PQ-Hammer: End-to-end Key Recovery Attacks on Post-Quantum Cryptography
Using Rowhammer

Samy Amer Yingchen Wang
Georgia Tech UC Berkeley
s.amer@gatech.edu yingchenwang@berkeley.edu

Daniel Genkin
Georgia Tech
genkin@gatech.edu

Andrew Kwong
UNC Chapel Hill
andrew @cs.unc.edu

Abstract—As post-quantum cryptography (PQC) nears stan-
dardization and eventual deployment, it is increasingly impor-
tant to understand the security of the implementations of se-
lected schemes. In this paper, we conduct such an investigation,
uncovering concerning findings about many of the finalists of
the NIST PQC standardization competition.

Specifically, we show Rowhammer-based attacks on the
Kyber and BIKE Key Exchange Mechanisms and the Dilithium
Digital Signature scheme that enable complete recovery of
the secret key with only a moderate amount of effort — no
supercomputers, or months of precomputation. Moreover, we
experimentally carry out our attacks using a combination
of Rowhammer, performance degradation, and memory mas-
saging techniques, showing that our attacks are practically
feasible.

Our results show that such side-channel based attacks are
a critical concern and need to be considered when new crypto-
graphic schemes are standardized, when standard implemen-
tations are developed, and when instances are deployed. We
conclude with recommendations on implementation techniques
that harden cryptographic schemes against Rowhammer at-
tacks.

1. Introduction

The combined effect of quantum computers and Shor’s
algorithm threaten to trivialize the mathematical prob-
lems that underlie classical asymmetric key cryptography.
To combat this issue, the cryptographic community has
been developing quantum-resistant cryptographic primitives.
These have been developed into full cryptographic algo-
rithms for key establishment and digital signatures, and are
undergoing a number of standardization efforts globally.
Collectively, this effort has been given the name “post-
quantum cryptography (PQC)”. Considerable effort has been
taken in cryptanalysis of the PQC primitives, resulting in a
selection of schemes that have resisted all known classical
and quantum cryptanalytic attacks.

Alexander Nelson
University of Arkansas
ahnelson @uark.edu

Hunter Kippen Thinh Dang
UMD and Samsung Research NIST
h.kippen @samsung.com thinh.dang @nist.gov

Arkady Yerukhimovich
George Washington University
arkady @ gwu.edu

However, with the move towards practical implemen-
tations of these algorithms, we must additionally consider
the side channel security of these implementations. Side
channels pose a consistent challenge to the security of
cryptographic implementations due in-part to the sheer size
of the problem space of preventing leakage or manipulation
that can allow adversaries to extract secret information.
NIST has made explicit the need to create side channel
resilient implementations of these algorithms [1]-[4].

Side channel attacks can take many forms, but a par-
ticularly concerning mechanism exists in the form of the
Rowhammer vulnerability [5]. Rowhammer allows a re-
mote attacker to intentionally flip bits in a victim pro-
cess’s memory to cause unintended behaviors. Two recent
works have considered Rowhammer vulnerabilities in PQC
schemes (“Signature Correction” by Islam et al. [6], and
“FrodoFlips” by Fahr et al. [7]), and found that there are
mechanisms which can be used to leak secret key informa-
tion from the Frodo Key Encapsulation Mechanism and the
Dilithium Digital Signature schemes respectively.

Using these works as motivation, we seek to further
understand the security of PQC schemes against Rowham-
mer attacks. In particular, we are interested in end-to-end
attacks that can fully recover the secret key of the target
schemes — prior work only allowed recovering a session
key or weakening security of the schemes they targeted.

1.1. Our Contributions

Demonstrating that many PQC schemes allow such key
recovery attacks, in this paper we show practical key recov-
ery experiments against the reference implementations of
the Kyber and BIKE Key Encapsulation Mechanisms and
the Dilithium Digital Signature, all of which are among the
finalist schemes selected by the NIST standardization pro-
cess. The chosen schemes represent multiple fundamentally-
different approaches to PQC security with lattice-based
techniques used for Kyber and Dilithium and coding-based

s.amer@gatech.edu
yingchenwang@berkeley.edu
h.kippen@samsung.com
thinh.dang@nist.gov
genkin@gatech.edu
andrew@cs.unc.edu
ahnelson@uark.edu
arkady@gwu.edu

techniques for BIKE. For these schemes, we achieve the
following (see Table 1).

« We exploit a Rowhammer vulnerability in Kyber, demon-
strating end-to-end secret key recovery (Section 4).

« We demonstrate an end-to-end secret key recovery on
BIKE-KEM through instruction flipping (Section 5).

« We demonstrate a key recovery on deterministic and
randomized Dilithium (Section 6).

o Finally, we make recommendations on how to harden
PQC implementations against Rowhammer (Section 7).

1.2. Attack Overview

The primary focus of our research is to identify and
execute bit flip attacks on candidate or standardized PQC
schemes. During our investigation of implementations of
these algorithms, we focused on the reference implementa-
tions as provided to the standardization efforts. A particular
emphasis of this effort was to fully recover the full secret
key as opposed to prior literature which obtained only
partial key information (SignatureCorrection [6]) or session
keys (FrodoFlips [7]). Additionally, we sought to identify
key-recovery attacks that would not be detected in current
specifications so that any successful attack could have a
longer-term impact.

For each scheme, we followed a repeatable pattern to
identify potential key recovery attacks. For the two key-
encapsulation mechanisms (KEMs), we focused on manip-
ulations to the key generation algorithm that enable secret
key recovery attacks. For the signature scheme (Dilithium)
we instead focused on the sign function. These two functions
were selected because the secret key will be in memory dur-
ing these functions, and therefore are potentially susceptible
to bit-flip attacks.

Once a target function was identified, we inspected
the reference code and compared constraints on parameters
assumed by the cryptographic specification to the checks
performed in the code. In particular, we identified variables
where a side-channel attack could induce the variable to
violate the assumed conditions of the cryptographic imple-
mentations without causing a detectable failure. We were
particularly interested in variables whose manipulation could
lead to the scheme disclosing its secret key.

Once we identified these variables (“target variables™)
we created simulations of the attack by directly manipu-
lating the reference implementation code to verify that the
attack had the intended effect. Once a simulated attack was
verified, we compiled the reference code directly and dis-
assembled the binary to assure that compiler optimizations
would not prevent the attack. Each process was dynamically
analyzed to determine the amount of time that is available
to launch a bit flipping attack. If we found that this amount
of time was not sufficient for a Rowhammer attack to suc-
cessfully flip the necessary bits, we performed performance
degradation to slow the victim process during the critical
section of code. We launched our Rowhammer attack by
activating a hammering process, a degradation process, and

the victim process in parallel. Finally, we used the modified
process to extract the secret-key information for the target
cryptographic scheme. In some cases, e.g., for Kyber and
Dilithium, this last step required multiple communication
sessions to be established with the victim process to enable
key recovery.

1.3. Comparison to Prior Work

We now briefly compare our attacks to those shown in

prior work.
Attacks on Key Encapsulation Mechanisms. Our attack
on the Kyber protocol is similar to the attack shown against
FrodoKEM in FrodoFlips [7]. Both attack the KeyGen func-
tion to hammer the secret key during key generation to cause
an increased rate of ciphertexts causing a decryption failure.
Both attacks then use a number of such failing ciphertexts
to recover the secret key. However, there are some critical
differences between these attacks that result in a stronger
full key recovery attack in the case of Kyber.

In FrodoFlips, the authors’ attack required flipping 8
very targeted bits of the secret key, without flipping any
of the other bits, during key generation. This challenge in
fact caused their attack to fall short of recovering the full
secret key as the authors were only able to flip 7 of the 8
bits — enough for a brute-force attack to recover established
session keys, but not enough to recover the long-term secret
key. Additionally, their attack required generating 665,000
failing ciphertexts (e.g. producing decryption errors), neces-
sitating the use of a super computer to produce sufficiently
many ciphertexts to run the attack.

In our attack on Kyber, on the other hand, we only
need to flip two bits of the secret key, making the time
needed to run the Rowhammer attack much smaller than in
the FrodoFlips case. However, it turned out that the code
of Kyber keeps the secret key vulnerable in memory for
a much shorter period of time than Frodo, resulting in a
tighter window in which the Rowhammer attack had to be
completed. This gives a different challenge for the Rowham-
mer attack. Additionally, the Rowhammer manipulation in
FrodoFlips resulted in a much lower decryption failure
rate, and required significantly more failing ciphertexts to
obtain the key. This Kyber attack in this work requires
~ 40,000 ciphertexts, which can be obtained through only
4MM encryption calls. This eliminated the need of any
supercomputing allowing us to instead generate all the nec-
essary ciphertexts on a personal computer in a considerably
shorter amount of time. The easier Rowhammer target and
the lower requirement for failing ciphertexts enabled us to
recover the full long-term secret key for Kyber.

Our attack on the BIKE KEM, on the other hand, uses
a completely different approach based on flipping bits in
instruction memory to disable the entropy in key generation.
This does not have a parallel in the prior work on attacking
PQC schemes.

Attacks on Digital Signatures. Our attack on the ran-
domized Dilithium scheme uses an instruction flip attack

Cryptography Scheme | Purpose Attack Summary
Kyber KEM Full secret key recovery using a decryption failure attack which was made
possible through Rowhammer induced poisoning of the keypair generation process.
Dilithium-Deterministic DSA Fault injection attack leading to the nonce-reuse scenario,
which enables recovery of Dilithium signing secret key.
Dilithium-Randomized DSA Instruction flip attack leading to a deterministic key generation process,
which enables recovery of Dilithium signing secret key.
BIKE KEM Instruction flip attack leading to a deterministic key generation process

TABLE 1: Summary of Attacks

similar to our attack on BIKE, and for which there is no
similar prior work.

Our attack on the deterministic Dilithium signature
scheme is most similar to the SignatureCorrection paper of
Islam et al [6]. However, our attacks are different in sev-
eral fundamental ways. Our attack targets the deterministic
variant of Dilithium where the Sign function does not use
external randomness. The SignatureCorrection work, on the
other hand, is able to attack even the randomized version
of the Dilithium scheme. However, the SignatureCorrection
paper only achieves leakage of partial key information,
significanlty lowering the resulting security of the signature
scheme (below the levels required by NIST standards) but
not enabling an actual key recovery. Our attack, on the other
hand, enables a full key recovery completely breaking the
security of the deterministic Dilithium signature. Extending
these techniques to get a full key recovery attack against
the randomized variant of Dilithium is an interesting open
question for future work. According to the Dilithium doc-
umentation, deterministic Dilithium is the default option
except in scenarios where an adversary can mount side-
channel attacks [8]. Our result suggests that the determin-
istic Dilithium should not be used in any setting where
RowHammer is a concern (e.g., cloud deployment with
shared machines).

1.4. Responsible Disclosure & Artifact Availability

We notified the authors of Kyber, BIKE, and
Dilithium, providing them a preliminary copy of this
paper. Source code and data are provided at the fol-
lowing anonymized github repository https://github.com/
pgrowhammer/pghammer

2. Background

2.1. Post-Quantum Cryptography

Post-quantum cryptography refers to cryptographic pro-
tocols that are believed to be resistant to attacks by quan-
tum algorithms. Due to recent advances in quantum com-
puting, there is now urgency to develop and adopt such
protocols to maintain security of communications and data
once such computers are available. Towards addressing this
challenge, in 2016, the U.S. National Institute of Stan-
dards and Technology (NIST) announced the beginning

of its Post-Quantum Cryptography (PQC) standardization
process [9] aimed to standardize post-quantum public-key
cryptographic algorithms including key encapsulation mech-
anisms (KEMs) and digital signatures. Following three
rounds of review, evaluation, and cryptanalysis NIST has
selected one KEM — CRYSTALS-Kyber — for standardiza-
tion. They additionally designated four more KEMS: BIKE,
Classic McEliece, HQC, and SIKE for further evaluation in
a 4th round. NIST additionally chose three digital signature
schemes: CRYSTALS-Dilithium, Falcon, and SPHINCS+
for standardization. In this paper, we study the security of
three of these schemes against Rowhammer attacks.

Kyber. CRYSTALS-Kyber [10] is a lattice-based post-
quantum key encapsulation mechanism (KEM) which has
been chosen for standardization the third round of NIST’s
post-quantum cryptography standardization process [11].

BIKE. The Bit Flipping Key Encapsulation (BIKE) [12]
scheme is a code-based KEM QC-MDPC (Quasi-Cyclic
Moderate Density Parity-Check) codes, and is an alternate
KEM in NIST’s fourth round of the post-quantum cryptog-
raphy standardization process [11].

Dilithium. CRYSTALS-Dilithium [13] is a lattice-based
post-quantum digital signature scheme which has been cho-
sen for standardization the third round of NIST’s post-
quantum cryptography standardization process [11].

2.2. The Rowhammer Bug

The Rowhammer bug is a physical vulnerability in
DRAM, where repeated activations to a row cause bit flips
in nearby rows [5]. The rows that are repeatedly accessed
are referred to as “aggressor rows” and the rows in which
bit flips are induced are referred to as “victim rows”.
Double-Sided Hammering. Double-sided hammering is
a Rowhammer technique where a victim row is sandwiched
between two aggressor rows. The bit flips in the victim row
depend on the data in the aggressor rows. For example, 1s
in the victim rows are more likely to flip when the aggressor
rows’ values are set to 0.

Rowhammer on DDR4 Memory. As shown by Frigo
et al. [14], DDR4 consumer platforms rely on in-DRAM
implementations of Target Row Refresh (TRR) to mitigate
Rowhammer induced bit flips. However, this mechanism can
only track up to a certain number of rows, and it fails
to mitigate Rowhammer when there are many aggressors.

https://github.com/pqrowhammer/pqhammer
https://github.com/pqrowhammer/pqhammer

Therefore, on DDR4, many-sided hammering is used where
multiple aggressors in the same bank are hammered. Further,
Kang et al. [15] showed that mutli-bank hammering, where
multiple aggressors in separate banks are hammered, results
in a higher number of bit flips. In this work, we employ
multi-bank hammering to flip bits.

Rowhammer History. Despite continuous efforts by
DRAM vendors, the Rowhammer bug still plagues the in-
dustry as researchers find new access patterns that cause bit
flips in DDR4 and DDR5 memory [14]-[16]. Since Kim et.
al [5] first revealed the vulnerability, numerous research has
shown how it can be exploited either natively or through the
browser to escalate privilege or escape sandboxes [15], [17]-
[19], break RSA signature validations [20], induce faults
over the network [21], and recover TLS signing keys [22].
Additionally, recent work has shown how Rowhammer can
be used to mount fault injection attacks on FrodoKEM [7]
and Dilithium [6].

2.3. Rowhammer Exploitation Challenges

Rowhammer Timing. Flipping bits in memory requires
a sufficiently large time window to allow for enough row
activations. To ensure we have such a time window, we
degrade the performance of the victim process by flushing
its instructions from the cache hierarchy.

Memory Profiling. We need to find a memory page that
has bit flips in our desired locations. For that, the first step
in our attack is to template memory by hammering in our
address space until we find a page with bit flips in the correct
direction and page offset.

Memory Massaging. After we have found a memory page
with the required flips, we need to ensure that the victim’s
targeted data is allocated in that memory page. To overcome
this challenge we use the technique presented in [23]. The
linux kernel maintains a first-in-last-out page frame cache
(PFEC) for each core. Therefore, if an attacker unmaps the
vulnerable page followed n dummy pages, where n is the
number of pages allocated for the victim before the targeted
page, and then immediately triggers the victim process,
the targeted page of the victim is allocated the vulnerable
memory page.

2.4. Notation

We use R to denote the ring (Z[z]/z™+1), R, to denote
the ring (Zg[z]/x™ + 1), RY to denote the space of length-
k vectors where all the elements are in R, and RF*! to
denote the space of k x [matrices where all the elements
are in I7,. We use lower-case bold letters to represent vectors
and upper-case bold letters to denote matrices. v? (or A7)
represents the transpose of a vector v € R’; (or a matrix
Ace R’;Xl).

We use v[i] to denote the i-th polynomial of a vector v.
We use p[i] to denote the i-th coefficient of a polynomial
p and v[i][j] to denote the j-th coefficient of v[i], the i-th
polynomial in vector v.

We use [x] to denote rounding z to the closest integer.
If the rounding ties, we round up.

We use S, to denote the uniform random distribution
where a number is sampled from the range [—n,n]. If a
vector of polynomials (s; € R¥) is sampled from S}, every
coefficient of every polynomial in s; is sampled from ;.

For an odd integer ¢, we define v’ = r mod® q to be
the unique element in the range —%1 <7 < ‘1;21 such
that v = r mod gq.

3. Threat Model and Hardware Setup

We assume a standard Rowhammer threat model, of an
unprivileged user being able to execute code on a machine
co-located with the victim. We also assume that the ma-
chine’s memory is susceptible to Rowhammer-induced flips.
In particular, all the techniques used in our attacks, such as
performance degradation, cache flushing, memory profiling
and memory massaging require no elevated privileges.

Next, Table 2 summerizes our hardware setup for each
of the attacks described in this paper. Unless specified
otherwise, we left all software countermeasures, such as
ASLR and DRAM refresh timing in their default settings.

Scheme CPU Memory
Kyber [i7-6700, i7-8700K, i7-10700K|M378A1K43BB1-CPB
Dilithium 17-8700K M378A1K43BB2-CRC
BIKE [i7-6700, 17-8700K, i7-10700KM378 A1K43BB2-CRC

TABLE 2: Summary of attack setups (all memory part numbers
are of Samsung DIMMs).

4. Decryption Failure Attack on Rowhammer-
Poisoned Kyber

We give an overview of our rowhammer-assisted
decryption-failure attack on KyberKEM. The scheme has
a known characteristic that an honestly generated ciphertext
with an honestly generated key pair has a non-zero prob-
ability of failing the decapsulation/decryption process. In
that case, the two parties using the KEM fail to establish
the same session key. It’s been known that such an event
leaks significant information about the decryption key to
the encapsulator. Roughly speaking, this is because the
decryption key may be viewed as a vector of small integers
and decryption failure/success depends on the magnitude
of the dot product between the decryption key and another
vector of small integers generated during encapsulation.
Therefore, decryption failure indicates that the vector known
to the encapsulator is an approximation of the decryption
key. However, decryption failures are extremely unlikely
with probability upperbounded by 27128, 27192 and 27256,
for each respective security level. Moreover, KyberKEM
is IND-CCA. An adversary seeking to exploit decryption
failures through maliciously and carefully crafted ciphertexts
is still very unlikely to succeed due to a mechanism called
the Fujisaki-Okamoto transform and re-encryption check.
For a detailed analysis of such mechanism, see [24].

Rowhammer-Induced Decryption Failure. Given the ex-
tremely low probability of obtaining a decryption failure, our
Rowhammer attack aims to make decryption failure a much
more likely event (i.e failure-boosting). This is achieved by
exploiting the bit representation of integers, specifically the
integers in the secret key. Under normal circumstances, these
secret integers are small in magnitude (between —2 and 2).
By flipping a single bit, a secret integer can become as large
as 256. This makes the aforementioned dot product larger
than usual and more likely to lead to decryption failure. We
note that care must be taken in calculating which bits to flip.
Otherwise, the decryption failure rate may be too high and
easily noticeable or even render the key pair inoperable.
Assuming that the Rowhammer attack has succeeded in
flipping the desired bits, our attack proceeds by sending the
victim many ciphertexts to be decrypted and subsequently
observing which ciphertexts fail decryption. Each decryption
failure gives us a hint or an approximation of the decryption
key (cf. Equation 6). By collecting many such hints, we
successfully cryptanalyze the victim retrieving the decryp-
tion key. The cryptanalysis computation involves taking the
average of the many approximations of the decryption key
given by decryption failures (cf. Equation 7).
Rowhammer Challenges. To mount our decryption failure
attack, we introduce additional noise into the secret key dur-
ing the key generation process through Rowhammer induced
bit flips. Accomplishing these bit flips required overcoming
several significant challenges. First, we must flip the bits
within a constrained time window. Second, we must find
a memory page that has the required bit flips at a suitable
page offset (which depends on the page offset of the targeted
variable). Finally, we must ensure that the targeted variable
is allocated on the chosen vulnerable page.

4.1. Preliminaries on Kyber KEM

We provide a simplified description of KyberPKE and
KyberKEM. KyberPKE is an IND-CPA PKE scheme based
on Module-Learning with Error. In turn, KyberKEM is the
result of applying a Fujisaki-Okamoto transform to Ky-
berPKE. Our description of Kyber is given in Figures 1
and 2. Explanations for the Compress and Decompress
functions as well as the Number-Theoretic Transform can
be found in Kyber specification [25]. For convenience, we
summarize the details below. Note that we interchange each
element of R with the tuple of its coefficients; that is, we
intirchange R with Z™. Moreover, we interchange R* with
VA
Compress and Decompress The two functions Compress
and Decompress are defined as follows.

Compress,(z,d) = [(2%/q) - =] mod 2¢, (1)
Decompress,(x,d) = [(q/2%) -z 2
Essentially, Compress, approximates an integer x € Z,

using d bits. The Decompress, tries to invert the com-
pression, but the result may introduce a small error. Let

r € Z, and ' = Decompress,(Compress,(z,d),d).
Then, |(z' —) mod® ¢| < [5dr] -

Moreover, Compress, and Decompress, can be used
as a sort of error-correcting code. Let m € {0,1} and m' =
Decompressqy(m, 1) + e mod g. Then if |e| < [q/4], we
obtain that m = Compressq(m/, 1).

Centered Binomial Distribution The centered binomial
distribution B,, over Z is the distribution of the output of
the following sampling procedure:

1) Sample (a1,...,a,,bi,...,b,) < {0,1}*"

2) Output .7, (a; — b;).
Equivalently, B,, is the binomial distribution with 27 trials
and success probability 1/2, shifted by —7.
Number-Theoretic Transform Specifically, for Kyber,
n = 256 and ¢ = 3329 = 13 - 28 + 1, which is a prime. So
2™+ 1 is the 512th cyclotomic polynomial, whose zeros are
the 256 primitive roots of unity of order 512.

Over a sufficiently large extension of Z,, the polynomial
™ + 1 factors into 256 linear factors whose zeros are all
primitive roots of unity of order 512. However, the field
Z4 does not contain a primitive root of unity of order 512
but does contain a root of unity of order 256, e.g. (= 17.
Therefore, over Z,, the polynomial ™ 4 1 factors into 128
irreducible polynomials of degree 2:

127

241 = H($2 _ <2i+1).

i=0
Therefore, the ring R, is isomorphic to the product ring
[1.20 Zqla]/ (@* — (¥,
Ry 2 Zg/(a? = Q) X Zg/(a® = () -+ x Lo/ (z® = (*P).
The isomorphism is given by
f (fmoda®—¢,...
The image of f under the isomorphism mapping is called
the number-theoretic transform (NTT) of f, denoted by

NTT(f). The inverse function, as usual, is denoted by
NTT .

, f mod z? — ¢2%%).

4.2. Decryption Failure Rate Analysis

In this section, we calculate the decryption failure rate
when only two bits are flipped via rowhammer during
key generation. As previously discussed, the Kyber KEM
may generate ciphertexts that do not decrypt correctly, i.e.
decryption failures. In this section, we describe the condi-
tions under which decryption failures occur and analyze the
probability that they occur given that the error vector e is
rowhammered during KeyGen. We show that by rowham-
mering the vector e at only 2 locations, we can increase
the failure rate to be noticeable. However, the failure rate is
still sufficiently low for the key pair to appear operational
to honest users.

In more detail, let ¢, = u—u’ and ¢, = v — V.
Decryption is correct if

Te; —scy +ea+ culloo < [q/4].

lefr —s

Algorithm 1 KyberPKE.KeyGen()

Algorithm 4 KyberKEM.KeyGen()

1A NTT(Rq)kxk

2 s 4 (BL)F, e« (B

3 8= NTT(s)

4 &=NTT(e)
sst=A-8§+é .

6: return (pk = (A,t), sk = 8)

Algorithm 2 KyberPKE.Enc(pk, 1)

I: (A t) = Pk

2: (B”)

3: e < (Bn)

4: €9 Bn

s: £ = NTT(r)

6: u=NTT (A 1)+ e modq

7. v = NTT !t - #) + ez + Decompress,(p1,1) mod ¢
8: ¢1 = Compressy(u,d,,)

9: ¢g = Compressy(v,d,)

10: return ¢ = (c1,¢2)

1: (pk', sk’) + KyberPKE.KeyGen()
2: return (pk = pk’, sk = (pk’, sk’))

Algorithm 5 KyberKEM.Enc(pk)

p<{0,1}

(r,k) < H(p)
¢ < KyberPKE.Enc(pk, u;7)
return (c, k)

bl

Algorithm 6 KyberKEM.Dec(sk, ¢)

1. (pk', sk’) = sk
2: pu + KyberPKE.Dec(sk’, ¢)
3. (r k) <« H(p)
4: ¢’ + KyberKEM.Enc(pk, p; 1)
5. if ¢/ = c then
6: return k

7: else

8 Decapsulation fails.

Algorithm 3 KyberPKE.Dec(sk, c)

S = sk

(c1,¢2) =c

u’ = Decompressy(c1,dy,)

v = Decompressq(CQ, dy)
m=v—NTT }(s” - NTT(u))
return p = Decompressq(m,1)

ANl

Figure 1: Simplified description of Kyber PKE

On the other hand, if

Te; —sTe, +eq+ Colloo > Tq/4],

lefr —s
then decryption failure overwhelmingly likely occurs [26].
Let E = elr + ey + ¢, —sTe; —sTc,. We shall call this
the decoding error. We are interested in the event that one
of the coefficients of E exceeds ¢/4 in magnitude, which
will cause a decryption failure.

We interchange each element of R with the tuple of its
coefficients; that is, we interchange R with Z™. Moreover,
we interchange R with Z"*. We note that there is a natural
correspondence between each column t € R* and the Z-
matrix representation of the linear map x ~ t7x where
x € R* when this map is viewed as a Z-linear map of Z"*.

Let v, and v, be the distributions of the coefficients of
c, and c, respectively. Under the hardness assumption of
decisional Module-Learning with Error, v, can be sampled
as follows:

1) u<Zy4
2) Output u — Decompress,(Compressq(u, dy,), dy)

Figure 2: KyberKEM as Fujisaki-Okamoto transform of Ky-
berPKE

And 1, can be sampled similarly. From the equation above
for E, the distribution of the coefficients of E then is
(Buy - By)™ + (B, - (By + %)) + By, + 1.
where for a distribution B, (B)®*" = B+ B + B.
H,—/
kn times

Now suppose we flip 2 bits of coefficients in e, one at
the 28 bit and one at the 26 bit, forcing these bits to be set.
We calculate that when two such bits are rowhammered,
the decryption failure rate is sufficiently high to allow for
practical key-recovery. Nonetheless, the decryption failure
rate is still sufficiently low for the generated key pair to
appear operational to honest users. In the following, we
assume that these two coefficients are non-negative. That
is, the targeted bits are 0. This is a high-probability event.
Then, we further assume that the rowhammer succeeds in
flipping these bits to 1. The two affected coefficients then
have following distributions respectively:

256 _ B (O) lf xr = 0
Hy P(256 + 2) = { 2}77317,1 () fx>0
and B, (0) if 0
64 _ n 1T xr =
Hy (64 +2) = { 2Bi71 () ifx>0

Then, the distribution of the coefficients of E for honest
users becomes

Hgfﬁ By, + Hgf - By, + (B, .Bm)@(kn—2)
+(By, - (Byy + $a)®* + By, + 0. (3)

Numerically calculating the probability p that the distri-
bution in equation 3 exceeds the decoding threshold gives
p ~ 2718 If we assume that each coefficient of the decoding
error is independent, an honest user’s decryption failure rate
is 1 — (1 —p)?5 ~ 2710 We have experimentally validated
the decryption failure rate to be slightly higher than 2719,
landing just under 2710-5 for our rowhammered keys.

Now consider an adversary engaging in failure boosting.
Our failure boosting technique consists of repeatedly sam-
pling r until the two coefficients of r that get multiplied
with the rowhammered coefficients of e in the equation
for E, have the maximum magnitude and the same sign.
The sum-product of these two coefficients of r with the
two rowhammered coefficients of e then has the following
distribution K:

1) With probability 1/2, output a sample from 7, - H, 3156 +
m - Hy!
2) Else, output a sample from —; - HZ22% —n, - HS*
One of the coefficients of decoding error E for the adversary
is distributed as

K + (Bm : Bm)@(kn_Q) + (Bnl . (B772 + wu))@kn
+ B, + 9. (4)

The coefficient with the distribution above exceeds the de-
coding threshold with probability p’ ~ 271, Let us call this
coefficient E}. Let us heuristically assume that each of the
other 255 coefficients of E is independent and exceeds the
decoding threshold with probability (approximately) equal
to that of equation 3. The fraction of failing ciphertexts
where Ej, does not exceed the decoding threshold is

(1-p)(1—(1-p)*)
T (1))
Numerically, this is ~ 67%.

&)

4.3. Recovering the Secret via Decryption Failures

In this section, we give an analysis explaining our key
recovery step. At a high level, taking the average of the
hints given by decryption failures, we recover the secret
key up to a known scaling factor. The key recovery step
for Kyber is more involved than prior work on Frodo [7].
Despite having foreknowledge of which bit flips were tar-
geted, we cannot fully determine which coefficient of the
error exceeds the decoding threshold. Inevitably, ciphertext
data that is uncorrelated with the secret key is included
during the averaging step'. Maximizing our information gain
therefore requires estimating the failing coefficient(s) with as
high of an accuracy as possible. Our implemented estimator
succeeds with ~ 75% accuracy, which was sufficient for key
recovery.

For our analysis, we heuristically treat each distribution
B, as a normal distribution N (0, o2) for some o; € R™ and
follow the analysis in [27] with some modifications. First we

1. This assumes that the coefficients in failing ciphertexts that do not
exceed the decoding threshold are uncorrelated with the secret.

assume that rowhammer is successful, i.e. one coefficient of
e is at least 64 and one is at least 256. Our following analysis
is conditioned on this event.

For any a € R, we write Mat(a) for the Z-matrix repre-
sentation of a. If a = (a1, as,...) € R*, we define Mat(a)
to be the block matrix [Mat(a1)| Mat(az)|...]. Moreover,
we define @ the column tuple obtained by concatenating
(vertically stacking) the columns at, @z,

For simplicity, assume that decryption failure has oc-
curred in the first coordinate and |Ey| > ¢t where t = [q/4].
Let €’ be the first row of Mat(e) with the two coordinates
corresponding to the two rowhammered coefficients erased.
Let hy and ho be these two coordinates. Let f; and fo be
the two coefficients of r that get multiplied with h; and ho
respectively in the computation of Ey. Let 7/ be the column
obtained by erasing f; and f, from ¥. Moreover, let s’ be
the first row of Mat(s). Then,

Ey = 6/-7”I+f1'h1+f2’h2+8/'(13_1)+6)u)+6§0)+05,0).
Let S = (¢/,s)T, the column obtained by concatenating

!
e and s, and W =] the column obtained

T
— —
€] + Cuy
concatenating v’ and e; + <. Then,

Eo= (S, W)+ fi-h1+ fo-ho+ el + 0.

It suffices to consider the case Fy > t. Otherwise, if Fy <
—t, consider —Ej instead. According to the failure boosting
technique described above, f1 = fo = 4. If f1 = fo =
—11, the probability that Ey > ¢ is extremely low. So we
may assume that f; = fo = n;. We rewrite Ey > ¢ as

(SWY >t =t—f1-hy — fr-hy— e =@ (6)

Note that the adversary has knowledge of each term for
computing ¢’ except h; and ho. However, it is trivial to
guess hp and hy as the set of possible values is very small.
So we further assume that ¢’ is known.

We heuristically treat S as a Gaussian N(0, 02). Due to
the concentration of the norm of such a high-dimensional
Gaussian, we assume that the norm of S is £ = ov/N where
N is the dimension. For the same reason, we assume |¢/| =
oy/Ny and |§'| = o1/ Ns.

We also heuristically treat W as a Gaussian A (0,)

where 27 g
_ |71
x= { 0 7'22.7])

We consider the decomposition of W as the sum of its pro-
jections onto the subspace spanned by .S and the subspace
orthogonal to S. Let I1g be the matrix of projection onto the
former and IT; be the matrix of projection onto the latter.
Then,

W=1Ig - W+1II, - W

S
=ay +1I, - W,
where
o ~ N0, 202Ny + 7'2202N2) — N, 2N,]"\—[TQQNQ).

02N

gen_a (a, publicseed);

2 for (i=0; i<KYBER_K;i++)

4

6

poly_getnoise_etal (&skpv.vec[i], noiseseed,

nonce++) ;
for (1=0; i<KYBER_K; i++)
poly_getnoise_etal (&e.vec[i], noiseseed, nonce
++);

polyvec_ntt (&skpv); // window for inducing flips

polyvec_ntt (&e);

Listing 1: Snippet of Kyber key generation code showing the
initialization of e and conversion to NTT

Note that (S, W) > ¢’ if and only if o > ¢’/¢. Next we have
I, - W ~N(0, T, x17).

Let 7 be a number greater than or equal to both 7 and 79,
e.g. 7 = max(71,72). Then II; X117 < 72]. Then,

!
W:%€+T

where o’ has the distribution of « conditioned on a > ¢’ /¢
and T has covariance < 72I. Taking expectation gives
Ela’] Ela]

E[W] =)

4.4. Rowhammer Induced Poisoning

Inducing bit flips on the reference Kyber implementation

through rowhammer was met with a few challenges that
are typical with Rowhammer attacks. Namely, flipping bits
within a necessary time window, finding memory addresses
that correspond to consecutive rows in the same bank,
finding a memory page with bit flips in the necessary page
offset for the attack, and forcing the victim to use the
chosen vulnerable memory page. In this section, we describe
how we addressed these challenges to execute our attack
successfully.
Timing Constraints. To Rowhammer the relevant coef-
ficients of e, there is a narrow window of opportunity. The
arrays for these values are initialized in memory as contigu-
ous blocks of Os. Injecting bit flips before this initialization
therefore would have no actual effect. Kyber makes use of
the number theoretic transform as a low-memory perfor-
mance optimization for polynomial multiplication. The con-
sequence with regard to bit flips is that generating a precise
amount of noise in the euclidean domain would require a
considerable number of precise bit flips in the NTT domain.
The more bits our Rowhammer script aims to flip, the higher
likelihood of incidentally flipping other bits, which requires
a masking technique to prevent these unwanted flips. The
combination of these two memory operations sets the time
constraint for any feasible rowhammer attack. In short, the
total time to add noise into the secret key is the time between
matrix generation and conversion to NTT.

Static timing analysis of these functions determines that
the highest number of clock cycles during this process oc-
curs during the polyvec_ntt function, which in turn calls

Figure 3: 10-sided hammering example. There are 5 aggressor
pairs (red) where each pair is sandwiching a victim row (blue).

poly_ntt. For the Kyber-1024 process, the poly_ntt
function is called 8 times, so it is possible to focus on the
last portion of the error term (e) during the other seven
runs. Each iteration of poly_ntt uses about 35,000 cycles.
For modern machines, this process at the highest end is
approximately 1400 times less than the amount of time
necessary to complete a full DRAM refresh cycle.
Performance Degradation. To address the challenge of
flipping bits in the e matrix between matrix generation and
conversion to NTT, it in necessary to slow the execution
of the polyvec_ntt function, specifically as it executes
on skpv (line 6 in Listing 1). To achieve this goal, we
use performance degradation techniques from Hyperdegrade
[28] where frequently accessed instructions are flushed from
the cache hierarchy by attacker processes and pipeline stalls
are induced in the physical core running the victim.

The polyvec_ntt function iteratively calls a mul-
tiplication followed by a montgomery reduction, enabling
two potential function calls that can be evicted from in-
struction cache to create a cache flush. We determined
from this analysis that attacking Kyber-1024 creates the
longest possible time duration because it increases the total
number of these function calls. Through static analysis we
found that the most executed instructions are inside the
montgomery_reduce function called by ntt function
in a loop. Therefore, we chose one cacheline inside the
montgomery_reduce function. And two cachelines in
the ntt function.

We run many instances of processes that flush instruc-
tions of the victim process from the cache hierarchy and pro-
cesses that perform a spin loop. The processes are distributed
between all the processors (except for the physical core
hammering the aggressors). We pin the processes flushing
the most frequently accessed cachelines to the victim sibling
core, which has the added benefit of inducing machine clears
and thus further degrading the victim
Contiguous Memory. To obtain bit flips on DDR4
we need 10 aggressors, and each pair of aggressors must
sandwich a victim row between them as shown in Figure 3.
To find aggressor pairs (two aggressor rows with a victim
in between them) we must first find physically contiguous

memory. We observed that Transparent Huge Pages (THPs)
were not massageable for the Kyber attack, which targets a
variable on the stack of the victim process. Therefore, we
used SPOILER [29] to detect contiguous memory within an
allocated memory region. SPOILER uses false load depen-
dencies due to aliasing in the lower 20 bits of physical ad-
dresses to detect contiguous memory. However, we observed
that SPOILER cannot differentiate between a single 2MB
physically contiguous memory block and a 2MB memory
block that contains two separate 1MB physically contiguous
blocks where both start at the same 2MB alignment due
to similar aliasing effects. Therefore, we use SPOILER to
detect multiple sets of contiguous 256 pages. SPOILER
uses a single arbitrary load address (referred to as z in
[29]) to detect the aliasing effect. Setting this address to
a 2MB aligned address (obtained through THPs and only
used as the load address of SPOILER), we can ensure that
the contiguous memory we detect is 2MB aligned.
Finding Aggressors. After obtaining contiguous memory,
we need to find memory addresses that reside in the same
bank. The bank address bits, which we found using DRAMA
[30], are all within the lower 20 bits of the physical address.
Since the memory we obtained is 2MB physically aligned,
we know all the bits needed to find the bank number of
any memory address. Using this fact, we create a list of
aggressor pairs for each bank and set the aggressors and
corresponding victims to a striped pattern (1-0-1).
Multi-Bank Hammering. Kang et. al [15] showed that
bank-level parallelism can be used to amplify Rowhammer
by hammerring aggressors in multiple banks. The hammer-
ing pattern in [15] accesses the first aggressors in all the
hammered banks followed by the second aggressor, etc.
Memory Profiling. We now perform multi-bank ham-
merring on two banks using 10 aggressors in each bank.
Notably, we use the c1flushopt instruction to flush the
aggressors’ data from the cache hierarchy.

Memory Massaging. The attacker must now force the
victim to allocate e in the chosen page. As described in
[23] we perform “Frame Feng Shui” to massage the chosen
page to the correct location in the victim address space.
We unmap a number of dummy pages before triggering the
process, observe on which dummy page the e has been
allocated and replace that dummy page with the chosen
victim page.

4.5. Experimental Setup and Results

Setup. We ran our experiment on a desktop containing an
Intel i7-8700K (Coffee Lake) CPU and a single Samsung
DDR4 8GiB DIMM (part number M378 A1K43BB1-CPB).
Our machine was running Ubuntu 23.04. For debugging
visibility only, processes ran using sudo. We used the Kyber
1024 reference code [31], compiled using the reference
makefile, as our victim. Since we target Kyber’s e matrix
which is allocated on the stack, its location inside a memory
page is randomized by the operating system’s Address Space
Layout Randomization (ASLR). Thus, below we test for two
configurations, namely with and without ASLR.

Results. We ran our attack 100 times with ASLR both
on and off. With ASLR off, our chosen page was success-
fully massaged 91 times and the correct bits (and only the
correct bits) of the targeted variable were flipped 8 times
via Rowhammer. With ASLR on, our chosen page was
successfully massaged 44 times and out of those the correct
bits of the targeted variable were flipped 3 times. These
results show the effect ASLR has on shifting the page offset
of the stack variable and reducing massaging success rate.
On average, the profiling step of our attack takes 49
seconds and the massaging and hammering takes 93 seconds
due to the performance degradation.
Attack Perceptibility. To test the perceptibility of our per-
formance degradation, we ran the Geekbench 6 benchmark
on our machine with and without performance degradation.
Without any degradation, our machine scored 1674 points
for single-core performance and 5600 points for multi-core
performance. With performance degradation running, these
become 1543 points for single-core and 1648 points for
multi-core. That is, we observed an 8% reduction in single-
core performance, and a 71% reduction in multi-core score.
In all cases, the machine was snappy and reactive, without
any noticeable lag in user experience.
Generating Failing Ciphertexts. A consequence of the
selected number of bit flips is an increase in decryption
failure rates. Our noise level increases Keyber’s honestly
generated failure rate to ~ Wlo()' The Kyber construction
allows for key recovery from this failure rate with only
approximately 40k failing ciphertexts, taking about 2 hours
to generate on a modern PC. These ciphertexts were saved
to files based and processed using the method described in
Section 4.3 and [7].
Key Extraction. To extract the secret key, we estimate
the failing coefficient for each ciphertext and rotate their
vector representation correspondingly when averaging. We
use the James-Stein estimator to obtain the final scaling
factor and recover the key. Each recovery iteration averages
4.5 minutes on a modern server (Intel Xeon Gold 5420+).
For ASLR-disabled victims with bit flips in known locations
a recovery attempt takes a single iteration, allowing us to
recover the keys from all 8 successful attack runs described
above. For ASLR-enabled case with a known bit separation,
a recovery will occur during one of 1024 attempts, averaging
512 attempts. From the 3 successful attack attempts above, 2
of our keys completed in 33 and 940 iterations respectively.
The 3rd key did not have known bit separation for the
two errors, and recovery is upper-bound to 1024 x 1024
iterations. With each iteration lasting about 4.5 minutes, we
estimate key recovery time to be about 60 core-months on
average for our third attack attempt. Thus, while our key ex-
traction method is parallelizable across different iterations,
we leave the task of creating a more efficient key recovery
algorithm with unknown bit separation to future work.

5. Rowhammer Attack on BIKE-KEM

This section describes an instruction memory flip attack
that can be launched against the reference implementation

of the BIKE algorithm.

Instruction Flip Attacks. The von Neumann computer
architecture—on which most modern computers are based—
uses a single shared memory for both program and data
memory. This allows Rowhammer attacks to flip instruction
bits (in addition to data), causing victim programs to operate
differently than their intended purpose. As opposed to data
memory which can potentially induce unintended bit flips
that don’t affect the program, instruction hammering must
be precise in order to achieve the desired effect. Single bit
flips in the operation code or operands on the instruction
word can cause significant deviation from the intended
effect. However, instruction hammering has the advantage
that intentional selections of bits in instruction memory can
allow attackers to manipulate which registers are used in
computation, change memory addresses for reads or writes,
or change the kind of computation that occurs. This has
been shown in prior literature [15], [17] to intentionally
manipulate control flow.

Memory Deduplication. To conserve memory usage,
operating systems point the virtual pages of processes read-
ing the same data to the same physical pages in memory,
thus allowing the data to be stored in memory only once.
Previous work explored how memory deduplication can leak
information about processes through side-channels. Yarom
et. al [32] shows how Flush+Reload can be used to leak
information about process control flow. Gruss et. al [17]
also show how Flush+Reload can be used to find if a victim
code page is allocated at a certain physical address. In our
instruction flip attack, memory deduplication ensures that
the victim process uses the corrupted binary as its code.

Instruction Flip Attacks on BIKE. Using the same
process as Kyber, the scheme and implementation were
inspected for potential assumptions that could be violated
through bit flip attacks, this time focusing on instruction
memory. We determined that instruction flip attacks could
be levied against an assumption in the scheme that the seed
passed to the pseudorandom function is the random number
generated by the hardware. Note that this is a different
attack than intentionally manipulating the pRNG or RNG
on hardware because the randomness from the hardware
function can be validated for correctness and the attack can
still succeed. Instead, we manipulate the location where the
seed is stored prior to iterative calls to a pseudorandom
function. In the following sections we describe an end-to-
end attack on the pseudorandom number used as entropy
during key generation produce a deterministic key.

BIKE Key Generation. The BIKE scheme is based on the
McEliece scheme by instantiating “Quasi-Cyclic Moderate
Density Parity Check codes”. The private key is generated
through a pseudorandom mechanism to a set a small number
of bits in a zero-indexed vector to produce a sparse uniform
distribution. This process is conducted twice to produce hg
and hq, and the public key is constructed as H = hihg L as
an inversion and multiplication in the finite field. To produce
the two sparse vectors, the specification and reference code
leverage a pseudorandom function based on the SHAKE256

SnoE W

algorithm. The reference implementation of BIKE initializes
the pseudorandom function state by way of a function call
to the system’s random function. From this point forward,
the state of the pseudorandom function is entirely dependent
on the initialized seed.

Attacking the pseudorandom seed. Using instruction
memory flips, we were able to launch an end-to-end key
recovery attack with the aim of intentionally selecting the
seed value. Arbitrarily setting the seed value enables the at-
tacker to fully replicate the SHAKE256 function and obtain
the secret key, validating its correctness with the public key
of the victim. We describe our experiment in Subsection 5.
Rowhammer. Similar to [17], we perform a Rowhammer
attack on the binary of the BIKE key pair generation func-
tion. Listing 2 and Listing 3 show the assembly dump and
the C code of the relevant sections of the BIKE-KEM key
generation process.

We use the reference implementation test program as our
victim. Our attack leads to a deterministic key generation.
We target a bit flip in the operands of the mov instruction
that sets up the arguments for the get_seeds functions
(line 3 in Listing 2). We found that flipping 89 to either
88 or flipping df to either de or db results in a seed of 0
and a deterministic keypair without any errors given by the
program.

0000000000001760 <crypto_kem_keypair>:
1848:
184b:

48 89 df
e8 00 8 00 00

mov
callg

$rbx, $rdi
10050 <get_seeds>

Listing 2: Assembly dump snippet of BIKE key generation

int crypto_kem_keypair (OUT unsigned char *pk, OUT

unsigned char =sk) {

get_seeds (&seeds) ;
GUARD (generate_secret_key (&h0, &hl,1_sk.wlist
[0].val, 1_sk.wlist[1l].val, &seeds.seed[0]));

Listing 3: BIKE key generation Code

Experimental Setup. We used a setup similar to our Kyber
attack (see Section 4) with a desktop running Ubuntu 22.04
and containing a single Samsung DDR4 8GiB DIMM (part
number M378 A1K43BB2-CRC). We used the test program
of the reference implementation of BIKE as our victim [33]
Our attack process ran with normal user privileges.
Contiguous Memory. @ We observe that THPs are mas-
sagable for this attack unlike the Kyber attack (see section
4) because the allocation is done through an mmap call
(which was not the case for the Kyber attack). THPs are
available through madvise and allow us to allocate multiple
contiguous and physically aligned 2MB memory blocks.
Using these memory blocks we find aggressor pairs in all
the banks using the bank address bits as we did in the Kyber
attack (see Section 4)

Memory Profiling. = We perform multi-bank hammering
on two banks in search of bit flips at the page offsets where
our targeted bytes would reside.

OS Page Cache. The page cache is a software collection
of disk-backed backed pages such as program binaries and
shared libraries that the operating system may keep in
memory to service processes that may read them [34]. When
multiple processes are reading (and only reading) the same
file, their respective virtual address spaces will point to the
same physical page frames containing the file. We exploit
the fact that there is only one copy of the binary in the
page cache, meaning that it is shared between the victim
and attacker. As a result, any surreptitious modifications
the attacker makes to the binary (e.g. via Rowhammer) are
reflected in the victim’s binary.

Memory Massaging. After finding a suitable victim page
we call madvise with the MAP_PAGEOUT flag on the base
page of the THP that the victim page belongs to, which
breaks down the THP into normal 4KB pages, as explained
in [15], thereby making it usable for massaging. Next, we
unmap the page followed by a single dummy page, as the
targeted flips are in the second page of the binary and the
Linux PFC follows a first-in-last-out structure. We then map
the binary into the attacker’s address space with read-only
privileges and the MAP_POPULATE and MAP_SHARED
flag set. This ensures that the targeted page of the binary
is allocated on the chosen victim page. Since we map the
binary as read-only, this brings it into the page cache and
ensures that any other process reading the same binary file
will be pointed to the same page in memory as our attack
process. However, if the binary was already in the page
cache (i.e. in memory) the Linux kernel will not bring it in
again and instead point our virtual addresses to that physical
memory. Therefore, we run a memory exhaustion process
before we run our attack to ensure that the binary has been
evicted from memory.

Hammering. Now that the targeted binary code is in the
victim page we hammer the aggressors until the desired bit
flip occurs (or we reach a set number of tries to prevent
running infinitely), which we are able to check as the
binary file is mapped into our address space with read-
only privileges. After the binary flips we trigger the victim
program which will use the modified binary in the page
cache as its instructions, as shown in Figure 4. Finally, we
note that no performance degradation was required for this
attack.

Experimental Results. We found a total of 198 unique
bit flips before finding a bit flip at the correct page offset.
After the binary was massaged onto the target page the
hammering pattern was performed five times until the bit flip
was replicated on the target binary page. We then triggered
the victim process which outputted a deterministic keypair.

6. Rowhammer Attack on Dilithium
6.1. Crystals-Dilithium
Dilithium. = CRYSTALS-Dilithium (ML-DSA) is a post-

quantum digital signature scheme selected by the National
Institute of Standards and Technology (NIST) [8]. Dilithium

Attacker Address Space

Victim Address Space

Relevant section of targeted BIKE binary
page

Target BIKE Binary Page Target BIKE Binary Page

Physical Memory

Figure 4: Memory layout after the targeted binary page of BIKE
has been massaged. Only the relevant section of the page is in the
victim row as Intel’s Coffee Lake DDR4 DRAM address mapping
splits pages between two banks. Both the attacker and the victim
are pointing to the same physical page as both processes are only
reading.

is based on the “Fiat-Shamir with Aborts” technique [8],
where it samples a secret nonce for every signature genera-
tion. Leaking the secret nonce directly reveals the secret key
and thus breaks Dilithium [35]. The scheme is deterministic
when it samples the secret nonce deterministically, and
randomized when it samples the secret nonce randomly.
This implies that when signing the same message multiple
times, deterministic Dilithium generates the same nonce, and
randomized Dilithium generates a new nonce every time.

In Algorithm 7, we present a simplified version of the
deterministic Dilithium signing algorithm, highlighting the
components relevant to our Rowhammer attack. Dilithium
maintains a secret key s1 € Rfl. When signing a message M,
it first expands a public seed p into a public matrix A (Line
1). Then, it enters a while loop, inside which it generates a
new secret nonce y deterministically depending on the M
and loop counter (Line 3), a challenge sparse polynomial ¢
depending on A, y, and M (Line 4), and computes the final
signature as (z := y + csy,¢) (Line 5). It checks whether
z leaks information about the secret key and rejects z if
it does. The while loop terminates when (z,c) passes the
safety check and is secure to output.

Variable s; and ¢ have low Hamming weight, whereas
z and y have high Hamming weight.

6.2. Attacking Deterministic Dilithium

In this section, we demonstrate that strategically in-
jecting faults at precise positions by massaging the mem-
ory carefully enables a successful recovery of the entire
Dilithium secret key s;. We assume deterministic Dilithium.
Attack Core Idea. First, we present the core idea of
our high-level attack methodology. For a given message M,
assume we obtain both a correct signature (z, ¢) and a faulty
signature (z’,¢’) that are generated using the same secret
nonce y:

Z:=Yy 4+ csy (8)
zZ =y+cs; 9
An attacker can easily recover the secret key s; as:?
!
1= (10)
c—c

2. ¢ — ¢ is invertible with very high probability [36]

Algorithm 7 A simplified version of the Dilithium signing algorithm. The algorithm contains a while loop that samples a
secret nonce y deterministically based on M, the message being signed, and generates a signature (z, c). It outputs (z, ¢)

if it leaks no information about the secret key.

Require: Secret key s;, and message M
1. Ae R’;Xl := ExpandA(p)
2: while z = L do
3: y € Rfl := SampleY (M, s1)

4 c € R, := SampleC(A,y, M)

5: Z:=Yy +cs

6: if z leaks information about the secret key s; then
7: z:=1

8: else

9: Return (z, c¢)

> Expand a public seed p to a public matrix A.

> Sample a secret nonce y based on M.
> Sample a polynomial ¢ based on A, y, and M.

> Safety check.
> Reject z if it is unsafe.

> Output the signature.

After collecting a correct signature (z, c), the attacker aims
to inject faults (bit flips) using Rowhammer so that the
signing algorithm would release such a faulty signature.
Rowhammer Target. Next, we present the target variable
in Dilithium into which our attacker aims to inject bit flips.
An ideal Rowhammer target should fulfill the following
requirements:

« Injecting bit flips into the target should impact the compu-
tation of ¢ such that the signature released by the signing
server contains a faulty ¢’.

« When the target is injected with a fault, it should not
impact the computation of y, ensuring that the faulty
signature released by the signing server is generated using
the same y as the correct signature.

« The target is a static variable susceptible to tampering by
the attacker using Rowhammer techniques.

After examining the Dilithium signing algorithm presented
in Algorithm 7, we identify the variable p as our Rowham-
mer target. A fault injected into p could only contaminate ¢
but not y. Furthermore, p is not a variable computed during
the Dilithium signing process; rather, it is a static public
buffer persistently maintained by the signing server.
Secret Key Extraction. = We now detail the secret key
extraction. Recalling from Algorithm 7, Dilithium signing
contains a while loop wherein a new secret nonce y is
deterministically generated during each iteration. Suppose
the correct signature (z,c) is generated at loop iteration .
While a fault injected into p does not contaminate y, it
may result in the faulty signature (z’, ¢’) failing to terminate
at the same loop iteration ¢. Consequently, (z’,¢’) could
be generated using a different y’, and the attacker cannot
extract s; as i:z: since y and y’ do not cancel each other.
To address this challenge, we generate n pairs of cor-
rect and faulty signatures with n messages. The Hamming
weight of Az = z’ — z reveals whether the correct signature
(z,c¢) and the faulty signature (z’, ¢’) terminate at the same
loop iteration. If they terminate at the same loop iteration,
Az equals to s; x (¢ — ¢). Since sy, ¢ and ¢ have low
Hamming weight , Az is also of low Hamming weight. On
the other hand, if they terminate at different loop iterations,
Az equals to sy * (¢ —¢) +y’ —y. Since y’, y have high
Hamming weight, Az is also of high Hamming weight. Prior

work has shown that given a random pair of correct and
faulty signatures with faults injected into p, the success rate
of secret key recovery is around 14% [36].

6.3. Rowhammer

‘We now describe the steps taken to induce the necessary
bit flips in a Dilithium signing server.

Experimental Setup. We used a setup similar to our attack
on Kyber (see section 4) with a desktop running Ubuntu
22.04 and containing a single Samsung DDR4 8GiB DIMM
(part number M378A1K43BB2-CRC). Using the reference
implementation of Dilithium (security level 5) [37], we set
up a signing server that listens to messages on localhost and
signs them with its secret key. Our attack process ran with
normal user privileges.

Memory Profiling. = We obtain contiguous memory and
find aggressor pairs using THPs as we did in the attack on
BIKE-KEM (see section 5). The reference implementation
packs p, our Rowhammer target, and the secret key into a
single memory buffer where p is the first 32 bytes of the
buffer. Our signing server maps the secret key buffer in a
page aligned manner, which places p in the first 32 bytes of
the page. In search of a bit flip with the required offset, we
perform multi-bank hammering on two banks (10 aggressors
each). We search for up to 20MB of THPs and exit and retry
if no suitable flips are found.

Memory Massaging. We unmap the victim page (after
breaking THP into normal 4KB pages) and establish a
connection with the signing server. Next, the server maps the
key into its address space and, since we just unmapped the
vulnerable page, the secret key will be mapped to it. We then
hammer the aggressors and send the messages to the server.
As in the case for our attack on BIKE, no performance
degradation is required for this attack.

Experimental Results. = We found 396 unique bit flips
before finding a target page with a suitable bit flip at index
7. We massaged the target page successfully and flipped p
making the signing server output 10,000 faulty signatures
which we used to extract the secret key.

1

6.4. Attack on Randomized Dilithium

A careful implementation understanding the risk of side-
channel attacks may choose to use the randomized version of
Dilithium to prevent the attack above. To overcome random-
ized signing, we now present an instruction flipping attack
on randomized Dilithium. We follow the same technique
presented in the attack on BIKE-KEM (see Section 5).
Instruction Flip Attack on Randomized Dilithium List-
ing 4 and 5 show a snippet of the Dilithium key generation
function in assembly and C, respectively. Changing the last
argument of the shake256 function has the effect of mak-
ing the variables rho, rhoprime, and key deterministic,
which results in a deterministic keypair generation. To that
end we target the argument of the instruction on line 5
in Listing 4 and flip it from 0x20 to 0x00 leading to a
deterministic key generation.

00000000000015£0 <
pacrystals_dilithium5_ref keypair>:

1665: e8 26 ff ff ff call 1590 <
randombytes>

166a: b9 20 00 00 0O mov $0x20, $ecx

166f: 48 89 ea mov %rbp, $rdx

1672: 48 89 ef mov $rbp, $rdi

1675: be 80 00 00 00 mov $0x80, $esi

167a: e8 el 77 00 00 call 8e60 <

pagcrystals_dilithium_fips202_ref_shake256>

Listing 4: Assembly dump snippet of Dilithium key generation

int crypto_sign_keypair (uint8_t *pk, uint8_t =xsk)
{

/* Get randomness for rho, rhoprime and key =*/

randombytes (seedbuf, SEEDBYTES);

shake256 (seedbuf, 2xSEEDBYTES + CRHBYTES,
seedbuf, SEEDBYTES);

rho = seedbuf;

rhoprime = rho + SEEDBYTES;

key = rhoprime + CRHBYTES;

Listing 5: Dilithium key generation Code

7. Countermeasures

In this section we discuss the possible countermea-
sures to our attacks and make recommendations for hard-
ening post-quantum cryptographic implementations against
Rowhammer. We split the recommendations into soft-
ware implementation recommendations and system-level
Rowhammer defenses.

7.1. Implementation Defenses

First, the attack on Kyber is a failure-boosting key recov-
ery attack. To accomplish the attack, we first use Rowham-

mer to introduce additional noise in the key generation pro-
cess which will enable higher likelihood of failing ciphertext
decryption. We then create sessions with the victim, making
it generate a sufficient number of failing ciphertexts, and
thereby allowing us to recover the secret key. Preventing
either of these two phases can deter or eliminate this attack
direction, and the recommendations should hold for any
failure boosting attack.

Reducing Key Exposure to Rowhammer. Our first
recommendation is to limit the amount of time that key
material is in a vulnerable memory location. The Kyber
specification utilizes a performance improvement through
translating key material to the NTT domain for multiplica-
tion. Achieving tight control on the decryption failure rate
through flips in the NTT domain is untenable. Therefore,
the key material was vulnerable to bit flip attacks only
during random sampling, and our attack on Kyber required
a significant amount of performance degradation to achieve
sufficient bit flips during that window.

Reducing vulnerable time can be accomplished in a
number of ways. Kyber utilized an alternative numerical rep-
resentation that was resistant to bit flips. Optimized versions
of these schemes may utilize vector extensions to reduce
times. For implementations that keep vulnerable material in
memory for longer (e.g. signature schemes), a redundant
copy or hash can be created to verify that the material has
not been manipulated.

Key Auditing. Our second recommendation is to audit keys
to verify assumptions. In our Kyber attack, we manipulate
the error matrix, which is a component of the secret key.
The specification is set that the error term is composed of
random values between [—2,2]. Our bit flips created two
components that had 256 and 64 added to their respective
values. Inspecting the error term in the public key would
reveal that the key had violated this assumption and should
be rejected. As this component is secret, the rejection must
be identified by the key owner. To publicly identify po-
tentially manipulated keys, the public key can be used to
generate a large number of ciphertexts which should have a
near-zero probability of resulting in a failure. An auditing
process could generate ciphertexts and reject a key which
results in any number of failures. Our decryption failure rate
was ~1/10, 000 for this attack which is detectable with over
99.9999% accuracy when generating 100k test ciphertexts—a
process which consumes approximately 10 seconds.

Memory Layout Unfriendly to Rowhammer. Next, bit-
flip attacks for decryption failure attacks are reliant on sparse
memory representations. The terms in the error matrix for
the Kyber reference implementations were held as 16-bit
integers despite representing only 5 unique values during
sampling. Sampling from a centered binomial distribution to
produce error terms between [—2, 2] results in nearly 70% of
values in the vulnerable region having 14 leading zeros. Bit
packing these error values prior to NTT conversion would
prevent decryption failure attacks because the error term
could not exist beyond the specification. Put more simply—
the majority of bits in the page were susceptible to a bit flip
in a known direction to achieve the desired outcome, and

any of the error terms were equally valuable, resulting in a
large vulnerable memory space.

Rowhammer Code Hardening. The instruction flip
attacks on BIKE and randomized Dilithium created deter-
ministic keys by manipulating program flow. Specifically,
we eliminated the entropy passed to the implementations
by redirecting the output from calls to the system random
number generation that initializes the pseudorandom number
generator. Relying on a single call to the system RNG
presents a single point of failure. Preventing this attack is
largely a systems level question as cryptographic processes
need to be assured of deterministic program flow. Imple-
mentations can attempt to address these challenges through
validation. Victim processes shouldn’t rely on single calls
to system RNG. Instruction flip attacks require significant
precision to prevent corrupting the process, and each call
to system RNG represents potential for the attacker to fail.
Additionally, implementations should check for low-entropy
seeds. Implementations can check that the hamming weight
of a seed passed to a pseudorandom function is above some
threshold. In the case that the attacker can continue to
manipulate program flow, an auditing process should check
that the generated key was not generated from a low-entropy
seed. These can be pre-calculated up-to some desired depth
to speed the auditing process.

7.2. Rowhammer Defenses

An alternative to Rowhammer hardened software imple-
mentations is to prevent bit-flip attacks altogether. There are
a number of defenses to prevent Rowhammer attacks that
have been proposed in both hardware and software.
Counter-Based Rowhammer Mitigations. Counter-
based defenses track the number of activations made to a
DRAM row and mitigate the victims (either by refreshing
or replacing) when any of it’s neighboring rows reaches
a certain threshold of activations [38], [39]. However, as
DRAM becomes more densely packed, the threshold de-
creases and increases the SRAM area cost for these trackers
making them prohibitively costly. Recently, researchers have
proposed employing the Last-Level Cache (LLC) as an
activation counter to scale for low Rowhammer thresholds
and avoid prohibitive area costs [40].

Targeted Row Refresh (TRR). TRR, which is deployed
in DDR4 , employs a tracking based mitigation design but
cannot track more than a certain number of rows at a time
due to hardware limitations. This limitation has caused it
to be largely ineffective against attacks that hammer many
rows at once [14].

Error Correcting Memory. Error Correcting Codes
(ECC) correct bit flips when they are detected upon reading
from memory. They use extra bits stored in DRAM that
act as a parity checksum. Although ECC raises the barrier
for executing a successful rowhammer attack, they do not
guarantee protection as shown by [41].

Software Defenses. Isolating memory of different se-
curity domains into separate physical regions in memory

is a proposed software based defense against rowhammer.
For example, [42] isolate kernel memory to defend against
userspace Rowhammer attacks against the kernel. Addi-
tionally, [43] protect Page Table Entries using a software
tracking based mechanism similar to TRR. Despite claims
of low performance overheads, software based mitigation
has not been widely adopted.

Hardware Accelerated Cryptography. As we discussed,
for our attack on Kyber we needed a sufficiently long win-
dow to perform rowhammer. We achieved such a window
through performance degradation which was made possible
due to the nested loops in the polyvec_ntt function. By
flushing instructions in the deepest level of the nested loop
we were able to force many instruction cache misses in our
targeted hammering window.

On the other hand, if the polyvec_ntt function used
vectorized instructions, nested loops would not be present
in the implementation and the program would be less prone
to performance degradation attacks.

8. Conclusion

In this paper, we have shown how three promi-
nent post-quantum cryptography schemes are vulnerable to
Rowhammer-based bit-flip attacks. We demonstrated an end-
to-end key recovery using a failure-boosting decryption fail-
ure attack on Crystals-Kyber. Additionally, we demonstrated
an end-to-end key recovery on deterministic Dilithium us-
ing a Rowhammer fault-injection attack, and on random-
ized Dilithium using an instruction flip attack. Finally, we
demonstrated an end-to-end key recovery attack on BIKE
by manipulating program control flow. We note that these
attacks demonstrate three completely separate attack vectors
using a single underlying attack primitive-namely bit-flips.
In performing these attacks, we noted characteristics of the
schemes that had the effect of making the attacks more
difficult and gave implementation recommendations based
on our findings.

Acknowledgments

Samy Amer and Daniel Genkin are supported by the
Air Force Office of Scientific Research (AFOSR) under
award number FA9550-24-1-0079; the Alfred P Sloan Re-
search Fellowship; the Defense Advanced Research Projects
Agency (DARPA) under contract numbers W912CG-23-C-
0022,and gifts from Cisco and Qualcomm. Arkady Yerukhi-
movich is supported in part by NSF grants CNS-1955620
and CNS-2144798 (CAREER). Alex Nelson is supported
in part by NSF Grants CNS-2213738 and IIS-2237945
(CAREER).

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government.

References

(1]

(2]

[3]

[4]

[3]

(6]

(71

(8]

[l

[10]

[11]

[12]

[13]

[14]

P. Pessl, L. G. Bruinderink, and Y. Yarom, “To bliss-b or not to be:
Attacking strongswan’s implementation of post-quantum signatures,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 1843-1855.

J. Bootle, C. Delaplace, T. Espitau, P.-A. Fouque, and M. Tibouchi,
“Lwe without modular reduction and improved side-channel attacks
against bliss,” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security. Springer, 2018, pp.
494-524.

P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on dilithium-a nist
pqc candidate,” Cryptology ePrint Archive, 2018.

J. Howe, A. Khalid, M. Martinoli, F. Regazzoni, and E. Oswald,
“Fault attack countermeasures for error samplers in lattice-based
cryptography,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS). 1EEE, 2019, pp. 1-5.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), 2014, pp. 361-372.

S. Islam, K. Mus, R. Singh, P. Schaumont, and B. Sunar, “Signature
correction attack on dilithium signature scheme,” in 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P), 2022, pp.
647-663.

M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger,
D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhi-
movich et al., “When frodo flips: End-to-end key recovery on
frodokem via rowhammer,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp.
979-993.

V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe,
G. Seiler, D. Stehlé, and S. Bai, “Crystals-dilithium algorithm speci-
fications and supporting documentation (version 3.1),” NIST submis-
sion, 2021.

NIST, “Post-quantum cryptography
ization,” Apr 2022. [Online].
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum- Cryptography-Standardization

R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. Schanck, P. Schwabe, G. Seiler, and D. Stehlé,
“CRYSTALS-Kyber (version 3.02) — submission to round 3 of
the nist post-quantum project.” https:/pg-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf.

G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the third round of
the nist post-quantum cryptography standardization process,” 2022.

N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, S. Ghosh, S. Gueron, T. Giineysu,
C. A. Melchor, R. Misoczki, E. Persichetti, J. Richter-Brockmann,
N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor, “BIKE: Bit flip-
ping key encapsulation,” https://bikesuite.org/files/v5.0/BIKE_Spec.
2022.10.10.1.pdf.

standard-
Available:

L. Ducas, E. Kiltz,z T. Lepoint, V. Lyubashevsky,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Dilithium - algorithm specifications and supporting docu-
mentation (version 3.1),” https://pg-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf, [Accessed 06-06-
2024].

P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the
Many Sides of Target Row Refresh,” in S&P, May 2020, best
Paper Award, Pwnie Award for the Most Innovative Research,
Honorable Mention in IEEE MICRO Top Picks. [Online]. Available:
https://comsec.ethz.ch/wp-content/files/trrespass_sp20.pdf

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

I. Kang, W. Wang, J. Kim, S. van Schaik, Y. Tobah, D. Genkin,
A. Kwong, and Y. Yarom, “Sledgehammer: Amplifying rowhammer
via bank-level parallelism.”

P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bolcskei, and K. Razavi,
“Zenhammer: Rowhammer attacks on amd zen-based platforms,” in
33rd USENIX Security Symposium (USENIX Security 2024), 2024.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of Rowhammer
defenses,” in /IEEE SP, 2018, pp. 245-261.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in DIMVA, 2016, pp.
300-321.

M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer
bug to gain kernel privileges,” https://googleprojectzero.blogspot.
com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html, 2015.

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in
USENIX Security, 2016, pp. 1-18.

M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice,
and D. Gruss, “Nethammer: Inducing rowhammer faults through
network requests,” in 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). 1EEE, 2020, pp. 710-719.

K. Mus, Y. Doroz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt:
Recovering tls signing keys via rowhammer faults,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 1719-1736.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in 4/st IEEE Symposium on
Security and Privacy (S&P), 2020.

D. Hotheinz, K. Hovelmanns, and E. Kiltz, “A modular analysis of the
Fujisaki-Okamoto transformation,” Cryptology ePrint Archive, Report
2017/604, 2017, https://eprint.iacr.org/2017/604.

P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lep-
oint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehlé,
“CRYSTALS-KYBER,” National Institute of Standards and Tech-
nology, Tech. Rep., 2020, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, and D. Stehlé, “CRYSTALS — Kyber: a CCA-
secure module-lattice-based KEM,” Cryptology ePrint Archive, Re-
port 2017/634, 2017, https://eprint.iacr.org/2017/634.

D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “LWE with
side information: Attacks and concrete security estimation,” in Ad-
vances in Cryptology — CRYPTO 2020, Part II, ser. Lecture Notes
in Computer Science, D. Micciancio and T. Ristenpart, Eds., vol.
12171. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 17-21, 2020, pp. 329-358.

A. C. Aldaya and B. B. Brumley, “HyperDegrade: From
GHz to MHz effective CPU frequencies,” in 3Ist USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 2801-2818. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity22/presentation/aldaya

S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu,
T. Eisenbarth, and B. Sunar, “SPOILER: Speculative load hazards
boost rowhammer and cache attacks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 621-637. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 19/presentation/islam

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“{DRAMA}: Exploiting {DRAM} addressing for {Cross-CPU} at-
tacks,” in 25th USENIX security symposium (USENIX security 16),
2016, pp. 565-581.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “GitHub - pq-crystals/kyber —
github.com,” https://github.com/pq-crystals/kyber.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://comsec.ethz.ch/wp-content/files/trrespass_sp20.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://eprint.iacr.org/2017/604
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2017/634
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/usenixsecurity19/presentation/islam
https://www.usenix.org/conference/usenixsecurity19/presentation/islam
https://github.com/pq-crystals/kyber

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution,
low noise, 13 cache {Side-Channel} attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719-732.

L. Ducas, N. Drucker, S. Gueron, and D. Kostic, Dusan Stehlé,
“GitHub - awslabs/bike-kem — github.com,” https://github.com/
awslabs/bike-kem.

D. Gruss, E. Kraft, T. Tiwari, M. Schwarz, A. Trachtenberg, J. Hen-
nessey, A. Ionescu, and A. Fogh, “Page cache attacks,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2019, pp. 167-180.

V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures,” in ASTACRYPT, 2009.

L. G. Bruinderink and P. Pessl, “Differential fault attacks on deter-
ministic lattice signatures,” in CHES’18, 2018.

L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, G. Seiler,
P. Schwabe, and D. Stehlé, “GitHub - pgq-crystals/dilithium —
github.com,” https://github.com/pq-crystals/dilithium, [Accessed 29-
04-2024].

Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 1EEE, 2020, pp. 1-13.

M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling
low-overhead mitigation of row-hammer at ultra-low thresholds via
hybrid tracking,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 699-710.

A. Saxena and M. Qureshi, “Start: Scalable tracking for any rowham-
mer threshold,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 1EEE, 2024, pp. 578-
592.

L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correct-
ing codes: On the effectiveness of ECC memory against Rowhammer
attacks,” in JEEE SP, 2019.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“{CAn’t} touch this: Software-only mitigation against rowhammer
attacks targeting kernel memory,” in 26th USENIX Security Sympo-
sium (USENIX Security 17), 2017, pp. 117-130.

Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wang, S. Nepal,
Y. Gao, K. Li, Z. Wang, and C. Wu, “SoftTRR: Protect page
tables against rowhammer attacks using software-only target row
refresh,” in 2022 USENIX Annual Technical Conference (USENIX
ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp.
399-414. [Online]. Available: https://www.usenix.org/conference/
atc22/presentation/zhang-zhi

Appendix A.
Meta Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

This paper proposes three attacks on the implementa-
tions of recent post-quantum cryptography algorithms. The
attacks are based on injecting bit flips with Rowhammer,
and allow for full recovery of the secret key in practical
conditions.

A.2. Scientific Contributions

« Identifies an Impactful Vulnerability
e Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) The PC found this work to be an effective demon-
stration of the many subtle techniques that must be
stitched together to perform successful key recovery
using Rowhammer.

2) The targeted algorithms are among the recently an-
nounced finalists and alternates of the multi-year NIST
competition for post-quantum cryptography and are
expected to enjoy wide uptake in the near future.

A.4. Noteworthy Concerns

1) The PC found that it is challenging to determine if the
environmental conditions in the paper are realistic.

2) The PC found that some of the underlying attack
techniques are well-known.

https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://github.com/pq-crystals/dilithium
https://www.usenix.org/conference/atc22/presentation/zhang-zhi
https://www.usenix.org/conference/atc22/presentation/zhang-zhi

	Introduction
	Our Contributions
	Attack Overview
	Comparison to Prior Work
	Responsible Disclosure & Artifact Availability

	Background
	Post-Quantum Cryptography
	The Rowhammer Bug
	Rowhammer Exploitation Challenges
	Notation

	Threat Model and Hardware Setup
	Decryption Failure Attack on Rowhammer-Poisoned Kyber
	Preliminaries on Kyber KEM
	Decryption Failure Rate Analysis
	Recovering the Secret via Decryption Failures
	Rowhammer Induced Poisoning
	Experimental Setup and Results

	Rowhammer Attack on BIKE-KEM
	Rowhammer Attack on Dilithium
	Crystals-Dilithium
	Attacking Deterministic Dilithium
	Rowhammer
	Attack on Randomized Dilithium

	Countermeasures
	Implementation Defenses
	Rowhammer Defenses

	Conclusion
	References
	Appendix A: Meta Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

