
AN ENRICHED COUNT OF NODAL ORBITS IN AN INVARIANT

PENCIL OF CONICS

CANDACE BETHEA

Abstract. This work gives an equivariantly enriched count of nodal orbits in a general
pencil of plane conics that is invariant under a linear action of a finite group on CP

2.
This can be thought of as spearheading equivariant enumerative enrichments valued in the
Burnside Ring, both inspired by and a departure from R(G)-valued enrichments such as
Roberts’ equivariant Milnor number and Damon’s equivariant signature formula. Given a
G-invariant general pencil of conics, the weighted sum of nodal orbits in the pencil is a
formula in terms of the base locus considered as a G-set. We show this is true for all finite
groups except Z/2× Z/2 and D8 and give counterexamples for the two exceptional groups.

1. Introduction

Given a pair of conics in general position in CP
2 defined by equations f and g, we can form

a family of curves parameterized by CP
1, X = {µf(x, y, z) + λg(x, y, z) = 0: [µ, λ] ∈ CP

1}.
This is the the pencil of conics spanned by f and g, and choosing different [µ, λ] in CP

1

specifies different conics in the pencil. The set Σ := {p ∈ CP
2 : f(p) = g(p) = 0}, the base

locus of X, contains 4 distinct points since f and g intersect generically. It is natural to
ask how many conics in X are nodal. As long as f and g are in general position, there are
always exactly #Σ−1 = 3 nodal conics in X. This is a case of Göttsche’s conjecture [Got98],
proved first by Y. Tzeng in 2010 in [Tze12], with another proof given by Kool, Schende, and
Thomas [KST11].

Rather than ask for the number of nodal conics, one can ask if there is a description orbits

of nodal conics under the presence of a finite group action on CP
2 under which the pencil is

invariant. This work gives a formula for the count of nodal orbits when the group G acting
on CP

2 is not isomorphic to Z/2 × Z/2 or D8. We define the G-weight of a nodal orbit, a
first case of a Burnside-valued Milnor number inspired by the R(G)-valued Milnor number
of [Rob85] and signature formula of [Dam91]. The main result then shows that the sum of
these G-weights of nodal orbits is a formula in Σ in the Burnside Ring, A(G).

To be more precise, let G be a finite group that acts linearly on CP
2, and let f and g

be equations defining a general pair of conics in CP
2 such that the corresponding pencil,

X, is G-invariant. From this linear action on CP
2, we obtain an action on Sym2(C3)( =

Span{x2, y2, z2, xy, xz, yz}. X being G-invariant means that g ·Ct is another conic in X for
all g in G and for all conics Ct in X, where we’ve written t = [µ : λ] ∈ CP

1 for simplicity so
that Ct is the conic obtained by specializing at t. Equivalently, X is G-invariant if ïf, gð is
a G-invariant subspace of Sym2(C3)(. With this setup, one can ask for a Burnside-valued
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formula of G-sets counting orbits of nodal conics in the G-space X. Given such a formula,
we can take the cardinality of the H-fixed points of the formula for any subgroup H of G to
obtain the integer count of nodal conics that are fixed by H.

The question of whether there is a Burnside-valued formula is answered affirmatively in
Theorem 7. We state and the main theorem here, and prove it in Section 4:

Theorem 1. Let G be a finite group not isomorphic to either Z/2×Z/2 or D8, and assume

G acts linearly on CP
2. Let X be a G-invariant pencil spanned by a pair of conics in general

position in CP
2, and let [Σ] in A(G) represent the base locus of X. Then

(2)
∑

G·Ct,
Ct∈X is nodal

wtG(Ct) = [Σ]− {∗}

in A(G). That is, there is a weighted count of nodal orbits in X, valued in the Burnside ring

of G.

For any subgroup H of G, the cardinality of

([Σ]− {∗})H

is equal to the number of nodal conics in X that are fixed by H. In particular, we recover the
classical count of #Σ − 1 = 3 nodal conics by taking H to be the trivial subgroup, and we
recover the number of nodal conics that are fixed under the action on CP

2 by taking G-fixed
points. In this sense, the equivariant enrichment in Theorem 1 is a direct generalization of
the classical result counting #Σ− 1 nodal conics in a general pencil.

The Burnside Ring, A(G), is the Grothendieck ring constructed from the monoid of G-
isomorphism classes of finite G-sets, with addition given by disjoint union and ring structure
given by Cartesian product. Equivariant formulas of G-sets should be valued in A(G),
as above, as A(G) distinguishes equivariant homotopy classes of endomorphisms of G-
representation spheres. Specifically,

degG :
[

SV , SV
]G ∼

−→ A(G)

is an isomorphism (see [Seg70]), analogous to deg: [Sn, Sn]
∼

−→ Z being an isomorphism,
which motivates the replacement of Z by A(G) as the ring of definition for equivariant
enumerative results. Further description of the Burnside ring is given in Section 2.

The weighting convention for nodal orbits in X appearing in the left-hand side of equation
(2) is defined in Section 4 before the main theorem is restated, and it generalizes the real
sign of a node in the sense that the G-fixed point cardinality of the weight of a non-split
node is +1, likewise −1 for a split node, when G = Z/2 acts on CP

2 by conjugation.

Acknowledgements. I would like to thank my adviser, Jesse Kass, for his ongoing sup-
port and encouragement to pursue equivariant enumerative enrichments during my doctoral
studies, ultimately resulting in this work. I would also like to thank Kirsten Wickelgren,
who has supported me endlessly throughout my professional career. Finally, I would like to
thank Sabrina Pauli, Thomas Brazelton, and Alicia Lamarche for helpful conversations that
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have enhanced my understanding of enumerative geometry and enrichments of enumerative
results. I was supported by an SREB Dissertation Fellowship and a University of South
Carolina SPARC grant while conducting this work.

2. Notation and definitions

This section will introduce all definitions related to the Burnside Ring so that this paper
will be self-contained, following [tD79]. We will always assume G is a finite group, and all
group actions are assumed to be left actions. Given G-sets S and T , a set map f : S → T is
G-equivariant if g · f(s) = f(g · s) for all g in G. Given a G-set S and a subset S ′ of S, we
will say S ′ is G-invariant if g · s′ is in S ′ for all s′ in S ′ and g in G.

Given any two G-sets S and T , there are natural set operations on S and T from which
other G-sets can be obtained. We can take the disjoint union of S and T , S ⨿ T , or the
Cartesian product, S × T , and obtain G-sets by letting G act diagonally in both cases. Let
A(G)+ denote the semi-ring of G-isomorphism classes of finite G-sets with addition given
by disjoint union and multiplication by Cartesian product, where G-isomorphism means an
isomorphism of sets that is G-equivariant.

Definition 3. Given a group G, the Burnside ring of G is the Grothendieck ring associated

to A(G)+, denoted A(G).

Additively, A(G) is the free abelian group on isomorphism classes of transitive G-sets of
the form [G/H] for subgroups H of G. Given any G-set S, we will denote its class in A(G)
by [S]. The set {∗} will always denote the one-point set, which can only be given the trivial
action. Any G-set which comes from a genuine set with a group action will be called a
genuine G-set. This is in contrast to a virtual G-set, for example, −{∗} denotes the virtual
G-set that is the formal additive inverse of the G-set {∗}. Further literature on the Burnside
ring is rich, a standard reference being [tD79].

Any genuine finite G-set can be written as the disjoint union of its orbits ⨿G/Hi where
{Hi} is some finite collection of subgroups of G. Furthermore, the isomorphism class of
[G/H] in A(G) is determined by the conjugacy class of H in G. Thus every genuine G-set
[S] in A(G) can be written as

[S] =
∑

HifG

ni[G/Hi]

for some positive integers ni, uniquely up to (Hi) for each Hi. A well-known result in
equivariant topology, see Proposition 1.2.2 in [tD79], says that two isomorphism classes of
finite G-sets, [S1] and [S2], are equal in A(G) if |(S1)

H | = |(S2)
H | for all subgroups H of G.

These facts are simple to state but useful in practice, and will be important in proving the
main result and constructing counterexamples.

Given G-sets S and T , we have already described two ways of producing new G-sets with
disjoint union and Cartesian product. Given a finite group G and a subgroup H of G, we
use the inflation from H to G as a change of group method to obtain a G-set from an H-set.
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Definition 4. Given a subgroup H of G and an H-set X, we define a G-set with underlying

set structure (G×X)/ ∼, where (gh, x) ∼ (g, hx) for all h in H, and x in X. The inflation
of X from H to G, denoted infGH(X), is the G-set (G × X)/ ∼ with G-action given by

g′ · (g, x) = (g′g, x) for all g′ ∈ G and (g, x) ∈ infGH(X).

Every genuine G-set we will encounter in this paper will already be represented as a formal
sum of orbits, each equal to [G/H] in A(G) for some subgroup H of G. Thus it will be useful
to have a description of the inflation of an H-set to G when represented by a sum of orbits
of this form. The following lemma gives such a description.

Lemma 5. Let H be a subgroup of a finite group G and let [X] be a finite H-set the form

[X] =
m
∑

i=1

ni[H/Ki]

in A(H) for some m ∈ N, some ni ∈ Z, and Ki f H some finite collection of subgroups of

H. Then infGH(X) =
∑m

i=1 ni[G/Ki] in A(G).

Proof. First note

infGH(
m
∑

i=1

ni[H/Ki]) =
m
∑

i=1

ni inf
G
H([H/Ki])

because Cartesian products commute with disjoint unions and the action on a disjoint union
is assumed to be diagonal. Thus we only need to show that infGH(H/K) = [G/K] in A(G)
for any K f H, i.e., by defining a set isomorphism infGH(H/K) → G/K and showing it is
G-equivariant.

Define f : infGH(H/K) → G/K by f((g, hK)) = ghK. It is straightforward to check
that f is well-defined, injective, and surjective as a set function. The last step to show
infGH(H/K) = [G/K] in A(G) is to check f is G-equivariant. This is true by definition, as

g′ · f((g, hK)) = g′ghK = f((g′g, hK)) = f(g′ · (g, hK))

for all g′ in G and (g, hK) in infGH(H/K). □

3. Proof of the Classical Result

Before proving the main theorem giving an equivariant enrichment of the count of nodal
orbits as equal to #Σ− 1 = 3, we’ll sketch a topological proof of the classical result. Let f
and g be a general pair of conics in CP

2, and let

X := {µf + λg = 0: [µ, λ] ∈ CP
1} ¦ CP

2

be the pencil of conics defined by f and g. Let

Xtot := {(t, p) : µf(p) + λg(p) = 0} ¦ CP
1 × CP

2

be the total space of X. We have two projections from Xtot, π1 : Xtot → CP
1 by projecting

onto the first coordinate and π2 : Xtot → CP
2 by projecting onto the second coordinate. We

will compute χ(Xtot) in two ways and set them equal to obtain the number of nodal conics.
4



First we will compute χ(Xtot) using the projection π1 : Xtot → CP
1. Let

D := {[µ, λ] : µf + λg = 0} ¦ CP
1

be the set of points in CP
1 that specify a nodal conic in X. Note that #D is equal to the

number of singular conics in X, which is what we want to find. The fibers of π1 over D
are singular conics, and the fibers over CP1 −D are smooth conics. Using the fact that the
compactly supported Euler characteristic is additive over Xtot as the disjoint union of fibers
over D and fibers over CP1 −D, we have

χ(Xtot) = χ(Xtot|D) + χ(Xtot|CP
1 −D)

= χ(Csing) · χ(D) + χ(Csm) · χ(CP
1 −D)

where Csm denotes any smooth conic in a fiber over CP1−D and Csing denotes any singular
conic in a fiber over D. This uses the topological Hurwitz formula: if E → B is a fiber
bundle with fiber F and B is path connected, then χ(F ) · χ(B) = χ(E).

The Euler characteristic of a smooth projective curve is 2− 2g where g is the genus, and
the Euler characteristic of a singular curve is 2 − 2g + µ(Csing) where µ(C) is the Milnor
number of a curve C. Since conics have genus 0 and the Milnor number of a nodal conic is
1, we have

χ(Xtot) = χ(Csing) · χ(D) + χ(Csm) · χ(CP
1 −D)

= #D(2 + µ(Csing)) + 2(2−#D)

= #D + 4.

The second way to compute χ(Xtot) is to use the fact that π2 : Xtot → CP
2 is the blow-up

of CP2 at the d2 = 4 points of the base locus Σ := {p ∈ CP
2 : f(p) = g(p) = 0}, where

d = 2 is the degree of f and g as homogenous polynomials in three variables. Again using
additivity for the compactly supported Euler characteristic, we have

χ(Xtot) = χ(CP2) + χ(Σ)(χ(CP1)− χ(pt))

= 3 + 4(2− 1)

= 7.

Combining the two calculations of χ(Xtot) we get

#D + 4 = 7,

and we conclude that the number of nodal conics in X is #D = 3. This approach works
equally well for generically intersecting curves in higher degree d. Another proof can obtained
by taking the degree of the top chern class of the bundle of principle parts on O(d), both
approaches can be found in detail in [EH16, Chapter 7]. As mentioned in the introduction,
it is worth noting that another way to write the formula for #D is

#D = #Σ− 1,

which motivates the form of Equation (2) in Theorem 1.
5



Another proof of the same result can be described as follows. If f and g define a general
pair of conics, then they intersect in exactly the four points of Σ. A nodal conic geometrically
has irreducible components equal to a pair of lines, and the generic intersection assumption
on f and g rules out the possibility that the two curves share a common line. Thus, asking
how many conics in X are nodal is equivalent to asking how many ways there are to draw
a pair of distinct lines through four points in CP

2, which is three. Labeling the points of Σ
as b1, b2, b3, and b4 and writing Lij for the line through bi and bj, the three pairs of lines are
{L12, L34}, {L13, L24}, and {L14, L23}:

Figure 1. Disjoint lines through Σ = {b1, b2, b3, b4}

This way of thinking of the number of nodal conics in X will be useful to us going forward.
When describing the G-orbits of nodal conics, we can instead look at orbits of configurations
of disjoint lines through Σ.

It’s worth noting that any set of four points in P
2 with no three co-linear uniquely deter-

mines a pair of general conics. Indeed, the vector space of conics in CP
2 is 5-dimensional,

SpanC{x
2, y2, z2, xy, xz, yz}. Requiring that a conic passes through a point imposes a 1-

dimensional condition on the space of conics, so requiring that a conic passes through four
points results in a 1-dimensional linear span of conics, or a 2-dimensional projective span of
conics, i.e. a pencil of conics. Therefore any Σ which is a set of four points in CP

2 with no
three co-linear uniquely determines a pencil of conics.

4. An Equivariant Count of Orbits of Nodal Conics

Let f and g be a general pair of conics and let X := {µf + λg = 0: [µ, λ] ∈ CP
1} ¦ CP

2.
Henceforth for simplicity of notation we will write t = [µ : λ] so that Ct ∈ X denotes the
element of X obtained by specifying [µ, λ] in CP

1. Given a nodal conic Ct in X, we will write
Bt to denote the irreducible components of Ct. Thus Bt = {L1, L2} is the set of branches
of Ct if Ct is a nodal conic that can be parameterized as the product of lines L1 · L2 at the
nodal point p ∈ Ct.

Definition 6. Let Ct be a nodal conic in a G-invariant pencil of conics, and let H f G be

the stabilizer of Ct. Define the H-weight of Ct to be

wtH(Ct) := [Bt]− {∗}
6



in A(H) where [Bt] denotes the branches of Ct as an H-set in A(H). The G-weight of the
orbit G · Ct is defined to be

wtG(Ct) := infGH(wt
H(Ct))

in A(G).

Given nodal conics Cs and Ct in the same orbit it is straightforward to check that
wtG(Ct) = wtG(Cs) in A(G) using Lemma 5, so the weight of an orbit is well-defined.
When the action of G on CP

2 is trivial, stab(Ct) = G for all nodal Ct in X, and so
wtG(Ct) = [Bt]−{∗}. Since the action is trivial, the branches in [Bt] are fixed and [Bt] = {∗}
in A(G). Thus wtG(Ct) = 2{∗} − {∗} has cardinality 2 − 1 = 1. Therefore the cardinality
of

∑

wtG(Ct) is 3, recovering the classical result that there are 3 nodal conics in a pencil
spanned by two conics in general position.

This is also true even when the action isn’t trivial, though a nodal orbit [Ct] might contain
multiple conics with branches that are not fixed. Rather than taking the cardinality of
∑

wtG(Ct), we could also take the cardinality of the H-fixed points of
∑

wtG(Ct) for any
subgroup of H of G, and this is not guaranteed to be 3. If we let Z/2 act on CP

2 by
pointwise conjugation and take Z/2 fixed points, we recover the weighted count of nodal
conics in X defined over R up to a sign, weighting a split node by −1 and a non-split node
as +1. Non-equivariantly, the number of real conics in a pencil is −(#Σ(R)− 1) rather than
#Σ− 1.

The formula relating the base locus with the weighted sum of nodal orbits is stated in the
main theorem:

Theorem 7. Let G be a finite group not isomorphic to either Z/2×Z/2 or D8, and assume

G acts linearly on CP
2. Let X be a G-invariant pencil spanned by a pair of conics in general

position in CP
2, and let [Σ] in A(G) represent the base locus of X. Then

(8)
∑

{G·Ct : Ct∈X is nodal}

wtG(Ct) = [Σ]− {∗}

in A(G). That is, there is a weighted count of orbits of nodal conics in X, valued in the

Burnside ring of G.

This can be proved directly by explicitly checking that the formula holds for all possible
invariant pencils of conics.

Proof. We will prove the theorem is true for each finite group G that can act linearly on
CP

2 and invariantly on a pencil of conics. Any such group must be a finite subgroup of
PGL(3,C), a reference for which can be found in [HL88]. If G is a finite group that acts
linearly on CP

2 and invariantly on a pencil of conics, then G must fix the base locus of the
pencil, i.e., G must act bijectively on a set of four distinct points. Thus we only need to
consider linear group actions of subgroups of S4, which is indeed a subgroup of PGL(3,C).

It is well known that if H1, H2 f G are conjugate subgroups of a finite group G, then
A(H1) ∼= A(H2), a proof can be found in [Bou00]. Thus we will only check that the theorem
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is true for each conjugacy class of subgroups of S4. These are:

ï()ð Z/2 ∼= ï(12)ð S3
∼= ï(123), (12)ð

A3 = {(), (123), (132)} Z/4 ∼= ï(1234)ð A4 = ï(123), (12)(34)ð

Z/2× Z/2 ∼= ï(12)(34), (13)(24)ð D8
∼= ï(1234), (13)ð S4.

For each of these groups except Z/2×Z/2 and D8, one can directly show that the theorem
is true by computing weights of orbits of lines through [Σ]. In the next section, we will provide
counterexamples for Z/2× Z/2 and D8 and an explanation for why these cases fail.

We will write [Σ] = {b1, b2, b3, b4} ∈ A(G) for the base locus of a pencil, and the line
through any bi and bj will be denoted by Lij. Any nodal conic through [Σ] has irreducible
components given by the union of a pair of lines {Lij, Lkl}, which will be denoted [Lij, Lkl]
in A(G).

The set of G-invariant general pencils of conics in CP
2 is in bijection with the set of G-

invariant collections of four points in CP
2 with no three co-linear by a vector space argument:

Every G-invariant pencil of general conics in CP
2 uniquely determines a G-set of four points

satisfying the linearity condition. Separately, every G-set [Σ] of four points in CP
2 satisfying

the linearity condition uniquely determines at most one pencil of general conics, which is
G-invariant as the unique 1-dimensional subspace of PSym2((C3)() corresponding to Σ is
G-invariant. Showing for each subgroup G of S4 that equation (8) holds for any possible
configuration of [Σ] ∈ A(G) will prove the theorem. We will show all of the details for Z/2,
S3, and an interesting case for A4. The same methods can be used verbatim for A3, Z/4,
and S4.

If G = ï()ð is the trivial group, then any group action on CP
2 is trivial. Thus this is

simply the classical result over C.

If G = Z/2 ∼= ï(12)ð, the only genuine size four G-sets, and therefore the only possible
choices for [Σ] in A(G), are the following:

(1) [Σ] = 4{∗}
(2) [Σ] = 2[G]
(3) [Σ] = 2{∗}+ [G]

The fact that [Σ] must be one of these cases relies on the fact that any genuine G-set
[S] ∈ A(G) has the form

[S] =
∑

(Hi) : HifG

ni[G/Hi] = n0[G/G] + n1[G/ï()ð]

with n0, n1 ∈ Zg0 being the number of orbits with stabilizer equal to G or () respectively.
Since [Σ] is a genuine G-set, it must have one of the three configurations listed above.

Given a configuration of [Σ], if there is a G-invariant pencil of conics X determined by
[Σ], then the set of irreducible components of any nodal conic in X is determined by one of

8



the three configurations of a pair of distinct lines through [Σ]. Thus to see that the theorem
is true for every configuration of [Σ], and therefore true for G = Z/2, we will compute the
weight of each orbit of lines through any configuration of [Σ] and show that the sum of the
weights is equal to [Σ]− {∗} in A(G).

First consider the case where [Σ] = 4{∗}. All four points of [Σ] are fixed, so

stab([L12, L34]) = stab([L13, L24]) = stab([L14, L23]) = G

and each branch is fixed. Hence wtG([Lij, Lkl]) = {[Lij, Lkl]} − {∗} = 2{∗} − {∗} = {∗} for
any all i, j, k, l ∈ {1, 2, 3, 4}. Hence the left-hand side of equation (8) is

∑

wtG(Bt) = 3{∗},
and the right-hand side of equation (8) is [Σ]− {∗} = 4{∗} − {∗} = 3{∗}.

Consider the second case where [Σ] = 2[G], and say that {b1, b2} and {b3, b4} are the orbits
of [Σ]. In this case, () is the element that acts trivially and (12) is the element that acts
nontrivially on each orbit, i.e., swaps b1 and b2 and swaps b3 and b4. Then for g ∈ G,

g · {L12, L34} =

{

L12, L34, for g = ()

L21, L43, for g = (12)
g · {L13, L24} =

{

L13, L24, for g = ()

L24, L13, for g = (12)

g · {L14, L23} =

{

L14, L23, for g = ()

L23, L14, for g = (12)
.

The stabilizer of each nodal orbit is G, and so wtG([Lij, Lkl]) = [Lij, Lkl]−{∗}. Note that
[L12, L34] = 2{∗} because the branches are fixed by G, but [L13, L24] and [L14, L23] are both
equal to [G] in A(G) because the branches are swapped by G. Hence

wtG([L12, L34]) = [L12, L34]− {∗} = 2{∗} − {∗} = {∗},

wtG([L13, L24]) = [L13, L24]− {∗} = [G]− {∗}, and

wtG([L14, L23]) = [L14, L13]− {∗} = [G]− {∗}.

Thus the left-hand side of equation (8) is {∗}+2[G]−2{∗} = 2[G]−{∗}, and the right-hand
side of equation (8) is [Σ]− {∗} = 2[G]− {∗}, as desired.

The last configuration of [Σ] is 2{∗} + [G]. Say that b1 and b2 are the fixed points and
{b3, b4} are an orbit with (12) swapping b3 and b4. Thus

g · {L12, L34} =

{

L12, L34, for g = ()

L12, L43, for g = (12)
g · {L13, L24} =

{

L13, L24, for g = ()

L14, L23, for g = (12)

g · {L14, L23} =

{

L14, L23, for g = ()

L13, L24, for g = (12)
.

Here, stab([L12, L34]) = G and both lines are fixed, so

wtG([L12, L34]) = [L12, L34]− {∗} = 2{∗} − {∗} = {∗}.
9



Note that stab([L13, L24]) = stab([L14, L23]) = ï()ð. Furthermore, (12) · {L13, L24} =
{L14, L23} and (12) · {L14, L23} = {L13, L24}, so they are both in the same orbit. There-
fore we only need to count one of G ·{L13, L24} or G ·{L14, L23} in the weighted sum of nodal
curves in the pencil determined by [Σ]. Making an arbitrary choice and using Lemma 5,

wtG([L13, L24]) = infGï()ð(wt
ï()ð([L13, L24])) = infGï()ð(2{∗} − {∗})

= infGï()ð({∗})

= [G/ï()ð] = [G].

Finally, the left-hand side of equation (8) is wtG([L12, L34]) + wtG([L13, L24]) = {∗}+ [G]
and the right-hand side of equation (8) is [Σ] − {∗} = [G] + 2{∗} − {∗} = [G] + {∗}, as
desired. Therefore the theorem is true for Z/2.

If G = S3
∼= ï(123), (12)ð, the only possibilities for [Σ] in A(G) are:

(1) [Σ] = 4{∗}
(2) [Σ] = {∗}+ [G/ï(12)ð]
(3) [Σ] = 2{∗}+ [G/ï(123)ð]

The first case has been covered before, and is the same as the Z/2 case when [Σ] = 4{∗}.

Consider the second case where [Σ] = {∗} + [G/ï(12)ð]. Say b4 is fixed and {b1, b2, b3}
are an orbit so that {b1, b2, b3} = [G/ï(12)ð] = {[()], [(123)], [(132)]} in A(G). Using the
same method as for Z/2 to find the stabilizer and orbit of each node, we observe that ï(12)ð
is the stabilizer of all three sets of branches through [Σ]. Furthermore, all nodes are in
the same orbit because (123) · {L12, L34} = {L14, L23}, (123) · {L14, L23} = {L13, L24}, and
(123) · {L13, L24} = {L12, L34}.

Given that all nodes are in the same orbit, as in the third case for Z/2 we only need to
count one weighted node in the orbit to obtain the left-hand side of equation (8). Arbi-
trarily choosing [L12, L34], the branches of [L12, L34] are equal to 2{∗} in A(ï(12)ð). Thus
wtG([L12, L34]) = infGï(12)ð(2{∗}− {∗}) = [G/ï(12)ð] Therefore, the left-hand side of equation
(8) is [G/ï(12)ð] and the right-hand side of equation (8) is [Σ]−{∗} = [G/ï(12)ð], as desired.

The last case to consider for S3 is when [Σ] = 2{∗}+ [G/ï(123)ð]. Say that b3 and b4 are
fixed and {b1, b2} is an orbit with b1 = [()] and b2 = [(12)]. Then stab([L12, L34]) = G and
wtG([L12, L34]) = 2{∗} − {∗} = {∗}.

We can use the same method used for Z/2 to find the stabilizer and orbit of each remaining
node. In this case only one of [L13, L24] or [L14, L23] needs to be counted in the left-hand
side of equation (8) because they are in the same orbit with stabilizer ï(123)ð. Arbitrarily
choosing [L13, L24], we see that wtG([L13, L24]) = infGï(123)ð({∗}) = [G/ï(123)ð]. Therefore,
the left-hand side of equation (8) is [G/ï(123)ð] + {∗} and the right-hand side of equation
(8) is [Σ] − {∗} = 2{∗} + [G/ï(123)ð] − {∗} = [G/ï(123)ð] + {∗}, as desired. Therefore the
theorem is true for S3.
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If G = A3 = {(), (123), (132)}, the only possibilities for [Σ] in A(G) are:

(1) [Σ] = 4{∗}
(2) [Σ] = {∗}+ [G]

Both cases can be checked using similar methods as G = S3, no new ideas appear for A3.
The same is true for G = Z/4 and G = S4.

We will show one case for G = A4 to illustrate how to use Proposition 1.2.2 of [tD79] to
show two G-sets are equal by showing they have the same number of H-fixed points for all
subgroups H of G.

When G = A4, the possible options for [Σ] are:

(1) [Σ] = 4{∗}
(2) [Σ] = {∗}+ [G/(Z/2)2], with Z/2× Z/2 = {(), (12)(34), (13)(24), (14)(23)}
(3) [Σ] = [G/A3]

Consider the last case, [Σ] = [G/A3], and write [Σ] = {b1, b2, b3, b4} where b1 = [()], b2 =
[(124)], b3 = [(142)], and b4 = [(243)]. Using a similar method as for Z/2 to find the stabilizer
and orbit of each node, observe all of L12, L34, L13, L24, and L14, L23 are all in the same orbit.
Therefore, we only need to count one of [L12, L34], [L13, L24], or [L14, L23] in the left-hand
side of equation (8). Making an arbitrary choice, we will count [L12, L34].

The stabilizer of [L12, L34] is H := {(), (12)(34), (13)(24), (14)(23)} and is isomorphic
to Z/2 × Z/2. One can check directly that the branches of [L12, L34] as an H-set are
[H/ï(14)(23)ð]. Hence the weight of [L12, L34], and therefore the left-hand side of equation
(8), is

wtG([L12, L34]) = infGH([
H

ï(14)(23)
ð]− {∗})

= [G/ï(14)(23)ð]− [G/H].

Since the right-hand side of equation (8) is [Σ]−{∗} = [G/A3]−{∗}, we need to show that
[G/ï(14)(23)ð] − [G/H] and [G/A3] − {∗} are equal in A(G). In order to show both sides
are equal, we will use Proposition 1.2.2 from [tD79] by showing that for each K f G, the
number of K-fixed points of each side of equation 8 are equal. We will only need to check
this for each conjugacy class of subgroups of A4 since conjugate subgroups have isomorphic
Burnside Rings.

Writing S1 for [G/ï(14)(23)ð]− [G/H] and S2 for [G/A3]− {∗}, we record cardinalities of
fixed points in the table below:
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conjugacy class representative of K f G |(S1)
K | |(S2)

K |
ï()ð 3 3

Z/2 = {(), (12)(34)} -1 -1
H = {(), (12)(34), (13)(23), (14)(23)} -1 -1

A3 = {(), (123), (132)} 0 0
G = A4 -1 -1

Since for each K f G, the number of K-fixed points of [G/ï(14)(23)ð] − [G/H] and
[G/A3] − {∗} are equal, the two G-sets are equal in A(G) by [tD79] Proposition 1.2.2.
Therefore, equation (8) is true for G = A3 and [Σ] = [G/A3]. □

5. Counterexamples

This section will give counterexamples where equation (8) does not hold, which is for
groups isomorphic to Z/2× Z/2 or D8.

First consider the case when

G = Z/2× Z/2 = {(), (12)(34), (13)(24), (14)(23)}.

We have an action of S4, and therefore of G, on CP
2 using the standard PGL(3,C)-

representation of S4 given by

g1 := () 7→





1 0 0
0 1 0
0 0 1



 , g2 := (12)(34) 7→





−1 1 0
0 1 0
0 1 −1



 ,

g3 := (13)(24) 7→





0 −1 1
0 −1 0
1 −1 0



 , and g4 := (14)(23) 7→





0 0 −1
0 −1 0
−1 0 0



 .

Consider the point p = [1, 2, 3] ∈ CP
2. Using the gi above to also denote the action on

CP
2, define the G-set

[Σ] := {b1 := g1 · p, b2 := g2 · p, b3 := g3 · p, b4 := b4 · p}

= {[1 : 2 : 3], [1 : 2 : −1], [1 : −2 : −1], [−3 : −2 : −1]}.

We will show that [Σ] is the G-invariant base locus of a general pencil, i.e., that no three
points in [Σ] are colinear, but that (8) does not hold for the pencil of conics associated to
[Σ].

Note first that [Σ] is G-invariant by construction, with g · bi = bi+1 for 1 f i f 3 and
g · b4 = b1 for all g ̸= () in G. Furthermore, [Σ] was defined to be isomorphic to G as a G-set,
with the isomorphism being given by bi 7→ gi for 1 f i f 4. Therefore [Σ] = [G] in A(G). It
is straightforward to check that no three points in [Σ] lie on a line.
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Now we will show that equation (8) does not hold for [Σ]. By observing where each element
of G maps each line, we can see that each pair of lines through [Σ] has stabilizer equal to
G. Each node has branches equal to [G/H] for H f G the subgroup of G that fixes both
branches in addition to the union. Thus one can check that

wtG([L12, L34]) = [G/ï(12)(34)ð]− {∗},

wtG([L13, L24]) = [G/ï(13)(24)ð]− {∗}, and

wtG([L14, L23]) = [G/ï(14)(23)ð]− {∗}.

Therefore the left-hand side of (8) is [G/ï(12)(34)ð] + [G/ï(13)(24)ð] + [G/ï(14)(23)]− 3{∗}.
The right-hand side of (8) is [Σ]− {∗} = [G]− {∗}.

We will use Proposition 1.2.2 in [tD79] to determine whether the left-hand and right-
hand sides of equation (8) are equal in A(G) as we did to prove Theorem 7 for G = A4.
In particular, we need to compute for each K f G the number of K-fixed points of the
left-hand side and the right-hand side of (8). Writing

S1 = [G/ï(12)(34)ð] + [G/ï(13)(24)ð] + [G/ï(14)(23)]− 3{∗}

and

S2 = [Σ]− {∗} = [G]− {∗}

for the left and right-hand sides of (8) cardinalities of fixed points of subgroups of G are :

conjugacy class of K f G |(S1)
K | |(S2)

K |
ï()ð 3 3

ï(12)(34)ð -2 -1
ï(13)(24)ð -2 -1
ï(14)(23)ð -2 -1

G -3 -1

The fact that there are subgroups of G for which the number of fixed points of the LHS
and RHS are not equal implies that the two sets are not equal in A(G). Therefore equation
(8) fails for G = Z/2× Z/2 and [Σ] = [G].

Finally, we’ll construct a counterexample for G = D8 using a different approach. We will
start with a 3-dimensional representation of D8 on (C3)( to obtain a 6-dimensional repre-
sentation of D8 on V := Sym2((C3)(). The G-invariant vector space V has a decomposition
into irreducible sub-representations using the common eigenspaces of the generators of D8,
and from these irreducible sub-representations the pencils of conics correspond to the spans
of irreducible 1-dimensional sub-representations.

Write r := (13) and s := (1234) so that D8 = ïr, s : r2 = s4 = 1, rxr−1 = s−1ð. For
reference, the character table of D8 is given below, where χ1, χ2, χ3, and χ4 are the four
1-dimensional representations of D8 and σ is the unique 2-dimensional representation of
D8. The character of any 3-dimensional representation of D8 is given by χ = σ + χi or
χ = χi + χj + χk, i, j, k ∈ {1, 2, 3, 4}. We will produce two counterexamples to Theorem 7
using a 3-dimensional representation of W with character χ = σ + χi.
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Character table of D8

e r2 r s sr
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 1 1 -1 1 -1
χ4 1 1 -1 -1 1
σ 2 -2 0 0 0

The unique 2-dimensional representation of D8 is given by

r 7→

[

0 −1
1 0

]

, s 7→

[

1 0
0 −1

]

.

Therefore a 3-dimensional D8 representation of (C3)( with basis {x, y, z} and with character
σ + χi is given by

r 7→





0 −1 0
1 0 0
0 0 a



 =: Mr, s 7→





1 0 0
0 −1 0
0 0 b



 =: Ms

where a, b ∈ {±1} are equal to the values of trχi(r) and trχi(s) respectively. Using
the basis {x2, y2, z2, yz, xz, xy} for V , observe that the 6-dimensional representation of V
obtained from the symmetric power of W is given by

r 7→















0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 a 0
0 0 0 −a 0 0
0 0 0 0 0 −1















= Sym2(Mr) , s 7→















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −b 0 0
0 0 0 0 b 0
0 0 0 0 0 −1















= Sym2(Ms).

The common 1-dimensional G-invariant eigenspaces of Sym2(Mr) and Sym2(Ms) are

z2, xyx2 − y2, and x2 + y2.

There is also a 2-dimensional common G-eigenspace with basis {yz, xz}. Therefore, the
possible G-invariant pencils of conics in P

2 with action coming from the representation of
D8 on V with character Sym2(σ + χi) are:

(1) {µY Z + λXZ = 0: [µ, λ] ∈ CP
1}

(2) {µZ2 + λ(X2 − Y 2) = 0: [µ, λ] ∈ CP
1}

(3) {µZ2 + λ(X2 + Y 2) = 0: [µ, λ] ∈ CP
1}

(4) {µZ2 + λXY = 0: [µ, λ] ∈ CP
1}

(5) {µ(X2 − Y 2) + λ(X2 + Y 2) = 0: [µ, λ] ∈ CP
1}

(6) {µ(X2 − Y 2) + λXY = 0: [µ, λ] ∈ CP
1}

(7) {µ(X2 + Y 2) + λXY = 0: [µ, λ] ∈ CP
1}
14



(8) {µ(X2 − Y 2) + λ(a(X2 + Y 2) + bZ2) = 0: [µ, λ] ∈ CP
1}

(9) {µXY + λ(a(X2 + Y 2) + bZ2) = 0: [µ, λ] ∈ CP
1}

In the first 7 cases, one can check that the conics defining the pencil are not in general
position. We will show that Theorem 7 doesn’t hold for (8) above, and case (9) is similar.

In the 8th case, [Σ] = {b1, b2, b3, b4} where

b1 =

[

1 : 1 : i

√

2a

b

]

, b2 =

[

1 : −1 : i

√

2a

b

]

,

b3 =

[

1 : 1 : −i

√

2a

b

]

, and b4 =

[

1 : −1 : −i

√

2a

b

]

.

Since the representation on V is the symmetric power of the representation on W given
by r 7→ Mr and s 7→ Ms, with Mr and Ms depending on the values of a = trχi(r) and
b = trχi(s) respectively, the four cases we need to consider are a = b = 1, a = 1 and b = −1,
a = −1 and b = 1, and a = b = −1.

We will look at the case when a = b = 1, as the others are similar. In this case, using the
matrices Mr and Ms one can check that:

() · b1 = b1 (14)(23) · b1 = b1
(13) · b1 = b2 (1432) · b1 = b2

(13)(24) · b1 = b3 (12)(34) · b1 = b3
(1234) · b1 = b4 (24) · b1 = b4

so that [Σ] = [G/ï(14)(23)ð] = {b1 = [()], b2 = [(13)], b3 = [(13)(24)], b4 = [(24)]}.

Using the method in the proof of Theorem 7 for finding stabilizers and orbits of each node,

stab([L12, L34]) = stab([L14, L23]) = {(), (13)(24), (13), (24)} := H1,

and H1
∼= Z/2 × Z/2. Furthermore, L12, L34 and L14, L23 are in the same orbit in A(G).

Therefore we only need to count one of [L12, L34] or [L14, L23] in the left-hand side of equa-
tion (8). Arbitrarily choosing [L12, L34], observe that [L12, L34] = [H1/ï(13)ð] in A(H1).
Therefore,

wtG([L12, L34]) = inf GH1
([H1/ï(13)ð]− {∗})

=

[

H1

ï(13)ð

]

·

[

G

H1

]

− [G/H1]

= [G/ï(13)ð]− [G/H1]

in A(G). We can also observe that stab([L13, L24]) = G, and [L13, L24] = [G/H2] in A(G)
where H2 := {(), (12)(34), (13)(24), (14)(23)}. Thus wtG([L13, L24]) = [G/H2]− {∗}.

It is worth noting that H1
∼= H2 in S4, but H1 and H2 are not conjugate in D8. Therefore

the two G-sets [G/H1] and [G/H2] are not equal in A(G). The left-hand side of equation (8)
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is
wtG([L12, L34]) + wtG([L13, L24]) = [G/ï(13)ð]− [G/H1] + [G/H2]− {∗}.

Given that [Σ] = [G/ï(14)(23)ð], the right-hand side of equation (8) is [G/ï(14)(23)ð]−{∗}.

As with the the counter example for Z/2 × Z/2, we will use [tD79] Proposition 1.2.2 to
show that Theorem 7 is not true for this case. In particular, we can show that for some
K f G, the number of K-fixed points of the left and right-hand sides of are not equal.
Writing S1 = [G/ï(13)ð] − [G/H1] + [G/H2] − {∗} and S2 = [G/ï(14)(23)ð] − {∗} for the
right and left-hand sides of (8), fixed point cardinalities are:

conjugacy class of K f G |(S1)
K | |(S2)

K |
ï()ð 3 3
G -1 -1
H1 -2 -1
H2 -2 -1

ï(1234)ð -1 -1
ï(13)ð 1 -1
ï(24)ð -1 -1

ï(13)(24)ð -1 -1
ï(12)(34)ð -1 -1
ï(14)(23)ð -1 3

The fact that the number of K-fixed points of the left-hand and right-hand sides of equa-
tion (8) are not equal for H1, H2, ï(13)ð, and ï(14)(23)ð implies that the left-hand side and
right-hand side are not equal in A(G). Therefore Theorem 7 is not true for D8.

It is worth noting that even if [G/H1] = [G/H2] in A(G), the left-hand side and right-
hand side would still not be equal. In that case, the left-hand side of equation (8) would be
[G/ï(13)ð] − {∗} and the right-hand side would be [Σ] − {∗} = [G/ï(14)(23)ð] − {∗}. The
same issue arises, [D8/ï(13)ð] = [D8/ï(14)(23)ð] in A(S4) because ï(13)ð and ï(14)(23)ð are
conjugate in S4, but not in D8. The fact that D8 has subgroups which are conjugate in S4

but not in D8 is the crux of why Theorem 7 fails in this case.
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