
certain node. In the current work, we will provide new methods
for both causal discovery (graph identification) as well as the
design of optimal interventions for causal MABs.

Existing literature on causal bandits can be categorized
based on their assumptions about the topology of the under-
lying DAG and the distribution of the interventions. While
many works assume prior topology or DAG knowledge [14],
[18]–[22], this is often not known in practice. In this work,
we assume that the underlying causal structure is unknown.

The setting without the knowledge of both topology and
interventional distribution has been investigated recently [23]–
[25], [27]. An algorithm based on causal tree recovery is
proposed in [24], with regret scaling logarithmically with the
number of nodes. In [23], an auxiliary separating set algorithm
is utilized to learn the causal structure and provide improved
regret over non-causal algorithms. The existing works are
based on the hard (perfect) intervention model, where the
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TABLE I
KEY ASSUMPTIONS: RELATED WORK

Reference Topology Knowledge Intervention Structural Model Non-stationary Structure Exogenous/Noise
[14], [18], [19] ✁ Hard Discrete ✂ Bernoulli

[20] ✁ Soft Linear ✂ Sub-Gaussian
[21] ✁ Soft General ✂ Known distribution
[22] ✁ Soft General ✂ Sub-Gaussian
[23] Known Separating Sets Hard Discrete & Linear ✂ Bernoulli & Gaussian
[24] ✂ Hard Discrete ✂ Sub-Gaussian
[25] ✂ Hard Linear ✂ sub-Gaussian
[26] ✁ Soft Linear ✁ sub-Gaussian

This work ✂ Soft Linear ✁ Gaussian

causal relations between a node and its parents are completely
cut off because a specific value is assigned to the node.
Herein, we consider soft interventions, such that the node
under intervention can still be causally related to other nodes.

A challenge in MAB problems is the balance between
exploration and exploitation. A common approach is via
derivations of upper confidence bounds (UCB) [28]. The clas-
sic UCB scheme uses the number of visits as a general measure
of uncertainty [29], while in causal bandits, uncertainty can be
better quantified by bounding the variance of problem-specific
estimators [20], [23], [24]. We shall adapt the UCB approach
to our context, exploiting properties of our graph identification
scheme. Another standard assumption in causal bandits is that
of a static causal model. Both [26] and [30] consider the
non-stationary case, but assume prior knowledge of the initial
causal graph. We shall provide a method by which to keep the
causal structure up-to-date without prior graph knowledge. A
comparison between prior works and our approach is provided
in Table I.

B. Approach and Contributions

We note that separating graph identification from optimized
interventions for MABs is inefficient as these two goals
are coupled in causal MABs. Another feature not typically
considered in the causal graph identification or causal MAB
literature is the distinguishing between false positive and false
negative errors in graph identification – we shall actively
consider this feature. A false positive means that the graph
identification method outputs an edge that is not present in
the true graph, while a false negative means that the graph
identification method outputs no edge, where in fact, the edge
is present in the true DAG. In this paper, we propose the
Causal Sub-graph Learning with Upper Confidence Bound

(CSL-UCB) scheme, without assumed knowledge of either
the causal graph topology or the interventional distributions.
Our algorithm seeks to minimize false negative errors in
graph identification as they have a larger impact on opti-
mal intervention design. We quantify the uncertainty in our
graph identification coupled with that stemming from decision
making. The learning of sub-graphs (versus the entire graph)
strongly reduces complexity and provides a natural strategy
for change detection in non-stationary environments. The main
contributions of this paper are:

1) We propose a sub-graph learning approach to learn the
causal structure, which has strongly improved computa-
tional complexity. Numerical results suggest that it has a

much lower sample complexity as well. A novel mutual
information regularization is proposed which reduces
false negative errors. It is shown that false negatives have
a more critical impact on overall reward optimization in
causal bandit problems.

2) An uncertainty bound tailored to the causal bandit
framework and our graph identification method is de-
rived and used to drive an upper confidence bound
strategy for arm selection.

3) A sub-graph change detection mechanism with local
updates is proposed enabling the consideration of non-
stationary causal structure.

4) Numerical comparisons show that the proposed scheme
identifies the optimal intervention much faster than
standard MAB schemes by exploiting causal structure.
Moreover, compared to strategies that only focus on
causal graph identification, the proposed scheme needs
much fewer samples than other methods and learns the
causal structure with a limited loss with respect to the
long-term reward.

The rest of the paper is organized as follows. We introduce
the system model in Section II. The sub-graph learning scheme
is proposed in Section III, with an analysis of the two types
of error. Uncertainty quantification is provided in Section IV,
which enables the balance between exploration and exploita-
tion. The sub-graph change detection mechanism is proposed
in Section V. Finally, the paper is concluded in Section VI
and all the proofs are provided in the Appendix.

II. SYSTEM MODEL

A. The Causal Graphical Model with Soft Intervention

We assume the causal effects can be captured by a DAG
with structure (V,B), where V = {1, . . . , N} is the set of N
nodes and B is the set of directed edges. Moreover, the edge-
weight matrix B → RN→N captures the strength of causal
effects, where the (i, j)-th entry represents the weight of the
edge i ↑ j. To describe observations under intervention,
consider node-wise intervention, defined as

a = (a1, . . . , aN )
↑ → {0, 1}N , (1)

where ai represents whether node i is intervened (ai = 1)
or not (ai = 0). Specifically, instead of hard interventions,
we consider soft interventions, which do not necessarily cut
off causal relationships between the intervened node and its
parents, but change the in-coming edges to the node. To
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Node 3 {2} {1, 2}

Fig. 1. A causal graph with N = 5 and node 5 as the reward node. Each
sub-graph is marked by a colored region. The sets of parents and ancestors
are provided in the inline table.

formalize the model for soft intervention, we denote the
interventional edge-weight matrix by B

↓ → RN→N , such that
the post-intervention weight matrix Ba can be constructed as

[Ba]i = I(ai = 1)B
↓
i + I(ai = 0)Bi, (2)

where I(·) is the indicator function and [·]i represents the i-
th column of a matrix such that Bi,B↓

i → RN→1. The i-th
column of the post-interventional weight matrix determines
the set of parents of node i and how these parents causally
influence node i.

As a result of intervention, the vector of stochastic values
associated with the nodes is represented by x → RN . The
causal relationship among nodes is described by a linear
structural equation model (LinSEM),

x = (Ba)
↑
x+ ω, (3)

where ω is a vector of Gaussian exogenous/noise variables. We
assume ω contains independent elements with known means
ε and unknown variances ϑ

2. Further, we denote ω̃
.
= ω ↓ ε

such that ω̃ ↔ N (0, diag(ϑ2
)).

We denote the sets of parents and ancestors of node i by
Pi(ai) and Ai(ai), the estimated set of parents by P̂i(ai). The
set difference of the estimated and true parent sets is denoted
by P̂i\Pi(ai). Taking node 3 in Fig. 1 as an example, the
parent and ancestor sets are P3(0) = {2}, A3(0) = {1, 2}.
If the estimated parent set is P̂3(0) = {2, 4}, then we have
P̂3\P3(0) = {4}.

B. The Causal Bandit Model

In the MAB framework, an agent performs a sequence of
actions in order to maximize cumulative reward over a finite
horizon T . With the causal graphical model, we consider node
N as the reward node, which generates a stochastic reward in
each time step. An example of such a causal graph is given
in Fig. 1, where the value of node 5 is considered the reward
signal and the effect of exogenous variables are represented
by dashed arrows.

To compute the expected reward under intervention a, we
recognize that in LinSEMs, there exists a causal flow between
every ancestor-descendant pair. Thus each variable xi can be
decomposed as a linear combination of exogenous variables
in ω, weighted by the strength of the causal flow. Define the
post-intervention flow-weight matrix as

Ca
.
= (I ↓Ba)

↔1 , (4)

where the (i, j)-th entry represents the net flow weight from
node i to j. In this way, we can rewrite (3) as

x = (I ↓Ba)
↔↑

ω = (Ca)
↑
ω, (5)

where I denotes the identity matrix. The expectation of x

under intervention a is formulated as

µa
.
= E

[
(I ↓Ba)

↔↑
ω

]
= (I ↓Ba)

↔↑
ε. (6)

Thus, given the post-intervention weight matrices, we are able
to find the intervention that maximizes the expected reward,
which is defines the optimal intervention,

a
↗ .
= argmax

a
[µa]N . (7)

In each step, the decision-making agent selects an interven-
tion a

t, observes xt and collects a reward xt
N . The randomness

of the observations comes from the exogenous variables,
which are independent of the intervention. The objective is
to maximize the expected cumulative reward, or equivalently,
minimize the expected cumulative regret, defined as

RT
.
= E

[
T∑

t=1

(
[µa→ ]N ↓

[
µ

t
a

]
N

)
]
. (8)

We underscore that all key derivations and theoretical results
in the sequel assume the signal model in this section.

III. CAUSAL SUB-GRAPH LEARNING

Causal bandit problems are different from ordinary MAB
problems, due to the existence of an underlying causal struc-
ture, which is assumed to be unknown in our setting. Since
the expected reward is a function of the post-intervention
weight matrix Ba, understanding the causal structure enables
the agent to better select the intervention afterwards. Over
a finite horizon, the agent has to balance between gaining
causal knowledge (exploration) and maximizing immediate
reward (exploitation), which is a common dilemma for se-
quential decision-making problems. In this section, we focus
on identifying the causal structure, in a sub-graph learning
manner. Based on that, the problem of balancing exploration
and exploitation is investigated in the following section.

A. Sub-graph Decomposition

Causal graph identification is equivalent to figuring out
causal relationships between every pair of nodes in the graph,
represented by directed edges. Given observation up to step
t, X1:t .

= (x
1, . . . ,xt

) of dimension N ↗ t, we can evaluate
every possible graph structure by its ability to fit the data.
However, finding the best graph structure may not be feasible
in practice because the number of possible DAGs grows
super-exponentially in the number of nodes. For example, the
number of DAGs for 2, 4, 10 nodes are 3, 543 and 4.2↗10

18,
respectively [31]. The growing search space issue becomes
even more serious for causal bandits. Since the effect of an
intervention is characterized by the post-interventional graph
Ba and there are 2

N possible interventions, the agent has to
identify 2

N different graphs with only t observations.
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To improve sample efficiency, one feature of the causal
bandit model is noteworthy. Even though there are 2

N post-
intervention distributions characterized by Ba, those post-
intervention weight matrices are composed of columns of
B and B

↓ [20]. Therefore, instead of identifying 2
N causal

graphs induced by Ba, we can identify causal relationships
induced by the columns of B and B

↓. Specifically, Bi and
B

↓
i encode causal weights between node i and its parents. The

following proposition ensures that causal graphs can always
be uniquely decomposed into sub-graphs of our interest.1

Proposition 1. Any DAG can always be uniquely decomposed

into sub-graphs such that each sub-graph consists of a node

and all in-coming edges to the node.

Proof: First, we prove the existence of such decomposition by
construction. For any complete DAG with a set of nodes V =

{1, . . . , N} and a set of edges B, we can always decompose
it into a group of sub-graphs Gi, i → {1, . . . , N}, such that

Vi = {i}, Bi = {(k, i) : ↘k → Pi}. (9)

Moreover, notice that the decomposition is unique: sub-graph
Gi contains and only contains node i and all of its in-coming
edges, which completes the proof.

As illustrated in Fig. 1, each sub-graph resides in one of the
colored regions. For example, the sub-graph in the red region
consists of node 5, directed edges (3, 5) and (4, 5). Learning
sub-graphs has exponentially improved data efficiency. Con-
sider an example where interventions are selected in turns up
to step t, such that each complete graph is associated with
t/2N data samples, as there are 2

N complete graphs. Each
sub-graph, instead, is associated with t/2 data samples, as
each node can only be in one of two possible modes: under
intervention, or not.

For learning causal sub-graphs, we employ the principle

of independent mechanisms, which states that the causes and
the mechanism producing the effect are independent [31].
Based on that, testing the independence of residuals has been
investigated for causal discovery, in the context of additive
noise models [32]–[34]. Herein, we consider minimum mean-
square error (MMSE) estimation, where the estimator and
residual are defined as

x̂t
i(ai)

.
= E

[
xi

∣∣∣X1:t
P̂i(ai)

]
, rti(ai)

.
= x̂t

i(ai)↓ xi. (10)

With the estimated mechanism producing xi, the principle of
independent mechanisms implies that the residual should be
independent from values of the parent nodes,

rti(ai) ≃ xj , ↘j → Pi(ai). (11)

Thus, the dependence between rti and xj supports the hypothe-
sis that node j is not a parent of node i and thus the edge j ↑ i
does not exist. By evaluating all potential in-coming edges to
a node, the corresponding sub-graph can be estimated.

1The sub-graphs we consider here are not vertex-induced sub-graphs.

B. Edge-weighted Mutual Information

As a general measure of dependence, mutual information
(MI), denoted by I(·), is widely utilized for causal discovery
(see e.g. [35], [36]). However, since the sub-graphs are treated
separately, pure MI-based sub-graph learning with limited data
suffers significantly from estimation error. In this subsection,
we explain this issue in detail and propose the edge-weighted

mutual information measure as a solution.
We take a closer look at the mutual information of interest.

In the following derivation, we focus on node i under inter-
vention a and a potential parent node j, with observation up
to step t. The true causal relationship is represented as

xi =

∑

k↘Pi(ai)

[Ba]ki xk + ωi =
∑

k↘Ai(ai)

[Ca]ki ωk + ωi. (12)

For example, we have x3 = 2.76ω1 + 2.3ω2 + ω3 for node 3

in Fig. 1. With the estimated edge-weight matrix denoted by
B̂

t
a, the estimated flow-weight matrix is defined as

Ĉ
t
a

.
=

(
I ↓ B̂

t
a

)↔1
. (13)

Then the estimated node value can be decomposed using flow
weights as

x̂t
i =

∑

k↘Ai(ai)

[
Ĉ

t
a

]
ki
ωk +

∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl + εi. (14)

For example, the estimate of x3 can be decomposed according
to the ancestor set of node 3, as presented in Fig. 1. Since we
do not assume any knowledge of the causal structure, all other
nodes are considered as potential parents of node i. Based on
(12) and (14), the residual can be expressed as

rti(ai) = ↓ω̃i+∑

k↘Ai(ai)

([
Ĉ

t
a

]
ki
↓ [Ca]ki

)
ωk

︸ ︷︷ ︸
intrinsic error

+

∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl

︸ ︷︷ ︸
causal error

. (15)

The second term in (15) is always non-zero in the finite sample
regime, thus we define this error as the intrinsic error. The last
term is defined as the causal error because it is non-zero only
when some non-ancestor nodes are considered as direct causes
(otherwise the residual would not contain ωl). For a specific
non-ancestor node j, which is a source of the causal error, we
decompose its value as

xj =

∑

k↘Ai(ai)

[Ca]kj ωk +

∑

l ≃↘Ai(ai)

[Ca]lj ωl. (16)

Now that we have both rti(ai) and xj for mutual information
evaluation, the following proposition provides an upper bound
where the impact of intrinsic and causal errors are separated.
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Proposition 2. With independent exogenous variables, the

mutual information between the residual and a declared parent

can be upper bounded as

I(rti(ai);xj) ⇐ I
 ∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl ↓ ω̃i;

∑

l ≃↘Ai(ai)

[Ca]lj ωl


︸ ︷︷ ︸
causal error induced MI

+ I
 ∑

k↘Ai(ai)

([
Ĉ

t
a

]
ki
↓ [Ca]ki

)
ωk;

∑

k↘Ai(ai)

[Ca]kj ωk


︸ ︷︷ ︸
intrinsic error induced MI

.

(17)

Proof: See Appendix A.
The proof relies on the data processing inequality [37]

and the mutual independence of the exogenous variables. We
define the first and second terms on the right-hand side of (17)
as the mutual information induced by the causal and intrinsic
errors, respectively. Due to the existence of the intrinsic error,
we may not be able to detect the causal error and thus
misjudge causal directions. To illustrate this point, consider
the causal error induced mutual information. Denote the linear
combination of exogenous variables from non-ancestors by

ϑ(xj , i)
.
=

∑

l ≃↘Ai(ai)

[Ca]lj ωl, (18)

which is Gaussian, with mean µωx and variance ϖ2
ωx. For

example, since the ancestor set of node 3 in Fig. 1 is {1, 2},
ϑ(x5, 3) is a linear combination of ω3, ω4 and ω5. As we
have a causal error, there is an assumed causal edge that
does not exist in the true graph. This erroneous causal edge,
j ↑ i (from non-ancestors) is used in the estimation, and as
a result, induces a causal error in the residual, weighted by
the estimated parameter. To focus on the effect caused by the
erroneously labeled causal edge j ↑ i, we denote the causal
error in the residual induced by other nodes by

ϑ(rti(ai), \j)
.
=

∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl ↓ ω̃i ↓

[
B̂

t
a

]
ji
ϑ(xj , i), (19)

which is Gaussian as well, with mean µωr and variance ϖ2
ωr,

while \j denotes the set of other non-ancestors, \j .
= {l →

{1, . . . , N}|l /→ Ai(ai), l ⇒= j}. In this way, we can rewrite
and bound the causal error induced mutual information as

I
 ∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl ↓ ω̃i;

∑

l ≃↘Ai(ai)

[Ca]lj ωl


= I
[

B̂
t
a

]
ji
ϑ(xj , i) + ϑ(rti(ai), \j); ϑ(xj , i)


(20)

= h
[

B̂
t
a

]
ji
ϑ(xj , i) + ϑ(rti(ai), \j)


+ h


ϑ(xj , i)



↓ h

ϑ(rti(ai), \j), ϑ(xj , i)


(21)

⇐ log

(
|
[
B̂

t
a

]
ji
|ϖωx + ϖωr

)⇑
2ϱe


+ log


ϖωx

⇑
2ϱe



↓

log(2ϱe) + log


ϖωxϖωr


1↓ ς2ω


(22)

= log


1 +

ϖωx

ϖωr
|
[
B̂

t
a

]
ji
|

↓ 1

2
log(1↓ ς2ω), (23)

where ςω stands for the correlation

ςω =
E[(ϑ(xj , i)↓ µωx)(ϑ(rti(ai), \j)↓ µωr)]

ϖωxϖωr
, (24)

and h(·) denotes the differential entropy. Note that the inequal-
ity (22) comes from the Gaussianity of key random variables
and the fact that the variance is maximized when the variables
are perfectly correlated (ςω = 1).

We observe that the causal error induced mutual information
becomes small when the estimated edge weight is small.
To make matters worse, the intrinsic error induced mutual
information is normally not negligible in the limited data
regime. Thus, it is challenging to detect the causal error and
reject a non-causal edge when the estimated weight is small.
To alleviate this issue, we propose an edge-weighted mutual

information measure, defined as

Iw(r
t
i(ai);xj)

.
= I(rti(ai);xj)↓ log |

[
B̂

t
a

]
ji
|. (25)

A large Iw indicates that the corresponding edge is non-causal
and thus should be rejected. The remaining problem is to
determine the threshold for rejecting edges.

In general, any residual based test for causal identification
needs to balance between false positive and false negative
errors [31], by selecting an appropriate testing threshold.
However, in terms of maximizing cumulative reward, the two
types of error contribute differently to the ultimate error of
reward estimation. To be more specific, we argue that rejecting
an actual edge (FN error) is much worse than accepting a
nonexistent edge (FP error). Formally, FN errors exist in the
estimated causal graph (observational or interventional) if

⇓(i, j) : (i, j) → B, (i, j) /→ B̂, (26)

where B̂ denotes the estimated edge set. In the following
subsections, we analyze the impact of FN and FP errors and
propose an adaptive edge-rejecting strategy to minimize the
FN error rate.

C. Analysis of Graph Errors

As discussed in Section II-B, estimated rewards under
different interventions are computed based on the estimated
weight matrices. Thus, we can evaluate the impact of the two
types of error by their effects on weight matrix estimation.
Focusing on the sub-graph of node i under intervention ai,
the following proposition gives the estimated edge weights in
expectation, under the two types of errors.

Proposition 3. We assume MMSE estimation and determine

the effect of only false positive or only false negative errors.

For the presence of only false positive errors, the estimated

edge weights satisfy

E
[[
B̂

t
a

]
i,P̂i(ai)

∣∣X1:t
P̂i(ai)

(ai)
]
= [Ba]i,P̂i(ai)

. (27)

With only false negative errors, the estimated edge weights

satisfy

E
[[
B̂

t
a

]
i,P̂i(ai)

∣∣X1:t
P̂i(ai)

(ai)
]
= [Ba]i,P̂i(ai)

+

[
X

1:t
P̂i(ai)

(ai)X
1:t
P̂i(ai)

(ai)
↑
]↔1

E
[
X

1:t
P̂i(ai)

(ai)·

X
1:t
Pi\P̂i(ai)

(ai)
↑
∣∣∣X1:t

P̂i(ai)
(ai)

]
[Ba]i,Pi\P̂i(ai)

. (28)
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Proof: See Appendix B.
The proof is based on the properties of MMSE estimation.

Note that X1:t and ω
1:t have ai as an argument, because only

the values associated with the intervention ai are considered
for learning the causal structure under intervention ai.

Observe that with only FP errors, the estimated edge weights
are asymptotically unbiased. Although the estimated weights
for any non-existent parents in P̂i(ai) is non-zero for a finite
number of samples, the bias converges to zero as more samples
are collected. In contrast, with the existence of FN errors, the
estimated weights for both correctly identified and erroneously
rejected parents are biased, resulting in inaccurate weights
even with an infinite amount of data. Note that the bias is
a function of the correlation between identified parents and
rejected parents.

D. Adaptive Edge Rejection

Since estimated rewards are inaccurate when FN errors
occur, we should avoid rejecting an actual edge and ensure
the complete graph is a DAG. Thus, the threshold for rejecting
edges should be set large enough to minimize the probability
of rejecting an actual edge. On the other hand, the threshold
should not be too large because redundant edges can result in
cycles in the complete causal graph.

To achieve this goal, we propose to adjust the threshold
adaptively such that edges are rejected only when necessary.
To be more specific, the edge-weighted mutual information is
calculated for each potential edge and the edge with the largest
Iw is rejected at a time, until the complete graph becomes
a DAG. Once the set of declared edges is determined, we
construct the weight matrices by MMSE estimation. Notice
that in this process, although sub-graphs are learned separately
with different sets of samples, whether an edge should be
rejected or not is also influenced by edges in other sub-graphs.

The overall approach for causal graph identification is
denoted as the Causal Sub-graph Learning (CSL) scheme, and
the pseudo-code is provided in Algorithm 1. Note that although
the observational weight matrix B is used as the target in the
pseudo-code, the same procedure will be used for learning the
interventional weight matrix B

↓ as well.
Lastly, we provide the time and space complexity of the

proposed algorithm. Starting with a set of all possible edges
of size N2, the algorithm rejects an edge in each step until
the graph becomes a DAG, and thus the number of steps
is less than N2. Each step selects an edge with the largest
edge-weighted MI among the remaining edges, with time
complexity O(N2

). After the rejection of an edge, estimation
of the weights and residuals takes O(N2

(N + t)) time while
estimation of the MI takes O(Nt log t) time [38]. Besides,
checking whether the graph is a DAG by topological sorting
takes O(N2

) time [39]. Finally, if N ⇐ t, the time complexity
of the proposed scheme is O(N4t + N3t log t). The space
complexity is O(Nt) for storing the collected samples and a
matrix of edge-weighted MI.

IV. INTERVENTION SELECTION UNDER UNCERTAINTY

Given the ability of learning causal graphs with observed
data, we can estimate the reward under each possible interven-

Algorithm 1 The Causal Sub-graph Learning Scheme
Require: The set of nodes V and node values X

1:t.
1: Initialize the edge set to include all possible directed

edges: B̂ = {(i, j) : ↘i, j → V}.
2: while (V, B̂) is not a DAG do
3: Compute edge weights B̂ij and residuals, ↘(i, j) → B̂,

by MMSE estimation, with observed values X
1:t.

4: Compute edge-weighted MI Iw(rti(0);xj), ↘(i, j) → B̂,
with X

1:t and empirical MI.
5: Find (i, j) = argmaxi,j Iw(r

t
i(0);xj), remove the edge

(i, j) from B̂.
6: end while
7: Compute B̂ij , ↘(i, j) → B̂, by MMSE estimation, with

X
1:t. For (i, j) /→ B̂, set B̂ij = 0.

8: return Estimated weight matrix B̂.

tion. Although selecting the intervention with largest estimated
reward is optimal for the current step, exploring other inter-
ventions is necessary for achieving higher cumulative reward
in the long run. It is because the intervention with largest esti-
mated reward may not be the optimal intervention, due to the
uncertainty of reward estimation. Thus, intervention selection
should consider both how close the estimated rewards are to
being maximal and the uncertainties in those estimates. In this
section, we derive an uncertainty bound on the estimation error
of the expected reward, so that the potential of an intervention
can be taken into account.

For any specific intervention a, define the matrix of edge-
weight errors and the vector of expected node-value errors as

!B
t
a

.
= B̂

t
a ↓Ba, !µ

t
a

.
= µ̂

t
a ↓ µa, (29)

where µ̂
t
a represents the estimated mean of x. As analyzed in

Section III-C, the weight errors could have non-zero means,
due to missing edges (false negatives). With the centered error
matrix defined as

!B̃
t
a

.
= !B

t
a ↓ E

[
!B

t
a

∣∣X1:t
(a)

]
, (30)

we bound the error in the estimated reward (see (29)) as
∣∣[!µ

t
a

]
N

∣∣ =
∣∣∣
[
(I ↓ B̂

t
a)

↔1
]↑
N
(!B

t
a)

↑
µa

∣∣∣ (31)

⇐
∣∣∣
[
(I ↓ B̂

t
a)

↔1
]↑
N
E
[
!B

t
a

∣∣X1:t
(a)

]↑
µa

∣∣∣

+

∣∣∣
[
(I ↓ B̂

t
a)

↔1
]↑
N

(
!B̃

t
a

)↑
µa

∣∣∣ . (32)

Recall that we provide an expression for the non-zero elements
of E

[
!B

t
a

∣∣X1:t
(a)

]
in (28), which depends on the correlation

between correctly declared parents and mistakenly rejected
parents. However, since we are not able to know whether and
where causal edges are rejected by mistake, the uncertainty
bound cannot be computed at run-time.

Nevertheless, when no FN error exists, we are able to bound
the uncertainty of the estimated reward. With the covariance
of the i-th weight error vector denoted by !t

a(i), we derive
a concentration inequality for the estimation error, under the
assumption of no FN errors.
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Lemma 1. With MMSE estimation and the assumption of no

false negative errors, the norm of the weight error vectors

have upper-bounded moments for m ⇔ 2:

E
[[!B

t
a

]
i

m
2

]
⇐ m!


4N

N + 2


φmax(!

t
a(i))

N + 2

4

m/2

,

(33)
where φmax(·) stands for the maximum eigenvalue of a matrix.

Proof: See Appendix C.
The proof is based on the eigenvalue decomposition of the

weight error matrix and Jensen’s inequality. Lemma 1 enables
us to derive a concentration inequality for the maximum
singular-value of the weight error matrix.

Lemma 2. With MMSE estimation and the assumption of no

false negative error, the following inequality holds,

P

ϖmax(!B

t
a) ⇔ 2

(
N2

+ 2N
)1/4

↗


ln


2N

↼

 N∑

i=1

φmax(!t
a(i))


⇐ ↼, (34)

where ϖmax(·) represents the maximum singular-value.

Proof: See Appendix D.
The proof relies on a key dilation transformation, Lemma

1 and the matrix Bernstein inequality [40]. Based on Lemma
2, the following theorem provides a concentration inequality
for the error of the estimated reward.

Theorem 1. Under the assumption MMSE estimation and no

false negative errors, the following inequality holds:

P
∣∣[!µ

t
a

]
N

∣∣ ⇔ U(X
1:t,a, ↼)


⇐ ↼, (35)

where U(X
1:t,a, ↼) represents the error upper-bound at con-

fidence level 1↓ ↼,

U(X
1:t,a, ↼) = 2

(
N2

+ 2N
)1/4 

[
(I ↓ B̂

t
a)

↔1
]
N


2

↗ ↖µa↖2


ln


2N

↼

 N∑

i=1

φmax(!t
a(i)). (36)

Proof: See Appendix E.
The proof is based on the Woodbury matrix identity [41] and

Lemma 2. Since the uncertainty of reward estimation cannot be
measured in the presence of FN errors, we employ (35) as an
approximation for the general case. The bound on uncertainty
enables us to balance between exploration and exploitation,
so that the cumulative regret is minimized in the long run. In
the presence of FN errors, although the uncertainty bound may
not hold exactly, the observed low cumulative regret in Section
VI-B suggests, at least numerically, that the uncertainty bound
has utility in our proposed algorithm.

Note that the uncertainty bounds are computed based on
the estimation of edge-weight matrices. Initially, to ensure
there exist samples for learning every sub-graph, we select
interventions randomly. This phase is thus our exploration

start. Afterwards, we select the intervention that achieves the

Algorithm 2 The CSL-UCB Scheme
Require: The set of nodes V , length of exploring start Tes,

uncertainty level ↼ and exploration parameter ↽.
1: EXPLORING START PHASE
2: for t = 1 : Tes do
3: Randomly select an intervention a

t.
4: Observe node values x

t and collect a reward of xt
N .

5: end for
6: BALANCED EXPLOITATION & EXPLORATION PHASE
7: for t = Tes + 1 : T do
8: Estimate the observational and interventional causal

graphs using Algorithm 1.
9: For each intervention, construct the post-intervention

weight matrix by (2) and evaluate the uncertainty
bound according to (36).

10: Select an intervention a
t according to (37).

11: Observe node values x
t and collect a reward of xt

N .
12: end for

best balance between exploitation (large estimated reward) and
exploration (high uncertainty) in each time step via:

a
t+1

= argmax
a

[
(I ↓ B̂

t
a)

↔1
]↑
N

ε + ↽U(X
1:t,a, ↼)


,

(37)
where ↽ is a design parameter that controls the exploration
level. Combining CSL with uncertainty evaluation, the overall
approach is denoted as the Causal Sub-graph Learning with

Upper Confidence Bound (CSL-UCB) scheme, whose pseudo-
code is provided in Algorithm 2.

V. CAUSAL SUB-GRAPH CHANGE DETECTION

So far, we have investigated the causal bandit problem,
assuming that the underlying causal structure is invariant.
However, it could be non-stationary in real-world scenarios,
such that the post-intervention weight matrix Ba varies over
time. Although the proposed CSL-UCB algorithm keeps up-
dating the causal structure, it should only utilize data generated
by the current causal model. In this section, we develop a
causal sub-graph change detector for both weight and topology
changes, which enables the proposed scheme to maintain a
high cumulative reward even when the causal structure is non-
stationary.

Consider a piece-wise stationary model where the causal
structure remains the same between two consecutive change
points. Without loss of generality, we focus on detecting the
first change-point in time, denoted by tc. To determine whether
a change occurs at step s, a straightforward approach compares
the distribution of observed values during [1, s] with the
distribution during (s, t]. If the distributions differ significantly,
s is claimed to be a change point. However, the distribution
shift of x only indicates the existence of a change but not
the source of the change. To understand this, recall the data
generating process,

xi =

∑

k↘Pi(ai)

[Ba]ki xk + ωi, (38)
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where the distribution shift of xi could be due to the change
of causal mechanism [Ba]i or/and the distribution shifts of its
parents xk. As the source of change is not identifiable, the
whole graph has to be re-learned.

Since causal mechanisms are modular and independent
[31], the sparse mechanism shift hypothesis [42] suggests
that changes in the data distribution generally are caused by
changes in only a subset of causal mechanisms. In this case, it
is sufficient to only re-learn the changed part. We rely on the
whitening transformation of x to identify the set of changed
mechanisms,

y
.
= (I ↓ B̂

t
a)

↑
x = (I ↓Ba)

↑
x↓ (!B

t
a)

↑
x (39)

= ω↓ (!B
t
a)

↑
x. (40)

According to (40), yi and ωi differ in distribution if and only
if
[
!B

t
a

]
i
⇒= 0, in which case the estimated sub-graph model

fails to explain the observed data well. There are two main
possible reasons for a large discrepancy between distributions:
causal structure change and FN errors in estimation. Thus,
besides detecting causal structure changes, checking the con-
sistency between y and ω also enables us to discover FN errors.

When the sub-graph associated with node i changes, the
whitened variable yεi would differ in distribution from ωi. Thus,
to determine whether there is a change point, we formulate a
hypothesis testing problem,

H0 : ↘⇀ → [1, t], yεi
i.i.d.↔ N (εi,ϖ

2
i ), (41)

H1 : ⇓tc → (1, t), yεi
i.i.d.↔


N (εi,ϖ2

i ), ⇀ → [1, tc]

N (ε↓i,ϖ
↓2
i ), ⇀ → (tc, t]

, (42)

where εi, ϖ2
i are the mean and variance of ωi, while ε↓i, ϖ↓2

i

are the mean and variance of yεi , ⇀ → (tc, t].
For testing the null hypothesis of no change-point versus the

alternative hypothesis of a single change-point, we employ the
Generalized Likelihood Ratio (GLR) statistic [43],

”i(s)
.
=

s∑

ε=1

logL(yεi ; εi,ϖ2
i ) + sup

ϑ̂,ϖ̂2

t∑

ε=s+1

logL(yεi ; ε̂, ϖ̂2
)

↓
t∑

ε=1

logL(yεi ; εi,ϖ2
i ), (43)

where L(·; ε,ϖ2
) denotes the likelihood function of a Gaussian

distribution with mean ε and variance ϖ2. Note that ”i(s)
essentially measures the gain in likelihood by explaining the
observed data during (s, t] with an alternative distribution.
Based on the GLR statistic, the estimated change point is given
as

t̂c(i) = min


t → [1, T ] : max

s↘[1,t)
”i(s) ⇔ ⇁


, (44)

where ⇁ is a positive constant. As a threshold, the value
of ⇁ determines the false alarm and miss rates of the GLR
test. Herein, we derive the functional dependence between the
threshold and the false alarm rate, so that ⇁ can be chosen to
achieve a desired false alarm probability,

P

max
s↘[1,t)

”i(s) ⇔ ⇁
∣∣∣H0


= ζ. (45)

With the maximum likelihood estimates for Gaussian pa-
rameters,

ε̂i
.
=

1

t↓ s

t∑

ε=s+1

yεi , ϖ̂2
i

.
=

1

t↓ s

t∑

ε=s+1

(yεi ↓ ε̂i)
2, (46)

the test statistic under H0 can be formulated as

”i(s) =
t∑

ε=s+1

logL(yεi ; ε̂i, ϖ̂2
i )↓ logL(yεi ; εi,ϖ2

i ) (47)

=

t∑

ε=s+1

log


ϖi

ϖ̂i
exp


(yεi ↓ εi)2

2ϖ2
i

↓ (yεi ↓ ε̂i)2

2ϖ̂2
i


(48)

=
t↓ s

2

(
log ϖ2

i ↓ log ϖ̂2
i ↓ 1

)
+

t∑

ε=s+1

(yεi ↓ εi)2

2ϖ2
i

, (49)

where we substitute ϖ̂2
i in (46) to arrive at (49). Applying

a Taylor expansion of log ϖ̂2
i around ϖ2

i , the test statistic is
approximated as

2”i(s) ↙ (t↓ s)


1

2

 ϖ̂2
i ↓ ϖ2

i

ϖ2
i

2
↓ ϖ̂2

i

ϖ2
i


+

t∑

ε=s+1

(yεi ↓ εi)2

ϖ2
i

(50)

=
t↓ s

2

 ϖ̂2
i

ϖ2
i

↓ 1

2
+

⇑
t↓ s

ϖi
(ε̂i ↓ εi)

2
(51)

=


(t↓ s)ϖ̂2

i /ϖ
2
i ↓ (t↓ s)

2(t↓ s)

2
+

⇑
t↓ s

ϖi
(ε̂i ↓ εi)

2
(52)

↙

(t↓ s)ϖ̂2

i /ϖ
2
i ↓ (t↓ s↓ 1)

2(t↓ s↓ 1)

2
+

⇑
t↓ s

ϖi
(ε̂i ↓ εi)

2
.

(53)

The sample mean and variance satisfy

(t↓ s)ϖ̂2
i /ϖ

2
i ↔ χ2

(t↓ s↓ 1), ε̂i ↔ N

εi,

ϖ2
i

t↓ s


, (54)

where χ2
(d) refers to the chi-squared distribution with d

degrees of freedom. If we approximate χ2
(t ↓ s ↓ 1) by a

Gaussian distribution, (53) can be considered as the sum of
the squares of two Gaussian random variables. Furthermore,
these two variables are independent because the sample mean
and sample variance of Gaussian distributions are independent
[44]. Thus, we can approximate 2”i(s) by a chi-squared
random variable with two degrees of freedom.

Note that ”i(s) is computed with samples in (s, t], as shown
in (47). As a result, a strong positive correlation exists be-
tween the statistics calculated using overlapping subsets of the
samples. For example, ”i(s1) and ”i(s2) are computed with
overlapped samples in the interval (max(s1, s2), t]. Therefore,
we approximate the false alarm probability as

P

max
s↘[1,t)

”i(s) ⇔ ⇁
∣∣∣H0


↙

P

2”i(s = 1) ⇔ 2⇁

∣∣∣H0


↙ 1↓ F2(2⇁), (55)

where F2(·) stands for the cumulative distribution function
of χ2

(2). To achieve a false alarm rate of ζ, we can set the
threshold to be

⇁(ζ) = F↔1
2 (1↓ ζ)/2. (56)
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While our proposed method may not be optimal, we emphasize
that the approach can detect changes at the sub-graph level,
resulting in improved sample and computational efficiency.

Once a change is detected for a sub-graph at time t̂c,
the edge weights associated with that sub-graph should be
estimated only using observed values during (t̂c, t]. The pro-
posed CSL-UCB algorithm combined with change detection
is denoted as the CSL-UCB-CD scheme.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed schemes in terms of both graph identification
and intervention selection. Both stationary and non-stationary
causal structures are considered for evaluation. For each Monte
Carlo run, the causal structure is randomly generated, with the
edge weights randomly sampled from the uniform distribution
U(↓2, 2). The exogenous variables are independently sampled
in each time step from the Gaussian distribution N (1, 1).
To estimate the empirical mutual information, the k-nearest
neighbor distances based approach is employed [45]. For each
set of parameters, we repeat the Monte Carlo run M = 100

times.2

A. Performance for Causal Graph Identification

We start by evaluating the causal graph learning ability of
the proposed CSL scheme. For comparison, we consider the
GOLEM algorithm from [10], the DAGMA algorithm from
[11] and the CSL-nw scheme, which refers to the proposed
CSL scheme without edge weight regularization. The GOLEM
algorithm provides an estimate of the observational weight
matrix in step t as

argmin

B̂↘RN↑N


↓ logL(X1:t

; B̂)+▷1

B̂

1
+▷2

[
tr
(
eB̂⇐B̂)

↓N
]

,

(57)
where ▷1 and ▷2 are the penalty coefficients, ∝ denotes the
Hadamard product and the negative log-likelihood is

↓ logL(X1:t
; B̂) =

N

2
log

 N∑

i=1

t∑

ε=1

(
xε
i ↓ B̂

↑
i x

ε
)2


↓ log
∣∣det(I ↓ B̂)

∣∣. (58)

With a different characterization of acyclicity, the DAGMA
algorithm estimates the weight matrix as

argmin

B̂↘RN↑N


↓ logL(X1:t

; B̂) + ▷1

B̂

1

↓ log det(▷3I ↓ B̂ ∝ B̂) +N log ▷3


, (59)

where ▷3 is the log-determinant coefficient.
Fig. 2 plots the graph FN rate as a function of graph sizes,

with two sample sizes, T = 200 and 400. The graph FN rate
is defined as

1

M

M∑

m=1

I
(
⇓(i, j) → V↗V : Bij(m) ⇒= 0, B̂ij(m) = 0

)
, (60)

2The code is available at https://github.com/CalixPeng/Causal Bandit.

Fig. 2. Graph false negative rate as a function of graph sizes.

where B(m) and B̂(m) represent the true and estimated edge
weight matrices in the m-th Monte Carlo run. Observe that the
CSL-nw scheme has a graph FN rate of 100% in all cases,
which indicates that without edge weight regularization, the
estimated graphs always have FN errors. The GOLEM scheme
performs slightly better than the DAGMA scheme, while both
of them perform much worse than the proposed CSL scheme.
This is due to the fact that GOLEM and DAGMA do not
distinguish between FP and FN errors, while the CSL scheme
is designed to explicitly consider the FN rate. On average,
the CSL scheme achieves a graph FN rate that is lower than
the GOLEM scheme by 81.1% and the DAGMA scheme by
86.9%. Interestingly, given a fixed number of samples, as the
graph size increases, the graph FN rates for both GOLEM and
DAGMA increase rapidly. In contrast, The CSL scheme does
not suffer much from the increased graph size, as learning
sub-graphs has higher sample efficiency.

To better understand the balance between false positives and
false negatives, we consider precision and recall for evaluation,
which are defined as

precision
.
=


i,j I

(
Bij ⇒= 0, B̂ij ⇒= 0

)


i,j I

(
B̂ij ⇒= 0

) , (61)

recall
.
=


i,j I

(
Bij ⇒= 0, B̂ij ⇒= 0

)


i,j I
(
Bij ⇒= 0

) . (62)

Note that precision and recall are inversely correlated with
the numbers of FP and FN, respectively. Figure 3 and 4 plot
precision and recall as functions of graph sizes. We observe
that the proposed CSL scheme achieves a close to one recall
by focusing on the reduction of FN errors. On average, the
recall rates of GOLEM, DAGMA and CSL are 92.7%, 93.8%
and 99.6%. On the other hand, the CSL scheme does not
perform significantly better than GOLEM and DAGMA in
terms of precision, especially for small graphs. The average
precision rates achieved by GOLEM, DAGMA and CSL are
93.5%, 90.9% and 96.7%. We also observe that both precision
and recall of the CSL scheme increase as the graph becomes
larger, while GOLEM and DAGMA have the opposite trend.
It suggests that for the CSL scheme, as N increases, the
number of mistaken edges increases more slowly than the
totally number of edges, which increases quadratically in N .

https://github.com/CalixPeng/Causal_Bandit
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Fig. 3. Precision as a function of graph sizes.

Fig. 4. Recall as a function of graph sizes.

For completeness, we also include performance for both
types of graph errors, measured by the normalized structural
Hamming distance (NSHD), which is defined as

NSHD
.
=

∑

i,j

[
I
(
Bij = 0, B̂ij ⇒= 0

)
+ I

(
Bij ⇒= 0, B̂ij = 0

)

↓ I
(
Bij ⇒= 0, B̂ij = 0, B̂ji ⇒= 0

)]
/N2. (63)

In Fig. 5, the NSHD is plotted as a function of graph sizes.
We observe that in terms of NSHD, the CSL scheme does not
perform significantly better than the GOLEM and DAGMA
schemes. Particularly when the graph is small (N = 6),
DAGMA achieves the lowest normalized SHD for 200 sam-
ples, while GOLEM achieves the lowest SHD for 400 samples.
Since both GOLEM and DAGMA learn the whole graph with
gradient-based optimization, a sufficient amount of samples
are necessary to achieve desirable performance. As the graph
size increases, CSL offers strongly superior performance due
to its need for fewer samples than the other methods.

B. Performance for Stationary Causal Bandits

Next, we consider the proposed CSL-UCB scheme with
optimized intervention design in causal bandits. Since the goal
is to maximize the cumulative reward, we start by revealing
the impact of FN errors on reward estimation. To measure the
impact, the estimation errors are classified into two groups

Fig. 5. Normalized Hamming distance as a function of graph sizes.

Fig. 6. Normalized error of estimated reward as a function of time steps.

based on whether FN error exists in the estimated graph. In
Fig. 6, the normalized empirical reward error is plotted as a
function of time for two cases: with or without FN errors.
Without FN errors, the reward estimation error decreases
monotonically as more samples are collected, which matches
the analysis in Section III-C. With the presence of FN errors,
the estimation error does not decrease as more samples are
collected. On average, the estimation error is 62.8% lower
in the absence of FN errors. The result is consistent with
our claim that FN errors have a significant impact on reward
maximization in causal bandits. The result also validates our
choice to minimize the FN rate in causal graph identification.

To evaluate the CSL-UCB scheme, we focus on graphs with
size N = 10 and simulate causal bandits over a horizon of
T = 1500 time steps. To alleviate computation cost, the graphs
are updated with new collected samples every 20 time slots.
For comparison, we first consider the vanilla UCB algorithm
[29], which selects an intervention in each step as

argmax
a

t
ε=1 I(aε

= a)Xε
Nt

ε=1 I(aε = a)
+ ↽↓


ln t

t
ε=1 I(aε = a)

}
,

(64)
where ↽↓ is the parameter that controls the exploration level.
Notice that the vanilla UCB algorithm does not exploit the
causal structure and its sample complexity scales exponentially
as 2

N [46]. Another scheme we consider for comparison is
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Fig. 7. Cumulative regret of stationary bandits as a function of time steps.

the GOLEM [10] algorithm based decision-making for MABs,
denoted as the GOLEM-MAB scheme. The horizon is divided
into two parts, such that causal structure identification is
conducted in the first part, while rewards are collected in the
second part by exploiting the learned causal graph. Note that
since GOLEM identifies the whole graph, intervention should
be fixed as a = 0 for learning B and a = 1 for learning B

↓.
Lastly, we employ the LinSEM-TS scheme proposed in [20],
which provides an upper bound on performance, as it utilizes
knowledge of the causal topology.

Figure 7 plots the cumulative regret as a function of time
for four different algorithms and the associated probability
of selecting the optimal intervention is provided in Figure
8. The vanilla UCB algorithm gains information about the
optimal intervention after exploring every possible intervention
at t = 2

N
= 1024. By the end of the horizon, vanilla UCB

selects the optimal intervention 47.2% of the time. GOLEM-
MAB tries to identify the causal graph in the first 600 steps,
and exploits this knowledge to achieve an optimal intervention
selection ratio of 71.0%. The value of t = 600 was selected
via trial and error to optimize the performance of GOLEM-
MAB. The proposed CSL-UCB scheme gains and leverages
causal knowledge in an alternating manner, yielding an optimal
intervention selection ratio of 79.0%. With topology knowl-
edge, LinSEM-TS is able to select the optimal intervention
with probability 94.2%. In terms of cumulative regret, the
CSL-UCB scheme achieves a 91.6% improvement compared
with vanilla UCB and an 86.8% improvement compared with
GOLEM-MAB. The LinSEM-TS algorithm can further reduce
86.6% of the cumulative regret the CSL-UCB scheme achieves
when the causal structure is fully known.

An interesting observation is that, after 600 time steps for
graph identification (300 for each, B and B

↓), the graphs
estimated by GOLEM are close to the ground truth with
respect to the SHD. However, even rejecting one existing
edge (one false negative error) could result in a significantly
different expected reward. Since edges are highly possible to
be part of the causal flows that influence the reward node,
mistakenly rejecting an edge can cut off one or multiple
relevant causal flows and thus significantly impact reward
estimation. The relatively poor performance of GOLEM-MAB

Fig. 8. Optimal percentage of stationary bandits as a function of time steps.

is not due to its generic graph identification ability, but the
equal treatment of all errors and its low sample efficiency. We
emphasize again that causal bandit optimization and causal
graph identification are two different problems.

C. Performance for Non-stationary Causal Bandits

Lastly, we evaluate the reward-earning ability of the pro-
posed CSL-UCB-CD scheme in non-stationary causal bandits.
Structure change occurs twice at t → {1000, 2000}, where
a random subset of the causal mechanisms are regenerated.
For comparison, the vanilla UCB algorithm can adjust its
estimate of the rewards after structure changes using newly
collected samples. The GOLEM-MAB algorithm combined
with a change detection mechanism is denoted as GOLEM-
MAB-CD, which must re-learns the whole causal graph when
a change is detected. The LinSEM-TS algorithm initially has
full knowledge of the causal structure, but is unaware of the
upcoming changes.

In Fig. 9, the cumulative regret is plotted as a function of
time. The percentage of selecting the optimal intervention as a
function of time is provided in Fig. 10. On average, the change
detection mechanism is able to detect 89.3% of the sub-graph
changes, with an average delay of 13.1 slots. The cumulative
regret achieved by the CSL-UCB-CD scheme is 83.0% lower
than vanilla UCB, 83.2% lower than GOLEM-MAB-CD and
73.5% lower than LinSEM-TS. Although LinSEM-TS obtains
the lowest regret before structure change, its performance
degrades dramatically when the causal knowledge becomes
incorrect.

The vanilla UCB scheme performs the worst, not due to
structure changes but rather, due to the lack of samples.
Averaged over time, the optimal intervention ratio of the
vanilla UCB scheme is only 7.0%. As illustrated in Fig. 10, the
optimal percentage of GOLEM-MAB-CD drops to 0% after
each change-point, which indicates that it is able to detect
the changes and start to re-learn the causal graph. However,
as learning the whole graph requires a large amount of
samples, GOLEM-MAB-CD is only able to select the optimal
intervention 18.3% of the time. Since LinSEM-TS suffers from
incorrect causal knowledge caused by structure changes, it
selects the optimal intervention only 32.6% of the time. The
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Fig. 9. Cumulative regret of non-stationary bandits as a function of time
steps. Structure change occurs twice, as marked by the dashed lines.

Fig. 10. Optimal percentage of non-stationary bandits as a function of time
steps. Structure change occurs twice, as marked by the dashed lines.

CSL-UCB-CD scheme combines sub-graph change detection
with sub-graph learning, and select the optimal intervention
63.8% of the time.

Compared with the stationary case, it is observed that
the regret gap between vanilla UCB and GOLEM-MAB-
CD in non-stationary bandits is smaller. The major reason is
that, utilizing samples from the previous model, vanilla UCB
implicitly assumes those samples contain information about
the current structure. This is true, because the changes occur
only for a subset of the causal mechanisms. We also observe
that CSL-UCB-CD performs better than GOLEM-MAB-CD
mainly due to its fast recovery from structure changes. This
fast recovery property comes from the fact that re-learning sub-
graphs requires fewer samples than re-learning whole graphs.

VII. CONCLUSIONS

In this paper, we investigate the causal bandit problem
with no knowledge of the causal graph topology and the
interventional distribution. Distinguishing between the two
types of error, a sub-graph learning-based causal identification
approach is proposed, which makes efficient use of the limited
data. Due to learning sub-graphs versus entire graphs, the
complexity of the proposed method is significantly lower than
traditional methods. Analysis reveals that optimal intervention

design is much more sensitive to false negative errors in graph
identification. This feature is directly taken into consideration
for the sub-graph learning algorithm. To balance exploration
and exploitation, we analyze and propose an uncertainty
bound. Further, sub-graph level change detection mechanism
is proposed, which enables the proposed approach to adapt to
non-stationary bandits. Numerical results show that the overall
approach is able to identify the optimal intervention with much
lower sample and computational complexity than previous
methods. Furthermore, performance is improved over prior
approaches due to the direct consideration of false negative
errors. The proposed approach requires 67% fewer samples
to learn the causal structure and achieves a lower cumulative
regret by 85%, compared to the existing schemes.

APPENDIX A
PROOF OF PROPOSITION 2

Proof: We start by proving a general statement for continuous
random variables. That is, the following inequality holds,

I(Z1 + Z2;Z3 + Z4) ⇐ I(Z1;Z3) + I(Z2;Z4), (65)

if Z1 ≃ Z2, Z4 and Z3 ≃ Z2, Z4. To prove that, we first
employ the data processing inequality [37] to bound the mutual
information as

I(Z1 + Z2;Z3 + Z4) ⇐ I(Z1, Z2;Z3 + Z4) (66)
⇐ I(Z1, Z2;Z3, Z4). (67)

Then, based on the definition of mutual information, we have

I(Z1, Z2;Z3, Z4)

=

∫
f(z1, z2, z3, z4) log

f(z1, z2, z3, z4)

f(z1, z2)f(z3, z4)
dz (68)

=

∫
f(z1, z3)f(z2, z4) log

f(z1, z3)

f(z1)f(z3)
dz

+

∫
f(z1, z3)f(z2, z4) log

f(z2, z4)

f(z2)f(z4)
dz (69)

=

∫
f(z1, z3) log

f(z1, z3)

f(z1)f(z3)
dz1dz3 · 1

+

∫
f(z2, z4) log

f(z2, z4)

f(z2)f(z4)
dz2dz4 · 1 (70)

= I(Z1;Z3) + I(Z2;Z4). (71)

Given this inequality and the fact that the exogenous variables
are independent, the substitution

Z1 =

∑

l ≃↘Ai(ai)

[
Ĉ

t
a

]
li
ωl ↓ ω̃i,

Z2 =

∑

k↘Ai(ai)

([
Ĉ

t
a

]
ki
↓ [Ca]ki

)
ωk,

Z3 =

∑

l ≃↘Ai(ai)

[Ca]lj ωl, Z4 =

∑

k↘Ai(ai)

[Ca]kj ωk (72)

completes the proof.
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APPENDIX B
PROOF OF PROPOSITION 3

Proof: Consider two sets Q, S such that Q ′ S and the
observed values of nodes up to step t satisfy

X
1:t
i (ai) = [Ba]

↑
i,QX

1:t
Q (ai) + 0↑

X
1:t
S\Q(ai) + ω

1:t
i (ai)

(73)

= [Ba]
↑
i,SX

1:t
S (ai) + ω

1:t
i (ai) (74)

where 0 is a vector of zeros and S\Q denotes the set difference
of S and Q. The expected vector of weights associated with
nodes in S , is given by the MMSE estimation as

E
[[
B̂

t
a

]
i,S

∣∣X1:t
S (ai)

]
= E

[[
X

1:t
S (ai)X

1:t
S (ai)

↑]↔1
X

1:t
S (ai)

· (X1:t
S (ai)

↑
[Ba]i,S + ω̃

1:t
i (ai)

↑
)
∣∣X1:t

S (ai)
]

(75)
= [Ba]i,S + 0 = [Ba]i,S . (76)

With the substitution Q = Pi(ai), S = P̂i(ai), we obtain
the effect of including non-existent parents (false positive
error). Equation (76) holds because the exogenous variable
ω̃i is independent of the variables associated with the nodes in
S = P̂i(ai). Without a false negative error, P̂i(ai) should not
contain node i and its descendants.

Next, consider the case that the values are generated as

X
1:t
i (ai) = [Ba]

↑
i,QX

1:t
Q (ai)+[Ba]

↑
i,S\QX

1:t
S\Q(ai)+ω

1:t
i (ai).

(77)
The vector of expected weights associated with Q is given by
the MMSE estimation as

E
[[
B̂

t
a

]
i,Q

∣∣X1:t
Q (ai)

]
= E

[[
X

1:t
Q (ai)X

1:t
Q (ai)

↑]↔1
X

1:t
Q (ai)

(
X

1:t
Q (ai)

↑
[Ba]i,Q +X

1:t
S\Q(ai)

↑
[Ba]i,S\Q +

ω̃
1:t
i (ai)

↑)∣∣X1:t
Q (ai)

]
(78)

= [Ba]i,Q +
[
X

1:t
Q (ai)X

1:t
Q (ai)

↑]↔1E
[
X

1:t
Q (ai)·

X
1:t
S\Q(ai)

↑
[Ba]i,S\Q

∣∣X1:t
Q (ai)

]
. (79)

Note that having FN errors is equivalent to have P̂i(ai) ′
Pi(ai). Thus with the substitution Q = P̂i(ai), S = Pi(ai),
we obtain the effect of FN errors (rejecting actual edges).

APPENDIX C
PROOF OF LEMMA 1

Proof: When there is no false negative error, each weight error
vector follows a multivariate normal distribution according to
the theory of linear least-square estimation,

[
!B

t
a

]
i
↔ N (0,!t

a(i)), (80)

where the covariance matrix can be decomposed as !t
a(i) =

Qi”iQ
↑
i . With the orthonormal matrix Qi, we have

[!B
t
a

]
i


2
=

Q↑
i

[
!B

t
a

]
i


2
, Q

↑
i

[
!B

t
a

]
i
↔ N (0,”i).

(81)
Since the squared norm of Q

↑
i [!B

t
a]i is a weighted sum of

independent squared Gaussian variables, it can be bounded
from above as

Q↑
i

[
!B

t
a

]
i

2
2
⇐ φmax(”i)

”↔1/2
i Q

↑
i

[
!B

t
a

]
i

2
2

(82)

= φmax(!
t
a(i))

”↔1/2
i Q

↑
i

[
!B

t
a

]
i

2
2
. (83)

Notice that
”↔1/2

i Q
↑
i [!B

t
a]i

2
2

follows a Chi-squared dis-
tribution with N degrees of freedom, with the m-th moment
defined as

E
[”↔1/2

i Q
↑
i

[
!B

t
a

]
i

2
2

m]
= 2

m#(m+N/2)

#(N/2)
, (84)

where #(·) represents the Gamma function. Thus we can upper
bound the m-th moment of the error norm as

E
[[!B

t
a

]
i

m
2

] (a)
⇐


E
[[!Bt

a]i

2
2

m]
(85)

(b)
⇐



φmax (!t
a(i))

m
2m

#(m+N/2)

#(N/2)
(86)

(c)
⇐ m!


4N

N + 2


φmax(!

t
a(i))

N + 2

4

m/2

, (87)

where (a) comes from Jensen’s inequality while (b) is a direct
consequence of (81), (83) and (84). To show (c), we first
rewrite the quotient of the Gamma function as

2
m#(m+N/2)

#(N/2)
= N(N + 2) · · · (N + 2m↓ 2) (88)

= (m!)
2 ·

m∏

k=1

N + 2k ↓ 2

k2
. (89)

When m ⇔ 2, we have the following inequalities
N + 2k ↓ 2

k2
=

N ↓ 2

k2
+

2

k
⇐ N + 2

4
, ↘k ⇔ 2, (90)

2
m#(m+N/2)

#(N/2)
⇐ (m!)

2 ·N ·

N + 2

4

m↔1

, (91)

which shows (c) and thus completes the proof.

APPENDIX D
PROOF OF LEMMA 2

Proof: For a specific intervention a, consider the dilation [47]
of the weight error matrix,

H(!B
t
a)

.
=


0 !B

t
a

(!B
t
a)

↑
0


. (92)

An important property is that the dilation preserves spectral
information:

φmax(H(!B
t
a)) = ϖmax(H(!B

t
a)) = ϖmax(!B

t
a), (93)

Since the weight matrix consists of independently learned
columns, we decompose the dilation as

H(!B
t
a) =

N∑

i=1

Hi, Hi
.
=


0 (!B

t
a)i

(!B
t
a)

↑
i 0


, (94)

where the N ↗ N matrix (!B
t
a)i is composed of the i-th

column of !B
t
a and zero everywhere else. Applying block

matrix multiplication repeatedly, we have

H
2
i =

[
(!B

t
a)i (!B

t
a)

↑
i 0

0 (!B
t
a)

↑
i (!B

t
a)i

]
, (95)

H
m
i =

[!B
t
a]i

m↔1

2
·Hi, m is odd[!B

t
a]i

m↔2

2
·H2

i , m is even
. (96)
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We further observe that

φmax(Hi) =
[!B

t
a

]
i


2
, φmax(H

2
i ) =

[!B
t
a

]
i

2
2
, (97)

which enables us to draw a general conclusion that

H
m
i ∞

[!B
t
a

]
i

m
2
· I, (98)

where ∞ represents the matrix semi-definite ordering. Further,
taking expectation and applying Lemma 1, we have

E[Hi] = 0 (99)

E[Hm
i ] ∞ m!


4N

N + 2


φmax(!

t
a(i))

N + 2

4

m
2

I, m ⇔ 2.

(100)

These properties enable us to apply the matrix Bernstein
inequality for the sub-exponential case [40] and obtain

P{ϖmax(!B
t
a) ⇔ ◁} = P{φmax(H(!B

t
a)) ⇔ ◁} (101)

= P

φmax

 N∑

i=1

Hi


⇔ ◁


(102)

⇐ 2N exp

[
↓ ◁2

4


N(N + 2) ·

N
i=1 φmax(!t

a(i))

]
, (103)

which is valid when

◁ ⇐


4N

maxi φmax(!t
a(i))

·
N∑

i=1

φmax(!
t
a(i)). (104)

Lastly, we denote the probability bound by ↼ and solve ◁ from

↼ = 2N exp

[
↓ ◁2

4


N(N + 2) ·

N
i=1 φmax(!t

a(i))

]
,

(105)
to arrive at the desired inequality.

APPENDIX E
PROOF OF THEOREM 1

Proof: First, recognize that the error of estimated reward is
the last element of !µ

t
a. To understand the behavior of !µ

t
a,

consider the following two linear systems,

(I ↓Ba)
↑
µa = ε, (106)

(I ↓ B̂
t
a)

↑
µ̂

t
a = ε, (107)

where (106) and (107) represent the true and estimated sys-
tems, respectively. Based on the Woodbury matrix identity
[41], we have

(I ↓ B̂
t
a)

↔1
= (I ↓Ba)

↔1
+ (I ↓Ba)

↔1
!B

t
a(I ↓ B̂

t
a)

↔1.
(108)

Combining (107) with (108), we can express !µa as

!µ
t
a = ↓µa + (I ↓Ba)

↔↑
ε+

(I ↓ B̂
t
a)

↔↑
(!B

t
a)

↑
(I ↓Ba)

↔↑
ε (109)

= (I ↓ B̂
t
a)

↔↑
(!B

t
a)

↑
µa, (110)

where (110) is a direct consequence of (106). Now, we can
bound the error of estimated reward as
∣∣[!µ

t
a

]
N

∣∣ =
∣∣∣
[
(I ↓ B̂

t
a)

↔1
]↑
N
(!B

t
a)

↑
µa

∣∣∣ (111)

⇐

[
(I ↓ B̂

t
a)

↔1
]
N


2
· ϖmax(!B

t
a) · ↖µa↖2 . (112)

Based on that, we employ Lemma 2 to provide a high prob-
ability bound on the largest singular value, which completes
the proof.
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